
Benchmarking the Combinatorial Generalizability of
Complex Query Answering on Knowledge Graphs

Zihao Wang∗

Department of CSE
HKUST

zwanggc@cse.ust.hk

Hang Yin∗

Department of Mathematical Sciences
Tsinghua University

h-yin20@mails.tsinghua.edu.cn

Yangqiu Song
Department of CSE, HKUST

Peng Cheng Laboratory, Shenzhen, China
yqsong@cse.ust.hk

Abstract

Complex Query Answering (CQA) is an important reasoning task on knowledge
graphs. Current CQA learning models have been shown to be able to generalize
from atomic operators to more complex formulas, which can be regarded as the
combinatorial generalizability. In this paper, we present EFO-1-QA, a new dataset
to benchmark the combinatorial generalizability of CQA models by including 301
different queries types, which is 20 times larger than existing datasets. Besides,
our benchmark, for the first time, provide a benchmark to evaluate and analyze
the impact of different operators and normal forms by using (a) 7 choices of the
operator systems and (b) 9 forms of complex queries. Specifically, we provide
the detailed study of the combinatorial generalizability of two commonly used
operators, i.e., projection and intersection, and justify the impact of the forms of
queries given the canonical choice of operators. Our code and data can provide an
effective pipeline to benchmark CQA models. 2

1 Introduction

Knowledge graphs, such as Freebase [3], Yago [18], DBPedia [2], and NELL [5] are graph-structured
knowledge bases that can facilitate many fundamental AI-related tasks such as reasoning, question
answering, and information retrieval [9]. Different from traditional well-defined ontologies, knowl-
edge graphs often have the Open World Assumption (OWA), where the knowledge can be incomplete
to support sound reasoning. On the other hand, the graph-structured data naturally provide solutions
to higher-order queries such as “the population of the largest city in Ohio State.”

Given the OWA and scales of existing knowledge graphs, traditional ways of answering muti-hop
queries can be difficult and time-consuming [15]. Recently, several studies use learning algorithms to
reason over the vector space to answer logical queries of complex types, e.g., queries with multiple
projections [7], Existential Positive First-Order (EPFO) queries [10, 16, 1], and the so called first order
queries, i.e., EPFO queries with the negation operator [15, 19, 13]. These tasks are usually called
Complex Query Answering (CQA). Unlike the traditional link predictors that only model entities
and relations [4], CQA models also consider logical connectives (operators) such as conjunction (∧),

∗Equal Contribution
2https://github.com/HKUST-KnowComp/EFO-1-QA-benchmark

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/HKUST-KnowComp/EFO-1-QA-benchmark

Natural Language: Find a movie about love or a movie starred by the actor who has won the Oscar but not the golden globe.

Logical Formula: ? 𝛼∃𝛽. IsAbout(𝛼, Love)	∨ [HasActor(𝛼, 𝛽) ∧ Won(𝛽, Oscar) ∧ ¬ Won(𝛽, Golden globe)]

Set Operations: MovieHasActor(ActorWon(Oscar) ∩ Not(ActorWon(Golden globe))) ∪ MoveIsAbout(Love)

OpsTree

Oscar

Golden
Globe

ActorWon Negation

Intersection MovieHasActor

Love MovieIsAbout

Union

ActorWon

Query Type (LISP-like): (u,(p,(e)),(p,(i,(p,(e)),(n,(p,(e))))))

i n u ep

Operators

Figure 1: An example of EFO-1 query. The same query are represented in natural language (which is
only used for interpreting the query and we do not consider semantic parsing from natural language
to logical forms), first-order logical formula, set operations, and OpsTree. The query type can be
represented in the LISP-like grammar.

disjunction (∨), and negation (¬) by parameterized operations [10, 16, 15] or non-parameterized
operations such as logical t-norms [1, 13].

One of the advantages of learning based methods is that the learned embeddings and parameterization
in the vector space can generalize queries from atomic operations to more complex queries. It has
been observed there are out-of-distribution generalization phenomena of learning models [1] on the
Q2B dataset [16] (5 types to train but 4 unseen types to generalize) and the BetaE dataset [15] (10
types to train and 4 unseen types to generalize). This can be explained by the fact that complex
queries are all composed by atomic operations such as projection, conjunction, disjunction, and
negation. This idea evokes the combinatorial generalization, that is, the model generalizes to novel
combinations of already familiar elements [21]. However, compared to the huge combinatorial space
of the complex queries (see Section 2 and 3), existing datasets [16, 15] only contains queries from
very few types, which might be insufficient for the investigation of the combinatorial generalization
ability of learning models. Moreover, there is no agreement about how to present the complex queries
by operators and normal forms. For example, some approaches treat the negation as the atomic
operation [15, 13] while others replace the negation by the set difference (intersection combined with
negation) [19, 12]. The impact of the representation of the complex query using learning algorithms
is also unclear.

In this paper, we aim to benchmark the combinatorial generalizability of learning models for the
CQA on knowledge graphs. We extend the scope from a few hand-crafted query types to the family
of Existential First-Order queries with Single Free Variable (EFO-1) (see Section 2) by providing
a complete framework from the dataset construction to the model training and evaluation. Based
on our framework, the combinatorial generalizability of CQA models that fully supports EFO-1
queries [13, 15, 12] are evaluated and discussed. Our contribution are in three-fold.

• Large-scale dataset of combinatorial queries. We present the EFO-1-QA dataset to benchmark
the combinatorial generalizability of CQA models. EFO-1-QA largely extends the scope of previous
datasets by including 301 query types, which is 20 times larger than existing datasets. The evaluation
results over three knowledge graphs show that the our set is generally harder than existing ones.

• Extendable framework. We present a general framework for (1) iterating through the combinato-
rial space of EFO-1 query types, (2) converting queries to various normal forms with related operators,
(3) sampling queries and their answer sets, and (4) training the CQA models and evaluating the CQA
checkpoints. Our framework can be applied to generate new data as well as train and evaluate the
models.

• New findings for normal forms, training, and generalization. In our dataset, each query is
transformed into at most 9 different forms that are related to 7 choices of operators. Therefore, for
the first time, a deep analysis of normal forms are available in our benchmark. How the normal form
affects the combinatorial generalization is discussed and new observations are revealed. Moreover,
we also explore how training query types affect the generalization. We find that increasing training

2

Table 1: EFO-1 formula for 14 query types in BetaE dataset. The grammar of the EFO-1 formula are
given in the Appendix B.

BetaE EFO-1 formula BetaE EFO-1 formula

1p (p,(e)) 3in (i,(p,(e)),(i,(p,(e)),(n,(p,(e)))))
2p (p,(p,(e))) inp (p,(i,(p,(e)),(n,(p,(e)))))
3p (p,(p,(p,(e)))) pin (i,(p,(p,(e))),(n,(p,(e))))
2i (i,(p,(e)),(p,(e))) pni (i,(n,(p,(p,(e)))),(p,(e)))
3i (i,(i,(p,(e)),(p,(e))),(p,(e))) 2u-DNF (u,(p,(e)),(p,(e)))
ip (p,(i,(p,(e)),(p,(e)))) up-DNF (u,(p,(p,(e))),(p,(p,(e))))
pi (i,(p,(p,(e))),(p,(e))) 2u-DM (n,(i,(n,(p,(e))),(n,(p,(e)))))
2in (i,(p,(e)),(n,(p,(e)))) up-DM (p,(n,(i,(n,(p,(e))),(n,(p,(e))))))

query types is not always beneficial for CQA tasks, which leads to another open problem about how
to train the CQA models.

2 Complex Queries on KG

In this section, we introduce the Existential First Order Queries with Single Free Variable (EFO-1) on
the knowledge graphs. Here we give an intuitive example of EFO-1 queries and the related concepts
in Figure 1. Compared to the query families considered in the existing works [10, 16, 15], EFO-1 is a
family of queries that are most general. The formal definition and self-contained formal derivation of
EFO-1 query family from first-order queries can be found in the Appendix A. Notably, the formal
derivation of EFO-1 queries enables and guarantees the logical equivalent query representation in
set operations and Operators Tree (OpsTree). Specifically, the formally derived OpsTree is the
composition of set functions including intersection, union, negation, projection, and entity anchors.
This presentation is also widely but informally introduced in existing CQA models [16, 15, 19].

We consider the EFO-1 queries at the abstract level and the grounded level. At the abstract level, the
structure of a query is specified, but the projections or the entities are not given. At the grounded
level, the projections and entities are instantiated (see Section 3 for how to ground the queries). We
call queries without the instantiation query types. When the query type is given, one can ground the
projections and entities in a KG to obtain the specific EFO-1 query.

3 The Construction of EFO-1-QA Benchmark

In this section, we cover the detailed framework of the construction of EFO-1-QA benchmark.
Our framework includes (1) the generation and normalization of EFO-1 query types following the
definitions in Section 2; (2) grounding query types to specific knowledge graph to get the queries
and sampling the answer set; (3) constructing the computational graph to conduct the end-to-end
training and evaluation. (4) evaluation of models with metrics that emphasize the generalizability. In
our practice, we keep the EFO-1-QA dataset as practical as possible and follow the common practice
of BetaE dataset. Our benchmark contains 301 different query types (in the Original form) and is at
least 20 times larger than the previous works [16, 15, 12]. Moreover, the overall dataset construction
and inference pipeline is general enough. It can be applied to EFO-1 queries of any complexity and
any properly parametrized operators.

3.1 Generation of EFO-1 Query Types

Since EFO-1 queries can be represented by the OpsTree, we employ a LISP-like language [14] to
describe the EFO-1 query types. The string generated by our grammar is called an EFO-1 formula
(see Appendix B for more details about the grammar). Follow our derivation of EFO-1 queries
from the FO queries (see Appendix A), five operators are naturally introduced by the Skolemization
process, including entity e (zero operand), projection p (one operand), negation n (one operand),
intersection i (two operands), and union u (two operands). Specifically, Table 1 gives the example of

3

EFO-1 Formula (Original) Normal Forms (DNF+MultiIUD)
(i,(n,(p,(p,(e)))),

(p,(u,(p,(e)),
(p,(e)))))

(u,(D,(p,(p,(e))), (p,(p,(e)))),
(D,(p,(p,(e))), (p,(p,(e)))))

{o:i, a:[{o:n, a:{o:p, a:[[169],
{o:p, a:[[168],

{o:e, a:[2711]}]}]}},
{o:p, a:[[277],

{o:u, a:[{o:p, a:[[7],
{o:e, a:[6724]}]},

{o:p, a:[[276],
{o:e, a:[8671]}]}]}]}]}

i
n

p u

p p e

p

p

e

e

OpsTree

JSON-like grounded query on KG (Appendix D)

Parametrized Ops Set

i n u ep

Answer set by query the KGs
[14467, 12707,
14408, 14536,
7720, 9931,
11159, 6359, …]

KG

Evaluation
Protocol

(Section 3.4)

Abstract Level

EFO-1 queries are generated
by the grammar (Appendix A)

Grounded Level

i
n

p u

p p e

p

p

e

e

backward grounding the p,e ops

i
n

p u

p p e

p

p

e

e

Computational Graph
(Section 3.3)

Parser

Different choice of operators

forward inference

backward propagation

Scores

(Section 3.2)

(Section 3.2)

(Section 2.3)

Figure 2: Framework of constructing the EFO-1-QA benchmark. The query types are defined by
the EFO-1 formula, which is generated by the Grammar 2 in the Appendix B at the abstract level.
The EFO-1 formula can be converted to different normal forms and represented with the different
operators. A parser is employed to produce the OpsTree from the EFO-1 formula. Queries are
grounded by the backward DFS of the OpsTree on the full graph and the answers are sampled by
the forward execution of the OpsTree on the partial graph as explained in Section 3.3. The OpsTree
can also be used to build the computational graph with the parameterized operators, which are used
to train and infer the CQA models by the backward propagation and forward inference. Finally, the
estimated query embeddings are evaluated by the Evaluation Protocol with five metrics given in the
Section 3.5.

Table 2: Number of EFO-1 query types with respect to the maximum length of projection chains and
number of anchor nodes for EFO-1-QA and BetaE dataset. The boldface indicates the query types
that are not discussed sufficiently in the BetaE dataset.

Max length
of projection
chains

Anchor nodes

EFO-1-QA BetaE

1 2 3 Sum 1 2 3 Sum

1 1 3 12 16 1 3 2 6
2 1 10 91 102 1 6 0 7
3 1 13 169 183 1 0 0 1

Sum 3 26 272 301 3 9 2 14

the EFO-1 formulas for 14 query types in the BetaE dataset [15]. We can parse any EFO-1 formula
to the OpsTree according to our grammar.

In EFO-1-QA benchmark, the EFO-1 formulas are generated by a depth first search of the Grammar
2 in the Appendix B with the [e,p,i,u,n] operators. The grammar explicitly follows the practice
of bounded negation. That is, we only generate the negation operator when it is one operand of an
intersection operator. The produced OpsTree is binary.

Instead of producing endless query types in the combinatorial spaces of EFO-1 queries, we keep
the generated types as realistic as possible by following two practical constraints: (1), we set the
maximum length of projection/negation chains to be 3. That is, we consider no more than three
projections/negations in any paths from the target root node to anchor leaf nodes, which follows the
3p setting in Table 1. (2), we limit the number of anchor nodes to be no more than 3, which follows
the 3i setting in Table 1. As a result, we generate 301 different query types, more details can be
found in Table 2.

4

Table 3: The normal forms of logical queries, related choice of operators and the number of types of
each normal form considered in EFO-1-QA benchmark.

(Normal) Forms Operators Comment

Original [e,p,i,u,n] Sort multiple operands by the alphabetical order
DM [e,p,i,n] Replace the u with i,n by De Morgan’s rule
DM + I [e,p,I,n] Replace i in DM by I
Original + d [e,p,i,u,d] Replace i-n structure by binary d operator
DNF [e,p,i,u,n] Disjunctive Normal Form derived by the Appendix C
DNF + d [e,p,i,u,d] Replace the n in DNF by binary d
DNF + IU [e,p,I,U,n] Replace the binary i,u in DNF by I,U
DNF + IUd [e,p,I,U,d] Replace n in DNF+IU by binary d
DNF + IUD [e,p,I,U,D] Replace the n in DNF+IU by multi-difference D

3.2 Normalization of EFO-1 Query Types

Interestingly, in the context of learning based CQA models, the logically equivalent transformation of
query types may lead to computationally different structures. On the one hand, different choices of
operators lead to different parameterizations and generalization performances. For example, the set
difference operator [12] is reported to perform differently from the negation operator [15]. On the
other hand, different normal forms also affect the learning based CQA models. Specifically, different
forms alters the query structure, i.e., OpsTree, and might result in different depths or various number
of inputs of the specific operator (see the DNF formula and the DNF+IU formula in the Appendix D
Table 12) and finally affect the performance. For example, DNF has been claimed to be better than
the De Morgan by [15] when evaluating on 2u and up queries.

However, the impacts of the operators and normal forms are not clearly justified in previous works
because they are also entangled with parametrization, optimization, and other issues. Our benchmark,
to the best of our knowledge, is the first to justify the impact of operators and normal forms from
the aspect of the dataset. Our LISP-like language is general enough to be compatible with all those
different query types. Here we list how EFO-1-QA benchmark considers the impact of choices of
operators (see the Grammar 3 in the Appendix B) and normal forms.

(A) Choice of the Operators. We have introduced the [e,p,i,u,n] operator system by Skolem-
ization. In BetaE dataset [15], multi-intersection operator I and multi-union operator U that accept
more than two inputs to conduct the intersection and union are chosen in the [e,p,I,U,n] system. In
this case, the “3i” type in Table 1 can be rewritten as (I,(p,(e)),(p,(e)),(p,(e))). Moreover,
the set difference operator d or the generalized multi-difference operator D are introduced in [12] to re-
place the negation operator n for EFO-1 queries with the bounded negation assumption. The rationale
behind the bounded negation is that the negation should be bounded by a set intersection operation
because the set complement against all entities is not practically useful. So one can replace each
intersection-negation structure with the set difference, resulting in [e,p,i,u,d] or [e,p,I,U,D]
systems. However, the removal of the negation operator made it impossible to apply the De Morgan’s
law, which can represent the union operator u by intersection i and negation n. More comment of
the operators can also be found in the Appendix B. To summarize, we consider seven choices of
operators to represent the EFO-1 queries, see Table 3.

(B) Choice of Normal Forms. Normal forms, such as Disjunctive Normal Forms (DNF) [8], are
equivalent classes of query types. Normalization, i.e., converting queries into normal forms, is
effective to reduce the number of query types and rectify the estimation process while preserving
the logical equivalence. The participation of different operator systems makes the choices of normal
forms more complicated. In this work, all nine different forms with seven different choices of
operators are shown in Table 3. This nine normal forms are selected by enumerating all possible
combinations of operators, see Appendix H. The example of each form and how they are transformed
are shown in Table 12 in the Appendix D. After obtaining a query from the generation procedure, we
transform them to DNF and other seven forms. Most of the conversions are straightforward except
the conversion from the original form to the DNF.

5

3.3 Grounding EFO-1 Queries and Sampling the Answer Sets

Given the specific knowledge graph, we can ground the query types with the containing relations and
entities. We consider the knowledge graph G and its training subgraph Gtrain, such that Gtrain ⊂ G.
To emphasize on the generalizability of CQA models that are trained on Gtrain, the queries are
grounded to the entire graph G and we pick the answers that can be obtained on the G but not the
Gtrain. We note that this procedure follows the protocol in [16] and prevents the data leakage.

Grounding Query Types. The grounding means to assign specific relations and entities from the
G to the p and e operators in the OpsTree. We conduct the grounding process in the reverse order, i.e.,
from the target root node to the leaf anchor nodes, as shown in Figure 2. We first sample an entity
as the seed answer at the root node and go through the tree. During the iterating, the inputs of each
operator are derived by its output. For the set operators such as intersection, union, and negation,
we select the inputs sets while guaranteeing the output. For the projection operator, we sample the
relation from the reverse edges in the G that leaves the specific output entity. For the entity operator,
i.e., the anchor nodes, we sample the head entity given the relation and the tail entity. In this way,
we ensure grounded queries to have at least one answer. The sampling procedure for the negation
operator is actually a bit more complicated and we leave the details in the Appendix F. In order
to store the grounded relation and query information, we employ the JSON format to serialize the
information. The details of the JSON string can be found in the Appendix E.

Sampling Answer Sets. Once the query is grounded, we can sample the answer by the execution
of the OpsTree in the full knowledge graph G. The execution procedure of each operator is defined
in the Table 11. The full answer set Afull is obtained on the G and the trivial answer set Atrivial

is obtained by sampling the training subgraph Gtrain. As we stated, we focus on the answer set
A = Afull − Atrivial that cannot be obtained by simply memorizing the known training graph
Gtrain. Specifically, we pick the queries whose answer sizes are between 1 and 100, which follows
the practice of BetaE dataset [15].

For each query type, we can produce one data sample by a grounding and sampling process. We
note that the grounding and sampling process does not rely on a specific graph. In this work, we
sample the benchmark dataset on three knowledge graphs, including FB15k [20], FB15k-237 [4], and
NELL [5] with 5000, 8000, and 4000 queries correspondingly. More details about how the dataset is
organized can be found in the Appendix G.

3.4 From OpsTree to Computational Graph

Similar to the sampling process where the answers are drawn by the forward computation of the
OpsTree, we can also construct the end-to-end computational graph with the parameterized operators
in the same topology to estimate the answer embeddings. Therefore, we can train and evaluate the
CQA models over the constructed computational graphs of all EFO-1 queries. Practically, we can
even use any provided checkpoints to initialize the parameterized operators and conduct the inference.
Therefore, the EFO-1-QA provides a general test framework of CQA checkpoints with no need to
know how the checkpoints are obtained.

3.5 Evaluation Protocol

The CQA models are evaluated by the ranking based metrics in the EFO-1-QA benchmark. Basically,
the ranking of all entities are expected to be obtained after the inference. For example, the entities
can be ranked by their “distances” to the estimated answer embedding. We use following metrics to
evaluate the generalizability of CQA models, including MRR and HIT@K that have been widely
used in previous works [15, 1, 12].

•MRR. For each answer entity in the answer set, we consider its ranking with E −Afull.3 That is,
the ranking of the given answer against all non-answer entities. The Mean Reciprocal Rank (MRR)
for a query is the average of the MRR of all answers of this query. The MRR of a query can be 1 if
all the answers are ranked before the rest non-answer entities. Then the query MRR are averaged to
the specific query types or the entire dataset.

3In query with negation, this should be E − Afull − Atrivial instead. The rationale behind it is that
Atrivial 6⊂ Afull for negation creates “wrong” answers in Atrivial.

6

Table 4: Review of existing CQA datasets, where * means the DNF/DM is required.

.

CQA Dataset Support Operators Support
EPFO

Support
EFO-1

Num. of
Forms

Num. of Test
Query Types

e p i I u U n d D

Q2B dataset [16] 3 3 3 3 7 7 7 7 7 3* 7 1 9
HypE dataset [6] 3 3 3 3 7 7 7 7 7 3* 7 1 9
BetaE dataset [15] 3 3 3 3 7 7 3 7 7 3* 3* 2 14
EFO-1-QA (ours) 3 3 3 3 3 3 3 3 3 3 3 9 301

Table 5: Benchmark results of MRR (%) on different dataset. The results of the BetaE dataset are
obtained from the original paper [15, 13].

CQA Model Dataset FB15k-237 FB15k NELL

EPFO Neg. ALL EPFO Neg. ALL EPFO Neg. ALL

BetaE
+DNF+IU

BetaE 20.9 5.4 15.4 41.6 11.8 31.0 24.6 5.9 17.9
EFO-1-QA 11.8 7.5 9.7 23.7 16.8 20.3 12.7 8.3 10.6

LogicE
+DNF+IU

BetaE 22.3 5.6 16.3 44.1 12.5 32.8 28.6 6.2 20.6
EFO-1-QA 12.8 8.1 10.5 25.4 18.2 21.9 15.6 10.4 13.1

• HIT@K. Similar to MRR, HIT@K is computed for each answer by its ranking in E −Afull and
then averaged for the query. In our practice, we consider K = 1, 3, 10.

• Retrieval Accuracy (RA). Previous metrics focus on the answer entity against non-answer entities,
which deviates from the real-world retrieval task. In this paper, we propose the RA score to evaluate
how well a model retrieves the entire answer set. The computation of RA score is decomposed into
two steps, i.e., (1) to estimate the size of the answer set as N , (2) to compute the accuracy of the
top-N answers against the true answer set.

We note that EFO-1-QA also supports the counting task. However, since not all the CQA models
are designed to count the number of answers, we assume that the ground-truth of the answer size
is known and only consider the second step of computing the RA score in this paper. We call the
RA score with known answer size as the RA-Oracle. Moreover, as this benchmark focuses on the
generalization property of CQA models, we do not report the evaluation in the entailment setting [19].

4 Related Datasets and the Comparison to EFO-1-QA Benchmark

Existing datasets are constructed along with the CQA models, for the purpose of indicating that
their models are capable to solve some certain types of queries by providing a few examples. Thus,
those datasets contain very limited query types, normal forms and operators, see Table 4. However,
EFO-1-QA benchmark focuses on how well CQA models work on the whole EFO-1 query space and
considers the impact of operators and normal forms.

Table 2 already shows that EFO-1-QA benchmark contains much more query types, supported opera-
tors and normal forms than BetaE dataset [15], thereby provides a more comprehensive evaluation
result. Meanwhile, we compare results of both BetaE [15] and LogicE [13] between EFO-1-QA
benchmark and BetaE dataset [15] in Table 5. We note that the EFO-1-QA benchmark is generally
harder than BetaE dataset when averaging results from all query types on three KGs. Moreover, our
comprehensive benchmark brings us many new insights and helps us to refresh the observations from
previous dataset.

Finding 1: Negation queries ares not significantly harder. We further separate the query types
into two subgroups, i.e., the EPFO queries and the negation queries. Table 5 shows that results
from two dataset have very different distribution of the scores in those two subgroups. This can be
explained by the fact that the five negation query types in the BetaE dataset are biased and cannot
represent the general performance of the negation queries.

In short, we can conclude that the EFO-1-QA benchmark is more comprehensive, generally harder,
and fairer than existing datasets.

7

Table 6: Benchmark results (%) for all three models and their corresponding normal forms.

Knowledge
Graph

CQA Moddel BetaE LogicE NewLook

Normal Form DM
DM
+I

DNF
+IU DM

DM
+I

DNF
+IU

DNF
+IUd

DNF
+IUD

FB15k
-237

MRR 8.48 8.50 9.67 10.00 10.01 10.46 9.11 9.13
HIT@1 4.35 4.37 4.89 5.26 5.27 5.42 4.80 4.81
HIT@3 8.54 8.56 9.69 10.19 10.21 10.61 9.14 9.15

HIT@10 16.25 16.27 18.73 19.04 19.06 20.01 17.17 17.20
RA-Oracle 11.49 11.51 13.69 13.63 13.65 14.37 12.43 12.45

FB15k

MRR 17.18 17.22 20.31 20.53 20.55 21.89 19.80 19.87
HIT@1 10.46 10.51 12.05 12.68 12.70 13.14 11.96 11.99
HIT@3 18.76 18.81 22.10 22.71 22.73 24.17 21.58 21.66

HIT@10 30.30 30.35 36.74 35.93 35.96 39.33 35.28 35.44
RA-Oracle 21.83 21.89 27.51 26.92 26.95 29.38 26.57 26.66

NELL

MRR 8.93 8.94 10.58 11.13 11.14 13.07 9.88 9.90
HIT@1 5.58 5.59 6.52 7.26 7.27 8.31 6.04 6.04
HIT@3 9.38 9.39 11.12 11.89 11.89 14.01 10.35 10.36

HIT@10 15.27 15.29 18.32 18.38 18.39 22.04 17.10 17.13
RA-Oracle 12.08 12.09 14.98 15.25 15.26 18.39 14.15 14.16

5 The Empirical Evaluation of the Benchmark

In this section, we present the evaluation results of the complex query answering models that are
compatible to the EFO-1 queries.

5.1 Complex Query Answering Models

We summarize existing CQA models by their supported operators as well as supported query families
in Table 13. Only three CQA models fully support EFO-1 family by their original implementation.
Therefore, in our evaluation, we focus on these models, including BetaE [15], LogicE [13], and
NewLook [12]. These models are trained on the BetaE training set and evaluated on EFO-1-QA
benchmark. Specifically, the BetaE is trained by the original implementation released by the authors 4

and evaluated in our framework. LogicE and NewLook are re-implemented, trained and tested by our
framework. The NewLook implementation is adapted to fit into the generalization evaluation, see the
Appendix I.

5.2 Benchmark Results

The benchmark result is shown in Table 6 for three models with five supported normal forms in total
on three KGs. Besides the findings in Table 5, the average HIT@1 of NewLook is reported to be 37.0
in their paper [12] but is 4.8 on our EFO-1-QA. This can be caused by the hardness of our dataset
and our implementation prevent the data leakage. We also group the 301 query types into 9 groups by
their depth and width. The detailed results of FB15K-237 can be found in Table 7. For FB15K and
NELL, the corresponding results are listed in the Table 15 and Table 16 in the Appendix L. Detailed
analysis in the Appendix L justifies the impact of query structures, for the first time.

6 Analysis of the [e,p,i,u,n] System

As discussed in Section 3.1, a CQA model may model queries with multiple choices of operators,
which are different in computing while equivalent in logic. We here focus on the canonical choice
of [e,p,i,u,n] since this system is naturally derived by Skolemization, represents EFO-1 queries
without any assumptions such as bounded negation. The best model LogicE in Table 6 is picked in
this section.

4https://github.com/snap-stanford/KGReasoning

8

https://github.com/snap-stanford/KGReasoning

Table 7: Benchmark results(%) on FB15k-237. The mark † indicates the query groups that previous
datasets have not fully covered. The boldface indicates the best scores. The best scores of the same
model are underlined.

CQA
Model

Normal
Form Metric Query type groups (# anchor nodes, max length of Projection chains) AVG.

(1,1) (1,2) (1,3) (2,1) (2,2)† (2,3)† (3,1†) (3,2)† (3,3)†

BetaE

DM

MRR 18.79 9.72 9.64 12.76 8.48 8.10 11.34 8.58 8.09 8.48
HIT@1 10.63 4.63 4.68 7.07 4.13 3.89 5.99 4.42 4.16 4.35
HIT@3 20.37 9.61 9.44 13.47 8.37 8.02 11.99 8.66 8.11 8.54
HIT@10 36.19 19.80 19.38 24.27 16.82 16.03 21.99 16.41 15.43 16.25
RA-Oracle 14.38 14.40 16.99 14.09 12.07 13.04 12.51 10.86 11.48 11.49

DM
+I

MRR 18.79 9.72 9.64 12.76 8.48 8.10 11.39 8.59 8.12 8.50
HIT@1 10.63 4.63 4.68 7.07 4.13 3.89 6.05 4.43 4.19 4.37
HIT@3 20.37 9.61 9.44 13.47 8.37 8.02 12.01 8.68 8.14 8.56
HIT@10 36.19 19.80 19.38 24.27 16.82 16.03 22.01 16.43 15.47 16.27
RA-Oracle 14.38 14.40 16.99 14.09 12.07 13.04 12.58 10.88 11.52 11.51

DNF
+IU

MRR 18.79 9.72 9.64 14.39 9.28 8.86 13.14 9.76 9.32 9.67
HIT@1 10.63 4.63 4.68 7.78 4.48 4.20 6.83 4.93 4.72 4.89
HIT@3 20.37 9.61 9.44 15.11 9.12 8.74 13.86 9.79 9.28 9.69
HIT@10 36.19 19.80 19.38 28.04 18.55 17.67 25.82 18.90 17.95 18.73
RA-Oracle 14.38 14.40 16.99 16.87 13.58 14.69 15.39 12.93 13.83 13.69

LogicE

DM

MRR 20.71 10.70 10.18 15.66 10.01 9.41 13.71 10.12 9.54 10.00
HIT@1 11.66 5.20 5.25 8.81 5.00 4.83 7.38 5.27 5.06 5.26
HIT@3 23.02 10.66 9.96 16.72 10.07 9.43 14.57 10.33 9.67 10.19
HIT@10 39.81 21.25 19.48 29.66 19.66 18.12 26.33 19.38 18.04 19.04
RA-Oracle 15.64 15.27 17.28 17.49 13.97 14.75 15.62 12.99 13.61 13.63

DM
+I

MRR 20.71 10.70 10.18 15.66 10.01 9.41 13.76 10.14 9.56 10.01
HIT@1 11.66 5.20 5.25 8.81 5.00 4.83 7.41 5.28 5.07 5.27
HIT@3 23.02 10.66 9.96 16.72 10.07 9.43 14.67 10.35 9.69 10.21
HIT@10 39.81 21.25 19.48 29.66 19.66 18.12 26.41 19.42 18.06 19.06
RA-Oracle 15.64 15.27 17.28 17.49 13.97 14.75 15.64 13.01 13.63 13.65

DNF
+IU

MRR 20.71 10.70 10.18 15.86 10.27 9.67 14.06 10.56 10.06 10.46
HIT@1 11.66 5.20 5.25 8.69 5.06 4.87 7.36 5.41 5.27 5.42
HIT@3 23.02 10.66 9.96 16.85 10.31 9.66 14.90 10.71 10.16 10.61
HIT@10 39.81 21.25 19.48 30.62 20.26 18.70 27.48 20.39 19.06 20.01
RA-Oracle 15.64 15.27 17.28 17.94 14.46 15.31 15.99 13.64 14.48 14.37

NewLook

DNF
+IUd

MRR 22.31 11.19 10.39 16.02 9.46 9.29 11.54 8.62 8.95 9.11
HIT@1 13.55 5.62 5.18 9.42 4.85 4.85 6.17 4.47 4.74 4.80
HIT@3 24.62 11.40 10.38 17.31 9.44 9.19 12.03 8.62 8.93 9.14
HIT@10 40.53 22.18 20.47 29.10 18.20 17.58 22.21 16.34 16.76 17.17
RA-Oracle 17.66 16.32 17.79 17.53 13.00 14.66 12.40 10.85 12.91 12.43

DNF
+IUD

MRR 22.31 11.19 10.39 16.02 9.46 9.29 11.59 8.65 8.96 9.13
HIT@1 13.55 5.62 5.18 9.42 4.85 4.85 6.19 4.48 4.74 4.81
HIT@3 24.62 11.40 10.38 17.31 9.44 9.19 12.06 8.65 8.94 9.15
HIT@10 40.53 22.18 20.47 29.10 18.20 17.58 22.33 16.41 16.78 17.20
RA-Oracle 17.66 16.32 17.79 17.53 13.00 14.66 12.43 10.88 12.92 12.45

6.1 Combinatorial Generalizability of Operators

Since the projection operator plays a pivotal role in query answering as shown in Appendix L,
For projection, we train models by {1p}, {1p,2p}, and {1p,2p,3p} queries and evaluate on
1p,2p,3p,4p,5p5. The experiment result is shown in the Table 8. We can see that training
on deeper query types benefits the generalization power as the performances on unseen query types
are improved. However, the performance on 1p decreases at the same time.

For the intersection, we train models by {1p,2i} and {1p,2i,3i}6 queries and evaluate on
2i,3i,4i queries.7 As shown in Table 9, adding 3i to training queries helps with the performance
on 3i,4i while detriments performance on 2i.

Finding 2: More training query types do not necessarily lead to better performance. Adding
more queries to training is not helpful to all query types, since it may benefit some query types while
impairing others. Our observation indicates the interaction mechanisms between query types is not
clear. Thus, how to properly train the CQA models is still open.

51p,2p,and 3p are shown in Table 1, 4p and 5p are defined similarly.
61p is also included in training to ensure the performance the projection.
72i and 3i are shown in Table 1, 4i is defined as (i,(i,(i,(p,(e)),(p,(e))),(p,(e))),(p,(e))).

9

Table 8: Generalization performance of projec-
tion on FB15k-237 in MRR (%).

Training 1p 2p 3p 4p 5p

1p 19.36 4.98 3.95 3.17 2.93
1p,2p 19.22 9.01 7.98 7.22 7.15
1p,2p,3p 17.81 9.45 9.59 9.52 9.32

Table 9: Generalization performance of intersection on
FB15k-237 in MRR (%).

Training multi-input I binary input i

2i 3i 4i 2i 3i 4i

1p,2i 32.24 41.66 52.37 32.24 41.66 51.78
1p,2i,3i 31.97 42.67 52.70 31.97 42.32 52.10

Table 10: Impact of normal forms of LogicE on FB15k-237. Each cell indicates the winning rate of
the form by its row against the form by its column.

Outperform Rate % Original DM DM+I DNF DNF+IU

Original 0.00 85.96 60.61 53.33 43.33
DM 14.04 0.00 41.33 12.23 20.31
DM+I 39.39 58.67 0.00 28.50 11.60
DNF 46.67 87.77 71.50 0.00 41.67
DNF+IU 56.67 79.69 88.40 58.33 0.00

Finding 3: More complex queries do not necessarily have worse performance. We can see that
the more complex p queries are, the worse performance they have. However, for i queries, more
complex i/I queries have better performance. In the combinatorial space where those two operators
are combined, we cannot even conclude more complex queries have worse performance or not.
This might support our observation that negation queries are not significantly harder since negation
operator is assumed to be bounded by an intersection operator.

6.2 Impact of the Normal Forms

To study the impact of different normal forms, except for the averaged results in Table6 and Table7,
we also compares every normal forms with LogicE [13] with our evaluation model and the results are
shown in Table 10 and Table 14 in the Appendix K.

• DM vs. DNF. Formulas with unions can be modeled in two different ways: (1) transformed into
Disjunctive Normal Form (DNF) as showed in Appendix C, (2) with union converted to intersection
and negation by the De Morgan’s law (DM). In Table 10, we find that DNF outperforms DM in the
vast majority of cases, whether DM uses I or not. However, there are still some cases where DM can
outperform DNF.

• Original vs. DNF+IU. DNF+IU outperforms all other normal forms. Moreover, it is a universal
form to support all circumstances, making itself the most favorable form. Interestingly, the original
form, meanwhile, has considerable winning rate against DNF, suggesting it has its own advantage in
modeling.

Finding 4: There is no rule of thumb for choosing the best normal form. When evaluated on
BetaE dataset, one may observe that the DNF is always better than DM. However, in EFO-1-QA, our
evaluation shows that there is no normal form that can outperform others in every query types. Thus,
how to choose the normal form for specific query type to obtain the best inference-time performance
is also an open problem.

7 Conclusion

In this paper, we present a framework to investigate the combinatorial generalizability of CQA models.
With this framework, the EFO-1-QA benchmark dataset is constructed. Comparisons between existing
dataset shows that EFO-1-QA data is more comprehensive, generally harder and fairer. The detailed
analysis justifies, for the first time, the impact of the choices of different operators and normal
forms. Notably, our evaluation leads four insightful findings that refreshes the observations on
previous datasets. Two findings also leads to the open problems for training and inference of the
CQA models. We hope that our framework, dataset, and findings can facilitate the related research
towards combinatorial generalizable CQA models.

10

Acknowledgement

The authors of this paper were supported by the NSFC Fund (U20B2053) from the NSFC of China,
the RIF (R6020-19 and R6021-20) and the GRF (16211520) from RGC of Hong Kong, the MHKJFS
(MHP/001/19) from ITC of Hong Kong.

References
[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query

answering with neural link predictors. In ICLR. OpenReview.net, 2021.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In ISWC/ASWC, volume
4825 of Lecture Notes in Computer Science, pages 722–735. Springer, 2007.

[3] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In SIGMOD, pages
1247–1250, 2008.

[4] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pages 2787–2795, 2013.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and
Tom M. Mitchell. Toward an architecture for never-ending language learning. In AAAI. AAAI
Press, 2010.

[6] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy.
Self-supervised hyperboloid representations from logical queries over knowledge graphs. In
WWW, pages 1373–1384. ACM / IW3C2, 2021.

[7] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer:
Reasoning over paths in knowledge bases using reinforcement learning. In ICLR (Poster).
OpenReview.net, 2018.

[8] Brian A Davey and Hilary A Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

[9] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In SEMANTiCS
(Posters, Demos, SuCCESS), volume 1695 of CEUR Workshop Proceedings. CEUR-WS.org,
2016.

[10] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. In NeurIPS, pages 2030–2041, 2018.

[11] Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex queries in
knowledge graphs with bidirectional sequence encoders. In AAAI, pages 4968–4977. AAAI
Press, 2021.

[12] Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-answering
logical queries on knowledge graphs. In KDD, pages 1087–1097. ACM, 2021.

[13] Francois P. S. Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo,
Thabang Lebese, and Alexander G. Gray. Logic embeddings for complex query answering.
CoRR, abs/2103.00418, 2021.

[14] John McCarthy, Michael I Levin, Paul W Abrahams, Daniel J Edwards, and Timothy P Hart.
LISP 1.5 Programmer’s Manual. MIT Press, 1965.

[15] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. In NeurIPS, 2020.

[16] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In ICLR. OpenReview.net, 2020.

11

[17] Alan JA Robinson and Andrei Voronkov. Handbook of Automated Reasoning, volume 1.
Elsevier, 2001.

[18] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706. ACM, 2007.

[19] Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and William W. Cohen.
Faithful embeddings for knowledge base queries. In NeurIPS, 2020.

[20] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In ACL Workshop on Continuous Vector Space Models and Their Compositionality,
pages 57–66, 2015.

[21] Ivan I Vankov and Jeffrey S Bowers. Training neural networks to encode symbols enables
combinatorial generalization. Philosophical Transactions of the Royal Society B, 375(1791):
20190309, 2020.

12

