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ABSTRACT

Large language models (LLMs) have demonstrated remarkable progress in coding
and mathematical problem-solving; however, evaluation on advanced research-
level problems in the hard sciences remains scarce. To fill this gap, we present
CMT-Benchmark, a dataset of 50 original problems covering condensed matter
theory (CMT) at the level of an expert researcher. The topics cover analytical
and computational approaches commonly used in quantum many-body physics
as well as classical statistical mechanics. This dataset was designed and verified
by a panel of expert researchers from around the world. We built the dataset
through a collaborative environment that challenges the panel to write and refine
difficult problems that the panel would like their research assistants to be able to
solve, with topics including Hartree-Fock mean-field theory, exact diagonalization,
quantum Monte Carlo, density matrix renormalization group, quantum statisti-
cal mechanics, classical statistical mechanics, and model building. We evaluate
different LLMs by programmatically checking LLM-generated solutions against
expert-supplied ground truth. For this, we developed machine-grading mechanisms
that are suitable for advanced physics research problems. For example, we handle
non-commuting operators that are essential for quantum many-body problems by
symbolic manipulation and normal ordering. Our evaluations show that frontier
models struggle with all of the problems in the dataset, highlighting a gap in the
physical reasoning skills of current LLMs. Notably, experts identified strategies
for creating increasingly difficult problems by interacting with the LLMs and
exploiting common failure modes. While the highest-performing model, GPT5,
correctly solves 30% of the problems, average performance across 17 models (GPT,
Gemini, Claude, DeepSeek, and Llama classes) is only 11.4±2.1%. Moreover,
our benchmark contains 18 problems that not a single one of the 17 models can
correctly solve, and 26 problems that are solved by at most one model. These
currently unsolvable problems span the fields of Quantum Monte Carlo, Variational
Monte Carlo, and Density Matrix Renormalization Group. The answers sometimes
violate fundamental symmetries or have unphysical scaling dimensions. We believe
that this benchmark set provides valuable guidance for the future development of
language models, aiming to achieve the goal of AI research assistants and tutors.

1 INTRODUCTION

The progress of Frontier LLMs has been stunning. Whereas a few years ago models struggled on high
school mathematics problems (Hendrycks et al., 2021), today’s LLM-based systems achieve Gold
medals in the International Math Olympiad (Trinh et al., 2024) and competitive coding competitions,
inventing solutions that humans are unable to discover. Benchmarks for assessing LLMs against
expert-level mathematics have flourished (Liu et al., 2024; Fan et al., 2024; Roggeveen et al., 2025),
including expert-level benchmarks made by professional mathematicians (Glazer et al., 2025). At
the same time, there is an intense interest in LLMs for science, with a significant literature focused
on creating benchmarks to evaluate agent capabilities against hard science problems (Laurent et al.,
2024; Mitchener et al., 2025). However, existing hard science benchmarks measure knowledge or
skill for carrying out textbook problems for students at varying levels, and do not assess whether
models can function as a research assistant on cutting-edge scientific tasks. Typical crowdsourcing
strategies will not work in highly technical fields like theoretical condensed matter physics, since
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the required expertise is focused on small communities. While the mathematics community built
such benchmarks by assembling groups of leading experts to create research-grade problems (Glazer
et al., 2025; Balunović et al., 2025), a systematic counterpart is missing in hard scientific domains.

We created CMT-Benchmark to address this gap so that the LLM research community can hill-climb
towards a competent AI research assistant. For LLMs to serve as scientific research assistants, they
must demonstrate rigorous critical judgment and the ability to synthesize existing knowledge with
theoretical principles established in a specific scientific domain. We designed the problems and a
rigorous yet automated evaluation scheme, focusing on condensed matter theory (CMT), a subfield
of physics reveals how collective interactions among particles generate emergent phenomena such as
superconductivity and topological phases, while also providing the theoretical foundation for advanced
materials and quantum technologies. Research of CMT requires synthesizing microscopic knowledge
of material systems with macroscopic observations in a manner that adheres to the theoretical
principles. CMT-Benchmark consists of 50 original, select, high-value problems covering seven
computational and theoretical methods, as well as sound model-building (categorized as “Other”),
as shown in Fig. 1a. The novelty of our problems lies in the design principles we adopted from the
principles of trustworthy and impactful scientific research. For this, we assembled an international
panel of expert researchers to write original problems and provide critiques of each other’s problems.
Each contributor crafted problems they would expect a strong graduate student or research assistant to
answer correctly, measuring critical skills for performing research in their field. They then iteratively
refined the problems to identify gaps in critical judgments and insights in LLM reasoning.

The design principle of our evaluation scheme is also based on the mission of aiding the development
of a competent AI research assistant. Scientific research must push the knowledge frontier so that other
researchers in the community can build on the outcome. Correctness must be absolute, and results
should be deterministically reproducible. Hence, unlike the typical homework grading setting where
the grader issues partial credit, we apply the rigorous standards we hold ourselves to: we demand that
the answers be deterministically and objectively correct. We designed problems in multiple answer
formats that can be automatically graded, including multiple-choice, numerical values, algebraic
expressions, and non-commutative operator expressions. We score the LLM-generated solutions as
correct or incorrect against the ground truth answer supplied by the author of the problem. Even the
most advanced models exhibit low performance on our problems, with the highest pass rate of 30%.
Our results reveal that current LLMs cannot function as research assistants.

We highlight that CMT-Benchmark makes the following important contributions:

1. Benchmark for Analytic and Computational Reasoning. It is the first benchmark explic-
itly designed to jointly test analytic and computational reasoning in LLMs, assessing their
potential as scientific research assistants in CMT—a field central to understanding emergent
quantum phenomena and foundational to quantum materials and technologies.

2. High-Value, Expert-Curated Research Level Dataset. Our dataset comprises 50 original
and rigorously designed problems spanning seven computational and theoretical methods,
plus model-building. Problems were authored and refined by an international panel of expert
researchers, including postdocs and professors in top universities, ensuring that each reflects
the level of reasoning expected from a strong graduate student or research assistant.

3. Rigorous Evaluation Revealing Fundamental Gaps in LLM Reasoning. Even frontier
models struggle on CMT-Benchmark: GPT-5 solves only 30%, with the average across
17 models at 11.4±2.1%. Moreover, 18 problems are unsolved by any model, and 26 are
solved by at most one. We further diagnose common failure modes, including violations of
fundamental symmetries and unphysical scaling dimensions, highlighting critical reasoning
gaps and establishing CMT-Benchmark as a roadmap for advancing AI scientific assistants.

2 RELATED WORKS

Progress in evaluating expert-level scientific reasoning has been lagging behind mathematical reason-
ing. The standard metric for measuring scientific prowess remains the 2023 benchmark Graduate-
Level Google Proof Question and Answer (GPQA) (Rein et al., 2023), although the performance
of Frontier LLMs has nearly saturated. Recently, Humanity’s Last Exam (HLE) (Phan et al., 2025)
raised the bar, with a crowdsourced collection that incentivized hard problems, with some fraction
focusing on the sciences, spread across a wide range of categories. Although the difficulty of the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

benchmark is appealing, neither HLE nor any of the existing benchmarks measure the qualification
of LLM to serve as research assistants in specific scientific domains.

Nevertheless, a recent benchmark, (Wang et al., 2025), is notable as it focused on condensed
matter physics textbook problems, with difficulty levels ranging from undergraduate to advanced
graduate coursework. The dataset contains calculation problems extracted from textbooks on topics
spanning Magnetism, Superconductivity, Strongly Correlated Systems, and Semiconductors. The
LLM responses were evaluated using abstract syntax trees to offer partial credit, using a custom
metric dubbed SEED, which exhibits 90% correlation with human experts. While impressive, this
benchmark focuses on questions for students, rather than those at the cutting edge of research.

Table 1: Comparison of selected advanced benchmarks. We list focus, sourcing method, evaluation,
and size.
Dataset Focus Problem Sourcing Evaluation Method Size

GPQA (Rein et al., 2023) Graduate-level science Q&A (biol-
ogy, physics, chemistry)

Domain experts Multiple-choice accuracy (google-proof) 448

Humanity’s Last
Exam (Phan et al., 2025)

Broad coverage (multiple-choice +
short answer)

Subject-matter experts
worldwide

Automated grading for multiple-choice and
short-answer

2,500

MathArena (Balunović
et al., 2025)

Olympiad-style math competitions
(exact answers)

Expert creation Automated formula parsing 96

SciCode-Bench (Tian et al.,
2024)

Scientific code generation across
natural sciences

Scientist-curated re-
search scripts

Unit tests and domain-specific test cases 80

TPBench (Chung et al.,
2025)

Theoretical physics (high-energy,
cosmology)

Researcher-authored
novel problems

Combination of auto-verifiable checks and
rubric-driven grading

57

PhySense (Xu et al., 2025) Principle-based physics reasoning
(theoretical physics)

Expert curation Automated grading for multiple-choice and
evaluation of token efficiency

380+

CMPhysBench (Wang et al.,
2025)

Condensed matter physics (calcula-
tion problems)

Expert curation Expression-tree edit distance with partial
credit (Scalable Expression Edit Distance)

520+

CMT-Benchmark Condensed matter theory (numerical
and analytical)

Expert panel authorship
and curation

Automatic parsing with numerical and sym-
bolic equivalence

50

2.1 THE NEED FOR CONDENSED MATTER THEORY

We choose CMT both because of the importance of the domain and of its underrepresentation in
widely used benchmarks such as HLE. As the largest branch of modern physics, condensed matter
provides the foundation for understanding emergent quantum phenomena in materials and underpins
transformative advances in quantum materials, quantum computation, and quantum technologies. The
domain’s close ties to material science, chemistry, and quantum technologies imply a high demand for
AI research assistants in this field. However, the subject is challenging to teach algorithmically. The
theoretical framing of CMT involves modeling many interacting entities in accordance with a strict
set of physical rules. Problems that quickly reach the limits of computational complexity abound.
Cutting-edge research in the area requires a multifaceted approach that combines mathematics,
theoretical formalisms such as field theory and non-commutative operator algebra, computational
methods, a geometric understanding of the physical system, and fundamental concepts, including
notions of symmetry. LLMs’ tremendous progress in coding and mathematics, along with their
possession of knowledge far exceeding that of an individual human, suggests that an AI research
assistant may be attainable.

2.2 INNOVATIONS IN BENCHMARK CREATION

CMT-Benchmark, with its aim to evaluate research-readiness, goes beyond textbook knowledge or
skills and applies a rigorous standard of correctness. In research, it is crucial to discern what not to do,
because whether a meaningful answer can be reached is not known a priori. Our problems test such
judgments and the ability to synthesize knowledge and skills to define and solve a meaningful problem.
Moreover, a research output must be absolutely correct and reproducible. Hence, our problems are
designed to be deterministically evaluated with a binary outcome. Since it took experts hours to write
original problems, the number of problems in CMT-Benchmark is small compared to crowd- or
textbook-sourced benchmarks. However, it is the first hard science equivalent of FrontierMath.

Another innovation we introduced is automatic parsing that can handle equivalent expressions of
non-commuting operators. Our evaluation scheme was built on the framework for automatically
parsing LaTeX introduced in (Roggeveen et al., 2025). However, with problems in quantum many-
body physics, we needed the parser to recognize equivalent expressions based on operator algebra

3
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correctly. The formalism of quantum mechanics uses the algebra of non-commutative operators. A
competent researcher can readily dismiss an operator expression as violating fundamental principles,
one of the basic approaches for checking the “sanity” of calculations. While LLMs can carry out
algorithmic manipulations, it is a different skill to inspect problems, statements, and reasoning from
the fundamental principles underlying the formalism. Problems requiring operator expressions in
their answer test such skills. Our parser handles operator algebra and identifies equivalent expressions,
through symbolic manipulations and normal ordering, as described in Section 3.1.1.

(a) Distribution of problem types in CMT-
Benchmark.

Type Example question

ED Which among N , Sz , η2,
∑

i ni↑ni↓, and∑
i,σ c†iσci+1,σ are good quantum numbers for H =

−t
∑

i,σ(c
†
iσci+1,σ+H.c.)+U

∑
i ni↑ni↓+

∑
i hiS

z
i ?

QMC Which methods are provably efficient for 1D vs 2D ground-state
properties given sign-problem constraints?

SM What is the critical coupling Kc for synchronization stability in
coupled large-N soft-spin systems?

HF Which HF order parameters preserve translational symmetry on
a 2D triangular lattice?

DMRG What is the ground-state degeneracy of an open Kitaev
alternating chain?

VMC Which projections restore C4 rotation symmetry of a J1–J2

variational wavefunction?

PEPS In a momentum-superposed single-defect iPEPS excitation
HkB = ωkf , express f using only Nk and B.

(b) Representative example questions by problem type.

Figure 1: Problem type distribution and representative example questions in each type.

3 DATASET

This dataset was constructed by an international panel of condensed matter theorists including
postdocs and faculties from top universities, who were tasked to contribute original problems they
would expect their group members to answer correctly. We required the problems to be unambiguous
and lead to a single, verifiable solution that could be parsed and machine-graded by our evaluation
software. In addition to the problem and solution, authors were required to provide a written
explanation of their solution to facilitate easy verification of the problem’s correctness by other panel
members. Our dataset covers a broad range of solution modalities, including algebraic expressions,
numerical values, multiple-choice questions, and operator expressions, as shown in Fig. 2. For
multiple-choice problems, we ask for one or more choices from among many options (over 5 for
most problems) to avoid ‘lucky guesses’. All solutions were evaluated using a uniform evaluation
framework with a strict passing standard of correctness without partial credit. Our dataset can be
found in the Hugging Face repository (Huggingface, 2025).

3.1 PROBLEM SUBMISSION AND VERIFICATION PIPELINE

We built CMT-Benchmark using a Google Sheet running a custom-built extension. Using the
extension the panel could test their solutions against the parsing infrastructure before evaluations,
ensuring that ground truth solutions were compatible with our grading framework. The extension
also allowed writers to run their prompts through a subset of the LLMs used in the final evaluation,
including providing machine grading of the LLM solutions. The authors used this feature to increase
the difficulty of their problems iteratively. This iterative approach also helped authors remove any
ambiguities in their problems and significantly improve the quality of the dataset.

When a problem fails every model available on the sheet, another author would review the problem
and solution for correctness before the problem was accepted into the final benchmark dataset. On
the spreadsheet, authors had access to Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro, and
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Answer modality: Numerical value

Question: Consider a classical O(3) spin Hamiltonian in two spatial dimensions on a triangular lattice: H = −
∑

i,j JijSi · Sj ,
where Jij = J for x-directed bonds and Jij = J′ otherwise. At T = 0, find the number of gapless Goldstone modes, nFM ,
for ferromagnetic couplings (J > 0, J > J′ > 0), and nAF , for antiferromagnetic couplings (J < 0, J < J′ < 0). Return
nFM and nAF in a latex environment separated by a ;.

Answer: 1; 3

Answer modality: Multiple choice

Question: Consider the dynamics in two dimensions of the following modified active Brownian particle: ẋ = v0u, where v0
is a postive constant, and u is a vector of unit norm, whose orientation θ with respect to the x axis evolves according to the
overdamped dynamics: θ̇ = − v0

T ∇V · Au + χ(t), where V (x) is an external potential that depends only on x, and T is a

positive constant. The matrix A =

[
0 −1
1 0

]
is a fully antisymmetric two-dimensional matrix. Consider a perturbation of the

potential V → V + h(t)ϕ(x). Consider the steady state linear response function R(s) = ⟨ δϕ(x(t+s))
δh(t)

⟩ and the steady state
autocorrelation function C(s) = ⟨ϕ(x(t))ϕ(x(t + s))⟩. Is the fluctuation dissipation theorem between these correlation and
response functions violated? Choose one of the following options: (a) Yes, because the dynamics has a positive entropy production
rate. (b) No, because the dynamics is time-reversible. (c) No, because the Boltzmann distribution is the stationary distribution. (d)
Yes, because there is a nonzero self-propulsion speed. Return your choice among the options "a","b","c" and "d" enclosed in a
LaTex environment.
Answer: c

Answer modality: algebraic expressions

Question: Consider a peculiar example of Kitaev alternating chain, whose Hamiltonian is given by H = −
∑N/2

i (σx
2i−1σ

x
2i +

σy
2iσ

y
2i+1), where σx

i and σy
i are Pauli matrices on site i, and N is the number of sites. Calculate its ground state degeneracy for

an open chain in terms of N and the value of the central charge c. Denote these degeneracies as a function of N and the value of the
central charge c, and return your answer in LaTeX as .

Answer: 2
N/2−1

; c = 1/2

Answer modality: non-commutative operator expressions

Question: Consider the Fermi-Hubbard Hamiltonian with nearest-neighbor hopping t in its particle-hole symmetric form on a
bipartite lattice with a chemical potential term. Express the Hamiltonian after the following transformation: c†i,↑ = p†

i,↑ and

c†i,↓ = ±pi,↓, depending on whether i is on the A sublattice or the B sublattice, taking mi,σ to be the new density operator. The
answer will take the form of H =

∑
⟨i,j⟩,σ fi,j,σ +

∑
i gi, where the only operators in fi,j,σ are the p operators and the only

operators in gi are the m operators. Return the expression for fi,j,σ + gi in a LaTeX environment. Your answer should not
include any

∑
notation or the Hermitian conjugate (H.c.) abbreviation.

Answer: −t(p
†
i,σpj,σ + p

†
j,σpi,σ) − U(mi,↑ −

1

2
)(mi,↓ −

1

2
) − µ(mi,↑ − mi,↓) − µ

Figure 2: Example questions in CMT-Benchmark by four answer modalities: numerical value,
multiple choice, algebraic expressions, and non-commutative operator expressions.

GPT-4o. This iterative problem-building approach, using a custom Google Sheet integration, mirrors
the success of other recent benchmarks (Roggeveen et al., 2025).

3.1.1 INFRASTRUCTURE FOR AUTOMATING PARSING AND EVALUATION

To enable automated grading of mathematical expressions for correctness, we implement a LATEXto
Sympy parser that converts a raw expression provided by either an author or LLM into an expression
that can be evaluated. The parser used in this benchmark builds on that used for standard algebraic
problems previously used in mathematics benchmarks (Roggeveen et al., 2025). To enable parsing,
authors are required to follow certain guidelines in formatting their answers, along with providing
a list of the parameters, variables, and functions they expect to appear in their solution. These
must all be defined in the prompt. The model is instructed to return its final answer in a boxed
LATEXenvironment and not to introduce any new variables as part of their solution. All parts of the
model’s reasoning are discarded - only the final boxed expression is evaluated.

A novel component of the parsing logic for this benchmark was the introduction of non-commuting
operators. While standard algebraic expressions may be evaluated by substituting scalar values for
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variables and evaluating a single numeric value, non-commuting operators are not amenable to this
treatment. As these non-commuting operators play a key role in quantum condensed matter physics
problems (e.g., Hamiltonians H =

∑
ij tij c

†
i cj + U

∑
i ni), a benchmark incapable of correctly

evaluating these expressions would be missing a core component of the field.

We handle such expressions by having authors declare whether any such expressions exist in the
problem. These declarations are known only to the parser and are not passed to the model for its
evaluation. In these cases, we replace any non-commutative expression with a non-commutative
Sympy symbol and then invoke standard physics simplifications (e.g., {ci, c†j} = δij for fermions) to
reduce both the specified solution and the model’s response to a canonical, order-sensitive form, such
as the “normal ordering” from condensed matter. We then verify equivalence using standard Sympy
symbolic equivalence checks. We will release the code to perform machine grading in the future.

3.2 PROBLEM TYPES

The dataset includes 8 problem types in terms of the contents, as shown in Fig. 1a, covering 7 computa-
tional and theoretical methods and sound model building. The computational and theoretical methods
covered are Hartree–Fock (HF), Exact Diagonalization (ED), Density Matrix Renormalization Group
(DMRG), Quantum Monte Carlo (QMC), Variational Monte Carlo (VMC), Projected Entangled
Pair States (PEPS), and Statistical Mechanics (SM). Problems that test sound model-building and
the use of fundamental principles are labeled as the Other type. Example questions from each
problem type are shown in Fig. 1b and detailed descriptions follow. We employ a diverse range of
answer formats, including algebraic expressions, numerical values, multiple-choice questions, and
operator expressions, as illustrated in Fig. 2, to evaluate LLM’s capabilities from multiple angles
while ensuring automatic and deterministic evaluations.

3.2.1 HARTREE–FOCK (HF)

Problems cover self-consistent mean-field decouplings and ground-state characterization on lat-
tices, classification of order parameters consistent with symmetries, Brillouin-zone folding under
commensurate charge-density waves, and numerical complexity estimates for plane-wave repre-
sentations. For example, we consider solving the self-consistency equation for Hartree–Fock
mean-field theory on a 2D triangular lattice associated with the following mean-field Hamilto-
nian with mean-field terms being HHartree =

1
N

∑
s,s′

∑
k1,k2

U(0)⟨c†s(k1)cs(k1)⟩c
†
s′(k2)cs′(k2) and

HFock = − 1
N

∑
s,s′

∑
k1,k2

U(k1 − k2)⟨c†s(k1)cs′(k1)⟩c
†
s′(k2)cs(k2), where U(k) =

∑
n Une

−ik·n

is the repulsive interaction strength (Un > 0) in the momentum basis. What are the possible order
parameters that preserve translational symmetry for a Hartree–Fock mean-field Hamiltonian on a
two-dimensional triangular lattice?

3.2.2 EXACT DIAGONALIZATION (ED)

Problems cover finite-size many-body spectra and symmetry resolution, including identification of
good quantum numbers and block-diagonal sectors, counting symmetry-distinct momentum and point-
group blocks, diagnosing exact versus asymptotic degeneracies, scaling of low-lying level spacings,
small-cluster combinatorics for model building, and translational or gauge-structure consequences
for expectation values and band minima. For example, consider a Hamiltonian for N fermions,
H = −t

∑
i,σ

(
c†iσci+1,σ + H.c.

)
+

∑
i U ni↑ni↓ +

∑
i hiS

z
i , and ask which of the following are

good quantum numbers: (a) N ; (b) Sz; (c)
∑

i,σ c
†
iσci+1,σ; (d) η2 = 1

2 (η
+η− + η−η+) + (ηz)2,

with η− =
∑

i(−1)ici↑ci↓, η+ = η†−, and η0 = 1
2 (N̂ − L); (e)

∑
i ni↑ni↓.

3.2.3 DENSITY MATRIX RENORMALIZATION GROUP (DMRG)

Problems cover bond-dimension scaling versus system size, extraction and comparison of correlation
lengths (e.g., bulk correlators versus boundary-pinned responses), effects of boundary conditions and
geometry (chains, ladders, cylinders), and phase identification in concrete lattice models. For example,
we consider a Kitaev alternating chain with HamiltonianH = −

∑N/2
i=1

(
σx
2i−1σ

x
2i+σ

y
2iσ

y
2i+1

)
, where

6
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σx
i and σy

i are Pauli matrices on site i and N is the number of sites, and ask for the ground-state
degeneracy for an open chain in terms of N and the central charge c.

3.2.4 QUANTUM MONTE CARLO (QMC)

Problems cover phase transitions in frustrated transverse-field Ising models on the triangular and 4–8
lattices (emergent U(1) versus Ising behavior), sign-problem diagnostics in stochastic series expan-
sion on square versus kagome lattices with Jz and J±± terms, and determinant-QMC sign-problem
conditions in fermionic settings (spinless fermions at half filling, a two-band model with onsite interac-
tions and spin-mixing hoppings, and a long-range-interaction lattice model under specified densities,
fields, and complex next-nearest-neighbor hoppings). For example, we consider the transverse-field
Ising model in one dimension and on the 4–8 lattice with antiferromagnetic and strong ferromagnetic
bonds arranged so that every plaquette carries π flux. We ask which standard methods are provably
efficient for computing ground-state properties in 1D and 2D for large system sizes (more than 200
spins), given the two-dimensional sign-problem constraints and the availability of Jordan–Wigner
mappings, DMRG, transfer-matrix approaches, or simple variational constructions in one dimension.

3.2.5 VARIATIONAL MONTE CARLO (VMC)

Problems cover symmetry restoration/projection in lattice spin models and the correctness and
variance of Monte Carlo estimators for neural-network wavefunctions. For example, we consider
the 2D Heisenberg J1–J2 model with a wavefunction ψ(x) that breaks rotation symmetry and ask
which constructions restore C4 rotation symmetry using the rotation operator R: (a)

∑
n ψ(R

nx);
(b)

∏
n ψ(R

nx); (c)
∑

n ψ(Rx); (d)
∑

n(−1)nψ(Rnx); (e)
∑

n e
iπn2

ψ(Rnx).

3.2.6 PROJECTED ENTANGLED PAIR STATES (PEPS)

Problems cover iPEPS excitation ansätze built by locally replacing a ground-state tensor and forming
momentum superpositions, coarse-graining pipelines for extracting CFT data in classical 2D tensor
networks, and SU(2)-symmetric iPEPS design with rotational (C4) constraints and parameter counting.
For example, we start from an iPEPS with ground-state tensor A, form a defect state by replacing one
A with B at position x = (i, j) so that |Ψ0(A)⟩ → |Φ(A,B)x⟩, define the momentum superposition
|Φ(B)k⟩ =

∑
x e

ik·x |Φ(B)x⟩, and consider the generalized eigenvalue problem HkB = ωkf . We
ask for the form of f in terms of the normalization Nk = ⟨Φ(B)k|Φ(B)k⟩, using only Nk and B.

3.2.7 STATISTICAL MECHANICS (SM)

Problems cover nonequilibrium stochastic dynamics and combinatorial models, including odd diffu-
sivity in chiral active Ornstein–Uhlenbeck processes with inertia, fluctuation–dissipation checks for
torque-driven active Brownian motion, synchronization thresholds in coupled random-tensor soft-spin
networks, cavity-variable choices in the d→ ∞ limit for molecular liquids, Onsager–Machlup ac-
tions for multiplicative-noise Langevin equations, and counting fully packed dimers on cylinders
with defect-density optimization. For example, consider two coupled systems with N soft spins {xi}
and {yi} obeying (Fournier et al., 2025) ẋi = −λ(x)xi + N−1

∑
j,k J

jk
i xjxk +K(yi − xi) and

ẏi = −λ(y)yi + N−1
∑

j,k J
jk
i yjyk +K(xi − yi), where λ(x) = N−1|x|2 − γ with γ > 0, and

Jjk
i is a symmetric random tensor of zero mean and variance σ2. In the N → ∞ limit and defining

synchronization by N−1
∑

i(xi − yi)
2 = 0 in steady state, we ask for the critical coupling Kc(γ, σ

2)
above which the synchronous state is stable.

3.2.8 OTHER

Problems cover model-building and application of fundamental principles: particle–hole map-
pings and operator rewrites in Hubbard-type models; strong-coupling correlators in dimerized
chains; linked-cluster expansions via inclusion–exclusion; correlation decay and transition claims
in long-range Ising models; transport and compressibility statements in frustrated boson models;
and zero-temperature phase and correlation properties in quantum Ising–type systems. For example,
we ask the LLM to choose from the following options for a classical Ising model with Hamilto-
nian H = − 1

2

∑
i ̸=j J(|i − j|)σiσj , where J(n) = |J0|/(1 + n2)α. We ask the LLM to choose
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from: (a) For α = 2, there is a non-zero critical temperature Tc. (b) For α = 1, at sufficiently low
temperature, ⟨σjσj+n⟩ → m2 > 0 as n → ∞. (c) For α = 1, there is a temperature for which
⟨σjσj+n⟩ − ⟨σj⟩⟨σj+n⟩ decays as the inverse of the logarithm of distance. (d) For α = 4, ⟨σjσj+n⟩
decays exponentially with distance. (e) For α = 2, ⟨σjσj+n⟩ decays exponentially with distance.

Model Overall HF ED DMRG QMC VMC PEPS SM Other
GPT-4o 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2
GPT-4.1 4.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 6.2
GPT-5 30.0 20.0 37.5 0.0 16.7 0.0 66.7 33.3 37.5
GPT-5-mini 24.0 20.0 37.5 0.0 16.7 0.0 33.3 50.0 18.8
GPT-5-nano 14.0 20.0 12.5 0.0 16.7 0.0 33.3 0.0 18.8
GPT-o3 26.0 20.0 50.0 25.0 16.7 0.0 66.7 16.7 18.8
GPT-o4-mini 18.0 20.0 25.0 0.0 16.7 0.0 33.3 33.3 12.5
Gemini 2.0 Flash 10.0 20.0 25.0 0.0 0.0 0.0 0.0 16.7 6.2
Gemini 2.5 Flash 4.0 20.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Pro 14.0 20.0 12.5 0.0 0.0 0.0 33.3 0.0 25.0
Claude 3.7 Sonnet 6.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5
Claude 4.1 Sonnet 2.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Claude 4.0 Sonnet 6.0 20.0 12.5 0.0 0.0 0.0 0.0 16.7 0.0
Claude 4.1 Opus 8.0 20.0 12.5 0.0 0.0 0.0 33.3 0.0 6.2
Claude 4.0 Opus 10.0 20.0 0.0 25.0 0.0 0.0 33.3 16.7 6.2
DeepSeek v3 4.0 20.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0
LLaMA Maverick 12.0 20.0 25.0 0.0 0.0 0.0 33.3 16.7 6.2

Table 2: Pass@1 rates (%) by model and question type.

4 EVALUATION

We evaluate 17 models on the full benchmark, 7 OpenAI’s model (GPT-4o, GPT-4.1, GPT-5, GPT-5-
mini, GPT-5-nano, GPT-o3, GPT-o4-mini); 3 Google Gemini’s models (Gemini 2.0 Flash, Gemini
2.5 Flash, Gemini 2.5 Pro); 5 Anthropic’s Claude models (Claude 3.7 Sonnet, Claude 4.0 Sonnet,
Claude 4.1 Sonnet, Claude 4.0 Opus, Claude 4.1 Opus); and two open source models (DeepSeek v3,
LLaMA Maverick). For the detailed case studies, we refer the reader to Appendix A. Each model is
queried with the prompt written by the author, along with a fixed component specifying formatting
instructions. In models that support it, we passed system instructions requiring the model to provide
a solution in the form of a boxed LATEXexpression. We evaluate the last boxed expression from in
response and grade it using the parsing and evaluation code described in Section 3.1.1. The LLM’s
solution is marked correct if the parser determines it is equivalent to the solution provided by the
problem author. Some models, in particular Gemini 2.5 Pro, occasionally disregard the formatting
instructions and produce responses that cannot be parsed without a boxed LATEXenvironment. The
parser failed for a small number of problems, which were human-graded.

We summarize Pass@1 both overall and by topic inTable 2, which reports the results as a percentage
correct grouped by model and problem type. Overall accuracy is significantly lower than other
physics-related benchmarks (Qiu et al., 2025; Wang et al., 2025). The best performing models were
GPT-5 (30.0%), GPT-o3 (26.0%), and GPT-5-mini (24.0%): the only three to score above 20%. The
second tier, which we defined as any models with overall > 10% but below 20%, was comprised
of: GPT-o4-mini (18.0%), GPT-5-nano (14.0%), Gemini 2.5 Pro (14.0%), and LLaMA Maverick
(12.0%). All other models scored at or below 10%: Gemini 2.0 Flash (10.0%), Claude 4.0 Opus
(10.0%), Claude 4.1 Opus (8.0%), Claude 3.7 Sonnet (6.0%), Claude 4.0 Sonnet (6.0%), Gemini 2.5
Flash (4.0%), GPT-4.1 (4.0%), DeepSeek v3 (4.0%), Claude 4.1 Sonnet (2.0%), and GPT-4o (2.0%).

Looking at the results by question type, it is clear that several areas remain extremely challenging for
the models to solve. Every model scored 0.0% on VMC problems that required critical judgements
while QMC peaks at only 16.7% for the first tier models. Only two models, GPT-o3 and Claude
4.0 Opus, achieved a non-zero score on the DMRG questions (25.0%). In contrast, models did
comparatively better with technical questions on using PEPS: the top models reach 66.7% (GPT-5,
GPT-o3), and several others achieve 33.3%.

Overall, the results in Fig. 3 show that CMT-Benchmark is difficult for even the strongest models.
No model approaches mastery across topics. These trends highlight persistent gaps in sign-problem
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reasoning (QMC), long-range entanglement and boundary effects (DMRG), and symmetry-aware
variational projections (VMC).

Figure 3: Model performance on CMT-Benchmark. (a) Overall success rate on benchmark by
model. (b) Success rate per model divided by problem type.

5 CONCLUSION

In this paper, we introduce CMT-Benchmark, a benchmark built by expert researchers to mirror
real research practice in CMT. The dataset comprises 50 original, expert-authored problems that
address methods currently used in quantum and classical CMT research and model-building strategies.
The methods we covered are Hartree–Fock, exact diagonalization, density matrix renormalization
group, quantum Monte Carlo, variational Monte Carlo, Projected Entangled Pair States, and statistical
mechanics. CMT-Benchmark expands the current landscape of scientific benchmarks through
research-grade problems that test LLMs’ readiness to work as a research assistant. We tested critical
judgment and the ability to synthesize different modalities of information, including mathematical,
language-based (conceptual), geometric, and fundamental laws of physics. We evaluated all LLM-
generated responses using a deterministic machine-based grading system that supports both numerical
and symbolic evaluation, including non-commuting operator algebra. We find that current state-of-
the-art LLMs struggle with CMT-Benchmark, with the strongest models achieving only 24–30%
overall accuracy and no model demonstrating mastery across different problem types.

We gained unique insights through the problem development process that surfaced limitations in
frontier LLMs. Since our infrastructure provided a global, real-time view of how models called into
the Google Sheet were performing across all the problems, the authors could iteratively identify the
angle that caused all the LLMs in the Google Sheet to fail. Firstly, LLMs struggle in connecting
‘verbal’ expressions to accurate algebraic expressions or geometric ideas. Researchers in the domain
can readily translate verbal descriptions, such as "fermionic Hubbard model near half-filling on a
Kagome lattice," into an operator algebraic expression for the Hamiltonian. We think in language
but calculate using precise mathematical notation. The inability to readily and precisely switch
gears between language and mathematics results in LLMs making trivial mistakes and working
with expressions that break the laws of physics. This weakness is revealed when problems require
answers based on the calculations LLMs must design. Another common struggle is in geometric
reasoning. Researchers often sketch geometric view of the problem as a key part of reasoning, as
in considering the number of Fermi surfaces in Sec. A.3. The LLM will need to be connected to a
tool that can plot the Fermi surface and be instructed on how to do so. Secondly, LLMs struggle
with applying fundamental principles such as symmetry to operator algebraic expressions. When
relevant terminologies are given, LLMs use the terminologies as a handle to recall the textbook
examples. However, a slight departure from the textbook example will trip up the LLM and reveal
its limited appreciation for fundamental principles as the foundation of critical judgment. For
instance, in a mixed-field Ising model with no Z2 symmetry to break, some LLMs still predicted
a symmetry-breaking transition as a function of the transverse field, misdiagnosing the most basic
symmetry structure of the problem. Thirdly, LLMs rely on heuristics when a problem requires a
judgment call. For example, in a quantum Monte Carlo efficiency question, LLMs often misattribute
the bottleneck in a problem to the so-called ‘sign problem’; when the prompt explicitly states the
absence of the sign problem, some LLMs can then identify the real bottleneck. Finally, LLMs often
fail to recognize the underlying structure or mapping that allows one to leverage known results to
simplify the problem. This was revealed in problems that can be mapped to a free fermion problem
or problems with an underlying conformal field theory.
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Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank Agnihotri, Pavel Zhelnov, Siranut
Usawasutsakorn, Mohammadreza Mofayezi, Alexander Piperski, Marc Carauleanu, David K.
Zhang, Kostiantyn Dobarskyi, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben Jansen, Scott
Creighton, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Dario Bezzi, Wiktor Morak, Wenjie
Ma, William Held, Tran Ðuc Huy, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed,
Julian Noah Leser, Michelle X. Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Hos-
sein Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez, Andy Zou, Muthu
Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen,
Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Lukas
Lewark, Miguel Orbegozo Rodriguez, Mátyás Vincze, Dustin Wehr, Colin Tang, Shaun Phillips,
Fortuna Samuele, Jiang Muzhen, Fredrik Ekström, Angela Hammon, Oam Patel, Faraz Farhidi,
George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich,
Claire Sparrow, Rayner Hernandez Perez, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi,
Eric Hallman, Kenchi Okutsu, Mike Battaglia, Mohammad Maghsoudimehrabani, Alon Amit,
Dave Hulbert, Roberto Pereira, Simon Weber, Handoko, Anton Peristyy, Stephen Malina, Samuel
Albanie, Will Cai, Mustafa Mehkary, Rami Aly, Frank Reidegeld, Anna-Katharina Dick, Cary
Friday, Jasdeep Sidhu, Hassan Shapourian, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan,
Brian Weber, Harsh Kumar, Tong Jiang, Arunim Agarwal, Chiara Ceconello, Warren S. Vaz, Chao
Zhuang, Haon Park, Andrew R. Tawfeek, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan
Kim, Johan Ferret, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca,
Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Shreen Gul, Gunjan Chhablani,
Zhehang Du, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir Vinnikov, Ethan
Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin,
Koen Sponselee, Renas Bacho, Florencia de la Rosa, Xiuyu Li, Guillaume Malod, Leon Lang,
Julien Laurendeau, Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor
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A INSIGHTS

We share some insights from the problem authors on how they designed their problems and the typical
failure modes of the LLMs for four different problems below.

A.1 CASE STUDY: CHARGE DENSITY WAVE IN A TRIANGULAR LATTICE

In the first HF problem from our spreadsheet, we asked for the ground-state energy per site of a
commensurate charge density wave on a 2D triangular lattice at half filling with onsite and nearest-
neighbor repulsions U0 and U1 in the strong-coupling limit (interaction energy scaling ≫ hopping).
This problem requires the LLM first to understand the charge ordering in a superlattice embedded
in a base triangular lattice. Then it should propose several possible candidate states at half-filling.
Finally, it should correctly compute the energy per site and determine the lowest energy state as the
ground state. Frontier LLMs consistently failed at the first step to identify the correct ordering in the
first place. We show outputs of the four models, Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro,
and GPT-4o, in the color box below.

Model outputs (excerpts) and failure diagnosis

Gemini 2.0 Flash: In the strong coupling limit, treat hopping as a perturbation and minimize
E = U0

∑
i ni↑ni↓ + U1

∑
⟨i,j⟩ ninj , with ni = ni↑ + ni↓. At half-filling on the triangular

lattice, a
√
3×

√
3 CDW with occupancies (0, 1, 2) per tri-sublattice gives EU0/N = U0/3

and (by a balanced-neighbor count) EU1
/N = 2U1, hence E/N = U0/3 + 2U1. The

uniform state has E/N = 3U1, so the CDW is favored. U0

3 + 2U1

Gemini 2.5 Flash: We need to consider possible ground states that minimize the repulsion.
Case 1: Uniform charge density (Mott insulator). No double occupancy, so EU0

= 0.
With coordination z = 6 (and thus 3N bonds), EU1 = 3NU1, giving E(1)

per site = 3U1. Case
2: Commensurate CDW (

√
3 ×

√
3). Partition into A,B,C sublattices with occupancies

(2, 1, 0) to maintain average n = 1. Then EU0 = (N/3)U0 and EU1 = 2NU1, so E(2)
per site =

U0/3 + 2U1. Comparing, the CDW is favored if U0 < 3U1. . . . Therefore the commensurate

CDW energy per site is U0/3 + 2U1. U0

3 + 2U1

Gemini 2.5 Pro: We need to compare the energies of plausible charge configurations. Let
Ns be the total number of sites. 1. Uniform Mott Insulating State: One electron per site
(ni = 1 for all i). 2. Charge Density Wave (CDW) State: The electron density is spatially
modulated. At half-filling, a CDW state involves having some sites with zero electrons (empty,
ni = 0) and some sites with two electrons (doubly occupied, ni = 2). To maintain the
average filling of one, the number of empty sites must equal the number of doubly-occupied
sites (N0 = N2). There can also be singly occupied sites (ni = 1). The ground state CDW
on a triangular lattice for this model is the

√
3 ×

√
3 ordered state. This structure arises

from partitioning the lattice into three interpenetrating sublattices (A, B, C), each containing

Ns/3 sites. . . . Therefore, this is the ground state energy.
U0

3
+ 2U1

GPT-4o: Each site, being half-filled, will have an average occupation of one electron. For
the onsite repulsion energy, each electron contributes an energy U0

2 , because the remaining
fraction corresponds to preventing double occupancy that provides the remaining U0

2 per
site.
All models still fail to display the correct stripe ordering. Gemini 2.0 and GPT-4o proposes a√
3×

√
3; Gemini 2.5 Flash and Gemini 2.5 Pro compare uniform vs CDW and outputs the

same expression; The correct ground state is a commensurate stripe CDW at half filling with

no double occupancy; in the strong-coupling limit, only U1 contributes, giving E/N = U1

2 .
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We attribute this to two factors: (i) a language-geometry gap, wherein the model reasons fluently
over symbols but does not natively reconstruct 2D lattice structure and commensurability (leading it
to suggest incompatible two-sublattice or

√
3×

√
3 patterns), and (ii) distributional bias in training

data, as triangular-lattice examples are less common than square-lattice ones in standard expositions,
and the even the ‘stripe phase’ embedded in the triangular lattice at half-filling is even less common
to appear in the textbook compared to an extended

√
3×

√
3 pattern phase, so the model does not

robustly internalize the associated counting logic and constraints.

A.2 CASE STUDY: PHYSICS-INFORMED GROUP THEORY

The second example falls under the ED category. We asked the model to count the number of
symmetry-distinct sectors in a Hilbert space, considering a two-dimensional lattice system with
3x3 unit cells, where each unit cell consists of one site that can be empty, occupied by a spin-1/2
electron with either spin, or doubly occupied with two electrons of opposite spin. The system has
periodic boundary conditions in both directions. The system has translation symmetry, time-reversal
symmetry, and fourfold rotation symmetry. The LLMs’ responses are shown below.

Model outputs (excerpts) and failure diagnosis

Gemini 2.0 Flash: ...Time-reversal symmetry means that H(k) = H(−k)∗. This doesn’t
give us any additional symmetry-distinct blocks... 3

Gemini 2.5 Flash: ...H contains subspaces with both even and odd Nf ... 9

Gemini 2.5 Pro: We assume that Ne is conserved, so the Hamiltonian is block-diagonal in
Ne. 86
GPT-4o: Counts 9 translation momenta (Z3×Z3), includes fourfold rotations (C4), and
then heuristically halves by time reversal, concluding there are 9×4

2 = 18 symmetry-distinct
blocks. 18

In Gemini 2.0 Flash, the LLM completely ignored one of the symmetries (rotation symmetry)
and thus could not reason with time-reversal symmetry either. This is a rather blunt failure. In
Gemini 2.5 Flash and Pro, both LLMs ignore that particle number or parity conservation was
not mentioned as a symmetry in the problem statement, and it was explicitly excluded that non-
mentioned symmetries are to be added. Between the two, adding fermion parity conservation
is a more subtle mistake, as it is often an underlying assumption in quantum mechanical
descriptions without being explicitly stated. The fermion number, however, is frequently
not conserved in Hamiltonians of interest, for instance, when describing superconductors.
Gemini 2.5 Pro thus fails more drastically. GPT-4o instead multiplies translation and rotation
counts and halves by time reversal to obtain 18, which also does not correspond to the correct
block structure.

The LLMs gravitate towards solving a more standard problem, if a problem appears hard, by
changing its assumptions to cases that are more prevalent in the literature (concretely, they have
added symmetries). Furthermore, they frequently respond to problem hardness with a lengthy output
of dense, nearly cryptic text.

A.3 CASE STUDY: ENTROPY PRODUCTION AND FLUCTUATION DISSIPATION THEOREM

A third example falls under the Statistical Mechanics category. Here, LLM is asked to consider a
peculiar type of overdamped Langevin equation in two dimensions under the action of an external
potential, and to determine whether the fluctuation dissipation theorem (Kubo et al., 2012; Groot &
Mazur, 2013) is violated. The options available to the model are

(a) Yes, because the dynamics has a positive entropy production rate.
(b) No, because the dynamics is time-reversible.
(c) No, because the Boltzmann distribution is the stationary distribution.
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(d) Yes, because there is a nonzero self-propulsion speed.

The dynamics proposed resemble those of a chiral active Brownian particle (Liebchen & Levis, 2022),
which has a net-nonzero entropy production rate and is therefore time-irreversible. However, the
frequency of rotation of the self-propulsion direction is chosen in such a way to allow sampling
from the Boltzmann distribution with a target temperature and potential energy in the steady state
(Ghimenti et al., 2024). Thus, instantaneous snapshots of the particle position look like equilibrium
snapshots, even though the dynamics of the particle are out of equilibrium. The simultaneous
appearance of these two seemingly contradictory properties is what makes the problem subtle. Indeed,
if the steady state of the system has the Boltzmann form, then the fluctuation-dissipation theorem is
obeyed. This is a standard result in nonequilibrium thermodynamics (Groot & Mazur, 2013). The
correct answer is then (c). However, the models fail to appreciate this connection and focus on the
nonreversibility of the dynamics and the presence of a net nonzero entropy production rate. These
aspects are ubiquitous in the field of active matter (O’Byrne et al., 2022; te Vrugt et al., 2025), where
the fluctuation-dissipation theorem is often violated. Instead of carefully analyzing the proposed
dynamics, the models appeal directly to general facts known in the field, leading to an incorrect
conclusion.

Model outputs (excerpts) and failure diagnosis

Gemini 2.0 Flash: The given dynamics is that of an active Brownian particle in two di-
mensions... Because active Brownian particles consume energy from their environment to
maintain their self-propulsion, they are intrinsically out of equilibrium. As such, they have a
non-zero entropy production rate in the steady state. This nonequilibrium nature means that
the standard fluctuation-dissipation theorem (FDT) is violated.

Gemini 2.5 Flash: The problem describes an active Brownian particle (ABP) model...
the particle consumes energy to maintain its persistent motion. Systems driven by active
forces are inherently *out of thermal equilibrium* ... the stationary distribution of an
active Brownian particle is generally not the Boltzmann distribution...therefore, the system
described is unequivocally out of thermal equilibrium. For any nonequilibrium system, the
Fluctuation-Dissipation Theorem is generally violated.

Gemini 2.5 Pro: A system is in thermal equilibrium if it satisfies the principle of detailed
balance. In a steady state, this implies that all microscopic probability currents are zero.
Active matter systems, by their very nature, are not in thermal equilibrium... Systems with
broken detailed balance in a steady state have a continuously positive rate of entropy
production... Since the active particle system is in a NESS with a positive entropy production
rate, it does not meet the fundamental requirements for the FDT to hold. Therefore, the FDT
is violated.

GPT-4o: Parses the ABP equations and emphasizes that self-propulsion (v0 > 0) drives a
non-equilibrium steady state with broken detailed balance and a non-Boltzmann stationary
distribution; the antisymmetric A term renders the dynamics non-time-reversible. Concludes
the FDT is violated.

All four models directly appeal to general conditions and known properties of active matter
systems, without analyzing in depth the specific dynamics proposed. Moreover all the
models claim that a positive entropy production rate leads to the violation of the fluctuation-
dissipation theorem. Most cases appearing in the literature adhere to this statement, but the
implication is not always true, as the proposed problem exemplifies.

A.4 CASE STUDY: FERMI SURFACE TOPOLOGY

The model is asked about the number of connected components in the Fermi surface of a given
tight-binding model. Specifically, it is a two-dimensional square-lattice tight-binding model with
a staggered flux of θ per plaquette. Although such a tight-binding model has been studied in the
literature, the AI models do not seem to be familiar with it. To solve this problem, one needs to
write down the Hamiltonian in k-space and then diagonalize it to obtain the energy dispersion. All
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models we tried failed at this step. Although they do realize that we need a unit cell with two sites,
resulting in a 2× 2 Hamiltonian in the momentum space, no model has correctly written down the
Hamiltonian. It appears that the models fail to visualize the connectivity of the lattice (i.e., which
sites are neighbors of each other) and also fail to recognize that the unit vector of the lattice needs to
be modified due to the breaking of translation symmetry. When attempting other similar questions,
we also observed that the system sometimes cannot correctly identify the topology of the Fermi
surface. Solving such problems typically requires humans to visualize the energy dispersion and
equal-energy contours, either mentally or by plotting them on a computer. It appears that this kind of
spatial reasoning remains a weakness of current models.
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Model outputs (excerpts) and failure diagnosis

Gemini 2.0 Flash: Consider the unit cell as two sites, A and B. The sites are (nx, ny) =
(2m, 2n) and (2m + 1, 2n). Then A = (2m, 2n), B = (2m + 1, 2n). Then A → A + x̂,
A→ A+ ŷ B → B+ x̂, B → B+ ŷ. The first nearest neighbor to A is A+x. second nearest
is A+y which satisfies that nx + ny is even. The first nearest neighbor to B is B+x. second
nearest is B+y which satisfies that nx +ny is even. Let’s try this: t1 = t2 = 1, θ = π/3. The
dispersion is E(k) = −2 cos kx − 2 cos ky .

Gemini 2.5 Flash: This problem exhibits a checkerboard pattern for the y-hopping, which
means the unit cell needs to be doubled. We can define a unit cell containing two sites, for
example, (nx, ny) and (nx, ny+1). However, the y-hopping depends on nx as well, implying
a 2× 2 unit cell in general. A common approach for this type of staggered flux problem is
to use a gauge transformation or to double the unit cell in one direction, yielding a 2 × 2
Hamiltonian.
By applying a suitable gauge transformation (e.g., cx,y → eiϕx,ydx,y) or by considering
a 2 × 1 superlattice with primitive vectors (1, 0) and (0, 2), the problem simplifies to a
two-band model. The specific gauge transformation cx,y = dx,ye

i θ
2 (−1)xy can simplify the

y-hopping. After performing the Fourier transform, the resulting 2× 2 Hamiltonian has the

form: H(k⃗) =

(
−2t1 cos kx −t2(1 + eiθe−2iky )

−t2(1 + e−iθe2iky ) −2t1 cos kx

)
.

Gemini 2.5 Pro: To find h(k⃗), we sum the hopping terms from a site on sublattice A to its
neighboring sites on sublattice B, weighted by phase factors. Let’s place an A-site at the
origin (0, 0). Its neighbors are at (1, 0), (−1, 0), (0, 1), (0,−1), which are all B-sites. The
hopping terms are:

• From (0, 0) to (1, 0): −t1. Phase factor: eikx .

• From (0, 0) to (−1, 0): −t1. Phase factor: e−ikx .

• From (0, 0) to (0, 1): The starting site (0, 0) has nx+ny = 0 (even), so the hopping
is −t2. Phase factor: eiky .

• From (0, 0) to (0,−1): This is the Hermitian conjugate of the hopping from (0,−1)
to (0, 0). The site (0,−1) has nx + ny = −1 (odd), so the hopping from (0,−1) to
(0, 0) is −t2eiθ. Thus, the hopping from (0, 0) to (0,−1) is −t2e−iθ. Phase factor:
e−iky .

Summing these up gives: h(k⃗) = −t1(eikx+e−ikx)−t2eiky−t2e−iθe−iky = −2t1 cos(kx)−
t2(e

iky + e−i(ky+θ)).
GPT-4o: To solve this problem, we first need to write down the dispersion relation for

the given tight-binding model. The tight-binding Hamiltonian on the square lattice with the
specified hopping terms can be given as:

H = −
∑
r⃗

[
t1(c

†
r⃗cr⃗+x̂ + h.c.) + t2

(
1 + (−1)nx+nyeiθ

2

)
(c†r⃗cr⃗+ŷ + h.c.)

]
− µ

∑
r⃗

c†r⃗cr⃗

The dispersion relation is obtained by performing a Fourier transform:

ϵ(kx, ky) = −2t1 cos(kx)− 2t2

(
1 + (−1)nx+nyeiθ

2

)
cos(ky)− µ

Gemini 2.0 Flash directly writes down the energy dispersion of the tight-binding model
without flux, which suggests the more familiar results misled it. Gemini 2.5 Flash and Gemini
2.5 Pro made the right attempt to construct a 2 × 2 Hamiltonian, but failed to identify the
correct terms. For example, the hopping from the A-site at (0, 0) to the B-site at (1, 0)

should correspond to an off-diagonal term
(
0 t1e

ikx

0 0

)
in the Hamiltonian, which no model

produced correctly. GPT-4o was confused about a more basic fact: the coordinates nx, ny
should not appear after the Fourier transformation to momentum space.

18


	Introduction
	Related works
	The need for condensed matter theory
	Innovations in benchmark creation

	Dataset
	Problem submission and verification pipeline
	Infrastructure for automating parsing and evaluation

	Problem types
	Hartree–Fock (HF)
	Exact Diagonalization (ED)
	Density Matrix Renormalization Group (DMRG)
	Quantum Monte Carlo (QMC)
	Variational Monte Carlo (VMC)
	Projected Entangled Pair States (PEPS)
	Statistical Mechanics (SM)
	Other


	Evaluation
	Conclusion
	Insights
	Case study: Charge density wave in a triangular lattice
	Case study: Physics-informed group theory
	Case study: entropy production and fluctuation dissipation theorem
	Case study: Fermi surface topology


