
CMT-BENCHMARK: A BENCHMARK FOR CONDENSED MATTER THEORY BUILT BY EXPERT RESEARCHERS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs) have demonstrated remarkable progress in coding
012 and mathematical problem-solving; however, evaluation on advanced research-
013 level problems in the hard sciences remains scarce. To fill this gap, we present
014 **CMT-Benchmark**, a dataset of 50 original problems covering condensed matter
015 theory (CMT) at the level of an expert researcher. The topics cover analytical
016 and computational approaches commonly used in quantum many-body physics
017 as well as classical statistical mechanics. This dataset was designed and verified
018 by a panel of expert researchers from around the world. We built the dataset
019 through a collaborative environment that challenges the panel to write and refine
020 difficult problems that the panel would like their research assistants to be able to
021 solve, with topics including Hartree-Fock mean-field theory, exact diagonalization,
022 quantum Monte Carlo, density matrix renormalization group, quantum statisti-
023 cal mechanics, classical statistical mechanics, and model building. We evaluate
024 different LLMs by programmatically checking LLM-generated solutions against
025 expert-supplied ground truth. For this, we developed machine-grading mechanisms
026 that are suitable for advanced physics research problems. For example, we handle
027 non-commuting operators that are essential for quantum many-body problems by
028 symbolic manipulation and normal ordering. Our evaluations show that frontier
029 models struggle with all of the problems in the dataset, highlighting a gap in the
030 physical reasoning skills of current LLMs. Notably, experts identified strategies
031 for creating increasingly difficult problems by interacting with the LLMs and
032 exploiting common failure modes. While the highest-performing model, GPT5,
033 correctly solves 30% of the problems, average performance across 17 models (GPT,
034 Gemini, Claude, DeepSeek, and Llama classes) is only $11.4 \pm 2.1\%$. Moreover,
035 our benchmark contains 18 problems that *not a single one* of the 17 models can
036 correctly solve, and 26 problems that are solved by *at most* one model. These
037 currently unsolvable problems span the fields of Quantum Monte Carlo, Variational
038 Monte Carlo, and Density Matrix Renormalization Group. The answers sometimes
039 violate fundamental symmetries or have unphysical scaling dimensions. We believe
040 that this benchmark set provides valuable guidance for the future development of
041 language models, aiming to achieve the goal of AI research assistants and tutors.

1 INTRODUCTION

044 The progress of Frontier LLMs has been stunning. Whereas a few years ago models struggled on high
045 school mathematics problems (Hendrycks et al., 2021), today’s LLM-based systems achieve Gold
046 medals in the International Math Olympiad (Trinh et al., 2024) and competitive coding competitions,
047 inventing solutions that humans are unable to discover. Benchmarks for assessing LLMs against
048 expert-level mathematics have flourished (Liu et al., 2024; Fan et al., 2024; Roggeveen et al., 2025),
049 including expert-level benchmarks made by professional mathematicians (Glazer et al., 2025). At
050 the same time, there is an intense interest in LLMs for science, with a significant literature focused
051 on creating benchmarks to evaluate agent capabilities against hard science problems (Laurent et al.,
052 2024; Mitchener et al., 2025; Feng et al., 2025; Cui et al., 2025; Pan et al., 2025). However, existing
053 hard science benchmarks measure knowledge or skill for carrying out textbook problems for students
at varying levels, and do not assess whether models can function as a research assistant on cutting-
edge scientific tasks. Typical crowdsourcing strategies will not work in highly technical fields like

054 theoretical condensed matter physics, since the required expertise is focused on small communities.
055 While the mathematics community built such benchmarks by assembling groups of leading experts to
056 create research-grade problems (Glazer et al., 2025; Balunović et al., 2025), a systematic counterpart
057 is missing in hard scientific domains.

058 We created **CMT-Benchmark** to address this gap so that the LLM research community can hill-climb
059 towards a competent AI research assistant. For LLMs to serve as scientific research assistants, they
060 must demonstrate rigorous critical judgment and the ability to synthesize existing knowledge with
061 theoretical principles established in a specific scientific domain. We designed the problems and a
062 rigorous yet automated evaluation scheme, focusing on condensed matter theory (CMT), a subfield
063 of physics reveals how collective interactions among particles generate emergent phenomena such as
064 superconductivity and topological phases, while also providing the theoretical foundation for advanced
065 materials and quantum technologies. Research of CMT requires synthesizing microscopic knowledge
066 of material systems with macroscopic observations in a manner that adheres to the theoretical
067 principles. **CMT-Benchmark** consists of 50 original, select, high-value problems covering seven
068 computational and theoretical methods, as well as sound model-building (categorized as “Other”),
069 as shown in Fig. 1a. The novelty of our problems lies in the design principles we adopted from the
070 principles of trustworthy and impactful scientific research. For this, we assembled an international
071 panel of expert researchers to write original problems and provide critiques of each other’s problems.
072 Each contributor crafted problems they would expect a strong graduate student or research assistant to
073 answer correctly, measuring critical skills for performing research in their field. They then iteratively
074 refined the problems to identify gaps in critical judgments and insights in LLM reasoning.

075 The design principle of our evaluation scheme is also based on the mission of aiding the development
076 of a competent AI research assistant. Scientific research must push the knowledge frontier so that other
077 researchers in the community can build on the outcome. Correctness must be absolute, and results
078 should be deterministically reproducible. Hence, unlike the typical homework grading setting where
079 the grader issues partial credit, we apply the rigorous standards we hold ourselves to: we demand that
080 the answers be deterministically and objectively correct. We designed problems in multiple answer
081 formats that can be automatically graded, including multiple-choice, numerical values, algebraic
082 expressions, and non-commutative operator expressions. We score the LLM-generated solutions as
083 correct or incorrect against the ground truth answer supplied by the author of the problem. Even the
084 most advanced models exhibit low performance on our problems, with the highest pass rate of 30%.
085 Our results reveal that current LLMs cannot function as research assistants.

086 We highlight that **CMT-Benchmark** makes the following important contributions:

- 087 1. **Benchmark for Analytic and Computational Reasoning.** It is the first benchmark explicitly
088 designed to jointly test analytic and computational reasoning in LLMs, assessing their
089 potential as scientific research assistants in CMT—a field central to understanding emergent
090 quantum phenomena and foundational to quantum materials and technologies.
- 091 2. **High-Value, Expert-Curated Research Level Dataset.** Our dataset comprises 50 original
092 and rigorously designed problems spanning seven computational and theoretical methods,
093 plus model-building. Problems were authored and refined by an international panel of expert
094 researchers, including postdocs and professors in top universities, ensuring that each reflects
095 the level of reasoning expected from a strong graduate student or research assistant.
- 096 3. **Rigorous Evaluation Revealing Fundamental Gaps in LLM Reasoning.** Even frontier
097 models struggle on **CMT-Benchmark**: GPT-5 solves only 30%, with the average across
098 17 models at $11.4 \pm 2.1\%$. Moreover, 18 problems are unsolved by any model, and 26 are
099 solved by at most one. We further diagnose common failure modes, including violations of
100 fundamental symmetries and unphysical scaling dimensions, highlighting critical reasoning
101 gaps and establishing **CMT-Benchmark** as a roadmap for advancing AI scientific assistants.

102

2 RELATED WORKS

103 Progress in evaluating expert-level scientific reasoning has been lagging behind mathematical reasoning.
104 The standard metric for measuring scientific prowess remains the 2023 benchmark Graduate-
105 Level Google Proof Question and Answer (GPQA) (Rein et al., 2023), although the performance
106 of Frontier LLMs has nearly saturated. Recently, Humanity’s Last Exam (HLE) (Phan et al., 2025)
107 raised the bar, with a crowdsourced collection that incentivized hard problems, with some fraction

focusing on the sciences, spread across a wide range of categories. Although the difficulty of the benchmark is appealing, neither HLE nor any of the existing benchmarks measure the qualification of LLM to serve as research assistants in **specific** scientific domains.

Nevertheless, a recent benchmark, (Wang et al., 2025), is notable as it focused on condensed matter physics textbook problems, with difficulty levels ranging from undergraduate to advanced graduate coursework. The dataset contains calculation problems extracted from textbooks on topics spanning Magnetism, Superconductivity, Strongly Correlated Systems, and Semiconductors. The LLM responses were evaluated using abstract syntax trees to offer partial credit, using a custom metric dubbed SEED, which exhibits 90% correlation with human experts. While impressive, this benchmark focuses on questions for students, rather than those at the cutting edge of research.

Table 1: Comparison of selected advanced benchmarks. We list focus, sourcing method, evaluation, and size.

Dataset	Focus	Problem Sourcing	Evaluation Method	Size
GPQA (Rein et al., 2023)	Graduate-level science Q&A (biology, physics, chemistry)	Domain experts	Multiple-choice accuracy (google-proof)	448
Humanity’s Last Exam (Phan et al., 2025)	Broad coverage (multiple-choice + short answer)	Subject-matter experts worldwide	Automated grading for multiple-choice and short-answer	2,500
MathArena (Balunovic et al., 2025)	Olympiad-style math competitions (exact answers)	Expert creation	Automated formula parsing	96
SciCode-Bench (Tian et al., 2024)	Scientific code generation across natural sciences	Scientist-curated search scripts	re- Unit tests and domain-specific test cases	80
TPBench (Chung et al., 2025)	Theoretical physics (high-energy, cosmology)	Researcher-authored novel problems	Combination of auto-verifiable checks and rubric-driven grading	57
PhySense (Xu et al., 2025)	Principle-based physics reasoning (theoretical physics)	Expert curation	Automated grading for multiple-choice and evaluation of token efficiency	380+
CMPhysBench (Wang et al., 2025)	Condensed matter physics (calculation problems)	Expert curation	Expression-tree edit distance with partial credit (Scalable Expression Edit Distance)	520+
CMT-Benchmark	Condensed matter theory (numerical and analytical)	Expert panel authorship and curation	Automatic parsing with numerical and symbolic equivalence	50

2.1 THE NEED FOR CONDENSED MATTER THEORY

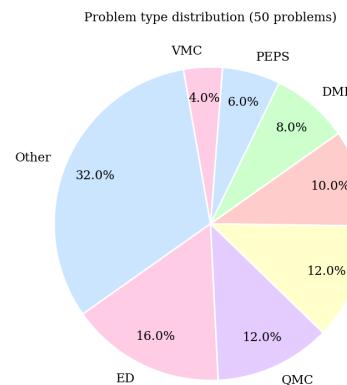
We choose CMT both because of the importance of the domain and of its underrepresentation in widely used benchmarks such as HLE. As the largest branch of modern physics, condensed matter provides the foundation for understanding emergent quantum phenomena in materials and underpins transformative advances in quantum materials, quantum computation, and quantum technologies. The domain’s close ties to material science, chemistry, and quantum technologies imply a high demand for AI research assistants in this field. However, the subject is challenging to teach algorithmically. The theoretical framing of CMT involves modeling many interacting entities in accordance with a strict set of physical rules. Problems that quickly reach the limits of computational complexity abound. Cutting-edge research in the area requires a multifaceted approach that combines mathematics, theoretical formalisms such as field theory and non-commutative operator algebra, computational methods, a geometric understanding of the physical system, and fundamental concepts, including notions of symmetry. LLMs’ tremendous progress in coding and mathematics, along with their possession of knowledge far exceeding that of an individual human, suggests that an AI research assistant may be attainable.

2.2 INNOVATIONS IN BENCHMARK CREATION

CMT-Benchmark, with its aim to evaluate research-readiness, goes beyond textbook knowledge or skills and applies a rigorous standard of correctness. In research, it is crucial to discern what not to do, because whether a meaningful answer can be reached is not known *a priori*. Our problems test such judgments and the ability to synthesize knowledge and skills to define and solve a meaningful problem. Moreover, a research output must be absolutely correct and reproducible. Hence, our problems are designed to be deterministically evaluated with a binary outcome. Since it took experts hours to write original problems, the number of problems in **CMT-Benchmark** is small compared to crowd- or textbook-sourced benchmarks. However, it is the first hard science equivalent of FrontierMath.

Another innovation we introduced is automatic parsing that can handle equivalent expressions of non-commuting operators. Our evaluation scheme was built on the framework for automatically parsing LaTeX introduced in (Roggeveen et al., 2025). However, with problems in quantum many-

body physics, we needed the parser to recognize equivalent expressions based on operator algebra correctly. The formalism of quantum mechanics uses the algebra of non-commutative operators. A competent researcher can readily dismiss an operator expression as violating fundamental principles, one of the basic approaches for checking the “sanity” of calculations. While LLMs can carry out algorithmic manipulations, it is a different skill to inspect problems, statements, and reasoning from the fundamental principles underlying the formalism. Problems requiring operator expressions in their answer test such skills. Our parser handles operator algebra and identifies equivalent expressions, through symbolic manipulations and normal ordering, as described in Section 3.1.1.



(a) Distribution of problem types in **CMT-Benchmark**.

Type	Example question
ED	Which among N , S^z , η^2 , $\sum_i n_{i\uparrow}n_{i\downarrow}$, and $\sum_{i,\sigma} c_{i\sigma}^\dagger c_{i\sigma+1,\sigma}$ are good quantum numbers for $H = -t \sum_{i,\sigma} (c_{i\sigma}^\dagger c_{i+1,\sigma} + \text{H.c.}) + U \sum_i n_{i\uparrow}n_{i\downarrow} + \sum_i h_i S_i^z$?
QMC	Which methods are provably efficient for 1D vs 2D ground-state properties given sign-problem constraints?
SM	What is the critical coupling K_c for synchronization stability in coupled large- N soft-spin systems?
HF	Which HF order parameters preserve translational symmetry on a 2D triangular lattice?
DMRG	What is the ground-state degeneracy of an open Kitaev alternating chain?
VMC	Which projections restore C_4 rotation symmetry of a J_1-J_2 variational wavefunction?
PEPS	In a momentum-superposed single-defect iPEPS excitation $H_k B = \omega_k f$, express f using only N_k and B .

(b) Representative example questions by problem type.

Figure 1: Problem type distribution and representative example questions in each type.

3 DATASET

This dataset was constructed by an international panel of condensed matter theorists including postdocs and faculties from top universities, who were tasked to contribute original problems they would expect their group members to answer correctly. We required the problems to be unambiguous and lead to a single, verifiable solution that could be parsed and machine-graded by our evaluation software. In addition to the problem and solution, authors were required to provide a written explanation of their solution to facilitate easy verification of the problem’s correctness by other panel members. Our dataset covers a broad range of solution modalities, including algebraic expressions, numerical values, multiple-choice questions, and operator expressions, as shown in Fig. 2. For multiple-choice problems, we ask for one or more choices from among many options (over 5 for most problems) to avoid ‘lucky guesses’. All solutions were evaluated using a uniform evaluation framework with a strict passing standard of correctness without partial credit. Our dataset can be found in the Hugging Face repository (Huggingface, 2025).

3.1 PROBLEM SUBMISSION AND VERIFICATION PIPELINE

We built **CMT-Benchmark** using a Google Sheet running a custom-built extension. Using the extension the panel could test their solutions against the parsing infrastructure before evaluations, ensuring that ground truth solutions were compatible with our grading framework. The extension also allowed writers to run their prompts through a subset of the LLMs used in the final evaluation, including providing machine grading of the LLM solutions. The authors used this feature to increase the difficulty of their problems iteratively. This iterative approach also helped authors remove any ambiguities in their problems and significantly improve the quality of the dataset.

When a problem fails every model available on the sheet, another author would review the problem and solution for correctness before the problem was accepted into the final benchmark dataset. On the spreadsheet, authors had access to Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro, and

216

Answer modality: Numerical value

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Question: Consider a classical O(3) spin Hamiltonian in two spatial dimensions on a triangular lattice: $H = -\sum_{i,j} J_{ij} S_i \cdot S_j$, where $J_{ij} = J$ for x-directed bonds and $J_{ij} = J'$ otherwise. At $T = 0$, find the number of gapless Goldstone modes, n_{FM} , for ferromagnetic couplings ($J > 0, J > J' > 0$), and n_{AF} , for antiferromagnetic couplings ($J < 0, J < J' < 0$). Return n_{FM} and n_{AF} in a $\boxed{\text{ }}$ LaTeX environment separated by a ;.

Answer: $1; 3$

Answer modality: Multiple choice

Question: Consider the dynamics in two dimensions of the following modified active Brownian particle: $\dot{\mathbf{x}} = v_0 \mathbf{u}$, where v_0 is a positive constant, and \mathbf{u} is a vector of unit norm, whose orientation θ with respect to the x axis evolves according to the overdamped dynamics: $\dot{\theta} = -\frac{v_0}{T} \nabla V \cdot \mathbf{A} \mathbf{u} + \chi(t)$, where $V(\mathbf{x})$ is an external potential that depends only on \mathbf{x} , and T is a positive constant. The matrix $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is a fully antisymmetric two-dimensional matrix. Consider a perturbation of the potential $V \rightarrow V + h(t)\phi(\mathbf{x})$. Consider the steady state linear response function $R(s) = \langle \frac{\delta \phi(\mathbf{x}(t+s))}{\delta h(t)} \rangle$ and the steady state autocorrelation function $C(s) = \langle \phi(\mathbf{x}(t))\phi(\mathbf{x}(t+s)) \rangle$. Is the fluctuation dissipation theorem between these correlation and response functions violated? Choose one of the following options: (a) Yes, because the dynamics has a positive entropy production rate. (b) No, because the dynamics is time-reversible. (c) No, because the Boltzmann distribution is the stationary distribution. (d) Yes, because there is a nonzero self-propulsion speed. Return your choice among the options "a", "b", "c" and "d" enclosed in a $\boxed{\text{ }}$ LaTeX environment.

Answer: c

Answer modality: algebraic expressions

Question: Consider a peculiar example of Kitaev alternating chain, whose Hamiltonian is given by $H = -\sum_i^{N/2} (\sigma_{2i-1}^x \sigma_{2i}^x + \sigma_{2i}^y \sigma_{2i+1}^y)$, where σ_i^x and σ_i^y are Pauli matrices on site i , and N is the number of sites. Calculate its ground state degeneracy for an open chain in terms of N and the value of the central charge c . Denote these degeneracies as a function of N and the value of the central charge c , and return your answer in LaTeX as $\boxed{\text{ }}$.

Answer: $2^{N/2-1}; c = 1/2$

Answer modality: non-commutative operator expressions

Question: Consider the Fermi-Hubbard Hamiltonian with nearest-neighbor hopping t in its particle-hole symmetric form on a bipartite lattice with a chemical potential term. Express the Hamiltonian after the following transformation: $c_{i,\uparrow}^\dagger = p_{i,\uparrow}^\dagger$ and $c_{i,\downarrow}^\dagger = \pm p_{i,\downarrow}$, depending on whether i is on the A sublattice or the B sublattice, taking $m_{i,\sigma}$ to be the new density operator. The answer will take the form of $H = \sum_{\langle i,j \rangle, \sigma} f_{i,j,\sigma} + \sum_i g_i$, where the only operators in $f_{i,j,\sigma}$ are the p operators and the only operators in g_i are the m operators. Return the expression for $f_{i,j,\sigma} + g_i$ in a $\boxed{\text{ }}$ LaTeX environment. Your answer should not include any \sum notation or the Hermitian conjugate (H.c.) abbreviation.

Answer: $-t(p_{i,\sigma}^\dagger p_{j,\sigma} + p_{j,\sigma}^\dagger p_{i,\sigma}) - U(m_{i,\uparrow} - \frac{1}{2})(m_{i,\downarrow} - \frac{1}{2}) - \mu(m_{i,\uparrow} - m_{i,\downarrow}) - \mu$

Figure 2: Example questions in **CMT-Benchmark** by four answer modalities: numerical value, multiple choice, algebraic expressions, and non-commutative operator expressions.

GPT-4o. This iterative problem-building approach, using a custom Google Sheet integration, mirrors the success of other recent benchmarks (Roggeveen et al., 2025).

3.1.1 INFRASTRUCTURE FOR AUTOMATING PARSING AND EVALUATION

To enable automated grading of mathematical expressions for correctness, we implement a \LaTeX to Sympy parser that converts a raw expression provided by either an author or LLM into an expression that can be evaluated. The parser used in this benchmark builds on that used for standard algebraic problems previously used in mathematics benchmarks (Roggeveen et al., 2025). To enable parsing, authors are required to follow certain guidelines in formatting their answers, along with providing a list of the parameters, variables, and functions they expect to appear in their solution. These must all be defined in the prompt. The model is instructed to return its final answer in a boxed \LaTeX environment and not to introduce any new variables as part of their solution. **Although models may generate arbitrary intermediate reasoning, our evaluation pipeline deliberately discards these traces and evaluates only the final boxed expression, keeping the benchmark focused on final research**

270 conclusions while remaining compatible with future extensions that explicitly evaluate reasoning
271 traces.

272 A novel component of the parsing logic for this benchmark was the introduction of non-commuting
273 operators. While standard algebraic expressions may be evaluated by substituting scalar values for
274 variables and evaluating a single numeric value, non-commuting operators are not amenable to this
275 treatment. As these non-commuting operators play a key role in quantum condensed matter physics
276 problems (e.g., Hamiltonians $H = \sum_{ij} t_{ij} c_i^\dagger c_j + U \sum_i n_i$), a benchmark incapable of correctly
277 evaluating these expressions would be missing a core component of the field.

278 We handle such expressions by having authors declare whether any such expressions exist in the
279 problem. These declarations are known only to the parser and are not passed to the model for its
280 evaluation. In these cases, we replace any non-commutative expression with a non-commutative
281 Sympy symbol and then invoke standard physics simplifications (e.g., $\{c_i, c_j^\dagger\} = \delta_{ij}$ for fermions) to
282 reduce both the specified solution and the model's response to a canonical, order-sensitive form, such
283 as the “normal ordering” from condensed matter. We then verify equivalence using standard Sympy
284 symbolic equivalence checks. We will release the code to perform machine grading in the future.

286

287 3.2 PROBLEM TYPES

288

289 The dataset includes 8 problem types in terms of the contents, as shown in Fig. 1a, covering 7 computational
290 and theoretical methods and sound model building. The computational and theoretical methods
291 covered are Hartree–Fock (HF), Exact Diagonalization (ED), Density Matrix Renormalization Group
292 (DMRG), Quantum Monte Carlo (QMC), Variational Monte Carlo (VMC), Projected Entangled
293 Pair States (PEPS), and Statistical Mechanics (SM). Problems that test sound model-building and
294 the use of fundamental principles are labeled as the *Other* type. Example questions from each
295 problem type are shown in Fig. 1b and detailed descriptions follow. We employ a diverse range of
296 answer formats, including algebraic expressions, numerical values, multiple-choice questions, and
297 operator expressions, as illustrated in Fig. 2, to evaluate LLM’s capabilities from multiple angles
298 while ensuring automatic and deterministic evaluations.

299

300 3.2.1 HARTREE–FOCK (HF)

301

302 Problems cover self-consistent mean-field decouplings and ground-state characterization on lattices,
303 classification of order parameters consistent with symmetries, Brillouin-zone folding under
304 commensurate charge-density waves, and numerical complexity estimates for plane-wave representations.
305 For example, we consider solving the self-consistency equation for Hartree–Fock mean-field theory on a 2D triangular lattice associated with the following mean-field Hamiltonian with mean-field terms being $H_{\text{Hartree}} = \frac{1}{N} \sum_{s,s'} \sum_{k_1,k_2} U(0) \langle c_s^\dagger(k_1) c_s(k_1) \rangle c_{s'}^\dagger(k_2) c_{s'}(k_2)$ and
306 $H_{\text{Fock}} = -\frac{1}{N} \sum_{s,s'} \sum_{k_1,k_2} U(k_1 - k_2) \langle c_s^\dagger(k_1) c_{s'}(k_1) \rangle c_{s'}^\dagger(k_2) c_s(k_2)$, where $U(k) = \sum_n U_n e^{-ik \cdot n}$
307 is the repulsive interaction strength ($U_n > 0$) in the momentum basis. What are the possible order
308 parameters that preserve translational symmetry for a Hartree–Fock mean-field Hamiltonian on a
309 two-dimensional triangular lattice?

310

311 3.2.2 EXACT DIAGONALIZATION (ED)

312

313 Problems cover finite-size many-body spectra and symmetry resolution, including identification of
314 good quantum numbers and block-diagonal sectors, counting symmetry-distinct momentum and point-
315 group blocks, diagnosing exact versus asymptotic degeneracies, scaling of low-lying level spacings,
316 small-cluster combinatorics for model building, and translational or gauge-structure consequences
317 for expectation values and band minima. For example, consider a Hamiltonian for N fermions,
318 $H = -t \sum_{i,\sigma} (c_{i\sigma}^\dagger c_{i+1,\sigma} + \text{H.c.}) + \sum_i U n_{i\uparrow} n_{i\downarrow} + \sum_i h_i S_i^z$, and ask which of the following are
319 good quantum numbers: (a) N ; (b) S^z ; (c) $\sum_{i,\sigma} c_{i\sigma}^\dagger c_{i+1,\sigma}$; (d) $\eta^2 = \frac{1}{2} (\eta^+ \eta^- + \eta^- \eta^+) + (\eta^z)^2$,
320 with $\eta_- = \sum_i (-1)^i c_{i\uparrow} c_{i\downarrow}$, $\eta_+ = \eta_-^\dagger$, and $\eta_0 = \frac{1}{2} (\hat{N} - L)$; (e) $\sum_i n_{i\uparrow} n_{i\downarrow}$.

324 3.2.3 DENSITY MATRIX RENORMALIZATION GROUP (DMRG)
325

326 Problems cover bond-dimension scaling versus system size, extraction and comparison of correlation
327 lengths (e.g., bulk correlators versus boundary-pinned responses), effects of boundary conditions and
328 geometry (chains, ladders, cylinders), and phase identification in concrete lattice models. For example,
329 we consider a Kitaev alternating chain with Hamiltonian $H = -\sum_{i=1}^{N/2} (\sigma_{2i-1}^x \sigma_{2i}^x + \sigma_{2i}^y \sigma_{2i+1}^y)$, where
330 σ_i^x and σ_i^y are Pauli matrices on site i and N is the number of sites, and ask for the ground-state
331 degeneracy for an open chain in terms of N and the central charge c .
332

333 3.2.4 QUANTUM MONTE CARLO (QMC)
334

335 Problems cover phase transitions in frustrated transverse-field Ising models on the triangular and 4–8
336 lattices (emergent U(1) versus Ising behavior), sign-problem diagnostics in stochastic series expansion
337 on square versus kagome lattices with J_z and $J_{\pm\pm}$ terms, and determinant-QMC sign-problem
338 conditions in fermionic settings (spinless fermions at half filling, a two-band model with onsite interactions
339 and spin-mixing hoppings, and a long-range-interaction lattice model under specified densities,
340 fields, and complex next-nearest-neighbor hoppings). For example, we consider the transverse-field
341 Ising model in one dimension and on the 4–8 lattice with antiferromagnetic and strong ferromagnetic
342 bonds arranged so that every plaquette carries π flux. We ask which standard methods are provably
343 efficient for computing ground-state properties in 1D and 2D for large system sizes (more than 200
344 spins), given the two-dimensional sign-problem constraints and the availability of Jordan–Wigner
345 mappings, DMRG, transfer-matrix approaches, or simple variational constructions in one dimension.
346

347 3.2.5 VARIATIONAL MONTE CARLO (VMC)
348

349 Problems cover symmetry restoration/projection in lattice spin models and the correctness and
350 variance of Monte Carlo estimators for neural-network wavefunctions. For example, we consider
351 the 2D Heisenberg J_1 – J_2 model with a wavefunction $\psi(x)$ that breaks rotation symmetry and ask
352 which constructions restore C_4 rotation symmetry using the rotation operator R : (a) $\sum_n \psi(R^n x)$;
353 (b) $\prod_n \psi(R^n x)$; (c) $\sum_n \psi(R x)$; (d) $\sum_n (-1)^n \psi(R^n x)$; (e) $\sum_n e^{i\pi n^2} \psi(R^n x)$.
354

355 3.2.6 PROJECTED ENTANGLED PAIR STATES (PEPS)
356

357 Problems cover iPEPS excitation ansätze built by locally replacing a ground-state tensor and forming
358 momentum superpositions, coarse-graining pipelines for extracting CFT data in classical 2D tensor
359 networks, and SU(2)-symmetric iPEPS design with rotational (C_4) constraints and parameter counting.
360 For example, we start from an iPEPS with ground-state tensor A , form a defect state by replacing one
361 A with B at position $x = (i, j)$ so that $|\Psi_0(A)\rangle \rightarrow |\Phi(A, B)_x\rangle$, define the momentum superposition
362 $|\Phi(B)_k\rangle = \sum_x e^{ik \cdot x} |\Phi(B)_x\rangle$, and consider the generalized eigenvalue problem $H_k B = \omega_k f$. We
363 ask for the form of f in terms of the normalization $N_k = \langle \Phi(B)_k | \Phi(B)_k \rangle$, using only N_k and B .
364

365 3.2.7 STATISTICAL MECHANICS (SM)
366

367 Problems cover nonequilibrium stochastic dynamics and combinatorial models, including odd dif-
368 fusivity in chiral active Ornstein–Uhlenbeck processes with inertia, fluctuation–dissipation checks
369 for torque-driven active Brownian motion, synchronization thresholds in coupled random-tensor
370 soft-spin networks, cavity-variable choices in the $d \rightarrow \infty$ limit for molecular liquids, Onsager–
371 Machlup actions for multiplicative-noise Langevin equations, and counting fully packed dimers
372 on cylinders with defect-density optimization. For example, consider two coupled systems with
373 N soft spins $\{x_i\}$ and $\{y_i\}$ obeying (?) $\dot{x}_i = -\lambda(\mathbf{x})x_i + N^{-1}\sum_{j,k} J_i^{jk} x_j x_k + K(y_i - x_i)$ and
374 $\dot{y}_i = -\lambda(\mathbf{y})y_i + N^{-1}\sum_{j,k} J_i^{jk} y_j y_k + K(x_i - y_i)$, where $\lambda(\mathbf{x}) = N^{-1}|\mathbf{x}|^2 - \gamma$ with $\gamma > 0$, and
375 J_i^{jk} is a symmetric random tensor of zero mean and variance σ^2 . In the $N \rightarrow \infty$ limit and defining
376 synchronization by $N^{-1}\sum_i (x_i - y_i)^2 = 0$ in steady state, we ask for the critical coupling $K_c(\gamma, \sigma^2)$
377 above which the synchronous state is stable.

378 3.2.8 OTHER
379

380 Problems cover model-building and application of fundamental principles: particle-hole map-
381 pings and operator rewrites in Hubbard-type models; strong-coupling correlators in dimerized
382 chains; linked-cluster expansions via inclusion–exclusion; correlation decay and transition claims
383 in long-range Ising models; transport and compressibility statements in frustrated boson models;
384 and zero-temperature phase and correlation properties in quantum Ising–type systems. For example,
385 we ask the LLM to choose from the following options for a classical Ising model with Hamilto-
386 nian $H = -\frac{1}{2} \sum_{i \neq j} J(|i - j|) \sigma_i \sigma_j$, where $J(n) = |J_0| / (1 + n^2)^\alpha$. We ask the LLM to choose
387 from: (a) For $\alpha = 2$, there is a non-zero critical temperature T_c . (b) For $\alpha = 1$, at sufficiently low
388 temperature, $\langle \sigma_j \sigma_{j+n} \rangle \rightarrow m^2 > 0$ as $n \rightarrow \infty$. (c) For $\alpha = 1$, there is a temperature for which
389 $\langle \sigma_j \sigma_{j+n} \rangle - \langle \sigma_j \rangle \langle \sigma_{j+n} \rangle$ decays as the inverse of the logarithm of distance. (d) For $\alpha = 4$, $\langle \sigma_j \sigma_{j+n} \rangle$
390 decays exponentially with distance. (e) For $\alpha = 2$, $\langle \sigma_j \sigma_{j+n} \rangle$ decays exponentially with distance.
391

Model	Overall	HF	ED	DMRG	QMC	VMC	PEPS	SM	Other
GPT-4o	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.2
GPT-4.1	4.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	6.2
GPT-5	30.0	20.0	37.5	0.0	16.7	0.0	66.7	33.3	37.5
GPT-5-mini	24.0	20.0	37.5	0.0	16.7	0.0	33.3	50.0	18.8
GPT-5-nano	14.0	20.0	12.5	0.0	16.7	0.0	33.3	0.0	18.8
GPT-o3	26.0	20.0	50.0	25.0	16.7	0.0	66.7	16.7	18.8
GPT-o4-mini	18.0	20.0	25.0	0.0	16.7	0.0	33.3	33.3	12.5
Gemini 2.0 Flash	10.0	20.0	25.0	0.0	0.0	0.0	0.0	16.7	6.2
Gemini 2.5 Flash	4.0	20.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0
Gemini 2.5 Pro	14.0	20.0	12.5	0.0	0.0	0.0	33.3	0.0	25.0
Claude 3.7 Sonnet	6.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5
Claude 4.1 Sonnet	2.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Claude 4.0 Sonnet	6.0	20.0	12.5	0.0	0.0	0.0	0.0	16.7	0.0
Claude 4.1 Opus	8.0	20.0	12.5	0.0	0.0	0.0	33.3	0.0	6.2
Claude 4.0 Opus	10.0	20.0	0.0	25.0	0.0	0.0	33.3	16.7	6.2
DeepSeek v3	4.0	20.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0
LLaMA Maverick	12.0	20.0	25.0	0.0	0.0	0.0	33.3	16.7	6.2

407 Table 2: Pass@1 rates (%) by model and question type.
408

409 4 EVALUATION
410

411 Our experimental goal is to probe the *out-of-the-box*, zero-shot, closed-book performance of general-
412 purpose frontier models without any domain-specific fine-tuning on **CMT-Benchmark**. We evaluate
413 17 models on the full benchmark, 7 OpenAI’s model (GPT-4o, GPT-4.1, GPT-5, GPT-5-mini, GPT-
414 5-nano, GPT-o3, GPT-o4-mini); 3 Google Gemini’s models (Gemini 2.0 Flash, Gemini 2.5 Flash,
415 Gemini 2.5 Pro); 5 Anthropic’s Claude models (Claude 3.7 Sonnet, Claude 4.0 Sonnet, Claude 4.1
416 Sonnet, Claude 4.0 Opus, Claude 4.1 Opus); and two open source models (DeepSeek v3, LLaMA
417 Maverick). For the detailed case studies, we refer the reader to Appendix A. Each model is queried
418 with the prompt written by the author, along with a fixed component specifying formatting instructions.
419 In models that support it, we passed system instructions requiring the model to provide a solution in
420 the form of a boxed L^AT_EX expression. We evaluate the last boxed expression from in response and
421 grade it using the parsing and evaluation code described in Section 3.1.1. The LLM’s solution is
422 marked correct if the parser determines it is equivalent to the solution provided by the problem author.
423 Some models, in particular Gemini 2.5 Pro, occasionally disregard the formatting instructions and
424 produce responses that cannot be parsed without a boxed L^AT_EX environment. The parser failed for a
425 small number of problems, which were human-graded.
426

427 We summarize Pass@1 both overall and by topic in Table 2, which reports the results as a percentage
428 correct grouped by model and problem type. Overall accuracy is significantly lower than other
429 physics-related benchmarks (Qiu et al., 2025; Wang et al., 2025). The best performing models were
430 GPT-5 (30.0%), GPT-o3 (26.0%), and GPT-5-mini (24.0%): the only three to score above 20%. The
431 second tier, which we defined as any models with overall > 10% but below 20%, was comprised
432 of: GPT-o4-mini (18.0%), GPT-5-nano (14.0%), Gemini 2.5 Pro (14.0%), and LLaMA Maverick
433 (12.0%). All other models scored at or below 10%: Gemini 2.0 Flash (10.0%), Claude 4.0 Opus
434

(10.0%), Claude 4.1 Opus (8.0%), Claude 3.7 Sonnet (6.0%), Claude 4.0 Sonnet (6.0%), Gemini 2.5 Flash (4.0%), GPT-4.1 (4.0%), DeepSeek v3 (4.0%), Claude 4.1 Sonnet (2.0%), and GPT-4o (2.0%).

Looking at the results by question type, it is clear that several areas remain extremely challenging for the models to solve. Every model scored 0.0% on VMC problems that required critical judgements while QMC peaks at only 16.7% for the first tier models. Only two models, GPT-o3 and Claude 4.0 Opus, achieved a non-zero score on the DMRG questions (25.0%). In contrast, models did comparatively better with technical questions on using PEPS: the top models reach 66.7% (GPT-5, GPT-o3), and several others achieve 33.3%.

Overall, the results in Fig. 3 show that **CMT-Benchmark** is difficult for even the strongest models. No model approaches mastery across topics. These trends highlight persistent gaps in sign-problem reasoning (QMC), long-range entanglement and boundary effects (DMRG), and symmetry-aware variational projections (VMC).

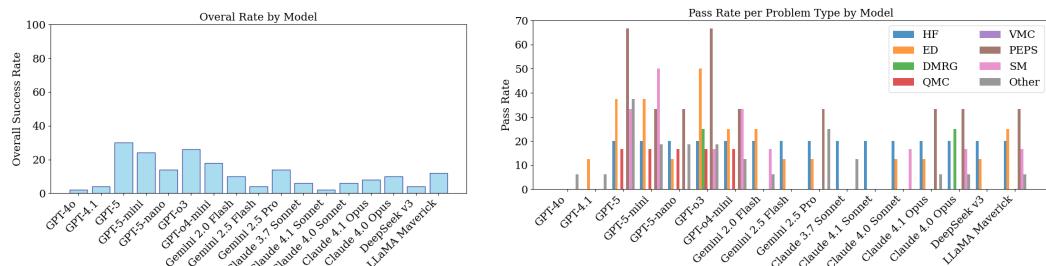


Figure 3: Model performance on **CMT-Benchmark**. (a) Overall success rate on benchmark by model. (b) Success rate per model divided by problem type.

5 CONCLUSION

In this paper, we introduce **CMT-Benchmark**, a benchmark built by expert researchers to mirror real research practice in CMT. The dataset comprises 50 original, expert-authored problems that address methods currently used in quantum and classical CMT research and model-building strategies. The methods we covered are Hartree–Fock, exact diagonalization, density matrix renormalization group, quantum Monte Carlo, variational Monte Carlo, Projected Entangled Pair States, and statistical mechanics. **CMT-Benchmark** expands the current landscape of scientific benchmarks through research-grade problems that test LLMs’ readiness to work as a research assistant. We tested critical judgment and the ability to synthesize different modalities of information, including mathematical, language-based (conceptual), geometric, and fundamental laws of physics. We evaluated all LLM-generated responses using a deterministic machine-based grading system that supports both numerical and symbolic evaluation, including non-commuting operator algebra. We find that current state-of-the-art LLMs struggle with **CMT-Benchmark**, with the strongest models achieving only 24–30% overall accuracy and no model demonstrating mastery across different problem types.

We gained unique insights through the problem development process that surfaced limitations in frontier LLMs. Since our infrastructure provided a global, real-time view of how models called into the Google Sheet were performing across all the problems, the authors could iteratively identify the angle that caused all the LLMs in the Google Sheet to fail. Firstly, LLMs struggle in connecting ‘verbal’ expressions to accurate algebraic expressions or geometric ideas. Researchers in the domain can readily translate verbal descriptions, such as “fermionic Hubbard model near half-filling on a Kagome lattice,” into an operator algebraic expression for the Hamiltonian. We think in language but calculate using precise mathematical notation. The inability to readily and precisely switch gears between language and mathematics results in LLMs making trivial mistakes and working with expressions that break the laws of physics. This weakness is revealed when problems require answers based on the calculations LLMs must design. Another common struggle is in geometric reasoning. Researchers often sketch geometric view of the problem as a key part of reasoning, as in considering the number of Fermi surfaces in Sec. A.3. The LLM will need to be connected to a tool that can plot the Fermi surface and be instructed on how to do so. Secondly, LLMs struggle with applying fundamental principles such as symmetry to operator algebraic expressions. When relevant terminologies are given, LLMs use the terminologies as a handle to recall the textbook

486 examples. However, a slight departure from the textbook example will trip up the LLM and reveal
487 its limited appreciation for fundamental principles as the foundation of critical judgment. For
488 instance, in a mixed-field Ising model with no \mathbb{Z}_2 symmetry to break, some LLMs still predicted
489 a symmetry-breaking transition as a function of the transverse field, misdiagnosing the most basic
490 symmetry structure of the problem. Thirdly, LLMs rely on heuristics when a problem requires a
491 judgment call. For example, in a quantum Monte Carlo efficiency question, LLMs often misattribute
492 the bottleneck in a problem to the so-called ‘sign problem’; when the prompt explicitly states the
493 absence of the sign problem, some LLMs can then identify the real bottleneck. Finally, LLMs often
494 fail to recognize the underlying structure or mapping that allows one to leverage known results to
495 simplify the problem. This was revealed in problems that can be mapped to a free fermion problem
496 or problems with an underlying conformal field theory.

497
498 **ACKNOWLEDGMENTS**
499

500 E.-A.K. acknowledges funding support from NSF Award 2433348 and OAC-2118310. H.P. ac-
501 knowledges the support of US-ONR grant No. N00014-23-1-2357. D. C. is supported in part by a
502 NSF CAREER grant (DMR-2237522), and a Sloan Research Fellowship from the Alfred P. Sloan
503 foundation. T.N. and J.H. acknowledge support from the Swiss National Science Foundation through
504 a Consolidator Grant (iTQC, TMCG-2213805). S.G. acknowledges support from NTT research,
505 the Simons foundation, and a Schmidt sciences polymath award. F.G. acknowledges support from
506 a postdoctoral fellowship of the Stanford’s Leinweber Institute of Theoretical Physics. E.K. ac-
507 knowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences under
508 Grant No. DE-SC0022311. Y.-J.K. acknowledge support from the NSTC of Taiwan under Grant
509 No. 113-2112-M-002-033-MY3. H.-C.J. is supported by the US Department of Energy, Office
510 of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No.
DE-AC02-76SF00515.

511
512 **REFERENCES**
513

514 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. MathArena:
515 Evaluating LLMs on Uncontaminated Math Competitions, May 2025. URL <http://arxiv.org/abs/2505.23281>.

516 Daniel J. H. Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, Moritz Münchmeyer, Maja Rudolph,
517 Frederic Sala, and Sai Chaitanya Tadepalli. Theoretical Physics Benchmark (TPBench) – a
518 Dataset and Study of AI Reasoning Capabilities in Theoretical Physics, February 2025. URL
519 <http://arxiv.org/abs/2502.15815>.

520 Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter
521 Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, Yasaman Bahri, Victor V. Albert,
522 Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian Rohr, Ekin Dogus Cubuk, Muratahan
523 Aykol, Amil Merchant, Michael J. Statt, Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara,
524 Matthew Abraham, Muqthar Mohammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman,
525 Eun-Ah Kim, Michael P. Brenner, Viren Jain, Sameera Ponda, and Subhashini Venugopalan.
526 CURIE: Evaluating LLMs On Multitask Scientific Long Context Understanding and Reasoning.
527 In *ICLR 2025 Main Conference*. arXiv, May 2025. URL <http://arxiv.org/abs/2503.13517>.

528 Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu,
529 Nianli Peng, Corey Wang, and Michael P. Brenner. HARDMath: A Benchmark Dataset for
530 Challenging Problems in Applied Mathematics, December 2024. URL <http://arxiv.org/abs/2410.09988>.

531 Kaiyue Feng, Yilun Zhao, Yixin Liu, Tianyu Yang, Chen Zhao, John Sous, and Arman Cohan.
532 PHYSICS: Benchmarking Foundation Models on University-Level Physics Problem Solving,
533 March 2025. URL <http://arxiv.org/abs/2503.21821>.

534 Federico Ghimenti, Ludovic Berthier, Grzegorz Szamel, and Frédéric van Wijland. Irreversible
535 Boltzmann samplers in dense liquids: Weak-coupling approximation and mode-coupling theory.

540 *Phys. Rev. E*, 110(3):034604, September 2024. ISSN 2470-0045, 2470-0053. URL <http://arxiv.org/abs/2404.14863>.

541

542 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järvinieniemi,
Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
Enugandla, and Mark Wildon. FrontierMath: A Benchmark for Evaluating Advanced Mathematical
Reasoning in AI, August 2025. URL <http://arxiv.org/abs/2411.04872>.

543

544

545

546

547

548

549 S. R. De Groot and P. Mazur. *Non-Equilibrium Thermodynamics*. Courier Corporation, January 2013.
550 ISBN 978-0-486-15350-6.

551

552 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
553 Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset,
554 November 2021. URL <http://arxiv.org/abs/2103.03874>.

555

556 Huggingface. AnonBenchmark322/benchmark_data · Datasets at Hugging Face, September
557 2025. URL https://huggingface.co/datasets/AnonBenchmark322/benchmark_data.

558

559 Ryogo Kubo, Morikazu Toda, and Natsuki Hashitsume. *Statistical Physics II: Nonequilibrium
560 Statistical Mechanics*. Springer Science & Business Media, December 2012. ISBN 978-3-642-
561 58244-8.

562

563 Jon M. Laurent, Joseph D. Janizek, Michael Ruzo, Michaela M. Hinks, Michael J. Hammerling,
564 Siddharth Narayanan, Manvitha Ponnappati, Andrew D. White, and Samuel G. Rodrigues. LAB-
565 Bench: Measuring Capabilities of Language Models for Biology Research, July 2024. URL
<http://arxiv.org/abs/2407.10362>.

566

567 Benno Liebchen and Demian Levis. Chiral active matter. *EPL*, 139(6):67001, September 2022. ISSN
0295-5075. URL <https://dx.doi.org/10.1209/0295-5075/ac8f69>.

568

569 Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei
570 Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. MathBench: Evaluating the Theory and
571 Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark, May 2024. URL
<http://arxiv.org/abs/2405.12209>.

572

573 Ludovico Mitchener, Jon M. Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P. Wellawatte,
574 Andrew White, Lorenzo Sani, and Samuel G. Rodrigues. BixBench: A Comprehensive Benchmark
575 for LLM-based Agents in Computational Biology, March 2025. URL <http://arxiv.org/abs/2503.00096>.

576

577 J. O’Byrne, Y. Kafri, J. Tailleur, and F. van Wijland. Time irreversibility in active matter, from
578 micro to macro. *Nat Rev Phys*, 4(3):167–183, March 2022. ISSN 2522-5820. URL <https://www.nature.com/articles/s42254-021-00406-2>.

579

580

581 Haining Pan, Nayantara Mudur, William Taranto, Maria Tikhanovskaya, Subhashini Venugopalan,
582 Yasaman Bahri, Michael P. Brenner, and Eun-Ah Kim. Quantum many-body physics calculations
583 with large language models. *Commun Phys*, 8(1):49, January 2025. ISSN 2399-3650. URL
<https://www.nature.com/articles/s42005-025-01956-y>.

584

585 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
586 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
587 Adam Khoja, Ryan Kim, Richard Ren, Jason Hauseinloy, Oliver Zhang, Mantas Mazeika, Tung
588 Nguyen, Daron Anderson, Imad Ali Shah, Mikhail Doroshenko, Alun Cennyth Stokes, Mobeen
589 Mahmood, Jaeho Lee, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, Robert Gerbic, John-
590 Clark Levin, Serguei Popov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal,
591 Chelsea Zou, Zihan Wang, Mstyslav Kazakov, Geoff Galgon, Johannes Schmitt, Alvaro Sanchez,
592 Yongki Lee, Will Yeadon, Scott Sauers, Marc Roth, Chidozie Agu, Søren Riis, Fabian Giska,
593 Saiteja Utpala, Antrell Cheatom, Zachary Giboney, Gashaw M. Goshu, Sarah-Jane Crowson,
Mohinder Maheshbhai Naiya, Noah Burns, Lennart Finke, Zerui Cheng, Hyunwoo Park, Francesco

594 Fournier-Facio, Jennifer Zampese, John B. Wydallis, Ryan G. Hoerr, Mark Nandor, Tim Gehrunger,
595 Jiaqi Cai, Ben McCarty, Jungbae Nam, Edwin Taylor, Jun Jin, Gautier Abou Loume, Hangrui Cao,
596 Alexis C. Garretson, Damien Sileo, Qiuyu Ren, Doru Cojoc, Pavel Arkhipov, Usman Qazi, Aras
597 Bacho, Lianghui Li, Sumeet Motwani, Christian Schroeder de Witt, Alexei Kopylov, Johannes
598 Veith, Eric Singer, Paolo Rissone, Jaehyeok Jin, Jack Wei Lun Shi, Chris G. Willcocks, Ameya
599 Prabhu, Longke Tang, Kevin Zhou, Emily de Oliveira Santos, Andrey Pupasov Maksimov, Edward
600 Vendrow, Kengo Zenitani, Joshua Robinson, Aleksandar Mikov, Julien Guillod, Yuqi Li, Ben
601 Pageler, Joshua Vendrow, Vladyslav Kuchkin, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu
602 Liang, Andrew Gritsevskiy, Dakotah Martinez, Nick Crispino, Dimitri Zvonkine, Natanael Wild-
603 ner Fraga, Saeed Soori, Ori Press, Henry Tang, Julian Salazar, Sean R. Green, Lina Brüssel,
604 Moon Twayana, Aymeric Dieuleveut, T. Ryan Rogers, Wenjin Zhang, Ross Finocchio, Bikun Li,
605 Jinzhou Yang, Arun Rao, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu,
606 Nate Stambaugh, Subrata Mishra, Ariel Ghislain Kemdoum, Tad Hogg, Alvin Jin,
607 Carlo Bosio, Gongbo Sun, Brian P. Coppola, Haline Heidinger, Rafael Sayous, Stefan Ivanov,
608 Joseph M. Cavanagh, Jiawei Shen, Joseph Marvin Imperial, Philippe Schwaller, Shaipranesh
609 Senthilkuma, Andres M. Bran, Andres Algabe, Brecht Verbeken, Kelsey Van den Houte, Lynn
610 Van Der Sypt, David Noever, Lisa Schut, Ilia Sucholutsky, Evgenii Zheltonozhskii, Qiaochu Yuan,
611 Derek Lim, Richard Stanley, Shankar Sivarajan, Tong Yang, John Maar, Julian Wykowski, Martí
612 Oller, Jennifer Sandlin, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu, Felipe Meneguitti Dias,
613 Tobias Kreiman, Kaivalya Rawal, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James
614 Koppel, Jeremy Nguyen, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Sergey
615 Ivanov, Rafał Poświata, Chenguang Wang, Daofeng Li, Donato Crisostomi, Ali Dehghan, Andrea
616 Achilleos, John Arnold Ambay, Benjamin Myklebust, Archan Sen, David Perrella, Nurdin Ka-
617 parov, Mark H. Inlow, Allen Zang, Kalyan Ramakrishnan, Daniil Orel, Vladislav Poritski, Shalev
618 Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Dan Bar
619 Hava, Aleksey Kuchkin, Robert Lauff, David Holmes, Frank Sommerhage, Anji Zhang, Richard
620 Moat, Keith Schneider, Daniel Pyda, Zakayo Kazibwe, Mukhwinder Singh, Don Clarke, Dae Hyun
621 Kim, Sara Fish, Veit Elser, Victor Efren Guadarrama Vilchis, Immo Klose, Christoph Demian,
622 Ujjwala Anantheswaran, Adam Zweiger, Guglielmo Albani, Jeffery Li, Nicolas Daans, Maksim
623 Radionov, Václav Rozhoň, Vincent Ginis, Ziqiao Ma, Christian Stump, Jacob Platnick, Volodymyr
624 Nevirkovets, Luke Basler, Marco Piccardo, Niv Cohen, Virendra Singh, Josef Tkadlec, Paul Rosu,
625 Alan Goldfarb, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Aline Menezes, Arkil
626 Patel, Zixuan Wang, Jamie Tucker-Foltz, Jack Stade, Declan Grabb, Tom Goertzen, Fereshteh
627 Kazemi, Jeremiah Milbauer, Abhishek Shukla, Hossam Elgnainy, Yan Carlos Leyva Labrador, Hao
628 He, Ling Zhang, Alan Givré, Hew Wolff, Gözdenur Demir, Muhammad Fayeaz Aziz, Younesse
629 Kaddar, Ivar Ängquist, Yanxu Chen, Elliott Thornley, Robin Zhang, Jiayi Pan, Antonio Terpin,
630 Niklas Muennighoff, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Jainam Shah, Ethan D. L.
631 Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Andrew Ho, Shaul Barkan, Jiaqi Wang, Martin
632 Stehberger, Egor Kretov, Peter Bradshaw, J. P. Heimonen, Kaustubh Sridhar, Zaki Hossain, Ido
633 Akov, Yury Makarychev, Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev,
634 Demosthenes Patramanis, Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon
635 Coleman, Jiangnan Xu, Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen,
636 Micah Carroll, Orr Paradise, Jan Hendrik Kirchner, Stefan Steinerberger, Maksym Ovchynnikov,
637 Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou Nie, Paolo Giordano, Philipp Petersen,
638 Anna Szyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani, An-
639 tonella Pinto, Shreyas Verma, Prashant Joshi, Eli Meril, Zheng-Xin Yong, Allison Tee, Jérémie
640 Andréoletti, Orion Weller, Raghav Singhal, Gang Zhang, Alexander Ivanov, Seri Khoury, Nils
641 Gustafsson, Hamid Mostaghimi, Kunvar Thaman, Qijia Chen, Tran Quoc Khánh, Jacob Loader,
642 Stefano Cavalleri, Hannah Szlyk, Zachary Brown, Himanshu Narayan, Jonathan Roberts, William
643 Alley, Kunyang Sun, Ryan Stendall, Max Lamparth, Anka Reuel, Ting Wang, Hanmeng Xu,
644 Pablo Hernández-Cámarra, Freddie Martin, Thomas Preu, Tomek Korbak, Marcus Abramovitch,
645 Dominic Williamson, Ida Bosio, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Maria Inês S. Nunes, Yibo
646 Jiang, M. Saiful Bari, Peyman Kassani, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane
647 Durand, Guillaume Douville, Daniel Tordera, George Balabanian, Earth Anderson, Lynna Kvis-
648 tad, Alejandro José Moyano, Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Isaac C. McAlister,
649 Andrew Favre D. O. Shailesh Shah, Xiaoxiang Zhou, Firuz Kamalov, Ronald Clark, Sherwin
650 Abdoli, Tim Santens, Harrison K. Wang, Evan Chen, Alessandro Tomasiello, G. Bruno De Luca,
651 Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Niels Mündler, Avi Semler, Emma Rodman, Jacob Drori,
652 Carl J. Fossum, Luk Gloor, Milind Jagota, Ronak Pradeep, Honglu Fan, Tej Shah, Jonathan Eicher,

648 Michael Chen, Kushal Thaman, William Merrill, Moritz Firsching, Carter Harris, Stefan Ciobâcă,
649 Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank Agnihotri, Pavel Zhelnov, Siranut
650 Usawasutsakorn, Mohammadreza Mofayez, Alexander Piperski, Marc Carauleanu, David K.
651 Zhang, Kostiantyn Dobarskyi, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben Jansen, Scott
652 Creighton, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Dario Bezzi, Wiktor Morak, Wenjie
653 Ma, William Held, Tran Đuc Huy, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed,
654 Julian Noah Leser, Michelle X. Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Hos-
655 seïn Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez, Andy Zou, Muthu
656 Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen,
657 Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Lukas
658 Lewark, Miguel Orbegozo Rodriguez, Mátýás Vincze, Dustin Wehr, Colin Tang, Shaun Phillips,
659 Fortuna Samuele, Jiang Muzhen, Fredrik Ekström, Angela Hammon, Oam Patel, Faraz Farhidi,
660 George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich,
661 Claire Sparrow, Rayner Hernandez Perez, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi,
662 Eric Hallman, Kenchi Okutsu, Mike Battaglia, Mohammad Maghsoudimehrabani, Alon Amit,
663 Dave Hulbert, Roberto Pereira, Simon Weber, Handoko, Anton Peristy, Stephen Malina, Samuel
664 Albanie, Will Cai, Mustafa Mehkary, Rami Aly, Frank Reidegeld, Anna-Katharina Dick, Cary
665 Friday, Jasdeep Sidhu, Hassan Shapourian, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan,
666 Brian Weber, Harsh Kumar, Tong Jiang, Arunim Agarwal, Chiara Ceconello, Warren S. Vaz, Chao
667 Zhuang, Haon Park, Andrew R. Tawfeek, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan
668 Kim, Johan Ferret, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca,
669 Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Shreen Gul, Gunjan Chhablani,
670 Zhehang Du, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir Vinnikov, Ethan
671 Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin,
672 Koen Sponselee, Renas Bacho, Florencia de la Rosa, Xiuyu Li, Guillaume Malod, Leon Lang,
673 Julien Laurendeau, Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor
674 Souza, Yuchen Anna Zhou, Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Luca Arnaboldi,
675 Rai, Filippo Bigi, M. C. Boscá, Oleg Shumar, Kaniuar Bacho, Pierre Clavier, Gabriel Recchia, Mara
676 Popescu, Nikita Shulga, Ngefor Mildred Tanwie, Denis Peskoff, Thomas C. H. Lux, Ben Rank,
677 Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu, Olle Häggström, Emil Verkama, Hans
678 Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Yiyang Fan, Gabriel
679 Poesia Reis e Silva, Linwei Xin, Yosi Kratish, Jakub Łucki, Wen-Ding Li, Sivakanth Gopi, Andrea
680 Caciolai, Justin Xu, Kevin Joseph Scaria, Freddie Vargus, Farzad Habibi, Long, Lian, Emanuele
681 Rodolà, Jules Robins, Vincent Cheng, Tony Fruhauff, Brad Raynor, Hao Qi, Xi Jiang, Ben Segev,
682 Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner, Mao
683 Mao, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Alon Ragoler, Justin Tan, Blake Sims,
684 Rebeka Plecnik, Aaron Kirtland, Omer Faruk Bodur, D. P. Shinde, Zahra Adoul, Mohamed Zekry,
685 Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen, Loukmene Karim, Anna Liakhovitskaia,
686 Nate Resman, Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Sarah Hoback, Rodrigo
687 De Oliveira Pena, Glen Sherman, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao
688 Wu, Sandra Mendoza, Ismail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad
689 Safdari, Liangti Dai, Siriphan Arthornturasuk, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad,
690 Ashley Cartwright, Daphny Pottmaier, Omid Taheri, David Outevsky, Stanley Stepanic, Samuel
691 Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Sam Ali, Ricardo Lorena,
692 Krishnamurthy Iyer, Arshad Anil Fasiludeen, Sk Md Salauddin, Murat Islam, Juan Gonzalez, Josh
693 Ducey, Maja Somrak, Vasilios Mavroudis, Eric Vergo, Juehang Qin, Benjamín Borbás, Eric Chu,
694 Jack Lindsey, Anil Radhakrishnan, Antoine Jallon, I. M. J. McInnis, Pawan Kumar, Laxman Prasad
695 Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong, Archimedes Apronti, Abdallah Galal,
696 Ng Ze-An, Ankit Singh, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Benedito
697 Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman, Tim Tarver, Stephen
698 Mensah, Javier Gimenez, Roselynn Grace Montecillo, Russell Campbell, Asankhaya Sharma,
699 Khalida Meer, Xavier Alapont, Deepakkumar Patil, Rajat Maheshwari, Abdelkader Dendane, Priti
700 Shukla, Sergei Bogdanov, Sören Möller, Muhammad Rehan Siddiqi, Prajvi Saxena, Himanshu
701 Gupta, Innocent Enyekwe, Ragavendran P. V, Zienab EL-Wasif, Aleksandr Maksapetyan, Vivien
702 Rossbach, Chris Harjadi, Mohsen Bahalooohoreh, Song Bian, John Lai, Justine Leon Uro, Greg
703 Bateman, Mohamed Sayed, Ahmed Menshawy, Darling Duclosel, Yashaswini Jain, Ashley Aaron,
704 Murat Tiryakioglu, Sheeshram Siddh, Keith Krenek, Alex Hoover, Joseph McGowan, Tejal Pat-
705 wardhan, Summer Yue, Alexandre Wang, and Dan Hendrycks. *Humanity's Last Exam*, February
706 2025. URL <http://arxiv.org/abs/2501.14249>.

702 Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan
703 Yin, Haoxu Zhang, Yi Hu, Chenyang Wang, Chencheng Tang, Haoling Chang, Qi Liu, Ziheng
704 Zhou, Tianyu Zhang, Jingtian Zhang, Zhangyi Liu, Minghao Li, Yuku Zhang, Boxuan Jing,
705 Xianqi Yin, Yutong Ren, Zizhuo Fu, Jiaming Ji, Weike Wang, Xudong Tian, Anqi Lv, Laifu Man,
706 Jianxiang Li, Feiyu Tao, Qihua Sun, Zhou Liang, Yushu Mu, Zhongxuan Li, Jing-Jun Zhang,
707 Shutao Zhang, Xiaotian Li, Xingqi Xia, Jiawei Lin, Zheyu Shen, Jiahang Chen, Qiuhan Xiong,
708 Binran Wang, Fengyuan Wang, Ziyang Ni, Bohan Zhang, Fan Cui, Changkun Shao, Qing-Hong
709 Cao, Ming-xing Luo, Yaodong Yang, Muhan Zhang, and Hua Xing Zhu. PHYBench: Holistic
710 Evaluation of Physical Perception and Reasoning in Large Language Models, May 2025. URL
711 <http://arxiv.org/abs/2504.16074>.

712 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
713 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
714 Benchmark, November 2023. URL <http://arxiv.org/abs/2311.12022>.

715
716 James V. Roggeveen, Erik Y. Wang, Will Flintoft, Peter Donets, Lucy S. Nathwani, Nickolas Gutier-
717 rez, David Ettel, Anton Marius Graf, Siddharth Dandavate, Arjun Nageswaran, Raglan Ward, Ava
718 Williamson, Anne Mykland, Kacper K. Migacz, Yijun Wang, Egemen Bostan, Duy Thuc Nguyen,
719 Zhe He, Marc L. Descoteaux, Felix Yeung, Shida Liu, Jorge García Ponce, Luke Zhu, Yuyang
720 Chen, Ekaterina S. Ivshina, Miguel Fernandez, Minjae Kim, Kennan Gumb, Matthew Scott
721 Tan, Russell Yang, Mai Hoang, David Brown, Isabella A. Silveira, Lavon Sykes, Ahmed Roman,
722 William Fredenberg, Yiming Chen, Lucas Martin, Yixing Tang, Kelly Werker Smith, Hongyu
723 Liao, Logan G. Wilson, Alexander Dazhen Cai, Andrea Elizabeth Biju, and Michael P. Brenner.
724 HARDMath2: A Benchmark for Applied Mathematics Built by Students as Part of a Graduate
725 Class, May 2025. URL <http://arxiv.org/abs/2505.11774>.

726 Michael te Vrugt, Benno Liebchen, and Michael E. Cates. What exactly is 'active matter'?, July
727 2025. URL <http://arxiv.org/abs/2507.21621>.

728
729 Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
730 Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
731 Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
732 Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
733 and Hao Peng. SciCode: A Research Coding Benchmark Curated by Scientists, July 2024. URL
734 <http://arxiv.org/abs/2407.13168>.

735
736 Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
737 without human demonstrations. *Nature*, 625(7995):476–482, January 2024. ISSN 1476-4687.
738 URL <https://www.nature.com/articles/s41586-023-06747-5>.

739
740 Weida Wang, Dongchen Huang, Jiatong Li, Tengchao Yang, Ziyang Zheng, Di Zhang, Dong Han,
741 Benteng Chen, Binzhao Luo, Zhiyu Liu, Kunling Liu, Zhiyuan Gao, Shiqi Geng, Wei Ma, Jiaming
742 Su, Xin Li, Shuchen Pu, Yuhua Shui, Qianjia Cheng, Zhihao Dou, Dongfei Cui, Changyong He,
743 Jin Zeng, Zeke Xie, Mao Su, Dongzhan Zhou, Yuqiang Li, Wanli Ouyang, Yunqi Cai, Xi Dai,
744 Shufei Zhang, Lei Bai, Jinguang Cheng, Zhong Fang, and Hongming Weng. CMPhysBench: A
745 Benchmark for Evaluating Large Language Models in Condensed Matter Physics, August 2025.
746 URL <http://arxiv.org/abs/2508.18124>.

747
748 Yinggan Xu, Yue Liu, Zhiqiang Gao, Changnan Peng, and Di Luo. PhySense: Principle-Based
749 Physics Reasoning Benchmarking for Large Language Models, May 2025. URL <http://arxiv.org/abs/2505.24823>.

750
751
752

A INSIGHTS

753
754 We share some insights from the problem authors on how they designed their problems and the typical
755 failure modes of the LLMs for four different problems below.

756 A.1 CASE STUDY: CHARGE DENSITY WAVE IN A TRIANGULAR LATTICE
 757

758 In the first HF problem from our spreadsheet, we asked for the ground-state energy per site of a
 759 commensurate charge density wave on a 2D triangular lattice at half filling with onsite and nearest-
 760 neighbor repulsions U_0 and U_1 in the strong-coupling limit (interaction energy scaling \gg hopping).
 761 This problem requires the LLM first to understand the charge ordering in a superlattice embedded
 762 in a base triangular lattice. Then it should propose several possible candidate states at half-filling.
 763 Finally, it should correctly compute the energy per site and determine the lowest energy state as the
 764 ground state. Frontier LLMs consistently failed at the first step to identify the correct ordering in the
 765 first place. We show outputs of the four models, Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro,
 766 and GPT-4o, in the color box below.

767
 768 Model outputs (excerpts) and failure diagnosis
 769

770 **Gemini 2.0 Flash:** *In the strong coupling limit, treat hopping as a perturbation and minimize*
 771 $E = U_0 \sum_i n_{i\uparrow} n_{i\downarrow} + U_1 \sum_{\langle i,j \rangle} n_i n_j$, *with* $n_i = n_{i\uparrow} + n_{i\downarrow}$. *At half-filling on the triangular*
 772 *lattice, a $\sqrt{3} \times \sqrt{3}$ CDW with occupancies (0, 1, 2) per tri-sublattice gives $E_{U_0}/N = U_0/3$*
 773 *and (by a balanced-neighbor count) $E_{U_1}/N = 2U_1$, hence $E/N = U_0/3 + 2U_1$. The*
 774 *uniform state has $E/N = 3U_1$, so the CDW is favored.* $\boxed{\frac{U_0}{3} + 2U_1}$

775
 776 **Gemini 2.5 Flash:** *We need to consider possible ground states that minimize the repulsion.*
 777 **Case 1: Uniform charge density (Mott insulator).** *No double occupancy, so $E_{U_0} = 0$.*
 778 *With coordination $z = 6$ (and thus $3N$ bonds), $E_{U_1} = 3NU_1$, giving $E_{\text{per site}}^{(1)} = 3U_1$.* **Case**
 779 **2: Commensurate CDW ($\sqrt{3} \times \sqrt{3}$).** *Partition into A,B,C sublattices with occupancies*
 780 *(2, 1, 0) to maintain average $n = 1$. Then $E_{U_0} = (N/3)U_0$ and $E_{U_1} = 2NU_1$, so $E_{\text{per site}}^{(2)} =$*
 781 *$U_0/3 + 2U_1$. Comparing, the CDW is favored if $U_0 < 3U_1$ Therefore the commensurate*
 782 *CDW energy per site is $U_0/3 + 2U_1$.* $\boxed{\frac{U_0}{3} + 2U_1}$

783
 784 **Gemini 2.5 Pro:** *We need to compare the energies of plausible charge configurations. Let*
 785 *N_s be the total number of sites.* 1. **Uniform Mott Insulating State:** *One electron per site*
 786 *($n_i = 1$ for all i).* 2. **Charge Density Wave (CDW) State:** *The electron density is spatially*
 787 *modulated. At half-filling, a CDW state involves having some sites with zero electrons (empty,*
 788 *$n_i = 0$) and some sites with two electrons (doubly occupied, $n_i = 2$). To maintain the*
 789 *average filling of one, the number of empty sites must equal the number of doubly-occupied*
 790 *sites ($N_0 = N_2$). There can also be singly occupied sites ($n_i = 1$). The ground state CDW*
 791 *on a triangular lattice for this model is the $\sqrt{3} \times \sqrt{3}$ ordered state. This structure arises*
 792 *from partitioning the lattice into three interpenetrating sublattices (A, B, C), each containing*

793
 794 *$N_s/3$ sites. ... Therefore, this is the ground state energy.* $\boxed{\frac{U_0}{3} + 2U_1}$

795
 796 **GPT-4o:** *Each site, being half-filled, will have an average occupation of one electron. For*
 797 *the onsite repulsion energy, each electron contributes an energy $\frac{U_0}{2}$, because the remaining*
 798 *fraction corresponds to preventing double occupancy that provides the remaining $\frac{U_0}{2}$ per*
 799 *site.*

800
 801 *All models still fail to display the correct stripe ordering. Gemini 2.0 and GPT-4o proposes a*
 802 *$\sqrt{3} \times \sqrt{3}$; Gemini 2.5 Flash and Gemini 2.5 Pro compare uniform vs CDW and outputs the*
 803 *same expression; The correct ground state is a commensurate stripe CDW at half filling with*
 804 *no double occupancy; in the strong-coupling limit, only U_1 contributes, giving $E/N = \boxed{\frac{U_1}{2}}$.*

805
 806 We attribute this to two factors: (i) a language-geometry gap, wherein the model reasons fluently
 807 over symbols but does not natively reconstruct 2D lattice structure and commensurability (leading it
 808 to suggest incompatible two-sublattice or $\sqrt{3} \times \sqrt{3}$ patterns), and (ii) distributional bias in training
 809 data, as triangular-lattice examples are less common than square-lattice ones in standard expositions,
 and the even the ‘stripe phase’ embedded in the triangular lattice at half-filling is even less common

810 to appear in the textbook compared to an extended $\sqrt{3} \times \sqrt{3}$ pattern phase, so the model does not
811 robustly internalize the associated counting logic and constraints.
812

813 A.2 CASE STUDY: PHYSICS-INFORMED GROUP THEORY 814

815 The second example falls under the ED category. We asked the model to count the number of
816 symmetry-distinct sectors in a Hilbert space, considering a two-dimensional lattice system with
817 3x3 unit cells, where each unit cell consists of one site that can be empty, occupied by a spin-1/2
818 electron with either spin, or doubly occupied with two electrons of opposite spin. The system has
819 periodic boundary conditions in both directions. The system has translation symmetry, time-reversal
820 symmetry, and fourfold rotation symmetry. The LLMs' responses are shown below.
821

822 Model outputs (excerpts) and failure diagnosis

823 **Gemini 2.0 Flash:** ...Time-reversal symmetry means that $H(k) = H(-k)^*$. This doesn't
824 give us any additional symmetry-distinct blocks... 3
825

826 **Gemini 2.5 Flash:** ... \mathcal{H} contains subspaces with both even and odd N_f ... 9
827

828 **Gemini 2.5 Pro:** We assume that N_e is conserved, so the Hamiltonian is block-diagonal in
829 N_e . 86

830 **GPT-4o:** Counts 9 translation momenta ($\mathbb{Z}_3 \times \mathbb{Z}_3$), includes fourfold rotations (C_4), and
831 then heuristically halves by time reversal, concluding there are $\frac{9 \times 4}{2} = 18$ symmetry-distinct
832 blocks. 18
833

834 In Gemini 2.0 Flash, the LLM completely ignored one of the symmetries (rotation symmetry)
835 and thus could not reason with time-reversal symmetry either. This is a rather blunt failure. In
836 Gemini 2.5 Flash and Pro, both LLMs ignore that particle number or parity conservation was
837 not mentioned as a symmetry in the problem statement, and it was explicitly excluded that non-
838 mentioned symmetries are to be added. Between the two, adding fermion parity conservation
839 is a more subtle mistake, as it is often an underlying assumption in quantum mechanical
840 descriptions without being explicitly stated. The fermion number, however, is frequently
841 not conserved in Hamiltonians of interest, for instance, when describing superconductors.
842 Gemini 2.5 Pro thus fails more drastically. GPT-4o instead multiplies translation and rotation
843 counts and halves by time reversal to obtain 18, which also does not correspond to the correct
844 block structure.
845

846 The LLMs gravitate towards solving a more standard problem, if a problem appears hard, by
847 changing its assumptions to cases that are more prevalent in the literature (concretely, they have
848 added symmetries). Furthermore, they frequently respond to problem hardness with a lengthy output
849 of dense, nearly cryptic text.
850

851 A.3 CASE STUDY: ENTROPY PRODUCTION AND FLUCTUATION DISSIPATION THEOREM 852

853 A third example falls under the Statistical Mechanics category. Here, LLM is asked to consider a
854 peculiar type of overdamped Langevin equation in two dimensions under the action of an external
855 potential, and to determine whether the fluctuation dissipation theorem (Kubo et al., 2012; Groot &
856 Mazur, 2013) is violated. The options available to the model are
857

- 858 (a) Yes, because the dynamics has a positive entropy production rate.
- 859 (b) No, because the dynamics is time-reversible.
- 860 (c) No, because the Boltzmann distribution is the stationary distribution.
- 861 (d) Yes, because there is a nonzero self-propulsion speed.

862 The dynamics proposed resemble those of a chiral active Brownian particle (Liebchen & Levis, 2022),
863 which has a net-nonzero entropy production rate and is therefore time-irreversible. However, the
864 frequency of rotation of the self-propulsion direction is chosen in such a way to allow sampling
865

864 from the Boltzmann distribution with a target temperature and potential energy in the steady state
865 (Ghimenti et al., 2024). Thus, instantaneous snapshots of the particle position look like equilibrium
866 snapshots, even though the dynamics of the particle are out of equilibrium. The simultaneous
867 appearance of these two seemingly contradictory properties is what makes the problem subtle. Indeed,
868 if the steady state of the system has the Boltzmann form, then the fluctuation-dissipation theorem is
869 obeyed. This is a standard result in nonequilibrium thermodynamics (Groot & Mazur, 2013). The
870 correct answer is then (c). However, the models fail to appreciate this connection and focus on the
871 nonreversibility of the dynamics and the presence of a net nonzero entropy production rate. These
872 aspects are ubiquitous in the field of active matter (O’Byrne et al., 2022; te Vrugt et al., 2025), where
873 the fluctuation-dissipation theorem is often violated. Instead of carefully analyzing the proposed
874 dynamics, the models appeal directly to general facts known in the field, leading to an incorrect
875 conclusion.
876

876 Model outputs (excerpts) and failure diagnosis

877 **Gemini 2.0 Flash:** *The given dynamics is that of an active Brownian particle in two di-
878 mensions... Because active Brownian particles consume energy from their environment to
879 maintain their self-propulsion, they are intrinsically out of equilibrium. As such, they have a
880 non-zero entropy production rate in the steady state. This nonequilibrium nature means that
881 the standard fluctuation-dissipation theorem (FDT) is violated.*

882 **Gemini 2.5 Flash:** *The problem describes an active Brownian particle (ABP) model...
883 the particle consumes energy to maintain its persistent motion. Systems driven by active
884 forces are inherently *out of thermal equilibrium* ... the stationary distribution of an
885 active Brownian particle is generally not the Boltzmann distribution...therefore, the system
886 described is unequivocally out of thermal equilibrium. For any nonequilibrium system, the
887 Fluctuation-Dissipation Theorem is generally violated.*

888 **Gemini 2.5 Pro:** *A system is in thermal equilibrium if it satisfies the principle of detailed
889 balance. In a steady state, this implies that all microscopic probability currents are zero.
890 Active matter systems, by their very nature, are not in thermal equilibrium... Systems with
891 broken detailed balance in a steady state have a continuously positive rate of entropy
892 production... Since the active particle system is in a NESS with a positive entropy production
893 rate, it does not meet the fundamental requirements for the FDT to hold. Therefore, the FDT
894 is violated.*

895 **GPT-4o:** *Parses the ABP equations and emphasizes that self-propulsion ($v_0 > 0$) drives a
896 non-equilibrium steady state with broken detailed balance and a non-Boltzmann stationary
897 distribution; the antisymmetric \mathbf{A} term renders the dynamics non-time-reversible. Concludes
898 that the FDT is violated.*

899 **All four models directly appeal to general conditions and known properties of active matter**
900 **systems, without analyzing in depth the specific dynamics proposed. Moreover all the**
901 **models claim that a positive entropy production rate leads to the violation of the fluctuation-**
902 **dissipation theorem. Most cases appearing in the literature adhere to this statement, but the**
903 **implication is not always true, as the proposed problem exemplifies.**

904 A.4 CASE STUDY: FERMI SURFACE TOPOLOGY

905 The model is asked about the number of connected components in the Fermi surface of a given
906 tight-binding model. Specifically, it is a two-dimensional square-lattice tight-binding model with
907 a staggered flux of θ per plaquette. Although such a tight-binding model has been studied in the
908 literature, the AI models do not seem to be familiar with it. To solve this problem, one needs to
909 write down the Hamiltonian in k -space and then diagonalize it to obtain the energy dispersion. All
910 models we tried failed at this step. Although they do realize that we need a unit cell with two sites,
911 resulting in a 2×2 Hamiltonian in the momentum space, no model has correctly written down the
912 Hamiltonian. It appears that the models fail to visualize the connectivity of the lattice (i.e., which
913 sites are neighbors of each other) and also fail to recognize that the unit vector of the lattice needs to
914 be modified due to the breaking of translation symmetry. When attempting other similar questions,
915
916
917

918 we also observed that the system sometimes cannot correctly identify the topology of the Fermi
919 surface. Solving such problems typically requires humans to visualize the energy dispersion and
920 equal-energy contours, either mentally or by plotting them on a computer. It appears that this kind of
921 spatial reasoning remains a weakness of current models.

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
973

Model outputs (excerpts) and failure diagnosis

974
975
976
977
978
979

Gemini 2.0 Flash: Consider the unit cell as two sites, A and B. The sites are $(n_x, n_y) = (2m, 2n)$ and $(2m + 1, 2n)$. Then $A = (2m, 2n)$, $B = (2m + 1, 2n)$. Then $A \rightarrow A + \hat{x}$, $A \rightarrow A + \hat{y}$, $B \rightarrow B + \hat{x}$, $B \rightarrow B + \hat{y}$. The first nearest neighbor to A is $A + x$, second nearest is $A + y$ which satisfies that $n_x + n_y$ is even. The first nearest neighbor to B is $B + x$, second nearest is $B + y$ which satisfies that $n_x + n_y$ is even. Let's try this: $t_1 = t_2 = 1$, $\theta = \pi/3$. The dispersion is $E(k) = -2 \cos k_x - 2 \cos k_y$.

980
981
982
983
984
985

Gemini 2.5 Flash: This problem exhibits a checkerboard pattern for the y-hopping, which means the unit cell needs to be doubled. We can define a unit cell containing two sites, for example, (n_x, n_y) and $(n_x, n_y + 1)$. However, the y-hopping depends on n_x as well, implying a 2×2 unit cell in general. A common approach for this type of staggered flux problem is to use a gauge transformation or to double the unit cell in one direction, yielding a 2×2 Hamiltonian.

986
987
988
989
990
991

By applying a suitable gauge transformation (e.g., $c_{x,y} \rightarrow e^{i\phi_{x,y}} d_{x,y}$) or by considering a 2×1 superlattice with primitive vectors $(1, 0)$ and $(0, 2)$, the problem simplifies to a two-band model. The specific gauge transformation $c_{x,y} = d_{x,y} e^{i\frac{\theta}{2}(-1)^x y}$ can simplify the y-hopping. After performing the Fourier transform, the resulting 2×2 Hamiltonian has the form: $H(\vec{k}) = \begin{pmatrix} -2t_1 \cos k_x & -t_2(1 + e^{i\theta} e^{-2ik_y}) \\ -t_2(1 + e^{-i\theta} e^{2ik_y}) & -2t_1 \cos k_x \end{pmatrix}$.

992
993
994
995

Gemini 2.5 Pro: To find $h(\vec{k})$, we sum the hopping terms from a site on sublattice A to its neighboring sites on sublattice B, weighted by phase factors. Let's place an A-site at the origin $(0, 0)$. Its neighbors are at $(1, 0)$, $(-1, 0)$, $(0, 1)$, $(0, -1)$, which are all B-sites. The hopping terms are:

996
997
998
999
1000
1001
1002
1003
1004

- From $(0, 0)$ to $(1, 0)$: $-t_1$. Phase factor: e^{ik_x} .
- From $(0, 0)$ to $(-1, 0)$: $-t_1$. Phase factor: e^{-ik_x} .
- From $(0, 0)$ to $(0, 1)$: The starting site $(0, 0)$ has $n_x + n_y = 0$ (even), so the hopping is $-t_2$. Phase factor: e^{ik_y} .
- From $(0, 0)$ to $(0, -1)$: This is the Hermitian conjugate of the hopping from $(0, -1)$ to $(0, 0)$. The site $(0, -1)$ has $n_x + n_y = -1$ (odd), so the hopping from $(0, -1)$ to $(0, 0)$ is $-t_2 e^{i\theta}$. Thus, the hopping from $(0, 0)$ to $(0, -1)$ is $-t_2 e^{-i\theta}$. Phase factor: e^{-ik_y} .

1005
1006
1007
1008
1009
1010
1011
1012
1013

Summing these up gives: $h(\vec{k}) = -t_1(e^{ik_x} + e^{-ik_x}) - t_2 e^{ik_y} - t_2 e^{-i\theta} e^{-ik_y} = -2t_1 \cos(k_x) - t_2(e^{ik_y} + e^{-i(k_y + \theta)})$.

GPT-4o: To solve this problem, we first need to write down the dispersion relation for the given tight-binding model. The tight-binding Hamiltonian on the square lattice with the specified hopping terms can be given as:

$$H = - \sum_{\vec{r}} \left[t_1(c_{\vec{r}}^\dagger c_{\vec{r}+\hat{x}} + h.c.) + t_2 \left(\frac{1 + (-1)^{n_x+n_y} e^{i\theta}}{2} \right) (c_{\vec{r}}^\dagger c_{\vec{r}+\hat{y}} + h.c.) \right] - \mu \sum_{\vec{r}} c_{\vec{r}}^\dagger c_{\vec{r}}$$

1014

The dispersion relation is obtained by performing a Fourier transform:

1015
1016
1017
1018

$$\epsilon(k_x, k_y) = -2t_1 \cos(k_x) - 2t_2 \left(\frac{1 + (-1)^{n_x+n_y} e^{i\theta}}{2} \right) \cos(k_y) - \mu$$

1019
1020
1021
1022
1023
1024
1025

Gemini 2.0 Flash directly writes down the energy dispersion of the tight-binding model without flux, which suggests the more familiar results misled it. Gemini 2.5 Flash and Gemini 2.5 Pro made the right attempt to construct a 2×2 Hamiltonian, but failed to identify the correct terms. For example, the hopping from the A-site at $(0, 0)$ to the B-site at $(1, 0)$ should correspond to an off-diagonal term $\begin{pmatrix} 0 & t_1 e^{ik_x} \\ 0 & 0 \end{pmatrix}$ in the Hamiltonian, which no model produced correctly. GPT-4o was confused about a more basic fact: the coordinates n_x, n_y should not appear after the Fourier transformation to momentum space.