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Abstract

Gaussian Processes (GPs) have been widely used in machine learning to model
distributions over functions, with applications including multi-modal regression,
time-series prediction, and few-shot learning. GPs are particularly useful in the
last application since they rely on Normal distributions and enable closed-form
computation of the posterior probability function. Unfortunately, because the
resulting posterior is not flexible enough to capture complex distributions, GPs
assume high similarity between subsequent tasks – a requirement rarely met in
real-world conditions. In this work, we address this limitation by leveraging the
flexibility of Normalizing Flows to modulate the posterior predictive distribution
of the GP. This makes the GP posterior locally non-Gaussian, therefore we name
our method Non-Gaussian Gaussian Processes (NGGPs). We propose an invertible
ODE-based mapping that operates on each component of the random variable
vectors and shares the parameters across all of them. We empirically tested the
flexibility of NGGPs on various few-shot learning regression datasets, showing that
the mapping can incorporate context embedding information to model different
noise levels for periodic functions. As a result, our method shares the structure
of the problem between subsequent tasks, but the contextualization allows for
adaptation to dissimilarities. NGGPs outperform the competing state-of-the-art
approaches on a diversified set of benchmarks and applications.

1 Introduction
Gaussian Processes (GPs) [33, 46] are one of the most important probabilistic methods, and they
have been widely used to model distributions over functions in a variety of applications such as
multi-modal regression [56], time-series prediction [3, 27] and meta-learning [29, 45]. Recent works
propose to use GPs in the few-shot learning scenario [4, 29, 39, 49], where the model is trained
to solve a supervised task with only a few labeled samples available. This particular application is
well-fitted to GPs since they can determine the posterior distribution in closed-form from a small set
of data samples [29].
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Figure 1: Results of Deep Kernels with classical GP (left) and NGGP (right). The one-dimensional
samples were generated randomly from sin(x) and � sin(x) functions with additional noise. NGGP,
compared to GP, does not have an assumption of Gaussian prior, which allows for modeling a
multi-modal distribution.

However, the generalization capabilities of GPs come at the price of reduced flexibility when the
modeled distributions are complex, e.g., they have high skewness or heavy tails. Furthermore,
GPs assume a high similarity between subsequent tasks. This condition is rarely met in real-
world applications where tasks can vary during time, as is the case in heteroscedastic regression.
These limitations of GPs also extend to multi-modal learning or, more generally, to multi-label
regression [56].

In this work, we address those drawbacks by modeling the GPs posterior predictive distributions
with a local non-Gaussian approximation. We do so by introducing a new method that we have
named Non-Gaussian Gaussian Processes (NGGPs). In NGGPs, we leverage the flexibility of
Continuous Normalizing Flows (CNF) [16] to model arbitrary probability distributions. In particular,
we propose an invertible ODE-based mapping that operates on each component of the random variable
vectors. This way, we can compute a set of CNFs parameters shared across all vectors, with the
resulting mapping incorporating the information of the context to model different noise for periodic
functions. Figure 1 shows how NGGPs are able to capture the overall structure of a problem, whereas
standard GPs fail. NGGPs are able to reconstruct a multi-modal sine function while adapting to local
dissimilarities thanks to the contextualization provided by the ODE-based mapping. We provide
empirical evidence that NGGPs outperform competitive state-of-the-art approaches on a diversified
set of benchmarks and applications in a few-shot learning scenario; the code is released with an
open-source license2.

The contributions of our work can be summarized as follows:

• We introduce Non-Gaussian Gaussian Processes (NGGPs), a new probabilistic method for
modeling complex distributions through locally non-Gaussian posteriors.

• We show how invertible ODE-based mappings can be coupled with GPs to process the
marginals of multivariate random variables resulting in more flexible models.

• We extensively test NGGPs on a variety of few-shot learning benchmarks, achieving state-
of-the-art performances in most conditions.

2 Related Work
The related work section is divided into three parts. First, we present a general Few-Shot Learning
problem. Then, we discuss GPs, focusing on models, which use flow architectures. Finally, in
the third paragraph, we describe existing approaches to Few-Shot Learning, which use Gaussian
Processes.

Few-Shot Learning Few-Shot Learning aims at solving problems in which the number of obser-
vations is limited. Some of the early methods in this domain have applied a two-phase approach
by pre-training on the base set of training tasks and then fine-tuning the parameters to the test
tasks [4, 28]. An alternative approach is given by non-parametric metric-learning algorithms, which
aim at optimizing a metric, that is then used to calculate the distance between the target observations

2https://github.com/gmum/non-gaussian-gaussian-processes
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and the support set items [48, 38, 42]. Another popular approach to few-shot learning is Model Ag-
nostic Meta-Learning (MAML) [9] and its variants [12, 24, 32, 54, 14, 52, 6]. MAML aims at finding
a set of joined task parameters that can be easily fine-tuned to new test tasks via few gradient descent
updates. MAML can also be treated as a Bayesian hierarchical model [10, 15, 18]. Bayesian MAML
[55] combines efficient gradient-based meta-learning with non-parametric variational inference in a
principled probabilistic framework. A few algorithms have been focusing exclusively on regression
tasks. An example is given by ALPaCA [17], which uses a dataset of sample functions to learn a
domain-specific encoding and prior over weights.

Gaussian Processes GPs have been applied to numerous machine learning problems, such as
spatio-temporal density estimation [7], robotic control [53], or dynamics modeling in transcriptional
processes in the human cell [21]. The drawback of GP lies in the computational cost of the training
step, which is O(n3) (where n denotes the number of observations in the training sample).

In [41], the authors extend the flexibility of GPs by processing the targets with a learnable monotonic
mapping (the warping function). This idea is further extended in [22], which shows that it is possible
to place the prior of another GP on the warping function itself. Our method is different from these
approaches, since the likelihood transformation is obtained by the use of a learnable CNF mapping.

In [26], the authors present the Transformed Gaussian Processes (TGP), a new flexible family of
function priors that use GPs and flow models. TGPs exploit Bayesian Neural Networks (BNNs) as
input-dependent parametric transformations. The method can match the performance of Deep GPs at
a fraction of the computational cost.

The methods discussed above are trained on a single dataset, that is kept unchanged. Therefore, it is
not trivial to adapt such methods to the the few-shot setting.

Few-Shot Learning with Gaussian Processes When the number of observations is relatively small,
GPs represent an interesting alternative to other regression approaches. This makes GPs a good
candidate for meta-learning and few-shot learning, as shown by recent publications that have explored
this research direction. For instance, Adaptive Deep Kernel Learning (ADKL) [45] proposes a
variant of kernel learning for GPs, which aims at finding appropriate kernels for each task during
inference by using a meta-learning approach. A similar approach can be used to learn the mean
function [11]. In [37], the authors presented a theoretically principled PAC-Bayesian framework for
meta-learning. It can be used with different base learners (e.g., GPs or BNNs). Topics related to
kernel tricks and meta-learning have been explored in [47]. The authors propose to use nonparametric
kernel regression for the inner loop update. In [43], the authors introduce an information-theoretic
framework for meta-learning by using a variational approximation to the information bottleneck. In
their GP-based approach, to account for likelihoods other than Gaussians, they propose approximating
the non-Gaussian terms in the posterior with Gaussian distributions (by using amortized functions),
while we use CNFs to increase the flexibility of the GPs.

In [29], the authors present Deep Kernel Transfer (DKT): a Bayesian treatment for the meta-learning
inner loop through the use of deep kernels, which has achieved state-of-the-art results. In DKT, the
deep kernel and the parameters of the GP are shared across all tasks and adjusted to maximize the
marginal log-likelihood, which is equivalent to Maximum-Likelihood type II (ML-II) learning. DKT
is particularly effective in the regression case since it is able to capture prior knowledge about the
data through the GP kernel. However, in many settings, prior assumptions could be detrimental if
they are not met during the evaluation phase. This is the case in few-shot regression, where there can
be a significant difference between the tasks seen at training time and the tasks seen at evaluation
time. For instance, if we are given few-shot tasks consisting of samples from periodic functions but
periodicity is violated at evaluation time, then methods like DKT may suffer in terms of predictive
accuracy under this domain shift. In this work, we tackle this problem by exploiting the flexibility of
CNFs.

3 Background
Gaussian Processes. The method proposed in this paper strongly relies on Gaussian Processes (GPs)
and their applications in regression problems. GPs are a well-established framework for principled
uncertainty quantification and automatic selection of hyperparameters through a marginal likelihood
objective [35]. More formally, a GP is a collection of random variables such that the joint distribution
of every finite subset of random variables from this collection is a multivariate Gaussian [31]. We
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denote Gaussian Process as f(·) ⇠ GP(µ(·), k(·, ·)), where µ(x) and k(x,x0) are the mean and
covariance functions. When prior information is not available, a common choice for µ is the zero
constant function. The covariance function must impose a valid covariance matrix. This is achieved by
restricting k to be a kernel function. Examples of such kernels include the Linear kernel, Radial Basis
Function (RBF) kernel, Spectral Mixture (Spectral) kernel [50], or Cosine-Similarity kernel [33].
Kernel functions can also be directly modeled as inner products defined in the feature space imposed
by a feature mapping  : X ! V :

k(x, x0) = h (x), (x0)iV (1)
An advantage of the formulation above is that it can be easily implemented by modeling  through a
neural network. Throughout this work, we call this technique the NN Linear kernel (sometimes called
Deep Kernel [29]). Since every kernel can be described in terms of Equation (1), such an approach
may be desired if no prior information about the structure of the kernel function is available.

Gaussian Processes provide a method for modeling probability distributions over functions. Consider
a regression problem:

yi = f(xi) + ✏i, for i = 1, . . . ,m, (2)
where ✏i are i.i.d. noise variables with independent N (0,�2) distributions. Let X be the matrix
composed of all samples xi and let y be the vector composed of all target values yi. Assuming that
f(·) ⇠ GP (0, k (·, ·)), we obtain:

y|X ⇠ N (0,K+ �I), (3)
where ki,j = k(xi,xj). Analogously, inference over the unknown during the training samples is
obtained by conditioning over the normal distribution. Let (y,X) be the train data and let (y⇤,X⇤)
be the test data. Then the distribution of y⇤ given y,X,X⇤ is also a Gaussian distribution [34]:

y⇤|y,X,X⇤ ⇠ N (µ⇤,K⇤), (4)
where:

µ⇤ = K (X⇤,X)
�
K (X,X) + �

2I
��1

y

K⇤ = K (X⇤,X⇤) + �
2I�K (X⇤,X)

�
K (X,X) + �

2I
��1

K (X,X⇤)

Continuous Normalizing Flows. Normalizing Flows (NF) [36] are gaining popularity among
generative models thanks to their flexibility and the ease of training via direct negative log-likelihood
(NLL) optimization. Flexibility is given by the change-of-variable technique that maps a latent
variable z with know prior p(z) to y from some observed space with unknown distribution. This
mapping is performed through a series of (parametric) invertible functions: y = fn � · · · � f1(z).
Assuming known prior p(z) for z, the log-likelihood for y is given by:

log p(y) = log p(z)�
NX

n=1

log

����det
@fn
@zn�1

���� , (5)

where z = f�1
1 � · · · � f�1

n (y) is a result of the invertible mapping. The biggest challenge in
normalizing flows is the choice of the invertible functions fn, . . . , f1. This is due to the fact that they
need to be expressive while guaranteeing an efficient calculation of the Jacobian determinant, which
usually has a cubic cost. An alternative approach is given by CNF models [16]. CNFs use continuous,
time-dependent transformations instead of sequence of discrete functions fn, . . . , f1. Formally, we
introduce a function g�(z(t), t) that models the dynamics of z(t), @z(t)

@t = g�(z(t), t), parametrized
by �. In the CNF setting, we aim at finding a solution y := z(t1) for the differential equation,
assuming the given initial state z := z(t0) with a known prior. As a consequence, the transformation
function f� is defined as:

y = f�(z) = z+

Z t1

t0

g�(z(t), t)dt. (6)

The inverted form of the transformation can be easily computed using the formula:

f�1
� (y) = y �

Z t1

t0

g�(z(t), t)dt. (7)

The log-probability of y can be computed by:

log p(y) = log p(f�1
� (y))�

Z t1

t0

Tr

✓
@g�

@z(t)

◆
dt where f�1

� (y) = z. (8)
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Figure 3: The general architecture of our approach. The input data are embedded by the feature
extractor h(·) and then used to create a kernel for the GP. Next, the output z of the GP is adjusted
using an invertible mapping f(·) which is conditioned on the output of the feature extractor. This
allows us to model complex distributions of the target values y.

4 Non-Gaussian Gaussian Processes

Figure 2: General idea of NGGP. A complex multi-
modal distribution can be modelled by exploiting
a continuous invertible transformation to fit the
Normal distribution used by the GP. Image inspired
by Figure 1 in [16].

In this work, we introduce Non-Gaussian Gaus-
sian Processes (NGGPs) to cope with the signifi-
cant bottlenecks of Gaussian Processes for Few-
Shot regression tasks: reduced flexibility and
assumption about the high similarity between
the structure of subsequent tasks. We propose
to model the posterior predictive distribution as
non-Gaussian on each datapoint. We are do-
ing so by incorporating the flexibility of CNFs.
However, we do not stack the CNF on GP to
model the multidimensional distribution over y.
Instead, we attack the problem with an invert-
ible ODE-based mapping that can utilize each
component of the random variable vector and
create the specific mapping for each datapoint
(see Figure 2).

The general overview of our method is presented in Figure 3. Consider the data matrix X, which
stores the observations xi for a given task. Each element is processed by a feature extractor h(·)
to create the latent embeddings. Next, we model the distribution of the latent variable z with a GP.
Further, we use an invertible mapping f(·) in order to model more complex data distributions. Note
that the transformation is also conditioned on the output of the feature extractor h(·) to include
additional information about the input.

The rest of this section is organized as follows. In Section 4.1, we demonstrate how the marginal can
be calculated during training. In Section 4.2, we demonstrate how to perform an inference stage with
the model. Finally, in Section 4.3, we show how the model is applied to the few-shot setting.

4.1 Training objective
Consider the GP with feature extractor h�(·) parametrized by � and any kernel function k✓(·, ·)
parametrized by ✓. Assuming the given input data X and corresponding output values z, we can
define the marginal log-probability for the GP:

log p(z|X,�,✓) = �1

2
zT(K+ �

2I)�1z� 1

2
log |K+ �

2I|� D

2
log(2⇡), (9)

where D is the dimension of y, K is the kernel matrix, and ki,j = k✓(h�(xi),h�(xj)).

Taking into account Equation (8) we can express the log marginal likelihood as follows:

log p(y|X,�,✓,�) = log p(z|X,�,✓)�
Z t1

t0

Tr

✓
@g�

@z(t)

◆
dt, (10)

where f�1
� (y) = z, p(z|X,�,✓) is the marginal defined by Equation (9) and f�1

� (·) is the trans-
formation given by Equation (6). In the next stage of the pipeline, we propose to apply the
flow transformation f�1

� (·) independently to each one of the marginal elements in y, that is
f�1
� (y) = [f�1

� (y1), . . . , f
�1
� (yD)]T, with f

�1
� (·) sharing its parameters across all components.

In other words, while the GP captures the dependency across the variables, the flow operates indepen-
dently on the marginal components of y. Additionally, the flow is conditioned on the information
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Algorithm 1 NGGP in the few-shot setting, train and test functions.
Require: D = {Tn}Nn=1 train dataset and T⇤ = {S⇤,Q⇤} test task.
Parameters: ✓ kernel hyperparameters, � feature extractor parameters, � flow transformation parameters.
Hyperparameters: ↵, ⌘, �: step size hyperparameters for the optimizers.

1: function TRAIN(D, ↵, ⌘, �, ✓, �, �)
2: while not done do
3: Sample task T = (X,y) ⇠ D
4: L = � log p(y|X,✓,�,�) . See Equation (13)
5: Update ✓  ✓ � ↵r✓L, . Updating kernel hyperparameters
6: � �� ⌘r�L, . Updating feature extractor parameters
7: �  � � �r�L . Updating flow transformation parameters
8: end while
9: return ✓, �, �

10: end function
11: function TEST(T⇤, ✓, �, �)
12: Assign support S⇤ = (X⇤,s,y⇤,s) and query Q⇤ = (X⇤,q,y⇤,q)
13: return p(y⇤,q|X⇤,q,y⇤,s,X⇤,s, ,✓,�,�) . See Equation (14)
14: end function

encoded by the feature extractor, such that it can account for the context information h�(xd) from
the corresponding input value xd:

yd = f�(zd,h�(xd)) = zd +

Z t1

t0

g�(zd(t), t,h�(xd))dt. (11)

The inverse transformation can be easily calculated with the following formula:

f
�1
� (yd) = yd �

Z t1

t0

g�(zd(t), t,h�(xd))dt (12)

The final marginal log-likelihood can be expressed as:

log p(y|X,�,✓,�) = log p(zh|X,�,✓)�
DX

d=1

Z t1

t0

@g�

@zd(t)
dt, (13)

where zh = f�1
� (y,h�(X)) is the vector of inverse functions f�(zd,h�(xd)) given by Equation (12).

The transformation described above can be paired with popular CNF models. Here we choose
Ffjord [16], which has showed to perform better on low-dimensional data when compared against
discrete flows like RealNVP [5] or Glow [19]. Note that, the CNF is applied independently on the
components of the GP outputs and shared across them. Therefore, we do not have any issue with the
estimation of the Jacobian, since this corresponds to the first-order derivative of the output w.r.t. the
scalar input.

4.2 Inference with the model
At inference time, we estimate the posterior predictive distribution p(y⇤|X⇤,y,X,�,✓,�), where
we have access to training data (y,X) and model the probability of D⇤ test outputs y⇤ given the
inputs X⇤. The posterior has a closed expression (see Section 3). Since the transformation given by
Equation (11) operates independently on the outputs, we are still able to model the posterior in closed
form:

log p(y⇤|X⇤,y,X,�,✓,�) = log p(zh⇤ |X, zh,X,�,✓)�
D⇤X

d=1

Z t1

t0

@g�

@zd(t)
dt, (14)

where zh⇤ = f
�1
� (y⇤,h�(X⇤)), zh = f

�1
� (y,h�(X)) are the inverted transformations for test and

train data, and p(zh⇤ |X⇤, zh,X,�,✓) is the GP posterior described in Equation (4).
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(a) NGGP + NN Linear (b) DKT + Spectral

Figure 4: The results for the sines dataset with mixed-noise for the best performing kernels for NGGP
(NN Linear) and DKT (Spectral). The top plot in each figure represents the estimated density (blue
hue) and predicted curve (red line), as well as the true test samples (navy blue dots). For three selected
input points (denoted by black vertical lines), we plot the obtained marginal densities in the bottom
images (red color). In addition, for the NGGP method, we also plot the marginal priors (in green)
for each of these three points. It may be observed that NGGP is more successful in modeling the
marginal for varying noise levels.

4.3 Adaptation for few-shot regression

In few-shot learning, we are given a meta-dataset of tasks D = {Tn}Nn=1 where each task Tn contains
a support set Sn, and a query set Qn. At training time, both support and query contain input-output
pairs (X,y), and the model is trained to predict the target in the query set given the support. At
evaluation time, we are given a previously unseen task T⇤ = (S⇤,Q⇤), and the model is used to
predict the target values of the unlabeled query points. We are interested in few-shot regression,
where inputs are vectors and outputs are scalars.

We follow the paradigm of Deep Kernel Transfer (DKT) introduced in [29] and propose the following
training and testing procedures (see Algorithm 1). During the training stage, we randomly sample the
task, calculate the loss defined by Equation (13) and update all the parameters using gradient-based
optimization. During testing, we simply identify the query and support sets and calculate the posterior
given by Equation (14).

5 Experiments
In this section, we provide an extensive evaluation of our approach (NGGP) on a set of challenging
few-shot regression tasks. We compare the results with other baseline methods used in this domain.
As quantitative measures, we use the standard mean squared error (MSE) and, when applicable, the
negative log-likelihood (NLL).

Sines dataset We start by comparing NGGP to other few-shot learning algorithms in a simple
regression task defined on sines functions. To this end, we adapt the dataset from [9] in which every
task is composed of points sampled from a sine wave with amplitude in the range [0.1, 5.0], phase
in the range [0,⇡], and Gaussian noise N (0, 0.1). The input points are drawn uniformly at random
from the range [�5, 5]. We consider 5 support and 5 query points during the training and 5 support
and 200 query points during inference. In addition, following [29], we also consider an out-of-range
scenario, in which the range during the inference is extended to [�5, 10]. We also perform a variation
of sines experiment in which we inject input-dependent noise. The target values in this setting are
modeled by A sin (x+ ') + |x+ '|✏, where the amplitude, phase, input, and noise points are drawn
from the same distributions as in the standard setup described before. We refer to this dataset ablation
as mixed-noise sines. For more information about the training regime and architecture, refer to
Supplementary Materials A. Table 1 presents the results of the experiments. We use the DKT method
as a reference since it provides state-of-the-art results for the few-shot sines dataset [29]. For a report
with more baseline methods, please refer to Supplementary Materials B.

Both DKT and our NGGP perform very well when paired with the Spectral Mixture Kernel, achieving
the same performance on in-range data. However, our approach gives superior results in the out-of-
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Table 1: The MSE and NLL results for the inference tasks on sines datasets in the in-range and
out-range settings. Lowest results in bold (the lower the better).

Method
sines mixed-noise sines

in-range out-of-range in-range out-of-range
MSE NLL MSE NLL MSE NLL MSE NLL

DKT + RBF 1.36±1.64 -0.76±0.06 2.94±2.70 -0.69±0.06 1.60±1.63 0.48 ± 0.22 2.99± 2.37 2.01 ± 0.59
DKT + Spectral 0.02±0.01 -0.83±0.03 0.04±0.03 -0.70±0.14 0.18 ± 0.12 0.37±0.16 1.33 ± 1.10 1.58 ± 0.40
DKT + NN Linear 0.02±0.02 -0.73±0.11 6.61±31.63 38.38±40.16 0.18±0.11 0.45 ± 0.23 5.85 ± 12.10 8.64 ± 6.55
NGGP + RBF 1.02±1.40 -0.74±0.07 3.02±2.53 -0.65±0.08 1.30±1.36 0.33 ± 0.16 3.90 ± 2.60 1.83 ± 0.53
NGGP + Spectral 0.02±0.01 -0.83±0.05 0.03±0.02 -0.80±0.07 0.22 ± 0.14 0.44 ± 0.19 1.14 ± 0.90 1.35 ± 0.38
NGGP + NN Linear 0.04±0.03 -0.73±0.10 7.34±12.85 29.86±27.97 0.20 ± 0.12 0.17 ± 0.15 4.74 ± 6.29 2.92 ± 1.93

range scenario, confirming that NGGP is able to provide a better estimate of the predictive posterior
for the unseen portions of the task. It is also worth noting that in all settings, NGGP consistently
achieves the best NLL results. This is particularly evident for the in-range mixed-noise sines dataset.
We analyze this result in Figure 4, where NGGP successfully models the distribution of the targets,
predicting narrow marginals for the more centralized points and using wider distributions for the
points with larger noise magnitude. This is in contrast with DKT, which fails to capture different
noise levels within the data. These observations confirm our claim that the NGGP is able to provide a
good estimate in the case of heteroscedastic data.

Head-pose trajectory In this experiment, we use the Queen Mary University of London multiview
face dataset [13]. This dataset is composed of grayscale face images of 37 people (32 train, 5 test).
There are 133 facial images per person, covering a viewsphere of ±90� in yaw and ±30� in tilt at
10� increment. We follow the evaluation procedure provided in [29]. Each task consists of randomly
sampled trajectories taken from this discrete manifold. The in-range scenario includes the full
manifold, while the out-of-range scenario includes only the leftmost 10 angles. At evaluation time,
the inference is performed over the full manifold with the goal of predicting the tilt. The results
are provided in Table 2. In terms of MSE, our NGGP method is competitive with other approaches,
but it achieves significantly better NLL results, especially in the out-of-range setting. This suggests
that NGGPs are indeed able to adapt to the differences between the tasks seen at training time and
tasks seen at evaluation time by providing a probability distribution that accurately captures the true
underlying data.

Table 2: Quantitative results for Queen Mary University of London for in-range and out-of-range
settings, taking into account NLL and MSE measures.

Method in-range out-of-range
MSE NLL MSE NLL

Feature Transfer/1 0.25±0.04 - 0.20±0.01 -
Feature Transfer/100 0.22±0.03 - 0.18±0.01 -
MAML (1 step) 0.21±0.01 - 0.18±0.02 -
DKT + RBF 0.12±0.04 0.13±0.14 0.14±0.03 0.71±0.48
DKT + Spectral 0.10±0.01 0.03±0.13 0.07±0.05 0.00±0.09
DKT + NN Linear 0.04±0.03 -0.12±0.12 0.12±0.05 0.30±0.51
NGGP + NN Linear 0.02±0.02 -0.47±0.32 0.06±0.05 0.24±0.91
NGGP + Spectral 0.03±0.03 -0.68±0.23 0.03±0.03 -0.62±0.24

Object pose prediction We also study the behavior of NGGP in a pose prediction dataset introduced
in [54]. Each task in this dataset consists of 30 gray-scale images with resolution 128⇥ 128, divided
evenly into support and query. The tasks are created by selecting an object from the Pascal 3D [51]
dataset, rendering it in 100 random orientations, and sampling out of it 30 representations. The goal
is to predict the orientation relative to a fixed canonical pose. Note that 50 randomly selected objects
are used to create the meta-training dataset, while the remaining 15 are utilized to create a distinct
meta-test set. Since the number of objects in meta-training is small, a model could memorize the
canonical pose of each object and then use it to predict the target value, completely disregarding the
support points during the inference. This would lead to poor performance on the unseen objects in
the meta-test tasks. This special case of overfitting is known as the memorization problem [54].

We analyze the performance of GP-based models in this setting by evaluating the performance of
DKT and NGGP models3. We compare them against the methods used in [54], namely MAML [9],

3Information about architecture and training regime is given in Supplementary Materials A.
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(a) NLL results DKT vs. NGGP. (b) Single day comparison DKT vs. NGGP.

Figure 5: The results for the Power dataset experiment: (a) The quantitative comparison between
DKT and NGGP considering different numbers of support examples. (b) The power consumption for
a single day randomly selected from the test data. We compare DKT vs. NGGP (with RBF kernel)
considering 10 and 100 support points. NGGP captures multi-modality and thus better adjusts to the
data distribution.

Conditional Neural Processes (CNP) [12] and their meta-regularized versions devised to address the
memorization problem — MR-MAML and MR-CNP [54]. In addition, we also include the fine-tuning
(FT) baseline and CNP versions with standard regularization techniques such as Bayes-by-Backprop
(BbB) [2] and Weight Decay [20]. The results are presented in Table 3.

Table 3: Quantitative results for the object
pose prediction task. We report the mean
and standard deviation over 5 trials. The
lower the better. Asterisks (*) denote values
reported in [54].

Method MSE NLL

MAML* 5.39 ± 1.31 -
MR-MAML* 2.26 ± 0.09 -
CNP* 8.48 ± 0.12 -
MR-CNP* 2.89 ± 0.18 -
FT* 7.33 ± 0.35 -
FT + Weight Decay* 6.16 ± 0.12 -

CNP + Weight Decay* 6.86 ± 0.27 -
CNP + BbB* 7.73 ± 0.82 -

DKT + RBF 1.82 ± 0.17 1.35 ± 0.10
DKT + Spectral 1.79 ± 0.15 1.30 ± 0.06

NGGP + RBF 1.98 ± 0.27 0.22 ± 0.08
NGGP + Spectral 2.34 ± 0.28 0.86 ± 0.45

Both GP-related approaches: NGGP and DKT are
similar or usually outperform the standard and meta-
regularized methods, which indicates that they are less
prone to memorization and therefore benefit from a bet-
ter generalization. The NLL is significantly lower for
NGGP than for DKT, confirming that NGGP is better
at inferring complex data distributions.

Power Dataset In this series of experiments, we use
the Power [1] dataset and define an experimental setting
for the few-shot setting. We treat each time series com-
posed of 1440 values (60 minutes ⇥ 24 hours) that rep-
resents the daily power consumption (sub_metering_3)
as a single task. We train the model using the tasks
from the first 50 days, randomly sampling 10 points per
task, while validation tasks are generated by randomly
selecting from the following 50 days.

Quantitative and qualitative analysis are provided in
Figure 5. We use only NLL to assess the results due
to the multi-modal nature of the data and analyze the
value of the criterion for different numbers of support examples. NGGP better adjusts to the true data
distribution, even in the presence of very few support examples during inference. This experiment
supports the claim that NGGPs are well-suited for modeling multi-modal distributions and step
functions.

NASDAQ and EEG datasets In order to test the performance of our methods for real-world time
series prediction, we used two datasets - NASDAQ100 [30] and EEG [8]. For an extensive description
of the datasets and evaluation regime of this experiment, see Supplementary Materials A. Quantitative
results are presented in Table 4. Our experiments show that NGGP outperforms the baseline DKT
method across all datasets. The improvement is especially visible for the out-of-range NASDAQ100
when both methods use the RBF kernel. The results suggest that NGGPs can be successfully used to
model real-world datasets, even when the data does not follow a Gaussian distribution.

9



Table 4: Quantitative results for NASDAQ and EEG datasets.

(a) NASDAQ100

in-range

Method MSE · 100 NLL

NGGP + RBF 0.012 ± 0.014 -3.092 ± 0.255
NGGP + NN Linear 0.023 ± 0.044 -2.567 ± 1.235
DKT + NN Linear 0.027 ± 0.032 -2.429 ± 0.271
DKT + RBF 0.022 ± 0.042 -2.878 ± 0.706

out-of-range

Method MSE · 100 NLL

NGGP + RBF 0.016 ± 0.034 -2.978 ± 0.571
NGGP + NN Linear 0.003 ± 0.004 -2.998 ± 0.260
DKT + NN Linear 0.005 ± 0.006 -2.612 ± 0.059
DKT + RBF 0.181 ± 0.089 1.049 ± 2.028

(b) EEG

in-range

Method MSE · 100 NLL

NGGP + RBF 0.222 ± 0.181 -1.715 ± 0.282
NGGP + NN Linear 0.361 ± 0.223 -1.387 ± 0.273
DKT + NN Linear 0.288 ± 0.169 -1.443 ± 0.188
DKT + RBF 0.258 ± 0.218 -1.640 ± 0.237

out-of-range

Method MSE · 100 NLL

NGGP + RBF 0.463 ± 0.415 -1.447 ± 0.221
NGGP + NN Linear 0.452 ± 0.578 -1.046 ± 0.624
DKT + NN Linear 0.528 ± 0.642 -1.270 ± 0.622
DKT + RBF 0.941 ± 0.917 -1.242 ± 0.685

6 Conclusions
In this work, we introduced NGGP – a generalized probabilistic framework that addresses the main
limitations of Gaussian Processes, namely its rigidity in modeling complex distributions. NGGP
leverages the flexibility of Normalizing Flows to modulate the posterior predictive distribution of GPs.
Our approach offers a robust solution for few-shot regression since it finds a shared set of parameters
between consecutive tasks while being adaptable to dissimilarities and domain shifts. We have
provided an extensive empirical validation of our method, verifying that it can obtain state-of-the-art
performance on a wide range of challenging datasets. In future work, we will focus on applications of
few-shot regression problems needing the estimation of exact probability distribution (e.g., continuous
object-tracking) and settings where there is a potential discontinuity in similarity for subsequent tasks
(e.g., continual learning).

Limitations The main limitation of NGGP s is the costs of learning flow-based models, that could be
more expensive than using a standard DKT when the data come from a simple distribution. In such a
case, other methods like DKT could be more efficient. Moreover, GPs are expensive for tasks with
a large number of observations, making NGGP a better fit for few-shot learning rather than bigger
settings. Finally, in some cases, it can be more challenging to train and fine-tune NGGP than DKT
because the number of parameters and hyper-parameters is overall larger (e.g. the parameters of the
flow).

Broader Impact Gaussian Processes for regression already have had a huge impact on various
real-world applications [7, 53, 21, 25]. NGGPs make it possible to apply a priori knowledge and
expertise to even more complex real-world systems, providing fair and human-conscious solutions,
i.e., in neuroscience or social studies (see experiments on individual power consumption, EEG, and
NASDAQ datasets from section 5). The proposed method is efficient and represents a great tool for
better uncertainty quantification. Careful consideration of possible applications of our method must
be taken into account to minimize any possible societal impact. For instance, the use of NGGP in
object-tracking could be harmful if deployed with malevolent and unethical intents in applications
involving mass surveillance.
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