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Abstract

We present ParrotTTS, a modularized text-to-001
speech synthesis model leveraging disentan-002
gled self-supervised speech representations. It003
can train a multi-speaker variant effectively004
using transcripts from a single speaker. Par-005
rotTTS adapts to a new language in low re-006
source setup and generalizes to languages not007
seen while training the self-supervised back-008
bone. Moreover, without training on bilin-009
gual or parallel examples, ParrotTTS can trans-010
fer voices across languages while preserving011
the speaker-specific characteristics, e.g., syn-012
thesizing fluent Hindi speech using a French013
speaker’s voice and accent. We present exten-014
sive results in monolingual and multi-lingual015
scenarios. ParrotTTS outperforms state-of-016
the-art multi-lingual TTS models using only017
a fraction of paired data as latter. Speech sam-018
ples from ParrotTTS can be found at https:019
//parrot-tts.github.io/tts/020

1 Introduction021

Vocal learning forms the first phase of infants start-022

ing to talk (Locke, 1996, 1994) by simply listen-023

ing to sounds/speech. It is hypothesized (Kuhl024

and Meltzoff, 1996) that infants listening to ambi-025

ent language store perceptually derived represen-026

tations of the speech sounds they hear, which in027

turn serve as targets for the production of speech028

utterances. Interestingly, in this phase, the infant029

has no conception of text or linguistic rules, and030

speech is considered sufficient to influence speech031

production (Kuhl and Meltzoff, 1996) as can par-032

rots (Locke, 1994).033

Our proposed ParrotTTS model follows a similar034

learning process. Our idea mimics the two-step035

approach, with the first learning to produce sounds036

capturing the whole gamut of phonetic variations.037

It is attained by learning quantized representations038

of sound units in a self-supervised manner using the039

raw audio data. The second phase builds on top of040

the first by learning a content mapping from text to041
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Figure 1: (a) Traditional mel-based TTS and (b) Pro-
posed TTS model

quantized speech representations (or embeddings). 042

Only the latter step uses paired text-speech data. 043

The two phases are analogous to first learning to 044

talk followed by learning to read. 045

Figure 1 illustrates ParrotTTS contrasting it with 046

the traditional mel-based TTS. The SSL module 047

includes a speech-to-embedding (STE) encoder 048

trained on masked prediction task to learn an 049

embedding representation of the input raw au- 050

dio (Baevski et al., 2020; Hsu et al., 2021; Van 051

Den Oord et al., 2017). An embedding-to-speech 052

(ETS) decoder is independently trained to invert 053

embeddings to synthesize audio waveforms and is 054

additionally conditioned on speaker identity. This 055

learning to talk is the first of the two-step train- 056

ing pipeline. In the subsequent learning to read 057

step, a separate text-to-embedding (TTE) encoder 058

is trained to generate embeddings from text (or 059

equivalent phonetic) inputs. This step requires la- 060

beled speech with aligned transcriptions. 061

ParrotTTS offer several advantages over the tra- 062

ditional mel-based neural TTS models (Ren et al., 063

2020; Wang et al., 2017). For instance, (a) Quan- 064

tized speech embedding has lower variance than 065

that of Mel frames reducing the complexity to train 066

TTE (b) Direct waveform prediction bypasses po- 067

tential vocoder generalization issues (Kim et al., 068

2021). (c) Reduced complexity helps in stabler 069
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training of TTE encoder for either autoregressive070

or non-autoregressive choice. For example, we071

observe at least eight-fold faster convergence in072

training iterations of our TTE module compared to073

that of Ren et al. (2020) and Wang et al. (2017).074

While our work closely relates with recent075

works (Du et al., 2022; Wang et al., 2023; Siuzdak076

et al., 2022) utilizing self-supervised representa-077

tions for text-to-speech synthesis, our focus differs078

by aiming to achieve a unified multi-speaker, multi-079

lingual TTS system in low-resource scenarios (Xu080

et al., 2020). In our work, low-resource refers to081

the scarcity of paired text-to-speech data. Here082

are the key distinctions of our model compared to083

recent efforts:084

• Unlike contemporary efforts concentrated on085

large scale training (Wang et al., 2023), we focus086

on low resource adaptation.087

• We employ disentangled self-supervised rep-088

resentations (pol) paired with independently089

trained STE. This allows us to train multi-speaker090

TTS using paired data from a single speaker and091

still adapt it to novel voices with untranscribed092

speech alone. In contrast, prior efforts either093

limit to a single speaker TTS (Du et al., 2022)094

or require paired text-audio data from multiple095

speakers during training (Siuzdak et al., 2022).096

• We show that the ParrotTTS can be extended to a097

new language with as little as five hours of paired098

data from a single speaker. The model general-099

izes to languages unseen during the learning of100

self-supervised representation.101

• Moreover, without training on any bilingual or102

parallel examples, ParrotTTS can transfer voices103

across languages while preserving the speaker-104

specific characteristics. We present extensive105

results on six languages in terms of speech nat-106

uralness and speaker similarity in parallel and107

cross-lingual synthesis.108

Additionally, it’s worth mentioning that certain109

methods (Wang et al., 2023) depend partially or110

entirely on Automatic Speech Recognition (ASR)111

to obtain paired data. It should be noted that these112

ASR models are trained using substantial amounts113

of supervised data, inaccessible in low resource set-114

tings. While architecturally similar to other SSL-115

based TTS (Wang et al., 2023; Siuzdak et al., 2022),116

our primary contribution lies in achieving promis-117

ing outcomes in the low resource scenario, where118

minimal paired data from a single speaker per lan-119

guage is accessible for TTS training.120

2 Related work 121

2.1 Foundational Neural TTS models 122

Traditional neural TTS model encodes text or pho- 123

netic inputs to hidden states, followed by a de- 124

coder that generates Mels from the hidden states. 125

Predicted Mel frames contain all the necessary in- 126

formation to reconstruct speech (Griffin and Lim, 127

1984) and an independently trained vocoder (Oord 128

et al., 2016; Kong et al., 2020) transforms them 129

into time-domain waves. Mel predicting decoders 130

could be autoregressive/sequential (Wang et al., 131

2017; Valle et al., 2020; Shen et al., 2018) or 132

non-autoregressive/parallel (Ren et al., 2019, 2020; 133

Łańcucki, 2021). Non-autoregressive models ad- 134

ditionally predict intermediate features like dura- 135

tion, pitch, and energy for each phoneme. They 136

are faster at inference and robust to word skip- 137

ping or repetition errors (Ren et al., 2020). Multi- 138

speaker capabilities are often achieved by condi- 139

tioning the decoder on speaker embeddings (one- 140

hot embeddings or ones obtained from speaker 141

verification networks (Jia et al., 2018)). Train- 142

ing multi-speaker TTS models requires paired text- 143

audio data from multiple speakers. Methods re- 144

lying on speaker-embeddings can, in theory, per- 145

form zero-shot speaker adaptation; however, the 146

rendered speech is known to be of poorer quality, 147

especially for speakers not sufficiently represented 148

in the train set (Tan et al., 2021). 149

2.2 Raw-audio for TTS 150

Unsupervised speech synthesis (Ni et al., 2022) 151

does not require transcribed text-audio pairs for 152

training. They typically employ unsupervised 153

ASR (Baevski et al., 2021; Liu et al., 2022a) to 154

transcribe raw speech to generate pseudo labels. 155

However, their performance tends to be bounded by 156

the performance of the unsupervised ASR model, 157

which still has to close a significant gap compared 158

to supervised counterparts (Baevski et al., 2021). 159

Switching to a multi-speaker setup further widens 160

this quality gap (Liu et al., 2022b). 161

Some prior works have looked at adapting TTS 162

to novel speakers using untranscribed audio (Yan 163

et al., 2021; Luong and Yamagishi, 2019; Taigman 164

et al., 2017). Unlike ours, their methods require a 165

large amount of paired data from multiple speakers 166

during initial training. Some of these (Luong and 167

Yamagishi, 2019; Taigman et al., 2017) jointly train 168

the TTS pipeline and the modules for speaker adap- 169

tation but model training’s convergence is trickier. 170
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In contrast, ParrotTTS benefits from the disentan-171

glement of linguistic content from speaker informa-172

tion, making adaptation easier with stabler training173

as we observe in our experiments.174

2.3 Self-supervised learning175

Self-supervised learning (SSL) methods are be-176

coming increasingly popular in speech process-177

ing due to their ability to utilize abundant unla-178

beled data. Techniques like masked prediction,179

temporally contrastive learning, and next-step pre-180

diction are commonly used to train SSL models.181

Popular models like Wav2vec2 (Baevski et al.,182

2020), VQ-VAE (Van Den Oord et al., 2017), Au-183

dioLM (Borsos et al., 2022) and HuBERT (Hsu184

et al., 2021) have been successfully deployed in185

tasks like ASR (Baevski et al., 2020), phoneme186

segmentation (Kreuk et al., 2020), spoken language187

modeling (Lakhotia et al., 2021), and speech resyn-188

thesis (pol).189

Our work is related to recent efforts (Du et al.,190

2022; Wang et al., 2023; Siuzdak et al., 2022) that191

utilize self-supervised audio embeddings in text-192

to-speech synthesis. However, those of Du et al.193

(2022) and Siuzdak et al. (2022) require speaker-194

specific SSL embeddings while we use generic195

HuBERT embeddings (Hsu et al., 2021; Lee et al.,196

2022) train for multiple speakers.197

2.4 Multi-lingual TTS198

It is challenging to build an unified TTS model199

supporting multiple languages and speakers, even200

more so for cross lingual synthesis, i.e., allowing201

multiple languages to be spoken in each of the202

speaker’s voices. The primary challenge is in ac-203

quiring paired data to train language dependent204

components that often includes its embeddings.205

The trick ParrotTTS employs to break this data206

dependence is to decouple acoustics from content207

handling, of which only the latter is language de-208

pendent and requires paired data while the former209

is deferred to self-supervised models.210

Initial attempts (Liu and Mak, 2019; Zhang et al.,211

2019) address these by conditioning the decoder on212

language and speaker embeddings, but the results213

were subpar due to entanglement of text represen-214

tation with language/speaker information. Recent215

approaches (Zhang et al., 2019; Cho et al., 2022;216

Nekvinda and Dušek, 2020) addressed this issue217

by incorporating an explicit disentanglement loss218

term, using reverse gradients through a language219

or speaker classification branch.220

Nekvinda and Dušek (2020) propose MetaTTS, 221

that uses a contextual parameter generation through 222

language-specific convolutional text encoders. Cho 223

et al. (2022) extend MetaTTS with a speaker reg- 224

ularization loss and investigate different input for- 225

mats for text. Knowledge sharing (Prakash et al., 226

2019) and distillation (Xu et al., 2020) have been 227

explored for multi-lingual TTS. Recently, Wu et al. 228

(2022) employ a data augmentation technique 229

based on a cross-lingual voice conver- sion model 230

trained with speaker-invariant features extracted 231

from a speech representation. 232

Certain limitations still persist in existing ap- 233

proaches (Nekvinda and Dušek, 2020; Chen et al., 234

2019; Zhang et al., 2019; Zhang and Lin, 2020). 235

For example, many of them rely on Tacotron (Wang 236

et al., 2017) as their backbone, which is prone to 237

word alignment and repetition errors. Prior multi- 238

lingual TTS models typically support only 2-3 lan- 239

guages simultaneously or require extensive train- 240

ing data as noted by Nekvinda and Dušek (2020). 241

Additionally, they have not yet capitalized on self- 242

supervised embeddings and our efforts aim to ad- 243

dress this gap. 244

3 ParrotTTS architecture 245

ParrotTTS has three modules; two encoders that 246

map speech or text inputs to common embed- 247

ding space (referred to as STE and TTE respec- 248

tively) and a decoder (ETS) that renders speech 249

signal from these embeddings. Our speech encoder- 250

decoder choices are borrowed from (pol). Our 251

speech decoder ETS is a modified version of HiFi- 252

GAN (Kong et al., 2020). Text encoder TTE is 253

an encoder-decoder architecture and we exper- 254

iment with both autoregressive (AR) and non- 255

autoregressive (NAR) choices for the same. 256

3.1 Speech encoder STE 257

The self-supervised HuBERT model we use for 258

our STE is pre-trained on large raw audio data 259

from English, on BERT-like masked prediction 260

task (Devlin et al., 2018) to learn “combined acous- 261

tic and language model over the continuous inputs” 262

of speech. It borrows the base architecture from 263

Wav2vec 2.0 (Baevski et al., 2020) with convolu- 264

tions on raw inputs followed by a few transformer 265

layers, however, replaces its contrastive loss with a 266

BERT-like classification. The “noisy” classes for 267

this classification are derived by clustering MFCC 268

features of short speech signals. Encoder input is 269
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Figure 2: (a) ParrotTTS performs a two stage training. In stage1, ETS is trained to synthesize speech from discrete
units obtained though an independently trained STE module. In Stage2, TTE learns to map text sequence to
corresponding speech units obtained from STE. (b) and (c) illustrate the explored TTE architectures.

audio signal X = (x1, ....xT ) sampled at a rate of270

16kHz. Let Er denote the raw-audio encoder, and271

its output be,272

hr = (h1, ...., hbT ) := Er(X),273

where bT = T/320 indicates downsampling and274

each hi 2 {1, . . . ,K} with K being the number of275

clusters in HuBERT’s clustering step, set to 100 in276

our experiments. For multi-lingual experiments, in-277

stead of using HuBERT, we utilize mHuBERT (Lee278

et al., 2022), which is trained on a multi-lingual279

corpus. We use K=1000 for mHuBERT embed-280

dings.281

3.2 Speech decoder ETS282

We adapt the HiFiGAN-v2 vocoder for our ETS to283

decode from h = (hr,hs) to speech, where hs is284

the one-hot speaker embedding. It has a generator285

G and a discriminator D. G runs h through trans-286

posed convolutions for upsampling to recover the287

original sampling rate followed by residual block288

with dilations to increase the receptive field to syn-289

thesize the signal, bX := G(h).290

The discriminator distinguishes synthesized bX291

from the original signal X and is evaluated by292

two sets of discriminator networks. Multi-period293

discriminators operate on equally spaced samples,294

and multi-scale discriminators operate at different295

scales of the input signal. Overall, the model at-296

tempts to minimize D(X, bX) over all its parame-297

ters to train ETS.298

3.3 Text encoder TTE299

The third module we train, TTE is a text en-300

coder that maps phoneme/character sequence P =301

(p1, . . . , pN ) to embedding sequence hp = 302

(h1, . . . , h bN ). We train a sequence-to-sequence 303

architecture to achieve this hp := Ep(P ). Ep ini- 304

tially encodes P into a sequence of fixed dimen- 305

sional vectors (phoneme embeddings), conditioned 306

upon which its sequence generator produces vari- 307

able dimensional hp. Embedding hp is intended 308

to mimic hr := Er(X) extracted from the audio 309

X corresponding to the text P . Hence, the require- 310

ment of transcribed data (X,P ) to derive the tar- 311

get hr for training TTE by optimizing over the 312

parameters of Ep. 313

One could model Ep to generate hp autoregres- 314

sively one step at a time, which we refer to as AR- 315

TTE model (Figure 2(b)). Input phoneme sequence 316

is encoded through a feed-forward transformer 317

block that stacks self-attention layers (Vaswani 318

et al., 2017) and 1D convolutions similar to Fast- 319

Speech2 (Ren et al., 2019). Decoding for hp uses 320

a transformer module with self-attention and cross- 321

attention. Future-masked self-attention attends to 322

ground truth at train and to previous decoder pre- 323

dictions at inference. Cross-attention attends to 324

phoneme encoding in both cases. 325

Alternatively, for a non-autoregressive choice 326

of Ep, the model NAR-TTE determines the out- 327

put length bN followed by a step to simultaneously 328

predict all bN entries of hp. Figure 2(c) depicts 329

NAR-TTE where the input phoneme sequence en- 330

coding is similar to that of AR-TTE. The duration 331

predictor and length regulator modules are respon- 332

sible for determining bN followed by the decoding 333

step to generate hp. In multi-lingual scenario, we 334

investigate both character and phoneme sequences 335

for representing the input text. For character repre- 336
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sentation, we extract the tokens using a dictionary337

created by iterating over the entire text corpus. In338

contrast, for phoneme representation, we utilize an339

off-the-shelf phonemizer (version: 3.2.1) (Bernard340

and Titeux, 2021) to extract phonemes belonging341

to the IPA vocabulary, which are common across342

languages.343

4 Experiments344

We perform experiments in monolingual and345

multi-lingual scenarios. Details of various Par-346

rotTTS models trained and of those each of them347

is compared to is covered below.348

4.1 ParrotTTS training349

Datasets (monolingual) For single language exper-350

iments, we use two public datasets. LJSpeech (Ito351

and Johnson, 2017) provides 24 hours high qual-352

ity transcribed data from a single speaker. Data353

are split into two, with 512 samples set aside for354

validation and the remaining available for model355

training. VCTK (Veaux et al., 2017) with about356

44 hours of transcribed speech from 108 different357

speakers is used for the multi-speaker setup. It has358

a minimum, average, and maximum of 7, 22.8, and359

31 minutes per speaker speech length, respectively.360

Datasets (multi-lingual) We collate our multi-361

lingual dataset using publicly available corpora362

containing samples from multiple speakers in six363

languages: (1) 80.76 hours of Hindi and Marathi364

from (in INdian languages , SYSPIN) from 2365

speakers, respectively; (2) 71.69 hours of German366

(GmbH., 2017) from 3 speakers; (3) 83.01 hours367

of Spanish (GmbH., 2017) from 3 speakers; (4)368

10.70 hours of French (Honnet et al., 2017) from 1369

speaker; (5) 23.92 hours of English (Ito and John-370

son, 2017) from 1 speaker. Overall the dataset com-371

prises of 354.12 hours of paired TTS data from 12372

speakers across all six languages. We resample all373

speech samples to 16 kHz.374

STE training. We use a 12 layer transformer375

model for HuBERT training. It is trained using 960376

hour-long LibriSpeech corpus (Panayotov et al.,377

2015). The multi-lingual variant mHuBERT is378

trained using 13.5k hours of English, Spanish and379

French data from VoxPopuli unlabelled speech cor-380

pus (Lee et al., 2022; Wang et al., 2021). In both381

cases, the model splits each T seconds long audio382

into units of T/320 seconds and maps each of the383

obtained units to a 768 dimensional vector.384

TTE training (monolingual). We use LJSpeech385

to train two different TTE encoder modules; 386

TTELJS that uses all the data from our LJSpeech 387

train set and a second, TTE 1
2 LJS with only half the 388

data. This is used to understand the effect of train- 389

ing data size on TTS performance. All variants 390

of TTE we experiment with are trained only on 391

samples from the single speaker in LJSpeech data. 392

Text converted to phoneme sequence as de- 393

scribed by Sun et al. (2019) are inputs with hr 394

targets extracted from STE for training. Addition- 395

ally, NAR-TTE requires phonetic alignment to train 396

the duration predictor. We use Montreal forced- 397

aligner (McAuliffe et al., 2017) to generate them 398

for its training. We use cross-entropy loss with the 399

100 clusters derived from discretization codebook 400

of HuBERT units as classes. 401

TTE training (multi-lingual). Focusing on low- 402

resource setting, we use only 5 hours of paired data 403

for a single speaker in each language to train the 404

TTE that totals to merely 30 hours of paired data 405

across all languages. We report the evaluation met- 406

rics for seen speakers where the model has seen 407

the speaker paired data and unseen speakers whose 408

paired data is not used to train the TTE. To evaluate 409

the performance on various text representations, 410

we train two variants of the TTE , the character 411

TTE (CTE) and the phoneme TTE (PTE). CTE 412

uses character tokens across the languages to learn 413

sound units while PTE uses phoneme tokens. Ad- 414

ditionally, we employ Deep Forced Aligner (in IN- 415

dian languages , SYSPIN) to align ground-truth 416

speech and input text representations to train the 417

duration predictor. Cross-entropy loss with 1000 418

clusters of mHuBERT are used as classes to pre- 419

dict hp. 420

ETS training. We train a single-speaker ETS, 421

SS-ETS using only speech clips from LJSpeech 422

since its training does not require transcriptions. 423

Similarly, our multi-speaker ETS, MS-ETS de- 424

coder model uses only raw audio of all speakers 425

from VCTK data (Veaux et al., 2017). So only em- 426

beddings hr extracted from VCTK audio clips are 427

used along with one-hot speaker vector hs. We em- 428

phasize that VCTK data were used only in training 429

the multi-speaker-ETS module, and the TTE has 430

not seen any from this set. For multi-lingual sce- 431

nario, we train a multi-speaker ETS using speech- 432

only data with 12 speakers from all six languages. 433
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4.2 Comparison to prior art434

Single Speaker TTS: We train Tacotron2 (Wang435

et al., 2017) and FastSpeech2 (Ren et al., 2020)436

using the ground truth transcripts of LJspeech and437

referred to as SS-Tacotron2 and SS-FastSpeech2.438

We additionally trained an unsupervised version439

of FastSpeech2 by replacing the ground truth tran-440

scripts with transcriptions obtained from the ASR441

model. FastSpeech2-SupASR uses supervised442

ASR model (Radford et al., 2022) to generate443

the transcripts while Tacotron2-UnsupASR (Ni444

et al., 2022) alternatively uses unsupervised ASR445

Wav2vec-U 2.0 (Liu et al., 2022a). We further446

adapt WavThruVec (Siuzdak et al., 2022) to our447

setup and train a model (SS-WavThruVec) using448

intermediate embeddings extracted from Wav2Vec449

2.0 (Baevski et al., 2020). Additionally, we apply a450

similar approach to the embeddings obtained from451

VQ-VAE (Van Den Oord et al., 2017) and term it as452

SS-VQ-VAES. We compare against three variants453

of ParrotTTS;454

1. AR-TTELJS+SS-ETS that is autoregressive455

TTE trained on full LJSpeech with single456

speaker ETS,457

2. NAR-TTELJS+SS-ETS that pairs TTE with458

non-autoregressive decoding trained on full459

LJSpeech with single speaker ETS, and460

3. NAR-TTE 1
2LJS+SS-ETS that uses TTE with461

non-autoregressive decoding trained on half462

LJSpeech with single speaker ETS.463

Multi-speaker TTS: We compare against a fully464

supervised Fastspeech2 baseline trained on VCTK465

using paired data from all speakers and that we re-466

fer to as MS-FastSpeech2. For ParrotTTS we bor-467

row the TTE module trained on LJSpeech and use468

the raw audio of VCTK to train the multi-speaker469

ETS module. We refer to this multi-speaker vari-470

ant of our ParrotTTS model as NAR-TTELJS+MS-471

ETS that uses non-autoregressive decoding.472

For a fair comparison, we also curate a multi-473

speaker TTS baseline using a combination of474

single-speaker TTS and a voice cloning model. We475

use FastSpeech2 trained on LJspeech with state-476

of-the-art voice cloning model (pol) in our experi-477

ments and refer to this model as VC-FastSpeech2.478

We also compare against multi-speaker TTS trained479

by obtaining pseudo labels from a supervised ASR480

called MS-FastSpeech2-SupASR. Additionally, we481

also report numbers from GT-Mel+Vocoder that482

converts ground truth Mels from actual audio clip 483

back to speech using a vocoder (Kong et al., 2020) 484

for a perspective of best achievable with ideal Mel 485

frames. 486

Multi-lingual TTS: We compare against, (a) 487

FastSpeech2-MLS which is a fully-supervised 488

FastSpeech2 model and (b) state-of-the-art 489

meta learning-based multi-lingual TTS model 490

MetaTTS (Nekvinda and Dušek, 2020). Both these 491

models are trained on the entirety of train data 492

(354 hours of transcribed speech). In contrast, the 493

TTE training in ParrotTTS model (our sole module 494

that needs paired data) uses only 1/12th of this i.e, 495

a total of 30 hours of paired text-speech (5 hours 496

per language). The remaining data is used for eval- 497

uation purposes, serving as the test set. We refer 498

to this model as NAR-TTE 1
12MLS+ML-ETS. We 499

also compare character (CTE) and phoneme (PTE) 500

tokenization for encoding text in this setting. 501

4.3 Evaluation metrics 502

We evaluate the intelligibility of various models 503

using Word Error Rate (WER) with the pre-trained 504

Whisper small model (Radford et al., 2022). We 505

validate the speaker adaptability using Equal Error 506

Rate (EER) from a pre-trained speaker verification 507

network proposed in (Desplanques et al., 2020) and 508

trained on VoxCeleb2 (Chung et al., 2018). The 509

WER and EER metrics are computed on entire 510

validation set. We perform subjective evaluations 511

using Mean Opinion Score (MOS) with five native 512

speakers per language, rating samples synthesized 513

by different models, where five sentences from the 514

test set are randomly selected for evaluation. 515

5 Results 516

5.1 Single-speaker TTS 517

Naturalness and intelligibility. As shown in Ta- 518

ble 1, ParrotTTS is competitive to state-of-the-art 519

in the single-speaker setting. In the autoregressive 520

case, our AR-TTELJS+SS-ETS has a statistically 521

insignificant drop (of about 0.05 units) on the MOS 522

scale relative to the Tacotron2 baseline. The non- 523

autoregressive case has a similar observation (with 524

a 0.01 drop) on MOS in our NAR-TTELJS+SS- 525

ETS model relative to FastSpeech2. This empiri- 526

cally establishes that the naturalness of the speech 527

rendered by ParrotTTS is on par with the currently 528

established methods. The WER scores show a sim- 529

ilar trend with a statistically insignificant drop (of 530
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Model MOS " WER #

Traditional TTS

SS-FastSpeech2 3.87 4.52
SS-Tacotron2 3.90 4.59
FastSpeech2-SupASR 3.78 4.72
Tacotron2-UnsupASR 3.50 11.3

WavThruVec SS-WavThruVec 3.57 6.27
VQ-VAE SS-VQ-VAES 3.12 21.78

ParrotTTS
AR-TTELJS+SS-ETS 3.85 4.80
NAR-TTELJS+SS-ETS 3.86 4.58
NAR-TTE 1

2
LJS+SS-ETS 3.81 6.14

Table 1: Subjective and objective comparison of TTS
models in the single speaker setting.

under 0.2pp1) among the autoregressive and non-531

autoregressive model classes. The performance532

of SS-WavThruVec and SS-VQ-VAES is lower in533

both naturalness and intelligibility, indicating that534

the utilization of Wav2Vec 2.0 and VQ-VAE em-535

beddings results in a decrease in performance.536

Supervision and data efficiency. In the study537

to understand how the degree of supervision af-538

fects TTS speech quality, we see a clear drop by539

0.28 MOS units in moving from the FastSpeech2-540

SupASR model that employs supervised ASR for541

transcriptions to Tacotron2-UnsupASR model us-542

ing unsupervised ASR. Despite some modeling543

variations, this is generally indicative of the impor-544

tance of clean transcriptions on TTS output quality,545

given that all other models are within 0.05 MOS546

units of each other.547

The data requirement for TTS supervision needs548

to be understood in light of this impact on output549

quality, and we show how ParrotTTS helps cut550

down on this dependence. TTE is the only mod-551

ule that needs transcriptions to train, and we show552

that by reducing the size of the train set by half in553

NAR-TTE 1
2 LJS+SS-ETS the MOS is still compa-554

rable to that of the model trained on all data NAR-555

TTELJS+SS-ETS (with only about 0.04 units MOS556

drop). Finally, the MOS numbers of FastSpeech2-557

SupASR, need to be read with some caution since558

the supervised ASR model used, Whisper, is it-559

self trained with plenty of transcriptions (spanning560

over 600k hours) from the web, including human561

and machine transcribed data achieving very low562

WERs on various public and test sets. So, the ma-563

chine transcriptions used in FastSpeech2-SupASR564

are indeed close to ground truth.565

5.2 Multi-speaker TTS566

Naturalness and intelligibility. Table 2 summa-567

rizes results from our multi-speaker experiments.568

NAR-TTELJS+MS-ETS clearly outperforms all569

1Percentage points abbreviated as pp.

Model VCTK MOS " WER # EER #
GT-Mel+Vocoder Yes 4.12 2.25 2.12
MS-FastSpeech2 Yes 3.62 5.32 3.21
MS-FastSpeech2-SupASR No 3.58 6.65 3.85
VC-FastSpeech2 No 3.41 7.44 8.18
WavThruVec-MS No 3.17 6.79 5.08
NAR-TTELJS+MS-ETS No 3.78 6.53 4.38

Table 2: Comparison of the multi-speaker TTS models
on the VCTK dataset. Column 2 indicates if the corre-
sponding method uses VCTK transcripts while training.

other models ranking only below GT-Mel+Vocoder 570

that re-synthesizes from ground truth Mels. In- 571

terestingly, ParrotTTS fares even better than MS- 572

FastSpeech2, which is, in turn, better than other 573

models that ignore transcripts at the train, namely, 574

MS-FastSpeech2-SupASR and VC-FastSpeech2. 575

On the WER metric for intelligibility, ParrotTTS is 576

about 1pp behind supervised MS-FastSpeech2 but 577

fares better than the other two models that discard 578

VCTK transcripts for training. WavThruVec-MS 579

model leveraging Wav2Vec 2.0 embeddings has a 580

noticeable quality drop in the multi-speaker setting 581

with lowest MOS. 582

Speaker adaptability. VC-FastSpeech2 is the 583

closest in terms of experimental setup since it is 584

limited to transcriptions from LJSpeech for train- 585

ing similar to ours, with VCTK used only for adap- 586

tation. In this case, EER of NAR-TTELJS+MS- 587

ETS is about twice as good as that of VC- 588

FastSpeech2. However, improvements are visible 589

when VCTK transcripts are part of training data 590

but remain within 1pp relative to ParrotTTS while 591

GT-Mel+Vocoder continues to dominate the score- 592

board leaving room for further improvement. 593

5.3 Multi-lingual TTS 594

The results from our multi-lingual experiments are 595

in Tables 3, 4, 5, and 6. It is notable that speech 596

rendered by ParrotTTS has superior naturalness 597

compared to baselines that are trained with twelve 598

times more paired samples stressing its viability for 599

low-resource languages. Further, the naturalness 600

also changes with the text tokenization method. 601

Choosing character tokens for Indic languages out- 602

performed phoneme tokens while it was the oppo- 603

site for the European languages. ParrotTTS with 604

the best performing tokeniser in each language was 605

superior to FastSpeech2-MLS and MetaTTS for 606

both seen speakers (Table 3) as well as unseen 607

speakers (Table 4). It is interesting to note that 608

scores for ParrotTTS were better than groundtruth 609

and this is possibly due to noise in original sample 610
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GT CTE (Ours) PTE (Ours) FS2-MLS MetaTTS

Hindi 3.78 ± 0.14 3.33 ± 0.19 3.22 ± 0.15 3.33 ± 0.12 2.12 ± 0.12
Marathi 4.81 ± 0.07 3.78 ± 0.12 3.04 ± 0.19 3.59 ± 0.15 2.13 ± 0.15
German 3.54 ± 0.20 3.33 ± 0.19 3.58 ± 0.12 3.21 ± 0.16 1.8 ± 0.15
French 3.83 ± 0.19 2.23 ± 0.14 4.17 ± 0.19 3.50 ± 0.16 1.7 ± 0.16
English 4.20 ± 0.12 3.11 ± 0.11 3.50 ± 0.10 2.50 ± 0.18 1.6 ± 0.17
Spanish 3.67 ± 0.12 3.5 ± 0.21 3.67 ± 0.20 2.50 ± 0.21 2.1 ± 0.15

Table 3: Comparison of naturalness MOS on seen
speakers with FastSpeech2-MLS (FS2-MLS) and
MetaTTS model

GT CTE (Ours) PTE (Ours) FS2-MLS MetaTTS

Hindi 4.22 ± 0.18 3.28 ± 0.19 3.05 ± 0.20 3.22 ± 0.21 2.02 ± 0.18
Marathi 4.48 ± 0.13 3.63 ± 0.18 3.11 ± 0.18 3.15 ± 0.19 1.91 ± 0.19
German 3.17 ± 0.22 2.72 ± 0.23 3.55 ± 0.20 2.05 ± 0.22 1.8 ± 0.17
Spanish 3.67 ± 0.19 3.17 ± 0.17 3.33 ± 0.18 3.17 ± 0.19 1.3 ± 0.16

Table 4: Comparison of naturalness MOS on un-
seen speakers with FastSpeech2-MLS (FS2-MLS) and
MetaTTS model

that was suppressed by HuBERT embeddings that611

are known to discard ambient information.612

Speaker similarity. Results in Table 5 con-613

sistently demonstrate the superiority of Par-614

rotTTS over FastSpeech2-MLS and MetaTTS, in-615

dicating its effectiveness in separating speaker and616

content information. This is attributed to the de-617

coder being conditioned solely on speaker ID while618

sharing the acoustic space across all languages.619

Cross lingual synthesis. We also assess the620

model’s performance in synthesizing samples of621

a speaker in a language different from native lan-622

guage. Table 6 presents these results comparing623

naturalness of MOS in a cross-lingual setting. The624

first column lists a pair of languages of which625

the first is the speaker’s native language while the626

second is language of text that is rendered. Par-627

rotTTS achieved higher MOS demonstrating strong628

decoupling of content from speaker characteristics629

that is controlled in the decoder. Further, more than630

90% of the participants were able to discern the631

nativity of the synthesized speech.632

5.4 Stabler training and faster inference633

We observe that NAR-TTE converges (in 20k steps)634

about eight times faster than FastSpeech2 (160k635

steps) during training. Similarly, AR-TTE model636

converges 10-times faster than the corresponding637

Tacotron2 counterpart. The proposed NAR-TTE638

system also improves inference latency and mem-639

ory footprint. On NVIDIA RTX 2080 Ti GPU,640

we observe ParrotTTS serves 15% faster than Fast-641

Speech2. Furthermore, the TTE module uses 17M642

parameters in contrast to 35M parameters of the643

Mel synthesizer module in Fastspeech2. More de-644

Language Our model FS2-MLS MetaTTS

Hindi 4.29 ± 0.18 3.92 ± 0.21 2.23 ± 0.19
Marathi 4.21 ± 0.16 3.83 ± 0.08 2.12 ± 0.16
German 4.09 ± 0.11 3.25 ± 0.14 2.05 ± 0.14
French 3.87 ± 0.20 3.50 ± 0.19 2.24 ± 0.17

English 3.94 ± 0.18 3.00 ± 0.19 2.32 ± 0.19
Spanish 4.33 ± 0.17 3.50 ± 0.19 2.0 ± 0.18

Table 5: Comparison of speaker similarity MOS with
FastSpeech2-MLS (FS2-MLS) and MetaTTS model

Speaker-Text Our model FS2-MLS MetaTTS

Hindi-Spanish 3.87 ± 0.22 3.25 ± 0.19 1.26 ± 0.15
Marathi-English 3.63 ± 0.21 3.5 ± 0.22 1.23 ± 0.19

French-Hindi 4.07 ± 0.12 2.71 ± 0.21 1.23 ± 0.16
Spanish-German 4.14 ± 0.20 2.29 ± 0.21 1.45 ± 0.19
English-German 3.57 ± 0.15 2.43 ± 0.18 1.56 ± 0.16

English-Hindi 3.57 ± 0.19 2.57 ± 0.18 1.23 ± 0.19
French-German 3.93 ± 0.17 2.71 ± 0.18 1.18 ± 0.17
Spanish-French 3.71 ± 0.18 2.57 ± 0.17 1.4 ± 0.16

Hindi-Marathi 4.13 ± 0.21 3.25 ± 0.19 1.3 ± 0.18
Marathi-French 2.87 ± 0.19 2.75 ± 0.18 1.25 ± 0.19

Table 6: Comparison of naturalness MOS for cross-
lingual speech synthesis with FastSpeech2-MLS (FS2-
MLS) and MetaTTS model

tails are provided in the supplementary material. 645

6 Conclusion, limitations and future work 646

We investigate a data-efficient ParrotTTS model 647

that leverages audio pre-training from self- 648

supervised models and ties it to separately trained 649

speech decoding and text encoding modules. We 650

evaluate this architecture in various settings. Qual- 651

ity of rendered speech with as little as five hours 652

of paired data per language is on par with or su- 653

perior to competitive baselines. This is the key 654

result from our experiments that we believe will 655

help scale TTS training easily to new languages by 656

bringing low-resource ones into the same quality 657

range as the resource-rich ones. 658

In the future, we plan to fine-tune the Hubert- 659

based embeddings on diverse set of languages 660

(South Asian, Latin, English, etc.) to create a 661

more comprehensive set of sound units. Another 662

direction being to improve upon the data efficiency 663

for speaker adaptability (Wang et al., 2023). In- 664

vestigations into emotive speech and controllable 665

generation is another aspect. For example, Hubert 666

embeddings are known to skip prosody informa- 667

tion (Kharitonov et al., 2021) and hence giving 668

emotive affect to speech would be a challenge in 669

this setup. Finally, we aim to release an open- 670

source, multi-lingual TTS model to enable the 671

wider application of our findings to resource-scarce 672

and less privileged languages. 673
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7 Ethical Considerations674

Our research is grounded in ethical considerations.675

We recognize the potential of text-to-speech syn-676

thesis in various domains, such as accessibility,677

human-computer interaction, telecommunications,678

and education. However, we acknowledge the risk679

of misuse, particularly with regards to unethical680

cloning and the creation of false audio recordings.681

Our experiments strictly use publicly available682

datasets and our method does not aim to synthe-683

size someone’s voice without their consent. We are684

mindful of the negative consequences associated685

with these actions. While the benefits currently out-686

weigh the concerns, we strongly advocate for the687

research community to actively explore methods688

for detecting and preventing misuse.689

It is important to note that our approach is trained690

on a limited set of languages and has not been val-691

idated on different languages or individuals with692

speech impediments. Therefore, the dataset and693

results may not be representative of the entire pop-694

ulation. A comprehensive understanding of this695

issue necessitates further studies in conjunction696

with linguistic and socio-cultural insights.697
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Supplementary Material:
ParrotTTS: Text-to-speech synthesis exploiting

disentangled self-supervised representations

Anonymous ARR submission

1 User Study001

In this document, we present the supplementary ma-002

terial to support the submission titled ‘ParrotTTS:003

Text-to-speech synthesis exploiting004

disentangled self-supervised representations’ We005

present more details of the user study in section 5.006

This section details the methodology followed007

in our user studies to evaluate the perceptual-008

quality/naturalness of TTS synthesized samples.009

The raters are fellow researchers who are profes-010

sional English speakers. Their written consent to011

publish the survey results was obtained prior to012

rolling out the survey. We evaluate the ethical as-013

pect of the survey with our peer group.014

The following figures show the screenshot for015

the instructions given for the surveys: Figure 1 -016

perceptual-quality/naturalness. While rating MOS,017

the subjects are asked to listen to the sample at least018

twice and choose a score that reflects their opinion.019

They were also asked not to judge the grammar or020

the content of the sample but just how it sounds.021

The following provides the discription of the022

scale levels.023

• 1.0 - Completely unnatural speech024

• 2.0 - Mostly unnatural speech025

• 3.0 - Equally natural and unnatural speech026

• 4.0 - Mostly natural speech027

• 5.0 - Completely natural speech028

2 Stabler training and faster inference029

In Figure 2, we compare training profiles of030

Tacotron2 and AR-TTE keeping batch size the031

same. As visualized in Figure 2(a), the attention032

matrix in Tacotron2 takes about 20k iterations to033

stabilize with an anti-diagonal structure and pre-034

dict a phoneme-aligned Mel sequence. AR-TTE, in035

Figure 1: Survey for MOS

contrast, is about ten times faster at predicting a dis- 036

crete HuBERT unit sequence that aligns with input 037

phonemes taking only about 2k iterations to arrive 038

at a similar-looking attention plot. While the snap- 039

shots are illustrative, we use the guided-attention 040

loss described by Tachibana et al. (2018) as a met- 041

ric to quantify the evolution of the attention matrix 042

through training steps. As shown in Figure 2(b), the 043

loss dives down a lot sooner for ParrotTTS relative 044

to its Tacotron2 counterpart. In a similar compar- 045

ison, we observe that NAR-TTE converges (20k 046

steps) about eight times faster than FastSpeech2 047

(160k steps). 048

We suppose that the faster convergence derives 049

from the lower variance of discrete embeddings in 050

ParrotTTS as opposed to the richness of Mels that 051

are complete with all acoustic variations, including 052

speaker identity, prosody, etc. The output speech is 053

independent of inputs given the Mel-spectrogram 054

unlike ParrotTTS embeddings that further need 055

cues like speaker identity in later ETS module. We 056

hypothesize that segregating content mapping away 057

from learning acoustics like speaker identity helps 058

improve training stability, convergence, and data 059

efficiency for the TTE encoder. 060

1



Figure 2: Visualization of attention between output units
and phonemes. (a) Evolution of attention matrix with
training steps. (b) Attention loss plotted against training
steps.

The proposed NAR-TTE system also improves061

inference latency and memory footprint, which062

are crucial factors for real-world deployment. On063

NVIDIA RTX 2080 Ti GPU, we observe Par-064

rotTTS serves 15% faster than FastSpeech2, re-065

ducing the average per utterance inference time to066

11ms from 13 ms. Furthermore, the TTE module067

uses 17M parameters in contrast to 35M parame-068

ters of the Mel synthesizer module in Fastspeech2.069

3 Choices of hyper-parameters070

Our proposed ParrotTTS backbones are derived071

from existing models (Ren et al., 2020),(Hsu et al.,072

2021), (pol),and (Wang et al., 2017) as mentioned073

in the main text. Hence all hyper-parameters074

and optimization methods are same unless explic-075

itly mentioned otherwise. We do not tune hyper-076

parameter for performance and train the model only077

once for the proposed design. For evaluation met-078

rics, we use pretrained speaker verification and079

ASR networks.080
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