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Abstract

Alzheimer’s disease (AD) has a poorly understood aetiology. Patients often have
different rates and patterns of brain atrophy, and present at different stages along
the natural history of their condition. This means that establishing the relationships
between disease-related variables, and subsequently linking the clinical and radio-
logical phenotypes of AD is difficult. Investigating this link is important because it
could ultimately allow for a better understanding of the disease process, and this
could enable tasks such as treatment effect estimates, disease progression mod-
elling, and better precision medicine for AD patients. We extend a class of deep
structural causal models (DSCMs) to the clinical and radiological phenotype of
AD, and propose an aetiological model of relevant patient demographics, imaging
and clinical biomarkers, and cognitive assessment/educational scores based on
specific current hypotheses in the medical literature. The trained DSCM produces
biologically plausible counterfactuals relating to the specified disease covariates,
and reproduces ground-truth longitudinal changes in magnetic resonance images
of AD. Such a model could enable the assessment of the effects of intervening
on variables outside a randomized controlled trial setting. In addition, by being
explicit about how causal relationships are encoded, the framework provides a
principled approach to define and assess hypotheses of the aetiology of AD. Code
to replicate the experiment can be found at: Counterfactual AD.

1 Introduction

Deep learning (DL) has demonstrated a wide range of utilities in medical healthcare, from producing
accurate prognostic systems for novel diseases [1] to elucidating the previously unknown structures
of complex monomeric proteins [2]. However, DL systems can still under-perform human clinicians
in specific domains, for example in the task of producing differential diagnoses [3]. One factor that
may contribute to the relative under-performance of current models in specific predictive tasks is
that a majority of these systems rely on associative inference. Indeed, associative inference is the
first rung in the hierarchy of possible inference schemes [4]. Counterfactual inference sits at the
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final rung, and allows for causal explanations to be used in modelling the data. In producing disease
differentials, it has been argued that diagnosis is fundamentally a counterfactual process, and defining
models to carefully reflect this leads to more accurate systems [3]. Additionally, DL is susceptible to
learning spurious correlations [5], is sensitive to changes in the input distribution [6], and can amplify
biases due to both inductive model-centric biases, and potentially biased datasets [7–9]. However, by
explicitly modelling causal relationships between variables of interest, we might define more robust,
transparent, and fair DL models [5].

Precision medicine requires asking questions of a causal nature, such as ‘does this therapy treat these
symptoms?’ or ‘what would this brain scan look like if the patient had a higher amyloid protein
load?’. Such questions aim to determine the outcomes of interventions on variables of interest [10].
Whilst establishing causal relationships between variables normally requires a randomized controlled
trial (RCT) setting, the tools of causal inference allow us to specify biologically plausible models and
investigate such causal questions using observational data alone [11, 12].

Pawlowski et al. [5] introduced a modular framework for using structural causal models (SCMs) to
learn the functional causal dependencies between variables of interest using DL elements. They used
amortized inference to make counterfactual inference tractable for high-dimensional problems, and
applied their framework to healthy brain magnetic resonance (MR) scans. This work extends their
model to the radiological and clinical phenotype of Alzheimer’s disease (AD). The principle aim
is to enable disease progression modelling (in the imaging space) of a complex neurodegenerative
condition which still respects the functional causal relationships between disease variables of interest.
Such a model could not only support clinical inference, for example in tasks such as treatment effect
estimation, but could also improve our general understanding of how the clinical phenotype of AD
relates to its presentation on MR imaging. This is of particular importance because AD has a poorly
understood aetiology (causal explanation), and patients have heterogeneous rates and patterns of
brain atrophy, and also often present along different stages in the natural history of their condition.
Finally, we propose a partial validation method based on brain segmentations with which model
counterfactuals can be assessed.

2 Deep structural causal models

A SCM S := (S, p(ϵ)) is defined as a collection S = (f1, . . . , fk) of mechanisms
xk := fk(ϵk; pa(xk)), where pa(xk) are the parents (direct causes) of xk, and a joint
p(ϵ) =

∏K
k=1 p(ϵk), which represents unaccounted sources of variation as independent ex-

ogenous noise variables [5]. The SCM S satisfies the Markov condition [13], in that every node
in the network is independent of its non-descendants given its parents. The joint distribution
on the observed variables therefore factorises as p(x) =

∏K
k=1 p(xk|pa(xk)). Each conditional

p(xk|pa(xk)) is determined by its mechanism fk and the corresponding noise distribution p(ϵk)
[5, 12]. Counterfactual queries can be performed in three steps referred to as abduction, action, and
prediction [5, 14]: 1) In abduction, we wish to infer the ‘state of the world’ that is compatible with
the observations x, pS(ϵ|x); 2) next, we perform an action of interest, such as do(xI,1 := xI,1),
resulting in a modified SCM S̃ = Sdo(xI,1:=xI,1) := (S̃, pS(ϵ|x)); 3) we now infer a quantity of
interest according to the distribution corresponding to the modified SCM pS̃(x).

For N observed variables, mechanisms {fi}Ni=1 must be invertible so that {ϵi}Ni=1 can computed
(as per the abduction step). For scalar variables, conditional normalising flows can be used to learn
bijective mappings between exogenous noise and the observed variables. Such mappings operate
in the space of the data, and would therefore be computationally costly for modelling MR images.
To circumvent this, Pawlowski et al. [5] decompose the image mechanism fk into invertible hk

and non-invertible gk functions. The noise is correspondingly decomposed as ek = (uk, zk), with
p(ek) = p(uk)p(zk). Specifically, the non-invertible noise term zk is computed by the recognition
model of a conditional variational autoencoder (CVAE). The class of SCMs which use deep learning
elements as functional approximations to be estimated from the data are known as deep structural
causal models (DSCMs). See [5] for additional details.
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Figure 1: A structural causal model (SCM) for MR images in Alzheimer’s disease (AD). The directed
edges capture the causal relations between variables. ApoE = APOE4 allele, av45 = Amyloid level,
as measured by the PET-derived marker AV45, pT = hyperphosphorylated tau, BV = Brain volume,
Vent = ventricular volume, Edu = educational score, Moc = Montreal Cognitive Assessment score, x
= axial MR image slice, N = slice number.

3 A causal model of Alzheimer’s disease

Having given an overview of DSCMs, we propose a SCM for AD (Figure 1). The following is a
discussion of the medical literature encoded by the SCM. AD is a progressive, chronic neurodegener-
ative disease characterised by non-reversible global impairment of the function of the cerebrum [15].
The natural history is that of a deteriorating course over approximately a decade, and is marked by
impairment of daily activities, memory loss, and neurobehavioural abnormalities. Such abnormalities
include but are not limited to personality change, psychological disturbance, reduced executive
function, loss of occupational or social functioning, and motor and speech deficits [15]. On gross
examination, patients with AD have reduced brain weights of up to 200g less than average, and this
could be greater in more severe disease [16]. As the most common form of dementia, accounting for
up to 70% of all dementia cases [17], AD has a prevalence of approximately 30% in people over 80
years [18]. Between 1990 and 2016, the number of people living with diagnosed dementia increased
from 20.2 to 43.8 million worldwide [17], and the World Health Organisation (WHO) projects this to
increase to 152 million by 2050 [19], underscoring the increasing importance of this condition, and
the necessity with which its aetiology and natural history should be better understood.

Whilst the complete aetiology of AD has not been completely described, there are thought to be
inter- and intra-neural pathways leading to its development. With respect to the former, it has been
demonstrated that through reduced clearance and/or excess production, the brains of patients with
AD have an increased level of beta-amyloid (Aβ) peptides [20]. Oligomers formed by these peptides
are deposited as diffuse plaques, activating a number of immunological mechanisms including
the complement cascade system, microglial recruitment, and cytokine formation. The resulting
inflammation produces neuritic plaques, which cause neural damage and eventual cell death [21]. A
gene of particular interest is the apolipoprotein E (APOE) gene, which encodes the ApoE protein.
The gene has three major alleles, ϵ2, ϵ3 and ϵ4 [22]. The ApoE-ϵ4 protein influences clearance and
deposition of neurotoxic Aβ, and has been linked to sporadic AD [23].

Amyloid can be measured in the cerebrospinal fluid (CSF) or blood, and in fact the use of blood amy-
loid measurements remains contentious, with groups finding both increased [24–27] and decreased
levels [24, 28–32] to be associated with AD risk. In view of this, we consider the use of Florbetapir
F 18 (otherwise known as 18FAV45 and henceforth referred to as AV45), as a surrogate marker of
amyloid plaque load in-vivo. In particular, this positron emission tomography (PET)-derived imaging
biomarker demonstrates three desirable qualities which make it amenable for use in the AD SCM: 1)
AV45 labels Aβ plaques in anatomically appropriate areas of the brain in patients with pathologically
confirmed AD [33]; 2) the marker binds to at-risk areas in patients with AD, but with minimal cortical
binding in healthy controls [34]; 3) there is a high correspondence between Aβ plaques and AV45
binding in postmortem series [35]. As expected, cortical amyloid burden as assessed by AV45 is
highly correlated with APOE4 carrier status [36] (‘APOE4 → AV45’).
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With respect to intraneural aetiology, patients with AD develop aggregations of abnormally phos-
phorylated tau (P-tau) protein, which forms dystrophic neurites and neurofibrillary tangles. Tau
helps to stabilise microtubules within cells, and the formation of neurites can cause direct neural
damage [37] (‘pTau → brain vol.’). Other relevant risk factors include age, sex, and educational
attainment/cognitive scores. The incidence of AD doubles for each 5-year period after the age of
65 [38], and less than secondary school-level education is associated with an increased risk of a
number of dementias, including AD [39–41]. The Montreal cognitive assessment (MOCA) score has
recently been shown to be effective at detecting AD (‘brain vol. → MOCA’), and is more sensitive to
detecting mild cognitive impairment in at-risk patients than other cognitive scores such as the MMSE
[42]. Baseline MOCA scores are affected by education (‘education → MOCA’). Finally, AD is more
common in women than in men [17, 43].

4 Experimental setup

All data was acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, specifi-
cally the ADNI2 protocol. There were 268 participants, with 123 (45.9%) females and median age of
73.05 years. There were 61 cognitively normal participants, 160 with mild cognitive impairment, and
47 with a diagnosis of AD. Structural T1 weighted MRI scans were accrued for all participants. Each
scan was linked to the relevant demographic, disease biomarker, and cognitive assessment variables
for a given participant. Data entries were sporadically missing (assumed missing at random; MAR),
and were imputed using multiple imputations with chained equations (MICE) [44]. The earliest
Inversion Recovery Spoiled Gradient echo sequence (SAG IR-SPGR) MRI was retrieved for each
participant, skull-stripped using the HD-BET brain extraction tool [45], and bias field-corrected with
the N4 software [46]. The MNI ICBM152 brain atlas was loaded using the NiLearn package [47],
and images were resampled to the same size as the atlas (197×233×189) with linear interpolation.
Images were then rigidly registered to the MNI template using ANTs [48]. The intensity values of
the 2D axial slices were normalised by rescaling the minimum and maximum values of each slice
to [0, 255]. The middle 10 axial slices of each MRI were then saved as PNG files for training the
DSCM. During training, the images were uniformly dequantized by addition of random noise [49].
To prevent overfitting, the images were randomly cropped from their original size to 192×192, and
are then downsampled to 64×64 during training. Images were centre-cropped during counterfactual
image inference.

With regards to the DSCM, the mechanisms fi ∈ S are represented by (conditional) rational spline
normalizing flows [5, 10] with the exception of the images, sex, slice number, and APOE status
variables. The images are modelled using a CVAE architecture, where the encoder and decoder
functions consist of 5 levels of 3 modules of (LeakyReLU(0.1),BNθ,Convθ), where LeakyReLU(ϕ)
is a leaky ReLU with an angle of negative slope parameter ϕ, BN is a batch normalisation layer,
and Conv is a convolutional layer. We learn the binary probability of the sex variable by sampling
from a Bernoulli distribution (female = 1, male = 0). APOE4 status and slice number are sampled
from uniform distributions (APOE4 status in {0, 1, 2}, and minimum to maximum number of slices,
respectively), as per Reinhold et al. [10]. The normalising flows had Gaussian base distributions,
with the scale and location parameters set to the logarithm of the variance and mean of the training
set, respectively. For conditional flows, the hypernetworks predicting the transformation parameters
were multi-layer perceptrons with two hidden layers. The number of nodes in the hidden layers are
(8, 16) for an input dimension of ≤ 2, and (16, 24) for the brain volume network, which has an
input dimension of 4 (sex, AV45, P-tau, and age). The parameters for the image CVAE and scalar
flows were optimised for the evidence lower bound (ELBO; estimated using 4 MC samples) using
the Adam optimiser [50] with learning rates of 10−5 and 5 × 10−3, respectively, for 300 epochs.
For image reconstruction and counterfactuals, 32 MC samples were used. At inference, all learned
mechanisms fi ∈ S were fixed, and the single world intervention graph (SWIG) formalism was used
to produce counterfactuals [51]. The model is trained on a single NVIDIA RTX 3090 GPU.

5 Results

Qualitative investigation We test the hypothesis that single atomic interventions in the SCM
describing the relationships between non-imaging variables of interest produce changes in images that
reflect biologically plausible associations. The results of selected single intervention counterfactuals
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Figure 2: Single intervention counterfactual queries for a single participant using a deep structural
causal model (DSCM) of MR images in Alzheimer’s disease (AD). The top row shows the original
image, the middle row illustrates the counterfactuals, and the third row is a pixel-wise difference map
between the original image and the counterfactual. Red indicates a pixel-wise reduction in intensity,
whereas blue indicates an increase intensity in the counterfactual image relative to the original image.
s = sex, a = age, b = brain volume, v = ventricular volume, t = hyperphosphorylated tau, av = AV45.

on a single participant are illustrated in Figure 2. Altering biological sex has little morphological
effect (column 1), and this is reflected in the difference map. This is in fact the expected finding in a
dataset with a high AD signal, as it was found that there were no statistically significant sex-based
differences in cortical volumes in AD patients [52]. Decreasing age broadly increases intensity
values in the cortical regions, whereas increasing age has the opposite effect with visible cortical
degeneration produced in the counterfactual image (columns 2 and 3, respectively). It should be noted
that increasing the age value not only demonstrates cortical neurodegenration in the counterfactual
image, but the ventricles are also expanded, which is the expected neuro-radiological result of
increasing age [53]. Directly intervening on whole brain and ventricular volumes (columns 3 -
6) leads to expected morphological effects in both instances. Increases in these volumes leads to
pixel-wise intensity changes that reflect increases the size of the whole brain and/or ventricular space.
Meanwhile, setting these volumes to lower values produces the opposite effect, with contractions of
the whole brain and/or ventricular space.

With respect to disease biomarkers, increasing the P-tau or AV45 level (to 85 pg/ml and 2.5 mSUVR,
respectively) leads in both instances to a reduction in pixel intensity values reflecting degenerative
change (columns 8 and 9). It can be seen that there is slightly greater reduction in intensity values
around the ventricle for higher AV45 levels than higher P-tau levels. More examples of selected
counterfactual interventions can be seen in Appendix A.1. Counterfactuals in alternative anatomical
slices and multiple-intervention counterfactuals can additionally be seen in Appendix A.2.

Quantitative evaluation To quantitatively assess the counterfactual images, we first segment the
brains in each of the 2D slices using K-means clustering of the pixel intensity values. We then
consider the correlation between brain segmentation mask sizes and whole brain volume, where the
latter metric is calculated from application of the FSL neuroimaging toolkit to the entire 3D MR image
[54]. Figure 3 illustrates a positive correlation between the two metrics with a Pearson’s correlation
coefficient of r = 0.71, p < 0.001. Segmentation masks in 2D therefore act as a reasonable proxy of
whole brain volume. We perform an atomic intervention directly on brain volume and assess whether
the segmentation mask changes in the expected way. Figure 3 illustrates an example of this.

We consider three related approaches to the quantitative assessment of counterfactuals. First, we
intervene on a variable which can be directly accrued from the 2D image slices (in this case,
intervening on brain volume and directly measuring the change in segmentation mask size). Second,
we intervene on a related variable where we have a known hypothesis of causal influence and
assess how segmentation masks change (we intervene on age, and measure brain volume, with an
expectation that aging leads to neurodegeneration and therefore smaller brain volumes). Finally, we
assess the influence of intervening on a disease biomarker of AD (we increase AV45, which is an
in-vivo measure of amyloid load, and expect that greater AV45 levels are related to more severe
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Figure 3: Left: Brain segmentation masks (2D) correlate to whole brain volumes calculated from 3D
MR images. Right: An example with a brain volume of 980 ml, counterfactually increased to 1600
ml. The original segmentation mask has 1284 pixels which represent the brain, and the counterfactual
has an appropriately larger mask of 1386 pixels. The segmentation masks are overlaid and the larger
(counterfactual) mask can be seen to subsume the original mask.

Figure 4: For each 2D brain slice, an intervention is performed for each of the brain volume, age, and
AV45 variables. The interventions are set as percentages of the original measurement of the image so
that counterfactual measurements are expected to change in the same direction (e.g. setting brain
volume values to +40% for each participant should increase segmentation mask size across all slices).
Statistical annotations represent Welch’s t-tests with a Bonferonni correction. ***: p ≤ 10−3, ****:
p ≤ 10−4, ns: No statistical significance.

disease and therefore smaller brain volumes). Welch’s ANOVA demonstrates a significant difference
in all three groups of interventions F (age) = 11.36, p < 0.001, F (brain volume) = 731.04, p <
0.001, F (AV45) = 38.59, p < 0.001, respectively. Welch’s t-tests with Bonferroni corrections show
statistically significant differences in the expected directions in all three groups of interventions.
Figure 4 illustrates these results. Finally, the DSCM is capable of approximating ground-truth
longitudinal changes, as can be seen in Appendix A.3.

6 Discussion

This work extends the DSCM to the radiological and clinical phenotype of AD by proposing a
biologically plausible SCM of the condition. To the best of our knowledge, this is the first DSCM
which captures the aetiological process of neurodegenration in AD. The model is capable of producing
appropriate single- and multiple-intervention counterfactual images based on the SCM. By learning
the causal dependencies between the model variables, we can perform queries based on participant
demographics, relevant imaging and clinical biomarkers, and cognitive assessment scores.

An important limitation of this work is that the current setup assumes that there are no unobserved
confounders. However, the DSCM is lacking a number of potentially important variables to properly
control for confounding. For example, it has been observed that patients with psoriatic arthritis
are more likely to develop AD [55]. Therefore, accounting for autoinflammatory disease could
produce a more robust model with more reliable counterfactuals. The interventions presented in this
work lead to broadly appropriate counterfactuals. For example, increasing brain volume produces a
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counterfactual with a larger brain segmentation mask. However, increasing brain volume by 40%
does not necessarily increase mask size by 40%. This represents another limitation which is likely
due to using 2D slices to produce counterfactuals which use statistics that are computed from 3D
volumes, which is a sub-optimal setup [10]. Extending the DSCM to 3D volumes therefore represents
a natural avenue of future research.

Despite these limitations, the DSCM provides a framework for principled counterfactual inference.
The model is capable of producing biologically plausible counterfactual images which directly relate
to the proposed aetiological process of AD in MR images. The model achieves this with a relatively
limited subset of the ADNI2 cohort. The counterfactuals are produced on a per-participant basis,
which essentially offers a framework for explaining the data, since we can analyse the changes
resulting from manipulating any given set of variables. There are a wide variety of potential use-cases
for these counterfactuals, such as developing a better understanding of the aetiological process of a
complex neurodegerative disease such as AD, and disease progression modelling.
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Figure 5: Single intervention counterfactual queries for a single participant using a deep structural
causal model (DSCM) of MR images in Alzheimer’s disease (AD). Out-of-distribution counterfactuals
are investigated for three selected variables. Pixel-wise intensity-difference maps are shown following
each row of counterfactual images. Red indicates a pixel-wise reduction in intensity, whereas blue
indicates an increase in pixel-wise intensity in the counterfactual image relative to the original image.
b = brain volume, a = age, av = AV45.

A Appendix

A.1 Out-of-distribution counterfactual queries

Figure 5 illustrates multiple counterfactual queries for selected demographic and imaging biomarkers,
namely age, brain volume, and AV45. Note that out-of-distribution counterfactual queries are
investigated, for example by setting the brain volume to 5000ml, or the age to 200 years. Increasing
brain volume leads to large increases in cortical tissue, whilst increasing age leads to dramatic
neurodegenrative change. As AV45 increases, there is increased expansion of the ventricular space
with associated cortical degeneration, particularly of the temporoparietal cortex.
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Figure 6: Multiple intervention counterfactual query for a single participant using a deep structural
causal model (DSCM) of MR images in Alzheimer’s disease (AD). The leftmost images are the
original images, the centre images are the counterfactuals produced by the model, and the rightmost
images are pixel-wise intensity-difference maps. Red indicates a pixel-wise reduction in intensity,
whereas blue indicates an increase in pixel-wise intensity in the counterfactual image relative to the
original image. Having set brain volume and educational attainment to a larger value, and ventricular
volume to a lower one, it can be seen that the cortical regions have broadly increased intensity values
in the counterfactual images, and that the ventricular space is contracted. Panel A illustrates an
approximately medial axial slice, whereas panel B is a more caudal (inferior) slice. s = sex, a = age,
v = ventricular volume, av45 = AV45, tau = hyperphosphorylated tau, moca = Montreal cognitive
assessment score, education/e = educational attainment score; u is a unit-measure of educational
attainment.

A.2 Alternative anatomy and multiple-intervention counterfactuals

Following the single intervention counterfactuals experiment, we test the hypothesis that multiple
atomic interventions (i.e., constant reassignments of multiple nodes in the SCM simultaneously)
produce changes in images that reflect biologically plausible associations.

The DSCM allows for multiple model variables to be set to an intervention state, producing a multiple
intervention counterfactual. For example, we could produce a counterfactual query of the nature
‘what would this MR image look like if the participant had a larger brain volume, a smaller ventricular
volume, and a higher educational attainment score?’. Figure 6A illustrates the output of such a
query for a different ADNI participant than in the single intervention case above. Here, setting the
brain volume to a larger value, whilst reducing the volume of the ventricular space and increasing
participant educational attainment produces clear expansion in the cortex. Results are particularly
noticeable in the temporal regions, where atrophic changes appear to be restored in the counterfactual
image. There is dramatic reduction in the ventricular space, as can be seen in the counterfactual and
as reflected in the intensity-difference map.

As in the single intervention counterfactuals case, alternative anatomical counterfactuals can be
produced for multiple intervention queries. Figure 6B illustrates the same counterfactual query as in
Figure 6A in a more caudal anatomical slice.
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Figure 7: Longitudinal axial MR slices for an ADNI participant. The images are accrued six years
apart and have been matched to be as anatomically equivalent as possible. It can be seen that the
ventricular space has asymmetrically enlarged in this participant over the follow-up period.

A.3 Counterfactual image validation through longitudinal case-study analysis

Whilst validating counterfactuals in real datasets is often severely constrained (or impossible as true
counterfactuals may never be observed), we may consider approximate counterfactuals in the form
of longitudinal data as a framework for partial validation of the model. If the DSCM has learned
an (approximately) correct set of functional mechanisms and generative procedure, then the model
counterfactuals should approximately match trends in longitudinal data.

A.3.1 Participant characteristics

To assess DSCM counterfactuals we consider a participant case study for a 72 year old female with a
brain volume of 980.60 ml, a ventricular volume of 30.19 ml, a P-tau level of 25.11 pg/ml and AV45
of 1.52 mSUVR. The participant has a MOCA score of 23 at baseline, and an educational score of
16. The participant then goes on to have a follow-up MRI scan six years later, and has all relevant
clinical variables recorded during their visit. On their follow-up visit, the participant now has a brain
volume of 960.19 ml, a ventricular volume of 38.97 ml, a P-tau level of 29.25 pg/ml, and an AV45 of
1.42 mSUVR. Their educational score is unchanged. Despite broadly worsening disease and imaging
biomarkers (with the exception of AV45), the participant has a higher MOCA score of 24 on their
follow-up visit.

A.3.2 Ground-truth changes and counterfactual comparison

Figure 7 illustrates two unprocessed axial slices from the baseline scan and the follow-up scan. The
slices have been matched to be as anatomically equivalent as possible. It can be seen that the most
evident macroscopic change is an enlarged ventricular space between the scans.

Performing atomic interventions of the form do(xI,N = xI,N ) where xI,N is an intervention variable
graphically has the effect of disconnecting the intervention variable xI,N from its parents and setting it
to a fixed state. This has implications for how we are able to produce counterfactuals given the current
SCM of AD. For example, if we intervene on brain volume and ventricular volume simultaneously,
then the effects of age, P-tau, and AV45 are negated (i.e., additionally intervening on these variables
will have no effect). There are therefore a number of ways to produce counterfactuals to test the
model. In this instance, we consider two approaches to produce counterfactuals. The first is to
intervene on maximally distal continuous ancestors (i.e. nodes with no parents with the exception
of AV45, because participant genotype is fixed), and the second is to intervene on proximal child
nodes. Figure 8 illustrates the nodes being intervened on in both cases. The two approaches and their
relevant counterfactuals along with the ground-truth change are shown in Figure 9.

The difference map between the baseline image and the follow-up image is noisy due to imperfect
registration of the follow-up to the baseline. This leads to some mismatch between the sulci and gyri
in the 2D plane. However, the map nonetheless faithfully captures the principle morphological change
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Figure 8: Alternative approaches to producing validation counterfactuals. The nodes being intervened
upon are highlighted in both instances. In panel A, distal continuous ancestors are intervened upon,
and in panel B, intervention states are set for proximal causes.

Figure 9: Assessment of counterfactuals produced by a deep structural causal model (DSCM) for MR
images of Alzheimer’s disease (AD). Counterfactual images relating to two sets of interventions on
the causal graph are shown alongside the ground truth follow-up image on the top row. The second
row shows pixel-wise intensity-difference maps between the counterfactuals/ground truth and the
original (baseline) image. Red indicates a pixel-wise reduction in intensity, whereas blue indicates an
increase in pixel-wise intensity in the counterfactual image relative to the original image.

(as illustrated in unprocessed axial slices from the original MRI scans in Figure 7) of an enlarged
ventricular space. With the exception of the measured AV45 level, which decreased slightly in this
participant over time, the remaining metrics are expected to be associated with increased atrophic
change. Indeed, the counterfactuals demonstrate some atrophic change around the superior temporal
gyrus and in a region just anterior to the precuneus. This provides evidence that the DSCM has
learnt broadly appropriate mechanisms fi ∈ S, as it produces plausible counterfactuals in both the
single- and multi-intervention settings. The counterfactual images are also capable of appropriately
approximating ground-truth longitudinal changes.
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