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ABSTRACT

Large Language Models (LLMs) have revolutionized natural language process-
ing and hold immense potential for advancing Artificial Intelligence. However,
the core architecture of most mainstream LLMs—the Transformer—has inherent
limitations in computational depth, rendering them theoretically incapable of solv-
ing many reasoning tasks that demand increasingly deep computations. Chain of
Thought (CoT) prompting has emerged as a technique to address these architec-
tural limitations, as evidenced by several theoretical studies. It offers a promis-
ing approach to solving complex reasoning tasks that were previously beyond the
capabilities of these models. Despite its successes, CoT and its variants (such
as Tree of Thought, Graph of Thought, etc.) rely on a “one-prompt-for-all” ap-
proach, using a single prompt structure (e.g., “think step by step”) for a wide
range of tasks—from counting and sorting to solving mathematical and algorith-
mic problems. This approach poses significant challenges for models to generate
the correct reasoning steps, as the model must navigate through a vast prompt tem-
plate space to find the appropriate template for each task. In this work, we build
upon previous theoretical analyses of CoT to demonstrate how the one-prompt-
for-all approach can negatively affect the computability of LLMs. We partition
the solution process into two spaces: the prompt space and the answer space. Our
findings show that task-specific supervision is essential for navigating the prompt
space accurately and achieving optimal performance. Through experiments with
state-of-the-art LLMs, we reveal a gap in reasoning performance when supervi-
sion is applied versus when it is not. Our goal is to provide deeper insights into
the mechanisms underlying CoT, offering guidance for the effective design of CoT
variants. Additionally, we underscore the limitations of traditional “unsupervised”
prompting methods, arguing that users of CoT cannot simply “sit back” and rely
entirely on the model. Instead, we advocate for task-specific “supervised” CoT,
enriched with human knowledge, to enable more effective reasoning in LLMs.

1 INTRODUCTION

The advent of large language models (LLMs) (Achiam et al.|[2023)) has ushered in a new era for nat-
ural language processing and artificial intelligence (Kojima et al., 2022} |[Zhao et al., 2023)). These
models exhibit remarkable capabilities across various domains (Thirunavukarasu et al., [2023; |Wei
et al.,[2022;|Valmeekam et al | [2023; Zhang et al.,[2023), achieving near-human performance in tasks
such as knowledge retrieval and articulation (Chang et al.| 2024). However, concerns have been
raised regarding their reasoning abilities (Valmeekam et al., 2022} [Zhang et al., | 2024)). These tasks
range from fundamental operations like counting, sorting, and multiplication (Dziri et al.| 2024)), to
more complex challenges such as mathematical problem-solving, algorithm design, and coding (Xu
et al.,2022; [Thirunavukarasu et al.,|2023)). Previous research has explored several factors contribut-
ing to these reasoning deficiencies, including training optimizations (Thorburn & Kruger, [2022),
tokenization methods (Singh & Strousel 2024])), and dataset choices (Ye et al.| 2024)). Among these,
the architecture of the model plays a pivotal role in determining its reasoning capabilities (Raghu
et al., |2017; |Zhang et all 2024} Delétang et al.l [2022). The backbone architecture of most main-
stream LLMs—the Transformer (with finite precision) (Vaswanil |2017)—has intrinsic limitations
related to computational depth (Li et al.,|2024)). Specifically, the attention mechanism within Trans-
formers can perform only a fixed number of sequential computational steps (Li et al., |2024; Zhang
et al., [2024; Sanford et al., 2024} |Dehghani et al.| [2018), leading to constant-depth modeling (Li
et al., 2024). As a result, when relying solely on the Transformer’s internal reasoning, the model’s



Under review as a conference paper at ICLR 2025

(a) Unsupervised CoT (b) Supervised CoT (c) No CoT

T . - \ © . e -
1 Justthink 1 €9 | Mwackif i {Track counter} € | € i

i . o i 1 You got this! | . 962
Zistepbystepl (O cachleteris | < cachstep | On ot H (O ) STEE%NR
[~ S oo <<, @ chstep} - A S

Figure 1: (a) Without supervision during CoT, the model generates its own step template for recur-
rent computation. This template can be incorrect, leading to task failure. (b) With human supervi-
sion, the task performance under CoT can be properly guided. (¢) When CoT is not employed, the
model relies solely on its internal reasoning via the Transformer architecture. (d) The Transformer
can only perform constant-depth sequential computations. We assume that this Transformer neither
memorizes the results nor performs bit-level (circuit) reasoning; instead, reasoning occurs at the
neuron (hidden state) level.

computability is restricted to TCO (Li et al.l 2024 Feng et al., [2024), which confines it to solving
tasks of limited complexity and length (Figure|I}c-d).

The emergence of Chain of Thought (CoT) (Wei et al.,[2022) has transformed the computational lim-
itations imposed by architectural design. Specifically, it overcomes the constant depth limitation of
a model’s internal (latent space) reasoning by extending the reasoning process into the “text” space
through prompting (Li et al., [2024; Zhang et al.| 2024} [Feng et al.,[2024). As demonstrated by both
theoretical (Li et al.| [2024; |Zhang et al.| 2024} |[Feng et al., [2024) and empirical research (Li et al.,
2024;|Zhang et al., [2024), CoT effectively enhances the reasoning depth of Transformer-based mod-
els (with finite precision), achieving “Turing Completeness” under ideal conditions (Li et al., 2024;
Zhang et al.|[2024). While the theoretical analysis of CoT focuses on the model’s upper bound com-
putational power, which may not always align with real-world performance, a deep understanding of
the CoT mechanism—particularly how it breaks architectural constraints—is crucial for designing
better prompts that maximize the computational potential of real-world LLMs. This understanding
also forms the basis for our analysis of “supervised” CoT and our prompt search space theories.
Therefore, our work first revisits the underlying mechanisms of CoT from a computational perspec-
tive, integrating insights from prior research (Li et al., 2024; |Zhang et al., 2024; |Feng et al., [2024)
to demystify them in a clear, yet comprehensive manner, enriched by our unique perspective.

Although theoretical analysis has proven the existence of solutions for (almost) any problem using
CoT, based on computability and Turing Completeness theory, the actual discovery of those solu-
tions can be much more challenging. This is akin to how a Turing machine can model solutions
for any problem (Boolos et al., [2002) but finding the exact Turing machine for a specific NP prob-
lem could be difficult. These challenges arise from two main factors for LLMs with CoT. First, the
model must develop the correct “step-by-step” template, which essentially embodies the algorithm
used for solving the problem (Figure [T[Ja-b). For instance, the “steps” for solving a graph search
problem using depth-first search (DFS) differ from those of a breadth-first search (BFS) algorithm.
Second, even after the template (algorithm) is established, finding the solution might require ex-
tensive reasoning and exploration to achieve the optimal outcomes. For example, using the BFS
template to locate a target node in a tree involves traversing multiple paths in the search space that
can be computationally expensive and error-prone.

The vanilla design of CoT is “unsupervised”, meaning that the model generates its step template
without task-specific supervision from humans. Specifically, when prompted to “think step by step”,
LLMs autonomously generate a step template (algorithm) it needs to follow—for instance, generat-
ing previously visited paths at each step—and then proceeding to search for answers based on this
self-generated template (Figure[T}a). Clearly, this naive CoT approach can lead to poor performance,
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Figure 2: Comparison between recurrence and autoregression.

as the model may generate sub-optimal step templates (algorithms), which hinder the search pro-
cess. For example, a problem requiring DFS might be unnecessarily attempted with a BES template
generated by the vanilla CoT, incurring high inference costs and likely delivering incorrect answers

(Figure[T}a).

Variants of Chain of Thought, such as Tree-of-Thought (Yao et all [2024) and Graph-of-
Thought (Besta et al. [2024), aim to improve the search process within the answer space, rather
than the prompt space, and remain unsupervised. These “X-of-thought™ approaches still rely on a
“one-prompt-for-all” strategy, where the model autonomously devises a step template (algorithm)
for each task. Once the template is established, these approaches help navigate the answer space
more effectively. For instance, Graph-of-Thought encourages the model to frequently revisit previ-
ously generated steps, while Tree-of-Thought allows the model to generate multiple possible next
steps before selecting the most promising one. However, the step template itself (algorithm) is still
generated by the model and can be poorly suited to the problem (Figure [I]a), especially when task-
specific supervision (guidance) is lacking.

In this work, we thoroughly investigate the distinction between prompt space and answer space in
the CoT process. Building on insights from previous theoretical analyses of CoT (L1 et al., [2024),
we explore why “supervision” is necessary and how it can be provided to guide the model in finding
the optimal steps. We conduct extensive experiments on structured reasoning tasks, demonstrating
that task-specific “supervised” CoT is crucial for achieving optimal solutions and highlighting the
performance gap when supervision is used versus when it is not. Our work is the first of its kind
to focus on prompt space exploration and offers valuable insights into understanding and designing
effective prompt techniques for reasoning tasks.

2 DEMYSTIFYING COT: A STRAIGHTFORWARD UNDERSTANDING

In this section, we summarize key findings from previous theoretical analyses (Li et al.,|2024; Zhang
et al.,[2024; |Feng et al.,[2024) of CoT prompting, presenting them in a unified and accessible manner.
The conclusions drawn here will serve as a foundation for our subsequent analysis of supervised
CoT.

2.1 LIMITATIONS OF TRANSFORMER ARCHITECTURE

Transformers, unlike recurrent networks, are not designed to perform reasoning over an arbitrary
number of sequential steps (depth) internally. Specifically, in a Transformer model, the hidden state
h._; at time step t—1 is not reused when calculating h. (Figure b), as it would be in recurrent
networks like RNN (Figure [2a). Instead, the hidden state h is passed forward only through the
layers of the Transformer (Dehghani et al. 2018) (Figure c), not through time, which means
that the number of sequential steps is fixed and limited for any given Transformer architecture (Li
et al., [2024; |Zhang et al., 2024} |[Elbayad et al., 2019). In contrast, Recurrent Neural Networks
(RNNs) (Grossberg, 2013)) allow the hidden state h to be passed through time steps via recurrent
connections (Figure [2}a), enabling sequential computation over h through an arbitrary number of



Under review as a conference paper at ICLR 2025

input tokens. This capability allows RNNs to perform deeper reasoning over h, which is essential
for solving complex tasks (Zhang et al., 2024).

The hidden state h plays a crucial role in reasoning, as it stores both reasoning memory and in-
termediate reasoning results (Zhang et al.| [2024). The ability to sequentially compute and update
h over time allows a model to build reasoning depth, which is necessary for addressing complex
problems. This depth advantage provided by recurrent connections cannot be replicated by autore-
gressive models. Autoregressive models, instead of passing the hidden state h. forward, pass the
generated token y,. However, y cannot replace the role of h for the following reasons: y is a discrete
value extracted from h and only contains partial information (Figure[2]b), making it insufficient for
continued reasoning in many tasks. y exists outside the latent space where h operates (Figure [2]b),
meaning it cannot be used for computation in the same way that h can (Zhang et al.| 2024)).

2.2 NATURE OF REASONING

Reasoning inherently requires sequential depth. For tasks with input of length n, reasoning is typi-
cally performed step by step to arrive at the final result. Examples include counting (incrementing a
counter iteratively), playing chess (updating the board state iteratively), and searching (marking vis-
ited nodes iteratively). To solve a given task, there is a theoretical lower bound on the required depth
of computation (Sanford et al.,|2024). Since models like Transformers can only perform a constant
number of sequential reasoning steps over the hidden state h, they are unable to solve reasoning
tasks where the depth requirement increases with the length of the input.

Consider chess as an example. For a sequence of chess moves, x, = (X1,Xa,...,X,), to validate
the n-th move, the n-th board state h,, must be calculated. This requires n sequential computations,
as the n-th board state depends not only on the sequence of moves x but also on the previous
board state h,_;. While a neural network could memorize the mapping from x, to the correct
h (Arpit et al.| 2017)), bypassing the need for sequential computation, memorization is much more
resource-intensive than reasoning. This is because memorization would require storing all possible
permutations of x,, and their corresponding resulted board states, an exponential challenge that
eventually demands infinite memory to store instances of arbitrary length.

Thus, in the example of simulating a chess game, the model’s internal representation h, which
encodes the board state, must be sequentially computed n times to simulate the game. Transformers,
which lack the infinite precision needed for memorization, cannot perform such tasks, as their hidden
states h are computed a fixed number of times, regardless of the input length.

2.3 COT + AUTOREGRESSIVE = RECURRENT

As previous studies have shown [Li et al.| (2024); |[Zhang et al.| (2024); |[Feng et al.| (2024), Chain of
Thought (CoT) effectively bridges the gap between autoregressive [Liang et al.| (2022); [Liu et al.
(2022) models and recurrent structures [Zhang et al.| (2024) within large language models (LLMs).
Instead of merely outputting tokens to answer questions, CoT also generates intermediate steps
which are not part of the answers. These intermediate steps, represented as a sequence of natural
language tokens (01,05, ...,0y), act as a discretization of the latent information h, (Figure c).
Given that natural language is a powerful medium for encoding nearly any type of information, h
is effectively transformed into a token sequence o, which is then converted back into a vector h
via the embedding layer. In this way, computational information is preserved through a process of

discritization
(017027 e 7Ok)

h. ., (Figure c). This approach, effectively achieve the same effect as h; = h.,; in the RNN-like
recurrent network, allowing h to be recurrently updated by the network.

. . . . . vectorization
discretization followed by vectorization, represented as: hy

In the earlier chess example, the LLM generates intermediate reasoning steps as natural language
strings during the CoT process. Specifically, it produces a sequence of tokens (e.g., in English) to
describe the board state hy, after the first k moves, detailing the positions of pieces such as the bishop
and the king. In the subsequent computation, the LLM reads this board description up to move k and
uses it to calculate the k+1-th board state, thereby avoiding the need to re-compute the reasoning
from scratch—something Transformers cannot do internally due to their non-recurrent architecture.
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In conclusion, LLMs with CoT effectively extend the reasoning process from the model’s internal
latent space H to a natural language-based token space O. Thanks to the powerful encoding ability
of natural language, intermediate reasoning steps are encoded and stored in text form, which the
model can reuse in subsequent computations. This approach significantly increases the model’s rea-
soning depth to T'(n), where T'(n) is the number of CoT steps performed. Under ideal theoretical
conditions—such as infinite CoT steps and perfect information conversion between latent and text
space—LLMs with CoT can achieve Turing completeness, theoretically solving any problem, in-
cluding those beyond symbolic tasks (e.g. recognizing regular languages). This theoretical analysis
provides strong guidance for designing effective “supervised” CoT approaches, which we introduce
in subsequent sections.

3 COT SEARCH SPACE = PROMPT SPACE + ANSWER SPACE

While theory suggests CoT-augmented LLMs can solve any problem [Li et al.|(2024)), finding solu-
tions in practice is much harder. CoT is limited by a finite number of steps, and the conversion from
latent states h to token sequences o is imperfect. Consequently, only partial information is extracted
at each step, making it crucial to identify the right data to continue the correct computation. We
decompose the CoT reasoning into two components: template search within the prompt space and
answer search within the answer space. We show how effective navigation of the prompt space can
simplify answer space complexity and reveal limitations of unsupervised “X-of-thought” methods.

3.1 PROMPT SPACE

The latent vector h contains rich intermediate information when processing a task, including coun-
ters, sums, flags for binary indicators, and more. When LLMs are prompted to “think step by step”
along with the task instance, they generate a step template, specifying which information from h
to extract and discretize into tokens (01, 05,...,0x). Ideally, as k—oco—meaning the length of
the CoT is arbitrarily long—all vectorized information in h can be fully textualized, achieving true
recurrence through autoregression. However, with limited k, only partial information is discretized.

If we define the amount of information stored in h as m bits, and each CoT step extracts up to s bits
of information into o, each unique step template specifies a way to extract s bits from the full m-bit
space. Thus, the total number of potential step templates is C'(m, s) = ﬁls),, which estimates

the number of ways information can be extracted via CoT at each step. Each template defines an
extraction of unique s bits of information.

For example, in the chess simulation case, h encodes details such as the <current board
layout>, <the next player>, <board status>, <number of pieces taken
by each player> and so on. When given the instruction to “think step by step”, the model
decides which information to extract based on the step remplate it generates. Extracting the wrong
information might hinder reasoning in subsequent steps as recurrence can not be effectively per-
formed on the needed information.

The prompt search complexity C(m, s) depends on both m, the total information in h, and s, the
amount of information each CoT step can extract. If a model is sufficiently trained, the total amount
of encoded information in h is proportional to the dimension size of h (Allen-Zhu & Li, [2023), d,
denoted by m o d. In this context, m represents the size of the search space, while s correlates with
the length of CoT tokens o, as longer CoT steps tend to extract more information from h. Thus,
s serves as the search step size. In practice, step template search is not entirely random. Models
often find relevant templates using heuristics, which significantly reduces the search complexity of
C(m, s). However, identifying the optimal template remains challenging, and using an incorrect
template can severely degrade performance, as demonstrated in our experiments.

In conclusion, the step (prompt) template defines how information is extracted and used recurrently
in the CoT process. Finding the correct template is equivalent to discovering the algorithm for
solving a given task, determining what information is needed at each step and how it should be used
to compute the next state.
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3.2 ANSWER SPACE

Once the model “decides” on the steps to follow during CoT, it performs reasoning accordingly.
With a specific step (prompt) template pz chosen from the prompt space P, CoT iteratively executes
hy 25 (07,0, ..., 0") = h,.; to update h and calculate the next state, continuing this process
until reaching the final state (solution). The complexity of finding solutions in the answer space
depends on both the choice of p; and the nature of the task itself.

Each task embeds a different level of complexity in its answer space. For instance, in the chess
simulation task of <finding a set of actions leading to game end>,the answer
space S = (81,82, .. .,Sc) contains all possible combinations of action sequences s. The solution
set CR C & includes all valid action sequences that lead to the end of the game, being a subset of the
entire answer space S. Solving the problem requires identifying one single correct action sequence

Scorrect ::(ylaY27"'7YT) €CR.

If a fixed step (prompt) template for this task, such as py = <extract current board
configuration at each step>, is used, the CoT process iteratively extracts the current
board description and use it for calculating next board state in h to identify the valid next
move y,, eventually forming the correct answer Scorrect = (¥1,Y,,---,Yr). The complexity of
navigating the answer space can be roughly measured by:

len(CR)

len(S) » M

This ratio measures the proportion of the solution space CR relative to the entire answer space

S, given a specific template p. If the chosen template p extracts irrelevant information—such as
determining which player is next at each step—the ratio simplifies to %ﬁg) In this case, each y;
would be generated randomly, as h can not be computed iteratively over useful information needed
for extracting correct y,exttti, making the correct answer only discoverable by chance.

Correctly identifying the step template p is crucial for reducing the complexity of %ﬁg) | p,

as p dictates what information is recurrently overlayed in the process h. = h.,; and in turn
what can be calculated, essentially acting as the “algorithm” for solving tasks in the CoT pro-
cess. In the chess example, the optimal template would be <extract current board

configuration at each step>, allowing the model to reason over the board state itera-

board state

tively, i.e., h h:,;. With the correct board state computed recurrently, the valid

next move y, can be effortlessly derived from h.. However, using a less relevant template, such as

<extract the number of pieces on the board at each step>, would expand

the search space nearly to %?SR))’ as the number of pieces doesn’t provide useful information for

determining the next valid move. Consequently, the model would have to recalculate the board state
at each step from previously generated moves y, , which requires O(n) depth-Transformers, lim-
ited by constant depth, cannot handle. As a result, the next action yt +1 would not benefit from the
CoT process.

3.3 COT AS AN UNSUPERVISED TASK SOLVER

CoT operates in an unsupervised manner for any given task, relying on a single universal prompt,
Think Step by Step, and leaving it to the model to generate its own step template p € P for
extracting information at each step. Since humans do not supervise step completion, the generation
of steps—i.e., determining which information to extract from h and compute recurrently—comes
primarily from the model’s heuristics. For example, in counting tasks, LLMs use learned heuristics
to extract a Counter value from h and perform recurrent updates. However, these unsupervised,
heuristic-driven templates are often unreliable, as the model lacks the knowledge to identify key
components for computation, as demonstrated in previous work [Valmeekam et al.| (2022) and our
experiments.
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3.4 COT VARIANTS AS UNSUPERVISED HELPERS FOR NAVIGATING ANSWER SPACE

In practice, the answer space S can be large and complex, and even with the optimal step (prompt)
template p, CoT can make errors. Various CoT variants, such as Tree-of-Thought (ToT) and Graph-
of-Thought (GoT), have been proposed to mitigate these mistakes in solution searching. While
these “X-of-thought” approaches don’t dictate which specific information to extract at each step
like p does, they improve solution finding by exploring multiple paths and self-verifying. For
instance, ToT explores multiple instances in the answer space simultaneously under some given
template p, unlike the single-path exploration of CoT. Specifically, information extracted from the
current hidden state ht using p is used to generate g possible answers for the next step, denoted
as (y'2,yi%,...,y!2). Each answer leads to a different next state h..;. In the example of
<finding a set of actions leading to game end>,the board state at step t is ex-
tracted into descriptions using the correct template p and to form h. ., and instead of producing a
single next move y, ,; from h, multiple actions are derived. Each derived action along with previous
actions forms a unique path that leads to a potential solution in S. Since some paths may fail (e.g.,
leading to a non-ending game), exploring multiple paths simultaneously increases the efficiency of
searching the answer space. The visualization is shown in Figure 3]

(Y17"aytaY‘c(}-)l) (Y17"ayt7Y‘éi)l) (Y1a"7Yt7yéi)1)
] b7

Figure 3: ToT mechanism. h, is transitioned into different h ., to explore more in answer space.
How state is transitioned is dictated by the step template of CoT, which goes beyond what ToT
offers.

Similarly, GoT improves search accuracy by iteratively revisiting previously generated partial an-
swers. However, none of these approaches are supervised, as the model is not informed of the
correct step template p and generates it on its own, extracting information at each step accordingly.
X-of-Thought still relies on a “one-prompt-for-all” approach and only aids in finding answers after
p € P is fixed. As we have shown, this can lead to poor outcomes, since p directly influences the
complexity of the answer space, and X-of-Thought may be too late to correct errors in some cases.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate the importance of supervision in the CoT
process. Specifically, we design scenarios where the correct step template is provided through su-
pervision, and compare them to cases where incorrect steps are simulated by the model. Our results
show significant performance degradation when the step templates are incorrectly derived, high-
lighting the need for human supervision to ensure reliable task performance with LLMs.

The objective of our experiments is not to evaluate the reasoning performance of different LLMs, but
to emphasize the critical role that “supervision” plays in CoT. Comparing the abilities of various
models is beyond the scope of this work.

4.1 EXPERIMENTS DESIGNS

Although we used chess simulation as an example of reasoning with CoT due to its resemblance to
real-life complex reasoning tasks, tasks involving chess boards and actions can be difficult to im-
plement and evaluate. Instead, we follow previous work [Zhang et al.| (2024); |Delétang et al.| (2022)
by focusing on more fundamental reasoning tasks for LLMs. Specifically, we evaluate tasks at three
levels of computability: Regular (R), Context-Free (CF), and Context-Sensitive (CS), each corre-
sponding to tasks solvable by different levels of computational power, from deterministic automata
all the way to linear bounded automata (restricted Turing machines). These tasks involve operations
such as counting, sorting, and number addition—basic operations that are required by more com-
plex algorithmic problems (like NP problems). Each task has a strong dependency on identifying
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Tape LLM CoT CoT CoT

Level - Task RNN RNN B w/o CoT  Unsupervised CR Supervised IN Supervised
Modular Arithmetic | 1.00  1.00 0.24 0.22 0.96 1.00 0.44
R Parity Check 1.00 1.00 0.52 0.58 0.94 1.00 0.42
Cycle Navigation 1.00 1.00 0.62 0.50 0.78 1.00 0.26
Stack Manipulation | 0.56  1.00 0.58 0.00 0.92 0.96 0.00
CF Reverse List 0.62 1.00 0.62 0.00 0.80 0.96 0.38
Modular Arithmetic | 0.41  0.95 0.32 0.00 0.82 0.94 0.50
QOdds First 051  1.00 0.53 0.00 0.80 0.92 0.00
cs Addition 050 1.00 0.54 0.00 0.84 0.88 0.00
Multiplication 0.50 0.59 0.52 0.00 0.14 0.44 0.00
Sorting 0.28 0.71 0.92 0.00 0.36 0.90 0.00

Table 1: Main results across three levels of reasoning tasks. For LLMs without CoT, intermediate
steps are explicitly prohibited in the prompt. In CoT generation, “CR Supervised” refers to when we
provide the correct supervision. “IN Supervised” refers to when seemingly correct but suboptimal
step templates are provided, simulating scenarios where the model makes mistakes in navigating the
prompt space and derives incorrect step templates. Bolded numbers indicate performance greater
than or equal to 0.9, while red indicates low performance (below 0.2). Results for RNN, Tape-RNN
and Transformer are trained expert model by previous research (Delétang et al. [2022), they are
solely used for reference and not compared with LLMs as it follows slightly different experiment
settings.

R CF cs
Model MA PC CN SM RL MA OF AD MU SO
Unsupervised CoT 096 094 078 092 080 082 080 084 014 036
Unsupervised ToT 092 090 092 036 088 078 082 094 018 0.66
Unsupervised GoT 1.00 098 090 072 092 088 082 092 020 0.80

Correctly supervised CoT 1.00 1.00 1.00 096 096 0.94 0.92 0.88 044 0.90

Table 2: Variant of CoT in performing each task. Each task is named using the first two letters in
Table[Tl

the correct step template, thus allowing us to clearly observe the impact of selection on step template
on CoT performance.

All of these tasks require a level of computability beyond the capabilities of the Transformer’s inter-
nal architecture [Delétang et al.| (2022). Specifically, they demand a minimum computational depth
that scales linearly with input length, surpassing the constant depth inherent to Transformer models.
Thus, solving these tasks necessitates the use of CoT, and correctly identifying the information to
extract during CoT is crucial for resuming computation and building the necessary depth.

We use GPT-4-o classic, a version that eliminates the use of external tools (e.g., calculators or pro-
grams) and functions solely based on the model itself. We test each task using instances sampled
according to previous work (Zhang et al.,2024). To ensure that factors such as long-context infor-
mation retrieval and tokenization do not affect the results, we follow the setup from prior research
and conduct controlled experiments. Details of our experimental design, including length sampling,
task specifications, format adjustments, and prompt usage, are provided in the Appendix.

We extend the previous findings on expert models Delétang et al.| (2022)), which are specifically
trained for particular tasks, to our experiments with LLMs. Due to differences in experimental
settings, the results from expert models are presented for reference rather than direct comparison.
Unlike prior research, which reports the best performance out of IV trials |Delétang et al.| (2022);
Zhang et al.| (2024) for each task instance, we report the average one-trail performance across all
tested instances. Our focus is on practical usability beyond the theoretical upper-bound computabil-
ity analysis in previous work. The final results are shown in Table|T]

4.2 MAIN RESULT

Recurrence is key for reasoning. As demonstrated in both expert models (RNN, Tape-RNN, and
Transformers) and LLMs, recurrence is the determining factor for solving tasks in each category.
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Figure 4: Average success rate in deriving correct step template in each level of tasks.

Specifically, expert models like RNN and Tape-RNN show the ability to solve tasks across vari-
ous categories with over 90% accuracy, depending on their memory architecture. Transformers,
however, are limited by their shallow depth of reasoning, as shown earlier, and fail to solve any
tasks. Similarly, LLMs without CoT, relying solely on internal Transformer reasoning, achieved
0% performance on most tasks, with low performance on others likely due to guessing. When CoT
augments LLMs with recurrent computational power, accuracy improves significantly. These com-
parisons highlight the critical role of recurrence in a model’s computability, reinforcing the analysis
we previously discussed.

Role of Step Template in Reasoning Performance: Supervision Is Essential. We provide human
supervision for all tasks, and we observed that, due to the relatively simple nature of the tasks, the
model makes mistakes in finding the optimal step template less frequently. As a result, it is difficult
to clearly observe the performance gap between optimal and non-optimal step templates. To address
this, we introduce two types of supervision for each task: Correct Supervision (CR Supervised),
where the model is guided with optimal steps to demonstrate the best possible performance, and
Incorrect Supervision (IN Supervised), which simulates scenarios where the model derives incorrect
steps to show how performance can degrade. We present examples of these supervised scenarios for
each task in Table[3

Task Correct Supervision Example Incorrect Supervision Example
Modular Arithmetic Write down partial sums after each step Write down paired sums of each two values
at each step

Parity Check Write down “even” or “odd” counter after | Write down whether the word is a target
each word in each step word at each step

Cycle Navigation Write down which state you are in at each | Write down the total number of “forward”
step at each step

Stack Manipulation =~ Write down the resulting stack at each step | Write down the number of operations per-

formed up to that step

Reverse List

Write down the partially reversed list after
each step from the back

Write down the value to be added to the
reversed list and the remaining original list

Modular Arithmetic

Write down the formula with reduced val-
ues in the performed operations at each
step

Write down the result of each performed
operation at each step

Table 3: Examples of correct and incorrect steps for performed reasoning tasks.

From Table |1} we observe that providing supervision yields noticeable improvements over the un-
supervised “step-by-step” approach. Specifically, errors caused by the model’s own derived step
templates are eliminated with correct supervision, resulting in better performance scores. In con-
trast, when the step template is intentionally set up incorrectly, we observe a significant performance
degradation, with some tasks performing as poorly as they would without using CoT.

To explain this further, when a step template is incorrectly specified (e.g., outputting the sum up to
the current step for a task that requires counting appearances), the useful counter information c in
h. is not extracted. As a result, c is not carried forward into the next state h. .1, leading to a failure
in resuming the necessary calculations. While the wrongly specified information (e.g., the partial
sum) is recurrently calculated, it does not lead to the correct final answer for the task.
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CoT Variants are Useful in Navigating Answer Space. We compare the results of different CoT
variants for the same tasks. As shown in Table[2] both ToT and GoT improve performance over naive
CoT. However, this improvement is due to correcting “incorrect calculations” during computation,
not from improvements in step-template selection. ToT provides little benefit, as the tasks typically
have only one path to the solution. In contrast, GoT shows greater accuracy gains, thanks to its
self-revisiting mechanism,

Prompt Space Analysis. We further analyzed the model’s performance in navigating the prompt
space, i.e., finding the correct (optimal) step template for each task. As shown in Figure [4] all
tasks involve relatively simple calculations, and the model exhibits a high average success rate in
identifying the correct template. Specifically, the success rate for R-type tasks exceeds 90%. As
task complexity increases, we observe a slight decline, with CS tasks showing an 84% success rate
in extracting the correct information during CoT. We further include case studies showcasing how
“sub-optimal” steps are derived from unsupervised CoT process, which are shown in Figure [T|and

Appendix Figure 3] [6|and

Lastly, we showcase how incorrect navigation in the prompt space leads to uncorrectable results.
As shown in Appendix Figures [8|and [9] the incorrect step template results in incorrect information
extraction, leading to a wrongly computed next state and ultimately increasing the difficulty of
searching the answer space.

5 SUPERVISED COT: USERS’ PERSPECTIVE

5.1 HOW TO SUPERVISE?

As we’ve demonstrated, providing correct supervision is crucial for helping the model achieve ac-
curate results. A natural question arises: how can effective supervision be derived? The key to good
supervision lies in understanding CoT’s underlying mechanism, which essentially involves relaying
information through the text space. For tasks requiring multiple steps, users need to identify what
each step is and what key information should be extracted at each step. While this might seem
straightforward in the basic reasoning tasks used in our experiments, it becomes more complex for
challenging tasks, where correctly identifying the information requires careful task analysis. There-
fore, human knowledge is critical for enhancing the model’s computational abilities and can directly
influence task success. However, this supervision adds substantial workload, as each task demands
a unique understanding of its computational structure.

5.2 WHEN TO SUPERVISE?

As we’ve observed, using an incorrect step template—whether model-derived or human-
injected—can result in significant performance degradation. Based on this, it’s important to avoid
providing supervision unless you are reasonably confident that the steps will not hinder the reasoning
process. In cases of uncertainty, it may be better to rely on the model’s own heuristics.

6 CONCLUSIONS

Our work offers a unique perspective on the mechanics of Chain of Thought (CoT) prompting and
its role in enhancing model reasoning. Through theoretical analysis and practical insights, we show
how CoT transforms latent information into text space, enabling iterative and resumable reasoning
steps that expand a model’s computational depth. We further connect the model’s problem-solving
capabilities with the complexities of finding solutions. Our analysis of prompt space and answer
space underscores the importance of identifying the correct step template to simplify navigation—an
often overlooked aspect in prompt-related research. The success of CoT hinges not only on gener-
ating steps but on extracting the right information at each stage. Our experiments demonstrate that
incorrect step templates can severely impact reasoning, reinforcing the importance of supervision.
Even small errors in template selection can lead to significant failures. Our findings combine the-
oretical analysis and experimental evidence, offering valuable insights into CoT’s limitations and
potential for improving reasoning tasks in large language models.

10
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A APPENDIX

A.1 EXPERIMENTAL DESIGN

Our experimental setup carefully addresses potential pitfalls that could influence the model’s per-
formance, specifically focusing on tokenization and context length. Tokenization issues can sig-
nificantly affect how models handle specific tasks, often leading to failures not tied to the model’s
reasoning ability. To counter this, we reformatted task instances to eliminate tokenization biases.
Moreover, LLMs often struggle with retrieving information from long contexts, leading to hallu-
cinations or forgotten data during extended reasoning processes. This tends to degrade accuracy,
as models fail to maintain accurate references to the initial task elements throughout longer se-
quences. While these challenges are important in real-world applications of LLMs, they are outside
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the scope of our investigation, which prioritizes analyzing the effect of using different step template.
To maintain a controlled environment, we restrict task lengths from 20 to 35 elements. This thresh-
old was determined from preliminary analysis, where longer task sequences often introduced issues
not related to reasoning but to the model’s internal optimization process. When the task sequence
exceeds 35 steps, models can divide output over multiple contexts, which distorts accurate informa-
tion retrieval. By maintaining a manageable length, we isolate and evaluate the differences between
reasoning with and without CoT, avoiding disruptions caused by excessive context length. For each
task, we generate 50 instances using a pre-written script and the results are examined by humans.

TASK DESIGN

Each task involves simple rule-based iterations, emphasizing memory access and iterative processes.
The challenge for the model lies in its ability to execute these tasks within the constraints of its
architecture and memory systems. Below, we describe each task in detail, including sample inputs
and outputs. For the Regular (R) class tasks, we include the following:

TASK DESIGN

For the Regular (R) class tasks, we include the following:

TASK DESIGN

For the Regular (R) class tasks, we include the following:

1. Modular Arithmetic: Given a sequence of n numbers and basic operations (+, -), compute
the result modulo 5. For example, the input 4 4+ 2 — 3 should yield 3.

2. Parity Check: Determine if the word “banana” appears an even number of times in a
list containing the words “apple” and “banana.” For example, the input ("banana",
"apple", "banana") yields True.

3. Cycle Navigation: Based on a sequence of actions (“forward,” backward,” ”stay”), deter-
mine the final position in a 5-state cycle starting from state 1. For example, (" forward",
"stay", "backward") will return state 1.

For the Context-Free (CF) class tasks, we use the following:

1. Stack Manipulation: Given a list of fruit names representing a stack and a sequence of
stack operations, compute the final stack. For example, applying (pop "banana",
push "orange") to ("apple", "banana", "grape") resultsin ("apple",
"orange", "grape").

2. Reverse List: Reverse a list of vegetable names. For example, ("carrot",
"potato", "onion") becomes ("onion", "potato", "carrot").

3. Modular Arithmetic (Complex): Compute the result of an arithmetic expression with n
operations modulo 5. For instance, ((2 4+ 4) x (3 —1)) mod 5 yields 0.

For the Context-Sensitive (CS) class tasks, we evaluate the following:

1. Odd First: Extract all items at odd positions from a list of animal names, followed by
those at even positions. For example, ("dog", "cat", "elephant", "tiger")
yields ("dog", "elephant", "cat", "tiger").

2. Addition: Given two large numbers with n digits, calculate their sum. For instance, the
input 123456 + 987654 yields 1,111,110.

3. Multiplication: Multiply two large numbers with n digits. For instance, the input 345 x
567 yields 195,615.

4. Sorting: Sort a list of integers using the insertion sort algorithm. For example, the input
(8, 3, 5, 1) wouldresultin (1, 3, 5, 8).

13
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174 reverse this list, think step by step: ['dog’, 'cat’, 'cat', 'banana’,
‘apple’, 'fruit’, 'fruit', 'meat’, 'apple’, 'banana/, 'cat’, 'apple’, '‘banana’,
‘city’, 'dot’, 'city', 'meat’, 'apple’, 'dog’, 'fruit!, 'cat’, 'dot’, 'apple’,
'meat’, 'meat’, 'apple’, 'cat’, 'fruit', 'banana', 'meat’, 'apple', 'apple’,
'banana’, 'cat', 'city’, 'fruit’, 'cat’, 'city’, 'dog’, 'dot']

To reverse the list step by step, we take each element from the end and move it to the beginning.
Let's go through the process.

The original list is:

python

Step-by-Step Reversal:

* Thelastelementis 'dot', move it to the first position.
¢« Nextis 'dog', place it after 'dot' .

¢ Then 'city', placeit after 'dog' .

* Then 'cat', placeitafter 'city' .

Figure 5: The model-derived template, <extract next move>, is sub-optimal and leads to
incorrect results. The resulting partial list is not recurrently generated and computed, and the final
list is only generated at the end. Note that the full output is not shown due to its length.

14
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o calculate the new list with values at odd positions followed by even
positions in the following list: ['tree’, 'river’, 'car', 'dog’, 'sun', 'moon’,
‘apple’, ‘cat’, 'dog’, 'car’, ‘city", 'fruit', 'banana’, 'river', 'dot’, 'moon’,
'meat’, 'fruit’, 'apple’, 'dot’, 'cat’, 'banana’, 'tree', 'sun’, 'city', 'apple’,
'meat’, 'dog’, 'fruit', 'tree’, 'banana’, 'dot’, 'cat’, 'meat’, 'river', 'moon’,
'city’, 'dog', 'fruit’, 'apple']. Do this step by step.

Let's break down the task step by step.

Step 1: Identify Odd and Even Positions
In Python (or most programming languages), list indices start at 0. Therefore:
¢ Odd positions (1-based) correspond to even indices (0-based).

« Even positions (1-based) correspond to odd indices (0-based).

Step 2: List Elements at Odd Positions (0-based)

These correspond to even indices (0, 2, 4, etc.).

Let's extract those elements:
* Index O: 'tree’

* Index 2: 'car'

* Index 4: 'sun’

* Index 6: 'apple’

+ Index 8: 'dog'

* Index 10: ‘city"

* Index 12: 'banana’
* Index 14: 'dot'

¢ Index 16: 'meat’

* Index 18: 'apple’

* Index 20: 'cat'

e Index 22: 'tree’

* Index 24: 'apple’ N2

Figure 6: Model-derived template: <write down each element at next position>,
which is sub-optimal and leads to incorrect results. The partial list is not computed recurrently

during the step, and the final list is only generated at the end. Note that the full output is not shown
due to its length.
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sorting list[1, 3,1, 4,2,5,6,1,3,2,1,6, 8,12, 3 4,10, -1, 2, 4],
step by step

Sorting the list step by step involves breaking down the sorting process. Let's use a simple
Bubble Sort algorithm to sort the list in ascending order. Bubble Sort repeatedly swaps

adjacent elements if they are in the wrong order. We'll walk through the process.

Initial List:

Bubble Sort Process:
1. Pass1:
+ Compare 1and 3 < No swap.
+ Compare 3and 1= Swap (1, 3).
+ Compare 3 and 4 < No swap.
« Compare 4 and 2 < Swap (2, 4).
« Compare 4 and 5 2 No swap.
+ Compare 5 and 6 - No swap.
« Compare 6 and 1 - Swap (1, 6).
+ Compare 6 and 3 < Swap (3, 6).
+ Compare 6 and 2 » Swap (2, 6).
+ Compare 6 and 1 - Swap (1, 6).
+« Compare 6 and 6 - No swap.
+« Compare 6 and 8 = No swap.
« Compare 8 and 12 2 No swap.
+« Compare 12 and 3 = Swap (3, 12).
« Compare 12 and 4 > Swap (4, 12).
« Compare 12 and 10 = Swap (10, 12).
+ Compare 12 and -1 < Swap (-1, 12).

« Compare 12 and 2 = Swap (2, 12) ¥

Figure 7: Model-derived template: <extract whether to swap at each step in
bubble sort>, which is sub-optimal and leads to incorrect results. The partial sorted list is
not computed recurrently. Note that the full output is omitted due to its length.
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calculate-9-10-14-2-1+13-3-8+12+9-8+15-8-4+
1M+10+1-4+5-10-12+2+9-11+5+15-12-13+12-12
-1M-1+2+8-14-9+6-11+8+7 -2 doitstep by step, each
step i print the sum of 2i th value and 2i-1 th value

Let's break down the calculation step by step as per your request. Each step will add two
consecutive values from the list and print the result.

The list of numbers is:

-9,-10,-14,-2,-1,13,-3,-8,12,9, -8, 15, -8, 4,10, 10,1, -4, 5, -10,-12,2,9,
Now let's add two consecutive numbers at a time:

Step 1: =9 + (—10) = —19

Step 2: —14 + (—2) = —16

Step3: —1+ 13 =12

-

Step 4: =3 + (—8) = —11
Step 5:12 + 9 = 21
Step6: —8+15=7T

Step 7: —8 + (—4) = —12
Step 8: 10+ 10 = 20
Step9: 1+ (—4) = -3
Step 10: 5 + (—10) = —5
Step11: =12+ 2 = —-10

S ©®© ® N © o B W N

- = -
N =

Step12: 9 + (—11) = -2

-
w

Step13:5 + 15 = 20

14. Step14: —12 + (—13) = —25
15. Step15:12+ (—12) =0

16. Step16: —11+ (—1) = —12
17. Step17:2+ 8 =10

Figure 8: Case study of performing simple arithmetic under a wrong template (intentionally pro-
vided through supervision). Since the cumulative sum is not derived iteratively, the intended
value cannot be computed recurrently through CoT, leading to incorrect results. The correct step
template for this task should be <write down the calculated total value up to
each step>. Note that the full output is omitted due to its length.
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A~

given the stack ['meat’, 'dot’, 'cat’, 'city’, 'vellow', 'apple’, 'meat’,
'fruit’, 'banana’, 'book’, 'dot, 'book’, 'dog’, 'city’, 'banana’, 'dot’,
‘cat’, 'cat’, 'meat’, 'yellow', 'dot’, 'book’, 'dog’, 'meat’, 'cat’, 'book’,
‘book’, ‘city’, 'meat’, 'dot’, 'cat’, 'book’, 'city’, 'meat’, ‘city’, 'city’,
‘cat’, 'book’, 'vellow', 'meat'], calculate final list after operations:
['pop!, 'pop’, 'push “city"", 'pop, 'pop', 'push "dog", 'pop’, 'pop’,
'pop’, 'push "fruit", 'push "dog", 'push "fruit™ 'push "dot"’, 'push

"apple", 'push "dog™, 'pop’, "push "city™, 'pop’, 'push "cat™, "push

"meat"'], do it step by step, each step print total number of items

Let's go step-by-step through the stack with each operation and print the total number of items
after each operation.

Initial Stack:

['meat', ‘dot', 'cat', 'city', 'yellow', ‘'apple’', 'meat’', 'fruit', 'banana’', 'bo

There are 39 items in the stack.

Operation1: 'pop’
« Remove the last element [ 'meat’' ).

« Stack now has 38 items.

Operation 2: 'pop'
« Remove the last element [ 'yellow' ).

« Stack now has 37 items.

Operation 3: 'push "city"'
« Add 'city' to the stack.

« Stack now has 38 items.

Operation 4: 'pop’
« Remove the last element ( "city"' ).

« Stack now has 37 items.

Operation 5: 'pop’
+« Remove the last element ( 'book"' ).

« Stack now has 36 items.

Operation 6: 'push "dog"'
+ Add 'dog' tothe stack.

+ Stack now has 37 items.

Figure 9: Case study of performing stack manipulation under a wrong template, yielding incorrect
results (intentionally provided through supervision). Since the stack status is not iteratively updated
and passed to the next state, the results cannot be tracked effectively. Tracking the total number of
items in the stack is not useful for deriving the final stack. The correct step template for this task
should be <write down the current stack status at each step>. Note that the
full output is omitted due to its length.
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