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ABSTRACT

Graphs are ubiquitous in social networks, chemical molecules, and financial
data, where Graph Neural Networks (GNNs) achieve superior predictive accu-
racy. Graphs can be evolving, while understanding how GNN predictions re-
spond to the evolution provides significant insight and trust. We explore the
problem of explaining evolving GNN predictions due to continuously changing
edge weights. We introduce a layer edge-based explanation to balance expla-
nation fidelity and interpretability. We propose a novel framework to address
the challenges of axiomatic attribution and the entanglement of multiple com-
putational graph paths due to continuous change of edge weights. We first de-
sign an axiomatic attribution of the evolution of the model prediction to mes-
sage flows, then develop Shapley value to fairly map message flow contributions
to layer edges. We formulate a novel optimization problem to find the criti-
cal layer edges based on KL-divergence minimization. Extensive experiments
on eight datasets for node classification, link prediction, and graph classifica-
tion tasks with evolving graphs demonstrate the better fidelity and interpretabil-
ity of the proposed method over the baseline methods. The code is available at
https://github.com/yazhengliu/Axiomatic-Layer-Edges/tree/main.

1 INTRODUCTION

Graph neural networks (GNNs) achieve superior performance in many graph learning tasks, such as
social network modeling (Kipf & Welling, 2017), molecule property prediction (Wu et al., 2018),
knowledge graph embedding (Wang et al., 2019a), fraud detection (Wang et al., 2019b), and rec-
ommendation systems (Ying et al., 2018). Due to the complex message calculation, aggregation,
and nonlinear update mechanisms of GNN, they are usually deep, highly nonlinear, and complex.
It is desirable to make GNN predictions transparent to humans (Ying et al., 2019; Schnake et al.,
2020). For example, a user may want to know why a recommendation is made by GNNs to ensure
no breach of sensitive information (e.g., age and gender) (Li et al., 2021); a GNN-based rumor or
spam detector should explain why an user account is suspicious (Lai & Tan, 2019).
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Figure 1: Top: The weights of the input edges
in the evolution graph change continuously.
Bottom: Altered weights leads to the changes
in GNNs predictions for node classification,
link prediction, and graph classification tasks.

In the real world, graphs are usually evolving, with in-
put edge weight continuously changing (including ad-
dition and deletion of edges/nodes), leading to changes
in GNNs model predictions, see Figure 1. For exam-
ple, in rumor detection task, as new tweets or prod-
uct reviews are posted over time, the edge weights
are also continuous changing due to some factors such
as rumor dissemination speed and user interaction fre-
quency. Consequently, the suspiciousness of an ac-
count changes accordingly. Let G0 → G1 be any two
snapshots where the source graph G0 evolves to the
destination graph G1 with the edges weights changed
continuously. Accordingly, Pr(Y |G0;θ) will evolve
to Pr(Y |G1;θ), and we aim to attribute the change in
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Pr(Y |G;θ) to elements changed (such as input edges) in G0 → G1. With this tool, decision-makers
can understand this evolution. For example, what specific rumor spread pattern changes lead to pre-
diction shift.
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Figure 2: (a) Explanations
should have high Fidelity and
Interpretability, accurately repre-
senting the model while remaining
user-friendly. However, there is
often a trade off. (b) The Fidelity
and Interpretability of different
explanation forms.

Explanations of GNN models on evolving graphs must account
for both Interpretability (Ras et al., 2018) and Fidelity (Yuan
et al., 2020b). Interpretability ensures the selected key elements
are easy for users to understand, while Fidelity ensures these el-
ements faithfully reflect shifts in model predictions. As GNNs
capture complex relationships through multiple message pass-
ing and aggregation steps, the explanation should also reflect
these complex interaction between nodes and edges, especially
when the edge weights are changing. However, such complex
evolving interactions involve comparing many node features and
edges on the initial and destination graphs, making the explana-
tions complicated for users to understand. Thus, there is often a
trade-off between these two factors (see Figure 2 (a)). Various
GNN explanation methods have been proposed, including GN-
NExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020),
and FlowX (Gui et al., 2023) to select important input edges, layer
edges, or message flows, respectively. We consider three types of
explanations: message flow, input edges and layer edges. For the
message flow explanations, if the GNN model with T layers,
the message flows with T + 1 nodes contain the precise com-
putational process of GNN predictions, leading to the highest fi-
delity (Gui et al., 2023). However, understanding message flows
requires users to be familiar with the multi-layers information ag-
gregation and transformation, which can lead to cognitive overload (Anderson et al., 2020) for those
users unfamiliar with GNNs, even for the GNNs model designer, especially when node degrees are
high, resulting in the worst Interpretability. For the input edges explanations, the input edges are
directly related to the specific graph elements, often corresponding to real-word concepts, which
users find easier to understand, offering the highest Interpretability. However, as input edges con-
tain fewer computational process of GNNs predictions, they offer the worst Fidelity. For the layer
edge explanations, the layer edges capture aggregated message information used in the GNN’s cal-
culations compared to the input edges, leading to the higher Fidelity than input edges. Although
the layer edges transmit information that has been processed through multiple layers, it is easy to
understand compared with the message flow explanation, resulting in the higher Interpretability than
the message flows. Figure 2(b) illustrates the Fidelity and Interpretability of different explanation
forms.

For dynamic graphs, explaining the change from Pr(Y |G0;θ) to Pr(Y |G1;θ) has several chal-
lenges: 1) To explain the changes in predicted probability, it is necessary to understand shifts in
logits (the final GNN layer output before activation) between the G0 and G1. These logits changes
can be derived mathematically and mapped to probability shifts. However, existing methods focus
on static graphs. Although the static graphs can be considered as an evolution from an empty graph
(e.g. G1 evolving from the Gempty), these methods only explain the changes in logits between Gempty
and G1. They ignore the differences between Gempty and G0, leading to inaccurate contributions
that fail to explain the evolution of prediction probability, as shown in Figure 3(a). 2) To balance
Interpretability and Fidelity, we provide the layer edges as explanation, requiring a mapping func-
tion to convert the message flows contributions into layer edges. Existing methods overlook the fact
that layer edges in message flows may contribute differently. The contribution of a layer edge is
influenced not only by its associated weight but also by the hidden vector of the node connected to
it. See the example in Figure 3(b). Fairly attributing the contributions of message flows to the layer
edges is also the key challenge. 3) To ensure the explanations should be understandable to humans,
it is important to select a small number of layer edges. The layer edges selected by the top-K in
the existing methods may not faithfully represent the model’s behavior, as demonstrated in the case
shown in Figure 3(c). Selecting the small number of layer edges that provide a faithful explanation
of the model is also the challenge.
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Figure 3: Top: The steps for selecting important layer edges as explanations on static graphs in the existing
methods. Middle: The challenges of using the existing methods to explain the evolution of prediction probabil-
ity. (a) The existing methods can only explain the changes in logits between Gempty and G1, but cannot explain
the changes in logits between G1 and G0. (b) Layer edges may contribute differently not equally. (c) The top-
K selection cannot faithfully explain the prediction. Bottom: The proposed method to explain the evolution
of prediction probability. (d) We calculate the contribution of message flows, ensuring the summation-to-delta
property. (e) We use Shapley value to attribute the contribution of message flows to layer edges, preserving the
summation-to-delta property. (f) Leveraging the summation-to-delta property, we derive KL divergence and
formulate an optimization problem to faithfully select important layer edges as explanations.

To address these challenges: 1) We formula the changes in hidden vectors on G0 and G1 and apply
the multipliers and chain rule of DeepLIFT to assign the changes in logits to message flows, en-
suring that their contributions follow the summation-to-delta property. 2) We frame the mapping of
message flows to layer edges as an allocation problem. Then, we apply the Shapley value to fairly
attribute contributions, ensuring that layer edges’ contributions also satisfy the summation-to-delta
property due to the Shaplye value’s efficiency. 3) Based on summation-to-delta property, we derive
the Kullback-Leibler divergence, and define an objective function to map changes in logits to shifts
in predicted probability. By solving this optimization problem, we select a small number of layer
edges that faithfully explain the evolution of predicted probability. Extensive experiments on eight
datasets for node classification, link prediction and graph classification tasks with evolving graphs
show the effectiveness of our method in explaining the evolution of the predicted probability. Our
methods empirically outperforms five popular, state-of-the-art baselines across the three graph tasks.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS

For node classification, consider a trained GNN with T layers that predicts the class distribution of
each node J ∈ V in a graph G = (V, E). Let eIJ denote a directed edge from node I to node J . Let
A represent the adjacency matrix of graph G. The element aIJ of A represents the weight of the
edge eIJ , and aIJ = 0 indicates that eIJ does not exist. Let N (J) denote the neighbors of node J .
At layer t (t = 1, . . . , T ), for node J , the GNN computes hidden vector ht

J using messages received
from its neighbors:

ztJ = f t
UPDATE(f

t
AGG({ht−1

J ,ht−1
I : I ∈ N (J)}),θt), (1)

ht
J = NonLinear(ztJ), (2)

where f t
AGG aggregates the messages from all neighbors, using element-wise operations, such as

sum, average, or maximum. The function f t
UPDATE maps the aggregated messages f t

AGG to ztJ with
parameters θt. For layer t ∈ {1, . . . , T − 1}, ReLU is used as the nonlinear activation function. At
input layer, h0

J is the node feature vector xJ . At layer T , the logits are given by zTJ ≜ zJ(G). The
logits zJ(G) is mapped to the class distribution Pr(YJ |G;θ) using the softmax or sigmoid function.
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For link prediction, we concatenate zTI and zTJ as input to a linear layer to compute the logits:

zIJ =
〈[
zTI ; z

T
J

]
,θLP

〉
. (3)

Since link prediction is a binary classification problem, zIJ is mapped to the probability of edge
(I, J) existence using the sigmoid function.

For graph classification, the average pooling of zJ(G) across all nodes in graph G produces a single
vector representation z(G) for classification.

2.2 THE MESSAGE FLOW VIEW OF GNN

Layer Edges: Given the adjacency matrix At at layer t, the layer edge atIJ in this matrix rep-
resents the message carrier with which the message passes from node I to node J . The set
of layer edges, is defined as A = {· · · , a1UV , · · · , atUV , · · · , aTUV , · · · } and |A| = |E| × T .
For example, assuming the nodes in G0 in Figure 1 have no self-connections, and T = 2,
A = {a1IJ , a2IJ , a1JI , a2JI , a1JL, a2JL, a1LJ , a

2
LJ , a

1
KL, a

2
KL, a

1
LK , a2LK}.

Message Flow: In a T -layer GNN model, let F = (I,M, . . . , U, V, . . . , L, J) denote the mes-
sage flow starting from node I in the input layer, and sequentially passing messages through node
M, . . . , U, V, . . . , L, until reaching node J in the final layer T . The corresponding layer edges can
be represented as (a1IM , . . . , atUV , . . . , a

T
LJ). Let F [t] denote the node at the layer t in this message

flow F , where t = 0, . . . , T , t = 0 denotes the input layer. For example, for the message flow
F = (I, L, J), the corresponding layer edges are (a1IL, a

2
LJ), F [0] = I,F [1] = L,F [2] = J .

Table 1: Symbols and their meanings

Symbols Definitions and Descriptions
τ τ ∈ {0, 1} indicate the time steps

aτ
UV The weight of input edge in graph Gτ

aτ,t
UV The weight of layer edge in graph Gτ at layer t
∆F The set of altered message flows
∆A The set of altered layer edges
hτ,t

J The hidden vector of node J at layer t in Gτ

zτ,t
J The relevant vector of node J at layer t in Gτ

∆at
UV The difference in weight of layer edge between G0 and G1

∆zt
J The difference in relevant vector zt

J between G0 and G1

∆ht
J The difference in hidden vector ht

J between G0 and G1

C Contribution of the message flows to ∆z

Φ Contribution of the layer edges to ∆z

2.3 EVOLVING GRAPHS

Let τ ∈ {0, 1} denote the time steps of two
graph snapshots, where Gτ = (Vτ , Eτ ) rep-
resents the graph. The adjacency matrix of
Gτ is denoted as Aτ , with element aτUV rep-
resenting the weight of input edge. Addi-
tionally, Aτ,t refers to the adjacency matrix
at layer t, with element aτ,tUV representing
the weight of layer edge. Let hτ,t

J and zτ,tJ
denote the hidden vector and relevant vec-
tor of node J at layer t in graphs Gτ . As
the graph evolves from G0 to G1, we define
the change in layer edge weight as ∆atUV = a1,tUV − a0,tUV . Similarly, Let ∆ht

J = h1,t
J − h0,t

J and
∆ztJ = z1,tJ −z0,tJ denote the difference in the hidden vectors and relevant vectors at layer t between
graph G0 and G1. Let ∆zJ ≜ ∆zTJ denote the difference in logits of node J between G0 and G1.

We assume that the edge weights change continuously, including edge additions and removals.
Let ∆E be the set of altered edges: ∆E = {eUV : a0UV ̸= a1UV , U, V ∈ V}. Let ∆A repre-
sent the set of altered layer edges: ∆A = {atUV : a0,tUV ̸= a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V}.
If the weight of a layer edge within a message flow changes between G0 and G1, the message
flow is also altered. Let ∆F denote the set of altered message flows: ∆F = {F : F =

(F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸= a1,tF [t−1]F [t], t = 1, . . . , T}. As G0 → G1, the predic-
tion evolves from Pr(Y |G0) to Pr(Y |G1). The set ∆F causes this evolution, as the information
propagated by these massage flows differs between the source and destination graphs. Thus, ∆F
provides an explanation of the evolution with 100 % Fidelity, without any loss of information. How-
ever, due to lack of Interpretability, it is difficult for humans to understand. The complexity of ∆F
can increase significantly due to changes in edge weights connected to high degree nodes. Small
perturbations in graph can cause ∆A to become large, further impacting the complexity of ∆F . As
a result, ∆F can be not serve as a good explanation.
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3 METHOD

We propose a method to study the explainability of the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ).
To address the challenge in Figure 3, we first derive the ∆ht

V , t = 1, . . . , T . We then apply the mul-
tipliers and chain rule from DeepLIFT to calculate the contributions of altered message flows, and
obtain the contribution matrix C. This contribution matrix satisfy the summation-to-delta property,
i.e. ∆zJ =

∑|∆F |
s=1 Cs. However, due to the non-linearity of softmax function and KL divergence,

∆zJ can not linearly represent the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ). To resolve this, We
map the ∆zJ to the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ) through mathematical derivation,
utilizing the summation-to-delta property, as illustrated in Figure 3(d). Next, to fairly attribute the
contribution of message flows to layer edges, we employ the Shapley values and compute the con-
tribution of layer edges, denoted as Φ. Due to the efficiency of Shapley values, Φ also holds the
summation-to-delta property, i.e. ∆zJ =

∑|∆A|
l=1 Φl, as shown in Figure 3(e). Finally, to faithfully

select the important layer edges, we derive the KL divergence and design the optimization problem,
leveraging the summation-to-delta property, as shown in Figure 3(f).

3.1 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

To demonstrate the calculation of contribution values, we focus on the node classification task.
Details for calculating contribution values in link prediction and graph classification tasks can be
found in Appendix A.2.2 and A.2.3, respectively. We use DeepLIFT (Shrikumar et al., 2017) to
calculate the contribution values of message flows and ensure the ∆zJ =

∑|∆F |
s=1 Cs, which existing

work did not do with continuously changing edge weights.

3.1.1 DEEPLIFT

We introduce the multipliers and chain rules from DeepLIFT (Shrikumar et al., 2017) which are
used to calculate the contributions of message flows. While DeepLIFT is designed to evaluate
contributions at the neuron level in multi-layer preceptron models, we extend it to a vectorized
representation for computational efficiency. Let τ ∈ {0, 1} denote the time step. Let hτ,t ∈ R1×n

and hτ,t+1 ∈ R1×m represent the hidden layer vector at layer t and t+1, at time step τ , respectively.
The vector hτ,t+1 is computed as hτ,t+1 = f(hτ,t), where f(hτ,t) = hτ,tθt for a linear function,
with θt ∈ Rn×m as the weight matrix, otherwise, f is the nonlinear activation function. The
difference-from-reference is defined as ∆ht+1 = h1,t+1−h0,t+1 and ∆ht = h1,t−h0,t. DeepLIFT
defines multiplier as follows:

m∆ht∆ht+1 =

{
θt ∈ Rn×m linear layer
∆ht+1

/
∆ht ∈ R1×n nonlinear activation (4)/

denotes element-wise division. The following relationship holds: ∆ht ×m∆ht∆ht+1 = ∆ht+1,
where × represents matrix multiplication if f is linear, and element-wise multiplication if f is
nonlinear. DeepLIFT defines the chain rules as

∆hT = ∆hT−1m∆hT−1∆hT = ∆hT−2m∆hT−2∆hT−1m∆hT−1∆hT

= ∆h0m∆h0∆h1 . . .m∆hT−1∆hT .
(5)

According to chain rule and multipliers, we can calculate the contribution of message flows.

3.1.2 DEEPLIFT FOR GNN

DeepLIFT has been applied to GNNs with the addition and removal of edges (Liu et al., 2024). How-
ever, existing methods assume discrete graph evolution, leading to incorrect contribution calcula-
tions for message flows in continuously evolving GNNs. This is because, difference-from-reference,
used in the calculation process of DeepLIFT, becomes more complex and inconsistent in continu-
ously evolving GNNs. To address this challenge, for a given message flow F ∈ ∆F , we derive
∆ht

F [t], t = 0, · · · , T based on the propagation rules of GNNs. Then, we use multipliers and the
chain rule defined by DeepLIFT to calculate the contribution value of message flow.

In GNNs, ztV =
∑

U∈N (V ) a
t
UV h

t−1
U θt, where ztV depends to two factors: the information from

the neighboring node ht−1
U and the edge weight atUV . Consequently, ∆ztV is influenced by changes

5
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in both ∆ht−1
U and ∆atUV . Specifically, ∆ht−1

U propagates to node V , altering V ’s information.
Additionally, ∆atUV affect the extent of information aggregation from node U to node V . The
formula for ∆ztV is given by:

∑
U∈N (V )

(
a1,tUV h

1,t−1
U θt − a0,tUV h

0,t−1
U θt

)
=

∑
U∈N (V )

(
a0,tUV +∆atUV

)
h1,t−1
U θt − a0,tUV h

0,t−1
U θt

)
=

∑
U∈N (V )

a0,tUV

(
h1,t−1
U − h0,t−1

U

)
θt +∆atUV h

1,t−1
U θt =

∑
U∈N (V )

a0,tUV ∆ht−1
U θt +∆atUV h

1,t−1
U θt.

(6)

Eq. (6) explains the cause of ∆ztV by decomposing the change into two parts. The first term
a0,tUV ∆ht−1

U θt represents the propagation of ∆ht−1
U from node U to node V when the the layer edge

weight atUV remains unchanged. Since h1,t−1
U = h0,t−1

U +∆ht−1
U , the second term can be rewritten

as ∆atUV

(
h0,t−1
U + ∆ht−1

U

)
θt, showing that the change in edge weight transfers both h0,t−1

U and
∆ht−1

U to node V , contributing to ∆ztV .

According to Eq. (6), and by applying the chain rule and the multipliers defined in Eq. (4), the
contribution of a message flow can be computed through layer by layer decomposition. For a given
flow F in ∆F , F [t] denotes the node at t layer in F . The formula for calculating the contribution of
this message flow is as follows (detailed derivations and examples are provided in Appendix A.2.1):

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
,

(7)

where ratios denote the element-wise division, and C ∈ R|∆F |×c denotes the the contribution
matrix of message flows. Let s denote s-th flow F in ∆F to ∆zJ . Due to the multipliers and chain
rules, the contribution matrix C satisfies the summation-to-delta property, i.e.

∑|∆F |
s=1 Cs = ∆zJ .

Leveraging this property, we can map the ∆zJ to the evolution from Pr(Y |G0;θ) to Pr(Y |G1;θ).

3.2 APPLY THE SHAPLEY VALUE TO MAP MESSAGE FLOW CONTRIBUTIONS TO LAYER EDGES

Message flows are difficult for humans to understand and challenging to evaluate. In GNN compu-
tational graphs, layer edges in message flows carry weights, and during evaluation, a single layer
edge can appear in multiple message flows with different weights. However, GNN propagation rules
require each layer edges to share a single weight, making it impossible to merge these flows while
adhering to GNN propagation rules (see Figure 6 for an example). A mapping function is needed
to convert the contributions of message flows to layer edges. Existing methods use average or sum
functions as mapping functions, overlooking the fact that layer edges may contribute differently. To
fairly attribute the contributions of message flows, we use the Shapley value.

For a message flow F = (F [0], . . . ,F [T ]) ∈ ∆F , the corresponding layer edges in the Gτ can be
represented as {aτ,1F [τ ]F [1], . . . , a

τ,T
F [T−1]F [T ]}, where τ ∈ {0, 1}. The changed layer edges in given

message flow is ∆AF = {atF [t−1]F [t] : a
0,t
F [t−1]F [t] ̸= a1,tF [t−1]F [t], t ∈ {1, . . . , T}}. We consider

mapping the contribution values Cs, computed using Eq. (7), to the changed layer edges in ∆AF
as an allocation problem. We use the Shapley value ϕi =

∑
S⊆N\{i}

(|S|!(|N |−|S|−1)!)
(|N |−1)! (ν(S∪{i})−

ν(S)) to fairly distribute Cs among these layer edges. We define the following:

• The player i: One changed layer edge atF [t−1]F [t] in ∆AF .

• The player sets N : N = ∆AF denotes all changed layer edges in the message flow. |N | is the
total number of players.

• The coalition S: S ⊂ N . Only the weights of the layer edges in S will be altered. This change will
yield different layer edges for the given message flow. Consequently, the contribution of the same
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message with different layer edges will differ. For given S, the corresponding layer edges are
{â1F [0]F [1], · · · â

t
F [t−1]F [t] · · · â

T
F [T−1]F [T ]}, where âtF [t−1]F [t] = a1,tF [t−1]F [t], if atF [t−1]F [t] ∈ S,

else âtF [t−1]F [t] = a0,tF [t−1]F [t]. |S| represents the size of S.

• ν(S): Given S and the corresponding layer edges, ν(S) is computed according to Eq. (7) (node
classification) or Eq. (13) (link prediction) or Eq. (14) (graph classification).

S The layer edges

K L J
0.42 0.1

K L J
0.42 0.3

K L J
0.4 0.1

K L J
0.4 0.3

v(S)

{∅}{∅}

{a2
LJ}{a2
LJ}

{a1
KL}{a1
KL}

{a2
LJ, a1

KL}{a2
LJ, a1

KL}

Shapley value

[0.1 −0.5 −1][0.1 −0.5 −1]

[0.05 −0.2 −0.5][0.05 −0.2 −0.5]

[0.2 −0.1 −0.2][0.2 −0.1 −0.2]

[0 0 0][0 0 0]

ϕa1
KL

+ ϕa2
LJ

= v(N )ϕa1
KL

+ ϕa2
LJ

= v(N )
 

K L J
0.42 0.1

Message Flow

Obtain Calculate

Obtain Calculate

CalculateObtain

CalculateObtain

ϕa1
KL

= [−0.025, − 0.3, − 0.65]ϕa1
KL

= [−0.025, − 0.3, − 0.65]ϕa2
LJ

= [0.125, − 0.2, − 0.35]ϕa2
LJ

= [0.125, − 0.2, − 0.35]

Figure 4: For message flow in G1 in
Figure 1, the example of using Shapley
value to map contribution from message
flows to layer edges.

Given a message flow F in ∆F , we use the Shap-
ley value to calculate the contribution ϕat

F[t−1]F[t]
(F)

of layer edge atF [t−1]F [t] to the message flow Cs.
Due to efficiency of Shapley value, it follows that∑

at
F[t−1]F[t]

∈N ϕat
F[t−1]F[t]

(F) = ν(N) = Cs. An example
of this calculation is illustrated in Figure 4.

For node classification, let the Φ ∈ R|∆A|×c denote
the contribution matrix of layer edges, the row vector
Φl denote the contribution of l-th layer edge atF [t−1]F [t]

in ∆A. Φl =
∑

F∈∆F ϕat
F[t−1]F[t]

(F). Because∑
at
F[t−1]F[t]

∈N ϕat
F[t−1]F[t]

(F) = Cs and
∑|∆F |

s=1 Cs =

∆zJ ,
∑|∆A|

l=1 Φl = ∆zJ . For link prediction and graph clas-
sification tasks, see Appendix A.3.

3.3 SELECT THE IMPORTANT LAYER EDGES

To illustrate the selection of important layer edges, we focus on node classification task, while link
prediction and graph classification tasks are detailed in the Appendix A.4. KL-divergence is used to
measure the approximation quality of a static predicted distribution PrJ(G) (Liu et al., 2024):

KL(PrJ(G1)∥PrJ(G0)) =

c∑
k=1

Prk(G1) log[Prk(G1)/Prk(G0)]

=

c∑
k=1

Prk(G1)[zk(G1)− zk(G0)]− log[
Z(G1)

Z(G0)
] =

c∑
k=1

Prk(G1)∆zk − log[
Z(G1)

Z(G0)
], (8)

where Z(Gτ ) =
∑c

k=1 exp(zk(Gτ )) for τ = 0, 1. Let x ∈ {0, 1}|∆A| denote the selection
vector, where the element xl in x indicates whether the l-th layer edge is selected. Suppose we
select a subset of n important changed layer edges ∆Asub ∈ ∆A to explain evolution from
Pr(Y |G0;θ) to Pr(Y |G1;θ). Let Gn denote the graph that the weights of the layer edges in
∆Asub are changed to those in G1, while the weights of the layer edges in ∆A \ ∆Asub re-
main unchanged. If the KL(Pr(G1)∥Pr(Gn)) is small, it means that the ∆Asub can faithfully
explain the evolution in prediction probability. Let Φ denote the contribution matrix of layer edges,
and Φl represent the contribution of l-th layer edge to ∆zJ . Φl,k indicates the contribution of
l-th layer edge to ∆zk. Thus, zJ(Gn) =

∑|∆A|
l=1 xlΦl + zJ(G0), and according to Eq. (8),

KL(Pr(G1)∥Pr(Gn)) =
∑c

k=1 Prk(G1)
(
zk(G1) − zk(Gn)

)
− logZ(G1) + logZ(Gn), where

Z(Gn) =
∑c

k=1 exp(zk(Gn)), then we can define the following objective function:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆A|∑
l=1

xlΦl,k

+ log

c∑
k′=1

exp

zk′(G0) +

|∆A|∑
l=1

xlΦl,k′


(9)

By solving Eq. (9), we can obtain the most important changed layer edges. The Algorithm 1 shows
the overall process of selecting important layer edges for node classification task. The Algorithm 2
for the link prediction task and Algorithm 3 for the graph classification task are in the Appendix.
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Algorithm 1 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target node J , ∆F = {F : F ∈ ∆F and F [T ] = J}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate contribution Cs according to the Eq. (7)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: Calculate ϕat
F[t−1]F[t]

(F) using Shapley value.
11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat

F[t−1]F[t]
(F)

12: end for
13: end for
14: Solve Eq. (9) to obtain the important changed layer edges
15: Output: The important changed layer edges set

3.4 COMPLEXITY ANALYSIS

Obtain the changed message flows ∆F : Given the changed edges ∆E , we use the depth-first
search method to obtain ∆F and the complexity is O

(
|∆E|T

)
.

Calculate contributions: According to the Eq. (7), we calculate the contribution of each message
flow through the vectorized method. The complexity is O

(
|∆F |d1 · · · dtdt+1 · · · dT+1

)
, where dt

and dt+1 denote the dimension of the θt ∈ Rdt×dt+1

, t = {1, · · · , T}.

Apply the Shapley value: For each message flow F ∈ ∆F with more than one changed layer
edge, the Shapley value is used to fairly attribute contributions. Some calculations in the calculating
contributions can be used repeatedly. The worst-case complexity is O

(
|∆F |(2T − 1)d1 · · · dT+1

)
,

where (2T − 1) represents the number of non-empty subsets of layers.

Select the inportant layer edges: The time complexity is O
(
|∆A|3

)
.

4 EXPERIMENT

Datasets and tasks. We evaluate our method on node classification, link prediction and graph
classification tasks using real and simulated dynamic graph datasets. Details of these datasets are
provided in Appendix A.7.1. We assess the running time of our method on large datasets (See
Appendix A.7.7 and Figure 9). On BA-Shapes dataset, we validate the accuracy of the explanation
methods. The visualization results and accuracy are shown in Appendix A.7.8, Figures 10 and 11.

Experimental setup. For each dataset, we optimize the GNN parameter θ on the training
set of static graphs, using labeled nodes, edges, or graphs based on the specific tasks. For
each graph snapshot, excluding the first one, target nodes/edges/graphs with a significantly large
DKL(Pr(Y |G0)||Pr(Y |G1)) are collected and the change in Pr(Y |G) is explained. We run Al-
gorithm 1 or Algorithm 3 to identify the important layer edges for node classification, link pre-
diction and graph classification tasks. The optimization problems in Eq. (9), Eq. (15) and
Eq. (16) are solved using the cvxpy library (Diamond & Boyd). Our proposed method is
called “AxiomLayeredge”. Additionally, we employ the GNNExplainer (Ying et al., 2019), PG-
Explainer (Luo et al., 2020), GNNLRP (Schnake et al., 2020) , DeeoLIFT (Shrikumar et al.,
2017), and the FlowX (Gui et al., 2023) as our baselines. We also design some variant meth-
ods: AxiomLayeredge-Topk, AxiomLayeredge\Shapley, AxiomEdge, AxiomEdge-Top and Ax-
iomEdge\Shapley, Appendix A.7.2 gives details of the baseline methods. Appendix A.7.3 gives
details of the experimental setup.
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Quantitative evaluation metrics. Supposing the selected important layer edges set and edges set
are denoted as ∆A∗ and ∆E∗, respectively. For evaluating the layer edges, we start from the
computational graph of G0, only adjusting the weights of the layer edges in ∆A∗ to those G1, while
the weights of the layer edges in A \ ∆A∗ remain unchanged, then we obtain the computational
graph Gn. Similarly, for edges evaluation, we alter the weights of the edges in ∆E∗ to those in G1,
with other edges weights in E \∆E∗ unchanged, then we also obtain the Gn. After obtaining Gn,
we can compute the Pr(Y |G(n)). The case of obtaining Gn can be seen in Figure 7.

The evaluation metric for the node classification is Kullback-Leibler (KL) divergence
KL(PrJ(G1)∥PrJ(Gn)). See Figure 7 for an example. The idea of this metric is similar to the
Fidelity- (Yuan et al., 2020b). Intuitively, if adjusting only the weights of selected layer edges (rather
than all changed edges) brings PrJ(Gn) closer to PrJ(G1), it indicates that these edges effectively
explain the evolution from Pr(Y |G0) to Pr(Y |G1), resulting in a smaller evaluation metric. A sim-
ilar metric can be defined for the link prediction task and the graph classification task, where the
KL-divergence is calculated using predicted distributions over the target edge or graph. To ensure
comparability between layer edges based and edges based explanations, we apply the same level of
sparsity. We define five levels of explanation sparsity (Yuan et al., 2020b), with all methods com-
pared under the same sparsity level. For the edges, the sparsity is 1 − ∆E∗

∆E . For the layer edges, it
is 1− ∆A∗

∆A . The higher sparsity indicates the explanations are more sparse and tend to only capture
the most important input information. The Table 4 and Table 5 in Appendix A.7.4 provide details
on the sparsity for real and simulated dynamic graph datasets across the three graph tasks.

Performance evaluation and comparison. We evaluate the performance of the methods across
three tasks: node classification, link prediction and graph classification in real and simulated dy-
namic graph datasets. For each dataset, we report the average KL over target nodes/edges/graphs.
Results for dynamic graph datasets are illustrated in Figure 5, while those for simulated dynamic
graphs are presented in Figure 8 in Appendix A.7.6. Table 4 and Table 5 display explanation sparsity
levels across different datasets. In Table 4, the sparsity for all real dynamic graph datasets is no less
than 0.9. Figure 5 demonstrates that our method AxiomLayeredge has the smallest KL across all
levels of explanation sparsity levels, datasets, and tasks, with exception of certain sparsity levels of
Pheme dataset. This illustrates that our method maintains high fidelity in explanations even under
high sparsity. On eight settings (Weibo, YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution. Moreover, our method
AxiomLayeredge has superior performance compared to the AxiomLayeredge\Shapley method
across all levels of explanation sparsity, datasets, and tasks, with a significant gap observed on
the Pheme and Weibo datasets. Therefore, the Shapley value provides a fair attribution.

5 RELATED WORK AND FURTHER DISCUSSION

GNNs Explainability. The limitation of GNNs is the lack of explainability. Recently, various meth-
ods have been proposed to explain GNN predictions, primarily focusing on static graphs. In the
survey (Yuan et al., 2020b), existing GNN explanation approaches are categorized as instance-level
and model-level methods. The instance-level category includes Gradient/features-based methods,
such as CAM and GradCAM (Baldassarre & Azizpour, 2019; Pope et al., 2019), which identify
important nodes by the gradient,but are not applicable for the node classification. Perturbation-
based methods, such as GNNexplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), Graph-
Mask (Schlichtkrull et al., 2020), learn masks to identify important edges by maximizing the mutual
information to explain the predicted class distribution of model. However, these methods cannot ax-
iomatically isolate contributions of message flows that causally impact the prediction changes on the
computation graphs. Decomposition-based methods, such as GNN-LRP (Schnake et al., 2020), ex-
tend the original LRP (Bach et al., 2015) algorithm to GNNs and study the importance of the graph
walks. While GNN-LRP explains the single class probability, it cannot explain multi-class distri-
butions change over evolving graphs. Surrogate-based methods, like GraphLime (Huang et al.,
2020), use a surrogate model with kernel-based feature selection to provide node feature explana-
tions. In model-level category, XGNN (Yuan et al., 2020a) generates graph patterns that maximize
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Figure 5: Performance of KL in real dynamic graphs. Each figure corresponds to a different dataset. The first,
second and third rows represent node classification, link prediction and graph classification tasks, respectively.

a certain model prediction via reinforcement learning. In conclusion, most prior work evaluate the
fidelity of the explanations on static graphs. They cannot explain the evolution of Pr(Y |G0;θ) to
Pr(Y |G1;θ).

Limitations and Concerns. While we acknowledge the effectiveness of our methods, we also
recognize their limitations. We focus on the explanations on static GNNs in evolving graphs. Our
method cannot be extended to dynamic graph models, such as TGN (Rossi et al., 2020), which
incorporate time-series components like RNNs or LSTMs. We do not design rules for decomposing
contributions in RNNs or LSTMs. For static GNNs, our method can be applied to the GIN (Xu et al.,
2018) model. For GAT model, our explanations are limited to identifying a small subset of changed
attention weights on edges. We are unable to measure the contribution of added or removed edges
to the changed attention weights and select the changed edges as the explanations. Because we do
not define the rules to attribute the difference of softmax function to the changed input.

6 CONCLUSIONS

We studied the problem of explaining change in GNN predictions with the weights of input edges
continuously changed. We addressed the issues of prior works, such as lack of axiomatic attribution
of message flows, unfair distribution and lack of optimality. The proposed algorithm can axiomat-
ically decompose the changes to message flow in the computation graphs of GNN and employ the
Shapley value for fair attribution to layer edges. It further optimally select a small subset of layer
edges to explain the evolution of prediction probabilities. Experimental results demonstrate that
our method achieves superior performance even when sparsity exceeds 0.9. This indicates that our
approach successfully balances Interpretability and Fidelity.
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A APPENDIX

A.1 EVALUATION OF MESSAGE FLOWS ON DYNAMIC GRAPHS

In Figure 6, we illustrate the computation of Fidelity for both dynamic and static graphs from the
perspective of computational graphs. The static graph G0 is considered an evolution of Gempty.
In the case of dynamic graphs, G1 evolves from the G0. After identifying the important message
flows, we adjust their weights to align with those in the destination graph, keeping the weights of
the remaining flows unchanged. This process generates a new computational graph Gn. In dynamic
graphs, adjusting the weights of selected important message flows may lead to differing weights
for the same-layer edges across various flows. However, GNN propagation rules require that edges
within each layer share a single weight. Thus, merging these flows while complying with GNN
propagation constraints is infeasible.
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Figure 6: Calculation of Fidelity for dynamic and static graphs. Challenges may arise during the computation
for dynamic graphs.

A.2 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

A.2.1 THE EXAMPLES ON THE NODE PREDICTION TASKS

Supposing the GNN models have two layers, considering the massage flow F = (V, I, J) ∈
the altered message flows set ∆F , We have derived in detail the calculation process of the con-
tribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

(10)

According to the multiplier designed by the DeepLIFT, m∆hT−2
V ∆zT−1

I
=

∆aT−1
V I θT−1,m∆zT−1

I ∆hT−1
I

=
∆hT−1

I

∆zT−1
I

,mzT−1
I hT−1

I
=

hT−1
I

zT−1
I

,mh1,T−2
V z1,T−1

I
= a1,T−1

V I θT−1,
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therefore,

Cs = ∆aT−1
V I a0,TIJ h1,T−2

V θT−1∆hT−1
I

∆zT−1
I

θT + a1,T−1
V I ∆aTIJh

1,T−2
V θT−1h

T−1
I

zT−1
I

θT (11)

Where the divide means the element-wise division, T = 2.

Similarly, Supposing the GNN models have three layers, considering the massage flow F =
(U, V, I, J) ∈ the altered message flows set ∆F , We have derived in detail the calculation pro-
cess of the contribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

= a0,TIJ

(
a0,T−2
UV ∆hT−3

U θT−2 +∆aT−2
UV h1,T−3

U θT−2
)
m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of ∆hU to ∆zJ

+ a0,TIJ

(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of hU to ∆zJ

+∆aTIJ
(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V z1,T−1
I

mz1,T−1
I h1,T−1

I
θT

the contribution of hU to ∆zJ

= ∆a0,T−2
UV a0,T−1

V I a0,TIJ h1,T−3
U θT−2∆hT−2

V

∆zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV ∆aT−1

V I a0,TIJ h1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV a1,T−1

V I ∆aTIJh
1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1h
T−1
I

zT−1
I

θT

(12)

A.2.2 ON THE LINK PREDICTION TASK

According to Eq. (3), for the target edge eIJ , the zTI ∈ R1×d and zTJ ∈ R1×d are concatenated
and passed through a linear layer with the parameters θLP . According to Eq. (7), we can obtain
the contribution of message flow to ∆zTI or ∆zTJ , then the contribution of message flow to the
∆zIJ = zIJ(G1)− zIJ(G0) is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θTθ′
LP

) (13)

Where θ′
LP = θLP [0 : d], d if VT+1 = I , θ′

LP = θLP [d :], if VT+1 = J
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A.2.3 ON THE GRAPH CLASSIFICATION TASK

Because the average pooling is used for the graph classification tasks, ∆z = z(G1) − z(G0) =∑
J∈

(
V0∪V1

)∆zTJ
/
|V0 ∪ V1|, thus the contribution is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
/|V0 ∪ V1|

(14)

Where, V0 and V1 denote the the nodes set of graph G0 and G1, respectively.

A.3 MAPPING CONTRIBUTIONS FOR THE GRAPH CLASSIFICATION TASK

In the section 3.2, we show how to calculate the Shapley value, i.e. contribution ϕat
F[t−1]F[t]

(F)

of layer edge atF [t−1]F [t] to ∆zTFT
. Note that the changed layer edge can affect many nodes, not

the single node. Thus, in the graph classification task, the contribution matrix of l-th layer edge
atF [t−1]F [t] ∈ ∆A is Φl ∈ R|V0∪V1|×c, the row vector Φl

i = ϕat
F[t−1]F[t]

(F) denotes the contribu-

tion of the l-th layer edge to ∆zTFT
, where the i-th node in the V0 ∪ V1 is FT . Let Φ =

∑|∆A|
l=1 Φl,

the Φ also follows the summation-to-delta property
∑|V0∪V1|

i=1 Φi = ∆z = z(G1)− z(G0)

A.4 SELECTING THE IMPORTANT LAYER EDGES

A.4.1 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of layer edges, where
Φl represents the contribution of l-th layer edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th
layer edge to ∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆A|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆A|∑
l=1

xlΦl,ℓ′

 (15)

A.4.2 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g′

 (16)

A.5 SELECTING THE IMPORTANT LAYER EDGES FOR LINK PREDICTION

Selecting the important layer edges for link prediction task can be seen in Algorithm 2.
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Algorithm 2 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
link prediction task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (13)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: According to the section 3.2, calculate ϕat
F[t−1]F[t]

(F)

11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat
F[t−1]F[t]

(F)

12: end for
13: end for
14: Solve Eq. (15) to obtain the important changed layer edges
15: Output: The important changed layer edges set

A.5.1 SELECTING THE IMPORTANT LAYER EDGES FOR GRAPH CLASSIFICATION

Selecting the important layer edges for graph classification task can be seen in Algorithm 3.

Algorithm 3 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
4: for s for 1 to |∆F | do
5: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (14)
6: obtain the changed layer edges set ∆AF on this flow
7: for atF [t−1]F [t] in ∆AF do
8: According to the section 3.2, calculate ϕat

F[t−1]F[t]
(F)

9: Let the index of atF [t−1]F [t] in ∆A is l. Let the index of F [T ] in the V0 ∪ V1 is i
10: Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

11: end for
12: end for
13: Solving the Eq. (16) to obtain the important changed layer edges
14: Output: The important changed layer edges set

A.6 OBTAIN THE IMPORTANT INPUT EDGES

A.6.1 ON THE NODE CLASSIFICATION TASK

Let Φ denotes the contribution matrix of edges, where Φl represents the contribution of l-th edge to
∆zJ , and Φl,k indicates the contribution of l-th edge to ∆zk, we can define the following objective
function for the node classification:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆E|∑
l=1

xlΦl,k



+ log

c∑
k′=1

exp

zk′(G0) +

|∆E|∑
l=1

xlΦl,k′

 (17)
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A.6.2 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of edges, where Φl

represents the contribution of l-th edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th edge to
∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆E|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆E|∑
l=1

xlΦl,ℓ′

 (18)

A.6.3 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g′

 (19)

A.6.4 SELECTING THE IMPORTANT INPUT EDGES

Selecting the important input edges for node classification and link prediction can be seen in the
Algorithm 4. The selection of important input edges for graph classification can be seen in the
Algorithm 5.

A.7 EXPERIMENTS

A.7.1 DATASETS

We study node classification task on the YelpChi, YelpNYC (Rayana & Akoglu, 2015), Pheme
(Zubiaga et al., 2017) and Weibo (Ma et al., 2018) datasets. We explore the link prediction tasks
on the BC-OTC, BC-Alpha, and UCI datasets. We study the graph classification tasks on MUTAG
(Debnath et al., 1991), ClinTox, IMDB-BINARY and REDDIT-BINARY datasets. The details of
data are in Table 2.

In the simulated dynamic graphs, we modify edge weights without adding or removing edges.
Specifically, given a changed ratio r, we randomly adjust the the weights of |E0| × r edges to
create evolving graphs. For the real dynamic graph datasets used in the node classification and link
prediction tasks, timestamps allow us to track graph evolution, which includes modifications to edge
weights, as well as the addition and deletion of edges. In graph classification, we apply slight per-
turbations to the graphs (You et al., 2018), by randomly adding or removing edges or altering edge
weights.

• YelpChi, YelpNYC (Rayana & Akoglu, 2015): each node represents a review, product, or user. If
a user posts a review to a product, there are edges between the user and the review, and between
the review and the product. The data sets are used for node classification.

• Pheme (Zubiaga et al., 2017) and Weibo (Ma et al., 2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.
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Algorithm 4 Selecting important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification and link prediction tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the changed edges set ∆E = {aUV : a0UV ̸= a1UV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Initialize layer edges contribution matrix Φ ∈ R|∆E|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
5: if The node classification task then
6: Given the target node J , ∆F = {F : F ∈ ∆F and F [T ] = J}
7: else if The link prediction task then
8: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
9: end if

10: for F in |∆F | do
11: According to the Eq. (7) (node classification) or Eq. (13) (link prediction), calculate the

message flow contribution c
12: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

13: for aF [t−1]F [t] in ∆EF do
14: According to the Section 3.2, calculate ϕaF[t−1]F[t]

(F).
15: Let the aF [t−1]F [t] is the l-th edge in ∆E , Φl = Φl + ϕaF[t−1]F[t]

(F)
16: end for
17: end for
18: Solving the Eq. (17) (node classification) or Eq. (18) (link prediction) to obtain the important

changed input edges
19: Output: The important changed input edges set

Algorithm 5 Selecting the important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on
the graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A = {atUV : a0,tUV ̸= a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
4: for l for 1 to |∆A| do
5: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
6: end for
7: for F in |∆F | do
8: According to the Eq. (14), calculate the message flow contribution c
9: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

10: for atF [t−1]F [t] in ∆EF do
11: According to the section 3.2, calculate ϕat

F[t−1]F[t]
(F)

12: Let the atF [t−1]F [t] is the l-th layer edge in ∆E , F [T ] is the i-th node in the V0 ∪ V1,
Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

13: end for
14: end for
15: Solving the Eq. (19) to obtain the important changed input edges
16: Output: The important changed input edges set
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• BC-OTC1 and BC-Alpha2: is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

• UCI3: is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

• MUTAG (Debnath et al., 1991): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

• ClinTox (Gayvert et al., 2016):compares drugs approved through FDA and drugs eliminated due
to the toxicity during clinical trials.

• IMDB-BINARY is movie collaboration datasets. Each graph corresponds to an ego-network for
each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two
actors/actresses if they appear in the same movie.Each graph is derived from a pre-specified genre
of movies, and the task is to classify the genre graph it is derived from.

• REDDIT-BINARY is balanced datasets where each graph corresponds to an online discussion
thread and nodes correspond to users. An edge was drawn between two nodes if at least one of
them responded to another’s comment. The task is to classify each graph to a community or a
subreddit it belongs to.

Table 2: The details of datasets

Datasets Nodes(Avg. Nodes) Edges(Avg. Edges) task Accuracy(AUC)

YelpChi 105,659 375,239 node classification 0.8477
YelpNYC 520,200 1,956,408 node classification 0.8743

weibo 4,657 node classification 0.9549
pheme 5,748 node classification 0.7621

BC-OTC 5,881 35,588 link prediction 0.9388
BC-Alpha 3,777 24,173 link prediction 0.9125

UCI 1,899 59,835 link prediction 0.9061

MUTAG 17.93 19.79 graph classification 0.75
ClinTox 26.1 55.5 graph classification 0.9874

IMDB-BINARY 19.8 193.1 graph classification 0.8
REDDIT-BINARY 429.6 995.5 graph classification 0.716

Table 3: The changed ration r on different datasets

YelpChi YelpNYC Weibo Pheme BC-OTC BC-Alpha UCI MUTAG ClinTox IMDB-
BINARY

REDDIT-
BINARY

1 1 1 1 0.5 0.6 0.4 1 1 1 1

A.7.2 BASSLINES

• GNNExplainer is designed to explain GNN predictions for node and graph classification on static
graphs. We train the explainer on graphs G0 and G1 to obtain the edges contribution Φ0 and Φ1.
The final edges contribution is given by Φ = Φ1 − Φ0 if the predicted class on G0 and G1 are
different. Otherwise, Φ = Φ1. The top-K edges are selected based on Φ as the explanations.

• PGExplainer learns approximated discrete masks for edges to explain the predictions, with im-
portant edges selected in the same manner as GNNExplainer.

• GNN-LRP utilizes the back-propagation attribution method LRP to GNN (Schnake et al., 2020),
attributing the class probability Pr(Y = k|G1) to input neurons regardless of Pr(Y |G0), thereby
obtaining contribution scores for message flows. It uses a summation function to map these con-
tributions to edges, with edge selection consistent with GNNExplainer.

1http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
2http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
3http://konect.cc/networks/opsahl-ucsocial
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• DeepLIFT (Shrikumar et al., 2017) attributes the log-odd between two probabilities Pr(Y =
k|G0) and Pr(Y = k′|G1), where k ̸= k′, to the message flows. Then it uses a summation func-
tion to obtain contributions of edges. The edge selection process is consistent with GNNExplainer.

• FlowX applies the Shapley value to derive initial contributions of message flows, subsequently
training these scores by defining loss functions. A summation function is employed to map con-
tributions to edges, with edge selection aligned with GNNExplainer.

• AxiomLayeredge-Topk is a variant of AxiomLayeredge that selects the top layer edges based on
the highest contributions Φ1, where 1 is an all-1 c× 1 vector.

• AxiomEdge maps the contribution of message flows to the input edges also using the Shapley
value. See Algorithm 4 and Algorithm 5 in the Appendix A.6 for details.

• AxiomEdge-Topk is a variant of AxiomEdge that selects the top edges with the highest contribu-
tions ΦE1, where ΦE is the contribution matrix of the altered edges, 1 is an all-1 c× 1 vector.

• AxiomEdge\Shapley is a variant of AxiomEdge that utilizes the average function instead of the
Shapley value when mapping contributions of message flows to edges.

• AxiomLayeredge\Shapley is a variant of AxiomLayeredge that utilizes the average function
instead of the Shapley value when mapping the contribution of message flow to layer edges.

A.7.3 EXPERIMENTAL SETUP

We trained the two layers GNN. utilizing element-wise sum as the aggregation function fAGG.
The logit for node J is denoted by zJ(G). For node classification, zJ(G) is mapped to the class
distribution through the softmax function. For the link prediction, we concatenate zI(G) and zJ(G)
as the input to a linear layer to obtain the logits, which are then mapped to the probability of the
existence of the edge (I , J). For the graph classification task, the average pooling of zJ(G) across
all nodes in G can produce a single vector representation z(G) for classification. It can be mapped to
the class probability distribution through the softmax function. During training, we set the learning
rate to 0.01, the dropout rate to 0.2 and the hidden size to 16. The model is trained and then fixed
during the prediction and explanation stages.

A.7.4 THE PREDEFINED SPARSITY

On the real dynamic graphs, the sparsity of explanations across various datasets and tasks is illus-
trated in Table 4. The sparsity of simulated dynamic graphs is illustrated in Table 5. The sparsity
is small, but our method can also achieve the better performance than the baselines.

Table 4: The sparsity of explanations on real dynamic graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.996 0.992 0.988 0.994 0.98
YelpNYC 0.998 0.997 0.996 0.995 0.994

weibo 0.996 0.993 0.99 0.986 0.982
pheme 0.98 0.96 0.94 0.92 0.9

BC-OTC 0.996 0.995 0.994 0.993 0.992
BC-Alpha 0.995 0.994 0.993 0.992 0.991

UCI 0.998 0.997 0.996 0.994 0.992

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.991 0.982 0.973 0.964 0.954

IMDB-BINARY 0.996 0.991 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.997 0.996 0.995 0.994

A.7.5 EVALUATION METRIC

In Figure 7, we illustrate the calculation process of evaluation metric.

A.7.6 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods across three tasks: node classification, link predic-
tion and graph classification in simulate dynamic graph scene, as illustrated in Figure 8. For
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Table 5: The sparsity of explanations on different simulated graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.999 0.998 0.997 0.996 0.995
YelpNYC 0.9994 0.9988 0.9981 0.9975 0.9965

weibo 0.9972 0.9945 0.992 0.989 0.986
pheme 0.982 0.963 0.945 0.927 0.908

BC-OTC 0.967 0.95 0.935 0.918 0.9
BC-Alpha 0.95 0.91 0.87 0.83 0.79

UCI 0.999 0.998 0.997 0.996 0.995

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.99 0.98 0.97 0.96 0.95

IMDB-BINARY 0.996 0.992 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.996 0.994 0.992 0.99
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Figure 7: The calculation process of evaluation metric.

each dataset, we report the average KL over target nodes/edges/graphs. From Figure 8, we can see
that our method AxiomLayeredge has the smallest KL across all levels of explanation sparsity and
datasets and tasks, with exception of Weibo, Pheme and certain sparsity levels of YelpNYC dataset.
In datasets with dense graph structures (YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, IMDB-
BINARYdand REDDIT-BINAYR), the AxiomLayeredge-TopK method ranks third. This indicates
that our designed message flow contribution value Algorithm can effectively explain the dynamic
graphs. In seven experimental settings (Weibo, YelpChi, YelpNYC, BC-Alpha, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution.

A.7.7 RUNNING TIME

We plot the running time for searching ∆F , calculating message flow contributions, using the
Shapley value to attribute contributions to layer edges, and selecting important layer edges on
the Pubmed, Coauthor-Computer, and Coauthor-Physics datasets. The details of these datasets are
shown in the Table 6. As shown in Figure 9, the larger ∆A lead to higher cost in the selecting step
compared to the other steps. The time for calculating contributions and applying the Shapley value
remains relatively small, even for larger graphs. On large graphs, the searching and selecting steps
dominate the running time, but the overall time remains manageable. In practice, incremental mes-
sage flow searches tailored to specific graph topologies and more efficient optimization algorithms
can further speed up the process.

• In citation network, PubMed (Kipf & Welling, 2017), each paper has bag-of-words features, and
the goal is to predict the research area of each paper.

• Coauthor-Computer and Coauthor-Physics are co-authorship graphs based on the Microsoft Aca-
demic Graph from the KDD Cup 2016. We represent authors as nodes, that are connected by an
edge if they co-authored a paper (Shchur et al., 2018). Node features represent paper keywords
for each author’s papers.
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Figure 8: Performance in KL as G0 → G1. Each column corresponds to a different dataset. The first, second
and third rows represent node classification, link prediction and graph classification tasks, respectively.

Table 6: Three large graph datasets

Datasets Classes Nodes Edges Edge/Node Features

PubMed 3 19,717 44,324 2.24 500
Coauthor-Computer 13 18,333 327,576 17.87 6,805

Coauthor-Physics 2 34,493 991,848 28.76 8,415

A.7.8 VISUALIZATION AND ACCURACY ON THE BA-SHAPES DATESET

On the BA-Shapes dataset, we randomly generated 1,000 graphs with a House motif and 1,000
with a Circle motif. For each motif dataset, we randomly deleted one edge to disrupt the motif and
perturbed edges outside the motif area, generating another 1,000 graph datasets. We trained a GNN
model to classify the presence of the motif. We applied explanation methods to select one edge.
If the selected edge disrupts the motif, the explanation is correct, while if the edge lies outside the
motif area, the explanation is wrong. The accuracy results for GNN and the explanation methods
are presented in Table 8 and Table 7, respectively. Visualization of the explanations for the House
and Circle motifs are shown in Figure 10 and Figure 11.

Table 7: The accuracy of explanation methods

Datasets our GNNExplainer PGExplainer DeepLIFT GNN-LRP FlowX

Circle-motif 0.9657 0.9067 0.4765 0.8848 0.1152 0.4156
House-motif 0.9936 0.3618 0.6025 0.9897 0.1755 0.0238
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Figure 9: Running time decomposition: Each row represents a dataset. The first column shows the total
running time for all four steps, while the second column displays the running time for calculating contributions
and applying the Shapley value.

Table 8: The accuracy of GNN model

Datasets GCN

Circle-motif 0.755
House-motif 0.847

A.7.9 PERFORMANCE EVALUATION ON DISCONTINUOUS CHANGES OF EDGES

We evaluate the effectiveness of our method on node classification, link prediction, and graph clas-
sification tasks under discontinuous edge changes. As shown in Figure 12, our method outperforms
others across all five datasets, further validating its effectiveness.
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Figure 10: The visualization of House-motif dataset. The blue edges represent changes in edge weights. In
the new graph, the edge (12, 13) is removed to destroy the motif, and the weights of edges (0, 1), (2,3), (0, 4),
(13, 3), and (0, 5) are perturbed. The edge (12, 13) serves as the ground truth for the explanation, clarifying
why the old graph contains a house while the new graph does not. The red edge represents the selected edge by
different methods. Our method correctly identifies (12, 13) as the explanation, while other methods select the
wrong edge.
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Figure 11: The visualization of Circle-motif dataset. The blue edges represent changes in edge weights. In
the new graph, the edge (10, 11) is removed to destroy the motif, and the weights of edges (0, 1), (0, 4), (0, 2),
and (0, 5) are perturbed. The edge (10, 11) serves as the ground truth for the explanation, clarifying why the
old graph contains a circle while the new graph does not. The red edge represents the selected edge by different
methods. Our method correctly identifies (10, 11) as the explanation, while other methods select the wrong
edge.
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Figure 12: Performance in KL as G0 → G1 when only adding or deleting edges. Each column corresponds
to a different dataset.
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