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ABSTRACT

In this paper, we give an analysis of the existing representation learning framework
of unsupervised domain adaptation and show that the learned feature representa-
tions of the source domain samples are with discriminability, compressibility, and
transferability. However, the learned feature representations of the target domain
samples are only with compressibility and transferability. To address this challenge,
we propose a novel framework and show from the information theory view that this
framework can effectively improve the discriminability of the target domain sample
representation. We also propose a method, namely domain-invariant representation
learning with global and local consistency (RLGLC), under this framework. In
particular, to maintain the global consistency, RLGLC proposes a new metric
called asymmetrically-relaxed Wasserstein of Wasserstein distance (AR-WWD),
AR-WWD can not only extract the transferability and compressibility of the feature
representation of two domains, but also correlates well with human perception. To
impose the local consistency structures, we propose a regularized contrastive loss,
which can not only keep as much as possible predictive information contained in
the feature representation of the target domain, but also alleviates the problem that
semantically similar instances are undesirable pushed apart in training processing.
Finally, we verify the effectiveness of RLGLC from both theoretical analyses on
Bayes error rate and experimental validation on several benchmarks.

1 INTRODUCTION

Despite achieving impressive successes, the standard machine learning models require that the
training dataset and the test dataset are drawn from the same distribution. However, in practical
applications, deviations in the data collection process and a limited amount of labeled training samples
can cause the problem of feature covariate shift. If models trained on the labeled source domain
are applied to an unlabeled target domain with a different distribution, the generalization is not
guaranteed. In this paper, we expect to learn a model that can handle the distribution gap between
two domains, which is the problem that unsupervised domain adaptation (UDA) focuses on.

Adversarial-based representation learning methods for UDA have gained remarkable performance
from the theoretical findings to algorithms (Ganin et al., 2016). These methods mainly focus on
exactly matching the distributions between two domains. Informally, these approaches minimize the
source domain classification risk and the distance between the two domain distributions in the latent
space. While current works mainly explore how to measure the distance between two distributions
and put forward many original and effective distribution discrepancy metrics, e.g., the Wasserstein
distance (Shen et al., 2018; Arjovsky et al., 2017), KL-divergence (Ganin et al., 2016; Zhang et al.,
2019a; 2020), and so on, in this paper, we propose to understand these methods from the information
theory perspective and design a new learning framework to make the learned feature representations
to be with discriminability, compressibility, and transferability (see subsection 4.1), which has also
been proven to help reduce the upper bound of the Bayesian error rate.

Specifically, minimizing the distance between two distributions can make the learned feature rep-
resentations of both two domain samples be with transferability and compressibility. Minimizing
source domain classification risk can make the learned feature representations of source domain
samples be with discriminability. However, we do not optimize a certain item to explicitly imporve
the discriminability of the target domain sample feature representations. Therefore, for the proposed
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learning framework, the purpose is to improve the discriminativeness of the target domain sample
representations. So, we propose to maximize the MI between the target domain and a generated
self-supervised signal. We give theoretical analysis to show that this framework is effective in
improving the discriminability for targe domain sample representations.

Based on the proposed framework, we derive our proposed method: domain-invariant representation
learning with global and local consistency (RLGLC). RLGLC consists of two parts, including the
global consistent module (GCM) and the local consistent module (LCM). For GCM, we proposed a
new metric called asymmetrically-relaxed Wasserstein of Wasserstein distance (AR-WWD). Different
from the Wasserstein distance, AR-WWD constrains the distribution of source domain contained in
the distribution of target domain by an inequality constraint. Then, the ground metric in AR-WWD
is selected as the WD. The Wasserstein ground metric can capture the knowledge of an image at
the pixel level and is known to correlate well with human perception in computing the similarity
between images (Engquist & Yang, 2018; Puthawala et al., 2019). For LCM, we propose a novel loss
called regularized contrastive loss (RCL). Different from contrastive loss, RCL, to a certain extent,
alleviates the problem that some semantically similar instances are undesirable pushed apart through
a regularization item.

To verify the effectiveness of our proposed RLGLC, based on the Bayes error rate, we give the
generalization classification error for the learned feature representation and show that both modules
can reduce classification error. Experiments on several standard benchmarks also show that the
proposed RLGLC is effective. The major contributions of this paper are three-fold: 1) Based on
information theory, we demonstrate that the existing learning framework can not guarantee that the
learned sample representations of target domain to be with discriminability. 2) We propose a new
learning framework and conduct the theoretical analysis to show that maximizing a certain component
in this framework can ensure that the learned feature representation of the target domain sample is
discriminative. 3) Based on the proposed framework, we derive a new method which consists of a
new distribution metric and a regularized contrastive loss. Also, we provide theoretical analysis on
the Bayes error rate to show that the proposed method is effective.

2 RELATED WORKS

Unsupervised domain adaptation aims to transfer knowledge learned from a labeled source domain to
a related unlabeled target domain (Kumar et al., 2020; Dhouib et al., 2020; Balaji et al., 2020; Cui
et al., 2020b; Combes et al., 2020; Cui et al., 2020a; Hu et al., 2020; Kang et al., 2020; Tang et al.,
2020). Remarkable advances have been achieved in UDA, especially these representation learning
based methods. The main idea behind these methods is to align the distributions of the source domain
and target domain. Therefore, many works are proposed to design an effective metric to measure the
differences between distributions. Maximum mean discrepancy (Gretton et al., 2012; Tzeng et al.,
2014) is a nonparametric metric that measures the divergence of two distributions in the reproducing
kernel Hilbert space. Deep correlation alignment (Sun et al., 2016) aligns two distributions by
minimizing the difference in the second-order statistics of the two distributions. Domain Adversarial
Neural Network (Ganin et al., 2016) and S-disc (Kuroki et al., 2019) align distributions by minimizing
KL-divergence. Wasserstein distance guided representation learning (Shen et al., 2018) introduces the
Wasserstein distance for domain adaptation to make the training process stable. Sliced Wasserstein
discrepancy (Lee et al., 2019) proposes to utilize the sliced Wasserstein distance to accelerate the
training process. Margin disparity discrepancy (Zhang et al., 2019a) aligns distributions based on
the scoring function and margin loss. Domain-Symmetric Networks (Zhang et al., 2020) propose
a multi-class scoring disagreement divergence. An asymmetrically-relaxed distribution alignment
is proposed in (Wu et al., 2019). Reliable weighted optimal transport (Xu et al., 2020) proposes a
novel shrinking subspace reliability and weighted optimal transport strategy for UDA. In (Li et al.,
2020), an enhanced transport distance for UDA is proposed. Different from these methods, this
paper starts from information theory and aims to make the learned feature representations to be with
discriminability, compressibility, and transferability.

On par with the domain adaptation algorithms findings, there are rich advances in the domain
adaptation theoretical findings. In (Mansour et al., 2009; Ben-David et al., 2010), a rigorous learning
bound is proposed for UDA. Then, a series of theories have been proposed to extend this theory
(Mohri & Medina, 2012; Germain et al., 2013; Cortes et al., 2015). Based on reproducing kernel
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Hilbert space, Redko et al. (2017) proposes to bound the target error by the WD. Then, Shen et al.
(2018) proposes to use the Kantorovich-Rubinstein dual formulation to obtain a generalization bound.
In (Wu et al., 2019), a good target domain performance is demonstrated theoretically under the setting
of relaxed alignment. In (Zhang et al., 2019a), based on Rademacher complexity, a margin-aware
generalization bound is provided to bridge the gaps between the theories and algorithms. Then,
Zhang et al. (2020) extends the generalization bound provided in (Zhang et al., 2019a) and can better
explain the effectiveness of UDA related to multiple classes. In (Zhao et al., 2019), both upper and
lower bounds for the target and joint errors are provided. In (Dhouib et al., 2020), based on large
margin separation, a new theoretical analysis is provided to uniform the margin, adversarial learning,
and domain adaptation. In (Kumar et al., 2020), the self-train is proved to be effective for larger
distribution shifts. Different from these theoretical findings, this paper is motivated by the information
theory and Bayes error rate.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION AND NOTATIONS

This paper focuses on the classification task of unsupervised domain adaptation. Let X denote the
input feature space and η : X → Y be the domain-invariant ground truth labeling function, where
X ∈ X , and Y is the label. Let Ps be the input distribution over X for the source domain and Pt
be the input distribution over X for the target domain. Let Z be a latent space and Φ : X → Z
be a class of feature extractors, where Z ∈ Z . For a domain u ∈ {s, t}, Pφu (Z) = Pu

(
φ−1 (Z)

)
represents the induced probability distribution over Z . For a given Z ∈ Z , let φu (X |Z ) be the
induced conditional distribution over X that satisfies

∫
Pφu (Z)φu (X |Z )dZ = Pu (X), where

φ ∈ Φ. Denote Ψ : Z → Y as a class of prediction functions. Then, the learned classifier can
be represented as ψ (φ (X)), where ψ ∈ Ψ. The goal is to learn a classifier that can minimize the
following expected target risk:

RPt (X) =

∫
Pt (X) |η (X)− ψ (φ (X))| dX. (1)

where RPt (X) denotes the expected target risk. Also, we denote a sample in the support set of
Pu (X) as Xu and a sample in the support set of Pφu (Z) as Zu.

3.2 REPRESENTATION LEARNING FOR UNSUPERVISED DOMAIN ADAPTATION

The framework of representation learning based methods is divided into three parts including a metric
to measure the distance of two distributions in the latent space Z , a loss function to measure the
source risk, and a regularization term. The whole objective function is formulated as

min
φ,ψ

D
(
Pφs (Z) , Pφt (Z)

)
+ Lcl (ψ (φ (Xs)) , η (Xs)) + ∆ (2)

where D
(
Pφs (Z) , Pφt (Z)

)
is a metric to measure the difference between two distributions in the

latent space, Lcl is the classification loss function, and ∆ is the regularization term. In this paper,
we consider the Wasserstein distance as the baseline metric. Specifically, for Pφs (Z) , Pφt (Z), the
corresponding support sets are denoted as Σs,Σt, the p-th Wasserstein distance is defined as

Wp

(
Pφs (Z) , Pφt (Z)

)
=

(
inf

µ(Zs,Zt)∈Π(Zs,Zt)

∫
c(Zs, Zt)

p
dµ

) 1
p

, (3)

where Zs ∈ Σs, Zt ∈ Σt, c (Zs, Zt) is the distance of two patterns, and Π (Zs, Zt) is the set of all
joint distributions µ (Zs, Zt) that satisfies Pφs =

∫
Zt
u (Zs, Zt)dZt, P

φ
t =

∫
Zs
u (Zs, Zt)dZs.

4 METHODOLOGY

In this section, we give an analysis to the existing RL-based domain adaptation method from the
perspective of information theory to motivate the proposed representation learning framework and
derive the proposed method called domain-invariant representation learning with global and local
consistency (RLGLC).
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4.1 INFORMATION-THEORETICAL BASED ANALYSIS

From the perspective of the information bottleneck principle (Tishby et al., 2000), a good feature
representation not only contains as little task-independent information as possible, but also contains
as much task-related information as possible. From the perspective of the domain adaptation (Chen
et al., 2019), a good feature representation is not only discriminable for the downstream tasks, but
also is transferable between different domains. To bridge the gap between these two concepts,
the represetations learned in domain adaptation should satisfy three properties: discriminability,
compressibility, and transferability.

Definition 4.1. Discriminability: A representation Zu of Xu is discriminant for the label Y if and
only if I (Xu;Y |Zu ) = I (Zu;Y |Xu ) = 0.

Definition 4.2. Compressibility: A representation Zu of Xu is minimal for the label Y if and only if
the task-irrelevant information equals to zero: I (Xu;Zu |Y ) = 0.

Definition 4.3. Transferability: A representation Zu of Xu is transferable if and only if the domain-
specific information equals to zero: I (Zu;Zs |Xt ) = I (Xt;Zt |Xs ) = 0.

From Definition 4.1, we can obtain that I (Xu;Zu) = I (Xu;Y ) = I (Zu;Y ) (see Appendix
Proposition A.1), which means that a discriminant representationZ can predict Y at least as accurately
as the original data X . Base on the chain rule of mutual information, we can obtain I (Xu;Zu) =
I (Xu;Zu |Y ) + I (Zu;Y ), we can see that I (Xu;Zu |Y ) represents the information in Zu that is
not predictive of Y and I (Zu;Y ) represents the predictive information. Therefore, from Definition
4.2, we can obtain that a minimal representation contains less superfluous information.

A basic assumption in the multi-view representation learning field (Xu et al., 2013) shows that the
shared information between the two views contains all the information related to the task. In this paper,
we mainly focus on solving the covariance shift problem of the domain adaptation. We assume that
Ps (X) 6= Pt (X) and P (Y |Xs ) = P (Y |Xt ). Therefore, we can safely regard the two domains as
two views and have that a representation Z containing all information shared between both domains
is able to contain the necessary label information: I(Zs;Zt) = I(ZsZt;Y ) = I(Zs;Y ) = I(Zt;Y )
(see Appendix Proposition A.2), where ZsZt is the observation of the joint distribution of Ps and Pt.
Furthermore, a transferable Z should eliminate the domain-specific details and reduce the sensitivity
of the representation to domain-changes. Definition 4.3 states that the transferability of the learned
representation is mainly caused by eliminate the domain-specific information.

Based on the three definitions, we can factorize the mutual information into two components, that is:

I (Xs;Zs) = I (Xs;Zs |Y ) + I (Zs;Y ) = I (Xs;Zs |Xt ) + I (Xt;Zs)
I (Xt;Zt) = I (Xt;Zt |Y ) + I (Zt;Y ) = I (Xt;Zt |Xs ) + I (Xs;Zt)

(4)

Because we have that I (Xt;Zs) = I (Zs;Y ) and I (Xs;Zt) = I (Zt;Y ), so we can easily obtain
that I (Xs;Zs |Y ) = I (Xt;Zt |Y ) and I (Xt;Zs) = I (Xs;Zt).

For objective function 2, the first term is to align the distributions of the source and target domains in
the latent space Z , the second term is to make the learned feature representation related to the label.
To this end, we have:

Theorem 4.1. Suppose the representations for source domain and target domain are obtained by
minimizing the objective function (2). Then, Zs is with the discriminability, compressibility, and
transferability, while Zt is only with compressibility and transferability.

The proof can be seen in Appendix Theorem A.1. From Theorem 4.1, we can obtain that the
discriminability of the sample representation of the target domain is not fully considered. Therefore,
we propose a novel representation learning framework to address this problem.

4.2 THE PROPOSED INFORMATION-THEORETICAL BASED FRAMEWORK

First, for each sample in the target domain, a stochastic data augmentation operation is implemented to
transform any given sample in the target domain resulting in a new views called target self-supervised
signal. We denote the distribution of the target self-supervised signal as Ptss (X), and the induced
distribution in the latent space as Pφtss (Z). Also, we denote a sample in the support set of Ptss (X)
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or Pφtss (Z) as Xtss or Ztss. Then, based on the objective 2, the proposed framework can be written
as:

min
φ,ψ

D
(
Pφs , P

φ
t

)
+D

(
Pφt , P

φ
tss

)
− I (Zt;Ztss) + Lcl (ψ (φ (Xs)) , η (Xs)) + ∆ (5)

where ∆ is the regularization term, D is the distribution metric, and I is the mutual information (MI).
Compared the objective 5 with the objective 2, there are two additional items includingD

(
Pφt , P

φ
tss

)
and I (Zt;Ztss). The motivations behind these two items are as following:

Theorem 4.2. Maximizing I (Zt;Ztss) while minimizingD
(
Pφt , P

φ
tss

)
can make the learned feature

representation of the target domain sample be with discriminability.

The proof can be seen in Appendix Theorem A.2. From Theorem 4.2, we can see that the learned
feature representations of the source domain and target domain samples are with discriminability,
compressibility, and transferability. Based on the proposed representation learning framework, we
propose a novel learning method as follows.

4.3 DOMAIN-INVARIANT REPRESENTATION LEARNING WITH GLOBAL AND LOCAL
CONSISTENCY

4.3.1 LEARNING WITH GLOBAL CONSISTENCY MODULE

The global consistency module aims to align the source domain distribution Pφs with the target
domain distribution Pφt and align the target domain distribution Pφt with the target self-supervised
signal Pφtss in the learned latent space. This module relaxes the exact aligning constraint to a
loose one by requiring the support set of Pφs is contained in that of Pr. Motivated by (Wu et al.,

2019), this can be achieved by the inequality constraint: supZ∈Z
Pφt (Z)

Pφs (Z)
≤ 1 + β. The ‘global’ is

corresponding to the whole distribution, not an instance. To achieve this, we propose a novel metric
called asymmetrically-relaxed Wasserstein of Wasserstein distance (AR-WWD).

For AR-WWD, the first ‘Wasserstein’ refers to the Wasserstein distance (WD) between the probability
distributions of two domains on image space. The second ‘Wasserstein’ refers to using the WD as
the ground metric. From (Dukler et al., 2019), we can know that using WD as the ground metric is
closely related to human perception for natural images, e.g., being robust to translations and rotations.

Specifically, we consider Z ∈ Rc×w×h, where w, h, and c are the width, height, and the number of
feature channels. For AR-WWD, we regard the learned representation as a probability distribution
over pixels. Therefore, the ground metric is defined as

d (Zs, Zt) = Wq,dΩ (Zs, Zt) =

(
inf

µ(zs,zt)∈Π(zs,zt)

∫
dΩ(zs, zt)

q
dµ

) 1
q

(6)

where Π (zs, zt) denotes the set of all joint distributions µ (zs, zt) that satisfiesZs =
∫
zt
µ (zs, zt) dzt,

Zt =
∫
zs
µ (zs, zt) dzs. Zs and Zt are representations of source and target domain samples, respec-

tively. zs and zt are the pixels in Zs and Zt, respectively. dΩ (zs, zt) is defined as the spatial distance
between two-pixel locations. We set p = 1 and q = 2. Then, AR-WWD is defined as

W1,W2,dΩ

(
Pφs , P

φ
t

)
= inf
µ(Zs,Zt)∈Π(Zs,Zt)

∫
W2,dΩ

(Zs, Zt)dµ (7)

where Π (Zs, Zt) denotes the set of all joint distributions µ (Zs, Zt) that satisfies Pφs =∫
Zt
u (Zs, Zt)dZt, (1 + β)Pφt ≥

∫
Zs
u (Zs, Zt)dZs.

To this end, the duality of AR-WWD can be defined as

W1,W2,dΩ

(
Pφs , P

φ
t

)
= sup
f∈C(Z)

EZ∼Pφs f (Z)− (1 + β)EZ∼Pφt
f (Z)

s.t.
∫

Ω
‖∇zδZf (Z (z))‖2dΩ

Z (z) dz ≤ 1
(8)

where C : Z → R represents all of the functions that are continuous and bounded everywhere,∇ is
the gradient operator in pixel space Ω, β > 0 is the fixed, and δ is the L2 gradient in latent space Z .
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For discrete case, we can rewrite objective 8 as

sup
f∈C(Z)

[
1

N

N∑
i=1

f (Zs)−
1 + β

N

N∑
i=1

f (Zt) +
λ

N

N∑
i=1

(‖gradf (Zst)‖W − 1)
2

]
(9)

whereN is the number of samples, Zst is the data sampled from distribution Pφst, P
φ
st is the distribution

taken to be the uniform on “Euclidean” lines connecting points drawn from Pφs and Pφt , λ is the
hyperparameter, and ‖gradf (Zst)‖W is denoted as

‖gradf (Zst)‖W =

√√√√∑
i.j∈E

ωij
(
∇Zjf (Zst)−∇Zif (Zst)

)2Zi/di + Zj/dj
2

(10)

where G = (V,E, ω) is a defined pixel space graph, E is the edge set, V = {1, ..., n} is the vertex
set
(
e.g., forZ ∈ Rc×w×h, n = c× w × h

)
, ω is a symmetric matrix of weights associated with the

edges which define a ground metric of pixels, N (i) = {j ∈ V : (i, j) ∈ E} is the neighborhood of
node i, and di =

∑
j∈N(i) ωij

/∑n
i=1

∑
i′∈N(i) ωii. For a pixel of Z, we only consider the pixels in

the fixed-size window area centered on it as neighbors. Similarly, we can give the formulation of the
item W1,W2,dΩ

(
Pφt , P

φ
tss

)
.

4.3.2 LEARNING WITH LOCAL CONSISTENCY MODULE

The local consistency module is to maximize the MI between the target domain Pφt and the target self-
supervised signal Pφtss obtained by transforming each sample in the target domain into an augmented
one. The MI is achieved by contrastive loss (Oord et al., 2018; Chen et al., 2020; Chen & Li, 2020).
The local refers that the contrastive loss is implemented in an instance-based manner. The main idea
is to encourage the learned feature for positive pairs to be similar while pushing features from the
randomly sampled negative pairs apart. To achieve this, we propose a novel loss called regularized
contrastive loss (RCL).

In our setting, a sample and its corresponding augmented one are regarded as positive pairs and
the remaining samples as negative samples. One challenge is that negative samples include the
semantically similar instance, directly minimizing the contrastive loss could lead to some semantically
similar instances are undesirably pushed apart.

Intuitively, minimizing contrastive loss makes the similarity of positive pairs to 1 and the similarity
of negative pairs to 0. One way to alleviate the mentioned challenge is to constraint the distribution
of negative pair similarities to fill the entire [0, 1] interval. Because the similarity of semantically
similar pairs are is more likely to appear near 1. To achieve this constraint, the proposed RCL learns
representations with a regularization item.

Specifically, given a minibatch of N examples from the target domain, we transform each sample
to its augmented one. So, we obtain 2N samples within a minibatch. We denote this as Zmb =
{Z1, ..., Z2N} in the latent space. Then the proposed RCL is presented as

LRCL

(
Pφt , P

φ
tss

)
=

2N∑
i=1

− log
exp

(
sim

(
Zi, Ẑi

)/
τ
)

∑2N
k=1 1k 6=i exp (sim (Zi, Zk)/τ)

+ αRe (Zmb) (11)

where α, τ are two temperature hyperparameter, Ẑi is the augmentation corresponding to Zi,
and 1[ii 6=i] is an indicator function evaluating to 1 if k 6= i. We assume P (sim (Zi, Zj)) =

exp
(

sim (Zi, Zj)
/√

d
)/∑2N

k,l=1 exp
(

sim (Zk, Zl)
/√

d
)

and Q (sim (Zi, Zj)) = 1/2N , where

d is the dimension ofZi after being flattened into a vector. Then, we have Re (Zmb) = KL (Q ‖P )
.
=

ln
∑2N
i,j=1 e

sim(Zi,Zj)/
√
d − 1

4N2

∑2N
i,j=1 sim (Zk, Zl)

/√
d. Note that minimizing the regularization

item Re (Zmb) can lead to the distribution of negative pair similarities to fill the entire [0, 1] interval.

4.3.3 THE PROPOSED OBJECTIVE

Based on the global and local consistency modules, we present the proposed RLGLC. RLGLC first
maps the input data into the latent space Z by a projection function φ. Then, classifier ψ is learned
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Table 1: Accuracy (%) on Office-31 dataset for unsupervised domain adaptation (ResNet-50)

Method A→W D→W W→D A→D D→A W→A Avg
ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±.2 62.5±0.3 60.7±0.3 76.1
DAN 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
GTA 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
CDAN 93.1±0.2 98.2±0.2 100.0±0.0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
CDAN+E 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
BSP+DANN 93.0±0.2 98.0±0.2 100.0±0.0 90.0±0.4 71.9±0.3 73.0±0.3 87.7
BSP+CDAN 93.3±0.2 98.2±0.2 100.0±0.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5
ADDA 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
MCD 88.6±0.2 98.5±0.1 100.0±0.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
MDD 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
SymmNets 94.2±0.1 98.8±0.0 100.0±0.0 93.5±0.3 74.4±0.1 73.4±0.2 89.1
GVB-GD 94.8±0.5 98.7±0.3 100.0±0.0 95.0±0.4 73.4±0.3 73.7±0.4 89.3
ETD 92.1± - 100.0± - 100.0± - 88.0± - 71.0± - 67.8± - 86.2
SRDC 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8
RLGC 95.1±0.3 98.6±0.3 100.0±0.0 95.2±0.3 74.1±0.2 76.2±0.2 89.9
RLGC* 95.9±0.2 99.2±0.2 100.0±0.0 95.8±0.3 77.1±0.5 76.9±0.2 90.8
RLGLC 96.6±0.3 99.7±0.1 100.0±0.0 96.5±0.4 77.6±0.3 77.7±0.3 91.4

based on the source domain samples in the latent space. The overall objective is formulated as

min
φ,ψ

W1,W2,dΩ

(
Pφs , P

φ
t

)
+W1,W2,dΩ

(
Pφt , P

φ
tss

)
+ LRCL

(
Pφt , P

φ
tss

)
+Lcl (ψ (φ (Xs)) , η (Xs)) + ∆

(12)

where Ys is the label of source domain samples, Lcl is the cross-entropy loss, and ∆ is the regulariza-
tion term, which is used to punish the parameters of φ and ψ.

5 BAYES ERROR RATE

In this section, we provide a theoretical analysis of the generalization classification error for the
learned feature representation. We utilize the Bayes error rate (Feder & Merhav, 1994) to measure
the quality of the learned feature representation. Specifically, let Pe be the Bayes error rate of the
learned representation Zt and Ŷt as the estimation for ground truth label Yt from the learned classifier.
Then, we have

Pe := EZt∼Pφt

[
1− max

yt∈Yt
P
(
Ŷt = yt |Zt

)]
(13)

Formally, let |Yt| be the cardinality of Yt, and let Th (x) = min {max {x, 0} , 1− 1/|Yt|} be a
thresholding function. Then we have:
Theorem 5.1. For an arbitrary learned feature representation Zt, we have: Pe = Th

(
P̄e
)

with

P̄e ≤ 1− exp [−H (Y ) + I (Xt;Zt |Xs ) + I (Xs;Zt)] (14)

The proof can be seen in Appendix Theorem A.3. From Theorem 5.1, we can decrease the corre-
sponding Bayes error rate by 1) reducing I (Xt;Zt |Xs ), and I (Xs;Zt); 2) increasing the number
of training samples N . This result supports our proposed framework is better than the traditional
representation learning based method for domain adaptation.

6 EXPERIMENTS

6.1 SETUP

We perform the proposed approach on multiple datasets: Office-Home (Venkateswara et al., 2017),
including 4 domains; 2) Office-31 dataset (Saenko et al., 2010), including 3 domains; 3) VisDa-
2017 dataset (Peng et al., 2017), including 12 categories; 4) Digits datasets (Ganin et al., 2016),
including SVHN (S) (Hull, 2002), USPS (U) (Netzer et al., 2011), and MNIST (M) (Lecun et al.,
1998). We compare our proposed RLGLC with state-of-the-art unsupervised domain adaptation
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Table 2: Accuracy (%) on Office-Home dataset for unsupervised domain adaptation (ResNet-50)

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP+DANN 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
BSP+CDAN 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
SymmNets 48.1 74.3 78.7 64.6 71.8 74.1 64.4 50.0 80.2 74.3 53.1 83.2 68.1
ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
GVB-GD 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
HDAN 56.8 75.2 79.8 65.1 73.9 75.2 66.3 56.7 81.8 75.4 59.7 84.7 70.9
SRDC 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
RLGC 55.8 75.4 80.1 68.8 75.2 77.6 64.7 53.5 80.4 71.4 59.4 84.4 70.6
RLGC* 56.9 76.1 81.3 70.0 75.7 78.2 65.4 53.9 82.2 72.1 60.5 85.1 71.5
RLGLC 57.5 76.7 81.9 71.1 76.4 78.3 66.2 54.5 82.6 73.4 61.3 85.9 72.2

methods including: ResNet-50(He et al., 2016), ResNet-101(He et al., 2016), DAN(Long et al.,
2015), DANN(Ganin et al., 2016), JAN(Long et al., 2017b), GTA(Sankaranarayanan et al., 2018),
ADDA(Tzeng et al., 2017), UNIT(Liu et al., 2017), CyCADA(Hoffman et al., 2018), CDAN(Long
et al., 2017a), CDAN+E(Long et al., 2017a), BSP+DANN(Chen et al., 2019), BSP+ADDA(Chen
et al., 2019), BSP+CDAN(Chen et al., 2019), ADDA(Tzeng et al., 2017), MCD(Saito et al., 2018),
MDD(Zhang et al., 2019b), SWD(Lee et al., 2019), CAN(Kang et al., 2019), SymmNets(Zhang et al.,
2020), GVB-GD(Cui et al., 2020b), ETD(Li et al., 2020), SRDC(Tang et al., 2020), HDAN(Cui
et al., 2020a). We also conduct ablation study on all datasets. The classification accuracy is
reported in this paper including dataset average accuracy and specific transfer task accuracy, and we
repeat the experiments 5 times and then report the average accuracy of the five results. For a fair
comparison, the reported results of most comparison methods come from their original papers. For
more implementation details, please refer to Appendix A.1.

6.2 RESULTS AND DISCUSSIONS

The classification results on the Office-31 dataset are reported in Table 1. The average classification
accuracy of our proposed RLGLC is the highest among all compared methods. Also, RLGLC gets
better results than all compared methods on 5 specific transfer tasks, which is the most numerous.
It worth noting that RLGLC gets the best results on two hard specific transfer tasks: A→ D and D
→ A. The classification results on the Office-Home dataset are shown in Table 2. It is worth noting
that the specific transfer tasks for this dataset is quite challenging. As we can see, RLGLC gets the
highest average result than the compared methods. As for specific transfer tasks, RLGLC wins 9
of the 12 tasks, which is also the most numerous of all methods. Table 3 records the classification
results on the VisDa-2017 dataset, we can observe that RLGLC gains significant improvement, that
is the average result of RLGLC is 0.3 higher than CAN, which is with the second rank among the
compared methods. For specific transfer tasks, RLGLC wins 7 of the 12 tasks in this dataset, which
is also the most numerous. We further compare RLGLC with previous methods on the Digits dataset,
the results are shown in Table 4. Compared with the Office-31 dataset, the size of this dataset is
much larger. We can know that the classification results of RLGLC exceed all compared approaches
in terms of average accuracy. Also, RLGLC achieves almost state-of-the-art performance on most
specific transfer tasks. Therefore, we can conclude that our proposed RLGLC is effective and contain
compressed label-relevant information.

6.3 ABLATION STUDY AND PARAMETER SENSITIVITY

The proposed RLGLC mainly composes of two parts including the global consistency module and
local consistency module. For the ablation study, a simplified version of RLGLC, which does
not contain the local consistency module, is verified and is named RLGC*. Also for RLGC*, a
simplified version of RLGC*, which does not contain W1,W2,dΩ

(
Pφt , P

φ
tss

)
, is verified and is named

RLGC. We can see from the four tables that RLGC* gets comparable classification results on both
specific transfer tasks and average classification accuracy. This can demonstrate that the global
consistency module is effective. Also, compared RLGC* with RLGC, we can observe that the
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Table 3: Accuracy (%) on VisDA-2017 dataset for unsupervised domain adaptation (ResNet-101)

Method plane bcybl bus car horse knife mcyle person plant sktbrd train truck Avg
ResNet-101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
BSP+DANN 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
BSP+CDAN 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
CAN 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
RLGC 95.7 86.2 84.1 70.3 92.0 93.9 90.4 77.9 93.3 90.3 84.9 54.7 84.5
RLGC* 96.6 86.4 85.0 73.7 94.6 95.6 92.3 78.2 94.7 93.8 88.7 55.6 86.3
RLGLC 97.3 86.6 86.2 75.1 96.5 96.7 92.4 79.4 96.1 96.8 89.3 57.9 87.5

Table 4: Accuracy (%) on Digits dataset for
unsupervised domain adaptation (ResNet-50)

Method M→U U→M S→M Avg
DANN 90.4 94.7 84.2 89.8
ADDA 89.4 90.1 86.3 88.6
UNIT 96.0 93.6 90.5 93.4
CyCADA 95.6 96.5 90.4 94.2
CDAN 93.9 96.9 88.5 93.1
CDAN+E 95.6 98.0 89.2 94.3
BSP+DANN 94.5 97.7 89.4 93.9
BSP+ADDA 93.3 94.5 91.4 93.1
BSP+CDAN 95.0 98.1 92.1 95.1
ETD 96.4 96.3 97.9 96.9
RLGC 96.4 98.2 95.2 96.6
RLGC* 97.6 98.7 96.2 97.5
RLGLC 97.9 99.1 96.9 98.0 Figure 1: Study on hyper-parameters

average classification accuracy of RLGC* is significantly better than that of RLGC, which prove
that the proposed AR-WWD metric is valuable for RLGLC. Compare RLGLC with RLGC*, we can
observe that the average classification accuracy of RLGLC is significantly better than that of RLGC*,
which demonstrates that the local consistency module is effective.

Based on the specific transfer task U→M, we evaluate the effects of parameter α, which balances
the influence of the regularization item in the RCL, and parameter β, which controls the propor-
tion of supZ∈ZP

φ
t (Z)

/
Pφs (Z). For α, we first fix β = 2, and then select α from the range of{

0, 10−2, 10−1, ..., 102
}

. The results are shown in Figure 1 (a), we can see that when α = 1, we get
the best accuracy, this illustrates that the regularization item is effective. Also, we first fix α = 1
and select β from the range of {0, 1, ..., 4}. As we can see from Figure 1 (b), when β = 2, we
obtain the best results, this indicates that constraining the distribution of target domain contained in
the distribution of source domain can reduce the label-irrelevant information. This also proves the
effectiveness of the proposed information-theoretical based framework. Note that when β = 4, the
accuracy is the lowest, we can conclude that if the relaxed constraint is too loose, then an amount of
task-relevant information will also be discarded.

7 CONCLUSIONS

In this paper, we first give an analysis of the traditional representation learning based domain
adaptation methods based on information theory. We prove that the representation of the target
domain data learned by traditional methods is not discriminative. To improve the problem, we
propose a new information-theoretical based framework. We provide a theoretical analysis to this new
framework to verify the effectiveness. Then, we derive the proposed method called domain-invariant
representation learning with global and local consistency (RLGLC). RLGLC consists of two modules
including the global consistency module and local consistency module. We also give a theoretical
analysis that RLGLC is conducive to minimize the Bayes error rate. Experiment results on four
domain adaptation datasets show the effectiveness of the proposed method.

9



Under review as a conference paper at ICLR 2022

8 ETHICS STATEMENT

All data used in this paper is public. References we cited related to the dataset is also public. This
paper do not involve human subjects and do not have potentially harmful insights. Also, this paper do
not have discrimination/bias/fairness concerns and do not involve privacy and security issues.

9 REPRODUCIBILITY STATEMENT

The implementation details of our proposed RLGLC are shown in subsection 6.1 and subsection A.1.
For theoretical results, clear explanations of any assumptions and a complete proof of the claims can
be included in the appendix. For the code of this paper, we will make it public after the article is
finally accepted.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

All experiments are implemented with PyTorch and optimized by the Adam optimizer. All hyper-
parameters are fixed. For a fair comparison, we use the same network architecture as the compared
methods on each dataset. Specifically, the backbone in the Office-31 dataset, the Office-Home
dataset, and the Digits dataset is set to ResNet-50, the backbone in the VisDa-2017 dataset is set
as ResNet-101. For all datasets, the backbone is first fine-tuned by pretraining on ImageNet. The
hyperparameter τ in the RCL is set to 2.5, and the hyperparameter λ in the AR-WWD is set to 10.
The f that is named as the critic in AR-WWD is implemented by a convolutional neural network
with 3 hidden layers and leaky ReLU activations. For all tables, the ’Avg’ represents the average
classification accuracy of all specific transfer tasks

A.2 PROOFS

Proposition A.1. Based on Definition 4.1, we can obtain: I (Xu;Zu) = I (Xu;Y ) = I (Zu;Y ).

Proof.
I (Xu;Y |Zu )
= I (Xu;Y )− I (Xu;Y ;Zu)
= I (Xu;Y )− I (Y ;Zu)− I (Zu;Y |Xu )
= I (Xu;Y )− I (Y ;Zu)

(15)
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I (Zu;Y |Xu )
= I (Zu;Y )− I (Zu;Y ;Xu)
= I (Zu;Y )− I (Y ;Xu)− I (Zu;Y |Xu )
= I (Zu;Y )− I (Y ;Xu)

(16)

Because I (Xu;Y |Zu ) = I (Zu;Y |Xu ) = 0, therefore, we have I (Xu;Zu) = I (Xu;Y ) =
I (Zu;Y ).

Proposition A.2. I(Zs;Zt) = I(ZsZt;Y ) = I(Zs;Y ) = I(Zt;Y ).

Proof. Since Zs is a represenntation of Xs, we have I (Y ;Zs |XtXs ) = 0, therefore:

I (Y ;Xs |Zs )
= I (Xs;Y |XtZs ) + I (Xs;Xt;Y |Zs )
= I (Xs;Y |Xt )− I (Xs;Zs;Y |Xt ) + I (Xs;Xt;Y |Zs )
= I (Xs;Y |Xt )− I (Zs;Y |Xt ) + I (Zs;Y |XtXs ) + I (Xs;Xt;Y |Zs )
≤ I (Xs;Y |Xt ) + I (Zs;Y |XtXs ) + I (Xs;Xt;Y |Zs )
= I (Xs;Y |Xt ) + I (Xs;Xt;Y |Zs )
= I (Xs;Y |Xt ) + I (Xs;Xt |Zs )− I (Zs;Zt |ZsY )
≤ I (Xs;Y |Xt ) + I (Xs;Xt |Zs )

(17)

Similarly, we have I (Y ;Xt |Zt ) ≤ I (Xt;Y |Xs ) + I (Xs;Xt |Zt ).

Then, we have I (Xs;Y |Xt ) + I (Xs;Xt |Zs ) = I (Xs;Xt |Zt ) and I (Xt;Y |Xs ) +
I (Xs;Xt |Zt ) = I (Xs;Xt |Zs ). Therefore, I (Xs;Xt |Zs ) = 0⇒ I (Xs;Y |Zs ) = 0.

Then, we have:

I (Y ;Xs)
= I (Y ;Zs |XsXt ) + I (Y ;XsXt;Zs)
= I (Y ;XsXt;Zs)
= I (Y ;XsXt)− I (Y ;XsXt |Zs )
= I (Y ;XsXt)− I (Y ;Xs |Zs )− I (Y ;Xt |ZsXs )
= I (Y ;XsXt)− I (Y ;Xs |Zs )− I (Y ;Xt |Xs ) + I (Y ;Xt;Zs |Xs )
= I (Y ;XsXt)− I (Y ;Xs |Zs )− I (Y ;Xt |Xs ) + I (Y ;Zs |Xs )− I (Y ;Zs |XsXt )
= I (Y ;XsXt)− I (Y ;Xs |Zs )− I (Y ;Xt |Xs ) + I (Y ;Zs |Xs )
≥ I (Y ;XsXt)− I (Y ;Xs |Zs )− I (Y ;Xt |Xs )
> I (Y ;XsXt)− I (Y ;Xs |Xt )− I (Xs;Xt |Zs )− I (Y ;Xt |Xs )

(18)

Similarly, we have I (Y ;Xt) ≥ I (Y ;XsXt)− I (Y ;Xs |Xt )− I (Xs;Xt |Zt )− I (Y ;Xt |Xs ).

Then, we have:

I (Y ;Xt)
≥ I (Y ;XsXt)− I (Y ;Xs |Xt )− I (Xt;Xs |Zs )− I (Xt;Y |Xs )
= I (Y ;XsXt)− I (Xt;Xs |Zs )
= I (Y ;XsXt)

(19)

Since I (Y ;Xt) ≤ I (Y ;XsXt) is a consequence of the data processing inequality, we conclude that
I (Y ;Xt) = I (Y ;XsXt). Similarly, we can have I (Y ;Xs) = I (Y ;XsXt). Therefore, we have
I(Zs;Zt) = I(ZsZt;Y ) = I(Zs;Y ) = I(Zt;Y ).

Theorem A.1. Suppose the representations for source domain and target domain are obtained by
minimizing the objective function (2). Then, Zs is with the discriminability, compressibility, and
transferability, while Zt is only with compressibility and transferability.

Proof.
I (Xs;Zs |Xt )

= EXs,Xt∼P (Xs,Xt)EZs∼P (Zs|Xs )

[
log P (Zs|Xs )

P (Zs|Xt )

]
= EXs,Xt∼P (Xs,Xt)EZs∼P (Zs|Xs )

[
log P (Zs|Xs )P (Zt|Xt )

P (Zs|Xt )P (Zt|Xt )

]
= KL (P (Zs |Xs ) ‖P (Zt |Xt ) )−KL (P (Zt |Xs ) ‖P (Zs |Xt ) )
≤ KL (P (Zs |Xs ) ‖P (Zt |Xt ) )

(20)
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Similarly, we can obtain: I (Xt;Zt |Xs ) ≤ KL (P (Zt |Xt ) ‖P (Zs |Xs ) ). Because that mini-
mizing KL (P (Zt |Xt ) ‖P (Zs |Xs ) ) and KL (P (Zs |Xs ) ‖P (Zt |Xt ) ) equal to minimize the
Wasserstein distance between the distribution P (Zs |Xs ) and the distribution P (Zt |Xt ). Also, we
can know that I (Xs;Zs |Y ) = I (Xt;Zt |Y ). So, we can obtain that minimizing the first term in
the objective 2 equals to make the learned sample feature representations of both domain to be with
compressibility, and transferability. Minimizing the second term in the objective 2 can result that
the learned sample feature representations of source domain to be with discriminability. But there is
no obvious term to constrain the learned sample feature representations of target domain to be with
discriminability.

Theorem A.2. Maximizing I (Zt;Ztss) while minimizing D
(
Pφt , P

φ
tss

)
can make the learned

feature representation of the target domain sample be with discriminability.

Proof. compared the objective 5 with the objective 2, we can see that there are two additional terms
in objective 5. We can directly see that maximizing the I (Zt;Ztss) is to make the learned sample
feature representations of target domain to be with discriminability and minimizing theD

(
Pφt , P

φ
tss

)
can be regard as to make the learned sample feature representations of target domain to be with
compressibility and transferability.

Theorem A.3. For an arbitrary learned feature representation Zt, then we have: Pe = Th
(
P̄e
)

with
P̄e ≤ 1− exp [−H (Y ) + I (Xt;Zt |Xs ) + I (Xs;Zt)] (21)

Proof. From the Feder & Merhav (1994), we can obtain that

− log (1− Pe) ≤ H (Y |Zt ) (22)

Because we have

H (Y |Zt ) = H (Y )− I (Zt;Y )
I (Zt;Y ) = I (Xt;Zt)
I (Xt;Zt) = I (Xt;Zt |Y ) + I (Zt;Y ) = I (Xt;Zt |Xs ) + I (Xs;Zt)

(23)

Therefore, we can obtain

P̄e ≤ 1− exp [−H (Y ) + I (Xt;Zt |Xs ) + I (Xs;Zt)] (24)

Next, by definition of the Bayes error rate, we know 0 ≤ Pe ≤ 1− 1
|T | .
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