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ABSTRACT

Few-Shot Object Detection (FSOD) aims to detect novel concepts given abun-
dant base data and limited novel data. Recent advances propose an offline mining
mechanism to discover implicit novel instances, which exist in the base dataset,
as auxiliary training samples to retrain a more powerful model. Nonetheless, the
offline mined novel instances remain unchanged during retraining, thus hindering
further improvements. A straightforward alternate adopts an online mining mech-
anism that employs an online teacher to mine implicit novel instances on the fly.
However, the online teacher relies on a good initialization which is non-trivial in
the scenarios of FSOD. To overcome the obstacles, we present Mining Implicit
Novel Instances (MINI), a framework that unifies the offline mining mechanism
and online mining mechanism with an adaptive mingling design. In offline min-
ing, MINI leverages an offline discriminator to collaboratively mine implicit novel
instances with a trained FSOD model. In online mining, MINI takes a teacher-
student framework to simultaneously update the FSOD network and the mined im-
plicit novel instances on the fly. In adaptive mingling, the offline and online mind
implicit novel instances are adaptively combined, where the offline mined novel
instances warm up the early training and the online mined novel instances grad-
ually substitute the offline mined instances to further improve the performance.
Extensive experiments on PASCAL VOC and MS-COCO datasets show MINI
achieves new state-of-the-art performance on any shot and split of FSOD tasks.
All code will be made available.

1 INTRODUCTION

Few-Shot Object Detection (FSOD), which aims to train an object detector with abundant data on
base classes and few shot samples on novel classes, has invoked great interest. Current FSOD
methods mostly follow a pretrain-transfer paradigm, which first pre-trains the object detector on the
base classes and then finetunes the model with few shot samples of novel classes with freezing most
its parameters. Although various methods have been proposed following this paradigm, including
meta-learning (Yan et al., 2019; Xiao & Marlet, 2020; Fan et al., 2020), metric learning (Karlinsky
etal., 2019; Li et al., 2021a), and fine-tuning (Wang et al., 2020; Cao et al., 2021; Sun et al., 2021),
their performance are limited in two aspects. (1) Data Scarcity. The scarce novel samples fail
to provide a sufficient diversity of novel classes, making FSOD models tend to overfit few shot
samples. (2) Implicit Novel Instances. Due to the co-occurrence between base and novel classes on
benchmark datasets, the object detector pre-trained on base classes is learned to treat the co-occurred
novel instances as backgrounds.

Motivated by these observations, recent advances (Li et al., 2021b; Kaul et al., 2022) propose to
discover and leverage these implicit novel instances, which exist in the base dataset, with an offline
mining mechanism as in Fig. 1(a). It first trains an FSOD model to mine implicit novel instances,
which will be verified by an external model and then be taken as auxiliary training samples to re-
train the detector. In this way, the enriched training samples greatly promote the discriminative
ability of the network on novel classes. Despite substantial progress, the offline mining mechanism
is imperfect, where the mined novel instances are sourced from a noisy FSOD detector and remain
unchanged during re-training. It lacks a mechanism to upgrade the mined novel instances as the
network improves during re-training, hindering further performance improvement.
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Figure 1: Comparison between different mining mechanisms. (a) Offline mining. The offline teacher first mines
implicit novel instances from the train set, which will be verified by an external model and then be taken as
auxiliary training samples to re-train the student model. These mined novel instances remain unchanged during
re-training. (b) Online mining. It first trains a FSOD model to initialize the teacher and student model. The
online teacher mines implicit novel instances at each training iteration, and the weight of the teacher model
is updated by the student via EMA. Because the teacher is initialized from a poor-learned FSOD detector, the
mined novel instances can be very noisy. (¢) MINI. MINI unifies an offline mining mechanism and an online
mining mechanism via an adaptive mingling design. The offline mined instances warm up the early training
of the online teacher. The online mined novel instances gradually substitute the offline instances to further
improve the performance.

A straightforward alternate is performing pseudo labeling on the fly, named online mining mecha-
nism, as shown in Fig.1(b). Similar to Semi-Supervised Object Detection (SSOD) (Liu et al., 2021),
it first trains a FSOD model to initialize the teacher and student model. The online teacher then
mines novel instances at each training iteration as pseudo labels to supervise the student model, and
the weight of the teacher model is updated by the student model via EMA (Kingma & Ba, 2014).
However, we observe that it is challenging to apply the above online mining mechanism in the sce-
nario of FSOD. Due to the limited performance of the initial FSOD model on novel classes, the
online teacher that initialized from such a poor-learned model mines very noisy novel instances at
the beginning, hence diverging the training.

Towards the aforementioned drawbacks, this paper proposes a framework called Mining Implicit
Novel Instances (MINI) that significantly improves the FSOD performance via mining reliable im-
plicit novel instances as pseudo labels. The contributions of MINI are two-fold. First, MINI unifies
the offline mining mechanism and the online mining mechanism with an adaptive mingling de-
sign, as shown in Fig. 1(c). Second, MINI introduces several effective designs to improve the quality
of mined implicit novel instances in both offline and online mining mechanisms. Specifically, 1) in
the offline mining mechanism, MINI leverages an offline discriminator to calibrate the classifica-
tion confidences on each novel class of the initial few-shot detector. An adaptive threshold scheme
is then applied to find a class-wise threshold to filter unreliable mined instances. 2) In the online
mining mechanism, MINI takes a teacher-student framework to simultaneously update the FSOD
network and the mined implicit novel instances on the fly. An IoU branch is adopted to distinguish
the mined novel instances that are precisely localized. 3) In the adaptive mingling design, the offline
mined and online mined implicit novel instances are adaptively combined, where the offline mined
novel instances warm up the early training and the online mined novel instances gradually substitute
the offline mined instances to further improve the performance.

We extensively evaluate MINI on Pascal VOC (Everingham et al., 2010) and MS COCO (Lin et al.,
2014) benchmarks, and achieve new SOTA performance for all settings. Concretely, we improve the
current SOTA performance (novel AP50) by 8.6,7.9,4.7,5.3,8.1 and 9.7, 7.1, 8.9, 6.8, 9.9 and 8.9,
8.2,5.0,4.7,6.7 for K=1, 2, 3,5, 10 on novel split 1, 2 and 3, respectively. Even on the challenging
COCO split, we push the limit of the envelope performance (novel mAP) by 2.4 and 2.8 for K = 10
and 30, respectively, which demonstrates the effectiveness of the proposed MINI.

2 RELATED WORK

2.1 FEW-SHOT OBJECT DETECTION

Few-Shot Object Detection(FSOD) aims to detect novel concepts given abundant base data and
limited novel data. One main line of FSOD methods is meta-learning based approaches (Karlin-
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sky et al., 2019; Kang et al., 2019; Yan et al., 2019; Xiao & Marlet, 2020; Fan et al., 2020; Li
etal., 2021a; Zhang et al., 2021; Hu et al., 2021). FSRW (Kang et al., 2019) and Meta R-CNN (Yan
etal., 2019) introduce feature re-weighting to one-stage and two-stage detectors, respectively. Meta-
Det (Wang et al., 2019) disentangles the learning of category-specific and category-agnostic compo-
nents. FSIW (Xiao & Marlet, 2020) improves FSRW (Kang et al., 2019) with more complex feature
aggregation module and unify few-shot object detection and viewpoint estimation. The second line
is fine-tuning based approaches (Wang et al., 2020; Sun et al., 2021; Li et al., 2021b; Fan et al.,
2021; Cao et al., 2021; Qiao et al., 2021). TFA (Wang et al., 2020) firstly introduces a simple base-
training and few-shot fine-tuning paradigm. FSCE (Sun et al., 2021) improves the TFA baseline
by fine-tuning more layers and brings batch contrastive learning to FSOD. FADI (Cao et al., 2021)
divides the fine-tuning stage into association and discrimination to attain a more discriminative clas-
sifier. DeFRCN (Qiao et al., 2021) devises GDL and PCB to alleviates the potential contradictions
of Faster R-CNN (Ren et al., 2015) in FSOD. Another line is mining-based approaches, which aim
to discover and utilize the implicit novel instances in the base dataset. (Li et al., 2021b) proposes
a semi-supervised distractor utilization loss to assign positive gradients to these implicit novel in-
stances. (Kaul et al., 2022) performs a pseudo-labeling technique to offline mine implicit novel
samples and take them as extra training samples. MINI significantly boosts the performance and
differs from (Kaul et al., 2022) with several key designs: 1) (Kaul et al., 2022) follows an offline
mining mechanism, while MINI unifies the offline and online mining mechanisms with an adaptive
mingling design. 2) (Kaul et al., 2022) leverages an offline discriminator to verify and eliminate
the misclassified mined novel instances, while our offline discriminator co-mining can help to mine
missed novel instances by the FSOD model. 3) (Kaul et al., 2022) adopts a fixed threshold for all
novel classes, while MINI employs an adaptive threshold that varies across different novel classes.

2.2 SEMI-SUPERVISED OBJECT DETECTION

Semi-Supervised Object Detection (SSOD) aims to train a detector with limited labeled data and
abundant unlabeled data. There are two lines of methods, the consistency methods (Jeong et al.,
2019; Tang et al., 2021a) and pseudo label methods (Sohn et al., 2020; Tang et al., 2021b; Liu et al.,
2021; Zhou et al., 2021; Xu et al., 2021). CSD (Jeong et al., 2019) enforces a consistency loss
between the original image and the horizontally flipped one. STAC (Sohn et al., 2020) proposes a
simple pseudo-labeling framework, which trains the model with highly confident pseudo labels with
strong augmentations. Unbiased Teacher (Liu et al., 2021) finds the bias existed in pseudo labels
due to over-fitting and class imbalance, hence introducing EMA and Focal Loss (Lin et al., 2017b)
to resolve them. There are many subsequent variants (Tang et al., 2021b; Zhou et al., 2021; Xu et al.,
2021). The online mining mechanism in MINI shares similar ideas with pseudo labeling methods,
but it is not feasible to directly apply SSOD methods. Due to the data scarcity and implicit novel
instances problem, the poor-learned teacher model cannot well discover potential novel instances.
Moreover, SSOD methods usually rely on a heuristics confidence threshold which fails to guarantee
the quality of mined novel instances in FSOD scenario. Hence we propose MINI to better tackle it.

3 OUR APPROACH

In the conventional few-shot object detection (FSOD), there exist two non-overlapping training sets,
i.e., a base dataset D and a novel dataset D™. There are abundant images {x%} in the base dataset

DP. Each base image z? has exhaustively annotated bounding boxes B? = {bf; } of each base
class ¢ € C°, where bfjb indicates the j-th bounding box of the base class ¢’ on the image x%. In
the novel dataset D™, there are K-shot annotated sample pairs {(2f",b¢ )} for each novel class
" € O™, with k < K. Specifically, (xzn, bin) indicates the k-th sample that comprises of an image

and a box in novel class ¢™. The ultimate goal of FSOD is to optimize a robust detector to detect
objects in a test set that comprises both classes in C? U C™.

In this work, we propose Mining Implicit Novel Instances (MINI), a framework that significantly
improves the FSOD performance via mining reliable implicit novel instances as auxiliary training
samples of novel classes. As shown in Fig. 2, we first train a FSOD model as an initial miner
(Sec. 3.1). In the offline mining mechanism (Sec. 3.2), MINI leverages an offline discriminator to
collaboratively mine implicit novel instances with the initial FSOD model. The unreliable mined
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Figure 2: Method Overview. MINI mines implicit novel instances with unified offline and online mining
mechanisms. The pipeline of MINI is following: 1) An FSOD detector is used to discover initial implicit novel
instances. The offline mining mechanism leverages an offline discriminative model to calibrate classification
confidences of these mined novel instances. 2) In the online mining mechanism, the teacher model mines
implicit novel instances at each training iteration. 3) The offline and online mined novel instances are combined
with an adaptive mingling design. 4) The student model takes implicit novel instances as ground-truths and
updates the parameters of the teacher model via EMA.

novel instances will be filtered out by a class-wise adaptive threshold scheme. In the online mining
mechanism (Sec. 3.3), MINI employs a teacher-student framework to simultaneously update the
FSOD network and mine implicit novel instances on the fly. In adaptive mingling design (Sec. 3.3),
MINI combines and adaptively balances the offline and online mined instances, where the offline
mined novel instances dominate the early stage of training, while the proportion of the online mined
novel instances gradually increases.

3.1 FSOD DETECTOR AS INITIAL MINER

In this section, we aim to obtain an object detector that has some basic ability to recognize novel
classes. The initial FSOD network can be readily instantiated with different FSOD algorithms. For
simplicity, we adopt the widely used TFA (Wang et al., 2020) in this work, which divides the whole
training pipeline into two independent stages as follows,

Base Model Training Stage In the first base training stage, the whole model, including the box
predictors (i.e., the classifier and regressor) and the feature extractor (i.e., the rest of the network)
are jointly trained on the base dataset D® with abundant annotations of base classes. To this end, the
base model learns a general feature representation ability and is ready to transfer to novel classes.

Few-Shot Fine-tuning Stage In the second few-shot fine-tuning stage, only the box predictor is
fine-tuned on a small balanced training set that comprises both base and novel classes. The feature
extractor will be frozen to preserve the pre-trained general knowledge and prevent the potential
over-fitting on the scarce novel set.

3.2 OFFLINE MINING MECHANISM

After initializing, a FSOD model M? that can detect novel categories. In this section, we aim to
discover implicit novel instances from the base dataset D® with M* in an offline manner. Specifi-
cally, we perform inference of M over each base set image x2 € D°. The mining process can be
formulated as follows,

Py= N (@@l), Y =¢RNN @l ), HP = {y}]si; >= 6} . (1)

The RPN ¢/*F'N first predicts a set of proposals P;, the R-CNN ¢V N classifies and regresses
each proposal p;; € P;, then some post-processing procedures, e.g., NMS, are applied to yield
the inference results Y;" = {(s;;, b;;,l;;)} on novel classes C", where s;;, b;;,l;; denotes the pre-
dicted score, bounding box and label of j-th candidate instance on i-th image, respectively. A score
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Figure 3: Pipeline of offline mining mechanism. Offline discriminator first extracts class prototypes from D".
The FSOD model performs inference on D?, the offline discriminator calibrates its scores via calculating cosine
similarities between the class prototypes and the box features. Adaptive thresholding then computes class-wise
statistics from calibrated boxes to determine a proper threshold to filter low-quality mined instances.

confidence threshold ¢ is set to harvest boxes with high confidence in Y;”. The selected instances
H} = {yz |si; >= 0} can then be used as the offline mined novel instances.

To determine the offline mining threshold 6, a simple solution may use a fixed high threshold to
filter out unreliable boxes, but it is not feasible for FSOD. The severe data scarcity and extreme
class imbalance make the predicted novel scores of M?* exhibit a large variance and tend to be
generally low, hence the fixed high confidence threshold fails to deal with different novel classes.
On the other hand, the pervasive misclassification of the novel classifier of M® results in massive
false positives in H*. Towards the aforementioned drawbacks, we introduce co-mining with offline
discriminator to promote the discriminative ability of the classifier. An adaptive thresholding is
also introduced to find a proper threshold for different novel classes.

Co-Mining with Offline Discriminator Given merely the novel class training samples of K-
shots, it is challenging to acquire a discriminative classifier. Inspired by (Qiao et al., 2021; Kaul
et al., 2022), we propose to leverage an offline discriminative model M d e, g., MoCo v2 (Chen
et al., 2020), to mine implicit novel instances with the initial FSOD model M*® collaboratively.

As shown in Fig. 3, given K novel samples {(le ) )} for the novel class ¢' € C™ from the novel

e
k

then employ RolAlign (He et al., 2017) to extract the area bounded by the ground-truth box bzr as

follows, B B
NN Z

where f,jr denotes the feature embedding of k-th novel sample, the class prototype p°  is the mean
feature over all K instances for the class ¢j*. During inference in Equ. 1, the RPN first predicts a
set of proposals P;. We then compute the feature embedding f; of Jj-th proposal p;; € F; on i-th

dataset D", we first forward the novel set image z;' through the offline discriminative model M ¢,

n
A

1 = RolAlign(M*(x

,C’

2

base set image x% € DP similar to Equ. 2, and cosine 51m11ar1ty score is computed with the class

prototype 5 for each novel class s
T b ﬁcf

£ H 1Pt
i

= RolAlign(M%(z?), pi;) , cosfjf =

; 3)

where 7 is a temperature factor. We concatenate all cosine similarities of N novel classes and apply
the calibration as follows

C"'L A~
cos;; = [cos ,cos; N1, Y

8ij = \/COSij "~ Sij 4 = {(8i5,bij: lij)} , “)
| denotes concatenation operation. It is noted we only apply the calibration to each novel
{(845, bij, lig) }-

e
where [ - -
class. To this end, the inference results will be updated to )Afl" =

Adaptive Thresholding To filter out candidate instances of low quality in Yi”, we propose an
adaptive thresholding scheme to obtain a proper ¢ according to the class-wise score distributions.
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As shown in Fig. 3, for each novel classes ¢; € C", we first extract its candidate instances set
Y = {85 b5} from Y;™. After then, the mean p¢ and deviation 0" will be computed based on

classification scores {5' }. To this end, we can compute the final confidence threshold and harvest
high-quality predict results as follows,
n n n on o " on

0 = p fa-o, Ht ={y' |8 >=0"}, H'={H;'}, (5)
where « is a coefficient that controls the magnitude of deviation offset to decide the number of kept
instances. It is noted we further clamp the maximum number to be N,,, .. Intuitively, the score mean
puft is a measure of the transferring hardness of novel class ¢, and o indicates the compactness
of intra-class score distribution. The §¢" leverages both the ' and o to adaptively distinguish
the reliable implicit novel instances without introducing computational cost.

3.3 ONLINE MINING MECHANISM AND ADAPTIVE MINGLING DESIGN

With the offline mined implicit novel instances H", we are ready to re-train a new detector with
satisfactory performance on novel classes. However, these instances are sourced from a static offline
teacher M*® with limited precision, and cannot be updated as the model improves, which hinders
further performance improvements. Hence we introduce an online mining mechanism to update
H™ on the fly. Specifically, we adopt a teacher-student learning paradigm as shown in Fig. 2. The
teacher shares the same network architecture with the student model. During training, the teacher
mines implicit novel instances I™ at each training iteration, and its parameters are updated by the
student via EMA. The slowly updated teacher can be considered a temporal model ensemble of the
student at different iterations, hence detecting implicit novel instances more accurately.

Nevertheless, the teacher is initialized from M?® of limited precision on novel classes, the online
mined novel instances I™ can be very noisy, especially at the beginning of the training. Thus,
we devise an adaptive mingling scheme to combine the offline and online mined novel instances,
where the offline mined novel instances H™ warm up the early training and the online mined novel
instances /"™ gradually substitute the offline mined instances to further improve the performance. We
also introduce an IoU branching mechanism to improve the quality of online mined novel instances.

Adaptive Mingling Design During training, given a base set image x%, the teacher first online
mines novel instances I;* with a similar procedure with Equ. 1, and we mingle the online mined
novel instances I* with the offline mined novel instances H;* as follows,

Y= tONN (@b [P, HY)) I = {yllsy >=0}, I;=NMS(I},H). (6

We concatenate H;* with P; and I]* before and after the R-CNN head, respectively. Here P; is RPN
proposals predicted by the teacher model. We argue these two concatenations play an important role
from two aspects. 1) At the beginning of the training, due to the poor-learned RPN and R-CNN, the
high confidence threshold § can filter out almost all of the novel instances, so that I]* degrades to an
empty set, hence only H* is remained to provide training signal to warm up the beginning training
of the student. 2) As the training process proceeds, the online teacher becomes more and more
discriminative. By presenting H;* as extra proposals, the R-CNN head of the teacher will calibrate
some misclassification and also discover missed instances in H,’. The mingled novel instances I’
of novel classes C™ will then be combined with annotations B? of base classes C® as ground-truths
during the training of the student model.

IoU Branching Correction To further improve the quality of online mined novel instances, we
notice the model trained under low data regime cannot well recognize precisely-localized boxes,
hence we introduce IoU Branching mechanism to better mine high-quality novel instances. Specifi-
cally, we introduce an extra IoU branch that parallels to the original R-CNN head to learn to predict
the IoU between predicted boxes and ground truths. The structure is the same as the original R-CNN
branch, i.e., two fully-connected (FC) layers and followed by an IoU predictor (a single FC layer).
During mining, we combine the classification scores with IoU scores in Equ. 1 as follows,

81 = /85 -iougy , I = {yislsi; >= 6}, (7N

where iou;; denotes the predicted IoU score of j-th proposal on i-th image. A standard MSE loss is
adopted to optimize the IoU branch. All modules of the R-CNN head are jointly optimized by the
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following loss in an end-to-end manner:
LroNN = Les + Lreg + B Liov ®)
where 3 denotes the loss weight of the loss of the ToU branch.

Finetuning on Few Shot Novel Samples After training FSOD model on mined implicit novel in-
stances with optimizing all parameters, our MINI has achieved strong performance on novel classes.
Due to the mined novel instances inevitably have some noise, we can further boost the performance
of MINI via finetuning on few shot novel ground-truth. Specifically, we finetune the box predictor
of MINI on a small balanced training set of both base and novel ground-truth, finally achieving new
state-of-the-art performance on FSOD tasks.

4 EXPERIMENTS

In this section, we first outline the datasets and benchmark protocols in Sec 4.1, the implementation
details in Sec 4.2. Then, we compare our approach with the latest methods of FSOD in Sec 4.3.
Finally, we make an extensive ablation study about different components in Sec 4.4.

4.1 DATASETS AND EVALUATION PROTOCOLS

We follow the same data split and evaluation protocols used in (Wang et al., 2020) for fair com-
parisons. All experiments are evaluated on both PASCAL VOC (Everingham et al., 2010) and MS
COCO (Lin et al., 2014) datasets. Please refer to Appendix G for the detailed protocols.

4.2 IMPLEMENTATION DETAILS

We implement our method based on MMDetection (Chen et al., 2019) and MMFewShot (mmfew-
shot Contributors, 2021). We employ the Faster R-CNN (Ren et al., 2015) with Feature Pyramid
Network (Lin et al., 2017a) and ResNet-101 (He et al., 2016) as base model. Please refer to Ap-
pendix F for the detailed settings.

4.3 MAIN RESULTS

In Table 1, we compare MINI with latest FSOD methods on the PASCAL VOC benchmark. In all
splits and shots, MINI achieves new SOTA performance and outperforms the second-best by a large
margin. Specifically, MINI boosts the current SOTA by 8.6, 7.9, 4.7, 5.3, 8.1 and 9.7, 7.1, 8.9, 6.8,
9.9 and 8.9, 8.2, 5.0, 4.7, 6.7 for shot 1, 2, 3, 5, 10 on novel split 1, 2 and 3, respectively. The
significant performance improvements are consistent across different shots and splits. Compared
with the offline mining counterpart (Kaul et al., 2022) (third-to-last line of Table 1), MINI boosts
the performance by 17.5, 21.0, 13.6, 11.5, 10.5 and 19.0, 24.4, 11.6, 12.3, 13.1 and 16.6, 13.8, 9.0,
7.3 and 10.8 for shot 1, 2, 3, 5, 10 on novel split 1, 2 and 3, respectively. Similar performance gains
can be observed on the MS COCO benchmark. As shown in Table 2, MINI outperforms all FSOD
methods by a large margin with the COCO-style AP metric. Concretely, our method achieves 21.8
and 27.3 and boosts the SOTA performance by 2.4 and 2.8 for K = 10 and 30, respectively. The
superior performance on both datasets suggests MINI can generalize well under different datasets.
Besides, we also explore the cross dataset setting that we mine extra novel instances from some
external unlabeled datasets, which further boost the performance, e.g., boost from 21.8, 27.3 to
23.6, 29.3 for COCO shot 10 and 30, respectively. Please refer to Appendix B for details.

4.4 ABLATION STUDY

In this section, we conduct thorough ablation studies on each component of our approach. Unless
otherwise specified, all experiments are conducted on novel split 1 of PASCAL VOC benchmark.

Component Analysis Table 3 shows the effectiveness of each component. We start with the pure
offline mining baseline (first row on the left) with a fixed confidence threshold 0.7, which improves
the TFA baseline (third row in Table 1) on high-shots but degrades the performance on low-shots.
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Table 1: Performance (novel AP50) across three splits on PASCAL VOC dataset. Red/Blue denote best and
second-best results, respectively

Novel Split 1 Novel Split 2 Novel Split 3
1 2 3 5 10| 1 2 3 5 10| 1 2 3 5 10

FSRW (Kang et al., 2019) ICCV 19148 155 26.7 339 472|157 153 22.7 30.1 40.5|21.3 25.6 284 428 459
Meta R-CNN (Yan et al., 2019) ICCV 19 |19.9 255 35.0 45.7 51.5|10.4 194 29.6 348 454|143 182 275 412 48.1
TFA w/ cos (Wang et al., 2020) ICML 20 |39.8 36.1 44.7 55.7 56.0|23.5 26.9 34.1 35.1 39.1|30.8 34.8 42.8 49.5 49.8

Method/Shot

MPSR (Wu et al., 2020) ECCV20|4177 - 514 552 618|244 - 392 399 478|356 - 423 48.0 49.7
FSCE (Sun et al., 2021) CVPR 211|442 438 51.4 619 634|273 29.5 435 442 502|372 419 475 54.6 585
SRR-FSD (Zhu et al., 2021) ~ CVPR 21|47.8 50.5 51.3 552 56.8|32.5 35.3 39.1 40.8 43.8|40.1 41.5 443 469 464
CME (Li et al., 2021a) CVPR 21415 475 504 582 60.9|27.2 30.2 41.4 425 46.8|34.3 39.6 45.1 483 51.5

FADI (Cao et al., 2021) NeurIPS 21 |50.3 54.8 542 59.3 63.2|30.6 35.0 40.3 42.8 48.0|45.7 49.7 49.1 55.0 59.6
DeFRCN (Qiao et al., 2021) ICCV 21|53.6 57.5 61.5 64.1 60.8|30.1 38.1 47.0 53.3 47.9|484 509 523 549 574
Label, Verify (Kaul et al., 2022) CVPR 22 |54.5 53.2 58.8 63.2 65.7|32.8 29.2 50.7 49.8 50.6 |48.4 52.7 55.0 59.6 59.6
Multi-Faceted (Wu et al., 2022) ECCV 22 | 63.4 66.3 67.7 69.4 68.1|42.1 46.5 53.4 553 53.8|56.1 58.3 59.0 62.2 63.7
MINI (Ours) 72.0 74.2 72.4 74.7 76.2|51.8 53.6 62.3 62.1 63.7|65.0 66.5 64.0 66.9 70.4

Table 2: Performance on MS COCO dataset. Red/Blue denote best and second-best results, respectively

nAP nAP50 nAP75 nAP nAP50 nAP75
Method ‘ 1030 ‘ 1030 ‘ 1030 ‘Me‘h"d ‘ 10 30 ‘ 1030 | 10 30
Meta R-CNN (Yan ctal, 2019) | 8.7 124 [19.1 253| 6.6 10.8 | FADI (Cao ctal, 2021) 122 161|227 291|119 158
TFA w/ cos (Wang et al., 2020) | 10.0 13.7|19.1 24.9| 9.3 13.4| DeFRCN (Qiao et al., 2021) 185 226| - - - -
MPSR (Wu et al., 2020) 98 14.1[17.9 254| 97 142 Label (Kaul et al., 2022) 178 245|309 41.1|17.8 250
SRR-FSD (Zhu ctal, 2021) | 113 147 (230 292| 98 135 | Multi-Faceted (Wu etal, 2022) | 19.4 227| - - |202 232
CME (Li et al., 20212) 151 169|246 28.0| 164 17.8 | MINI (Ours) 218 27.3(38.0 449|215 285

Table 3: Effectiveness of each component. ODC, AT, TS, AM, IB, FT denotes offline discriminator co-mining,
adaptive threshold, teacher-student framework, adaptive mingling, iou branching and fine-tuning, respectively

Offline nAP50 H Online ‘ FT ‘ nAP50
ODC AT 1 2 3 5 10 S AM 1B 1 2 3 5 10
X X 19.3 485 57.1 652 669 v X X X 0.0 1.8 16.7 467 449
v X 348 547 602 658 66.8 v v X X 683 71.0 70.7 713 728
X v 58.1 633 625 677 675 v v v X 69.9 725 71.7 727 738
v v 63.5 677 668 703 68.8 v v v v 720 742 724 747 76.2

Our adaptive thresholding (AT) rescues the performance degradation and improves the performance
on all shots, suggesting it is vital to set a proper threshold. Offline discriminator co-mining (ODC)
results in decent gains in lower shots but lower gain in higher shots, e.g., +5.4 and +1.3 for K =1 and
10, which suggests the offline discriminator is a good enhancement to TFA in low-shots but share a
similar discriminative ability on high-shots. We then turn to the online mining part. The pure online
mining with a teacher-student (TS) framework always fails to converge due to the noisy training
signals. Our adaptive mingling (AM) unifies the offline and online mining adaptively, stabilizing the
training process. Based on adaptive mingling, the iou branching (IB) further improves the quality of
mined instances. Finally, we fine-tune (FT) the re-trained model on the balanced set to mitigate the
side effect of the inaccurate supervision from mined implicit instances.

Hyper-parameters Ablation Please refer to Appendix H for detailed hyper-parameters ablation.

Flexibility of Adaptive Thresholding To understand how adaptive thresholding works, we study
how threshold § varies among different shots K and classes in Fig. 4. We can see J well char-
acterize the transfer hardness among different classes and shots. On the one hand, as shot grows,
the classification scores should be higher since the classifier learns better. Adaptive thresholding
decides to steadily increase § to rigorous the mined novel instances to suppress false positives. On
the other hand, the classifier tends to predict higher scores for those novel classes that are similar
to base classes (Cao et al., 2021), e.g., “bus” is an easy class since it is similar to “car”, but “bird”
is a hard class since no base class is similar to it. Therefore, adaptive thresholding decides a higher
0 for “bus” and a lower ¢ for “bird”. Such flexibility leads to the strong robustness of our adaptive
thresholding to fit in different scenarios.
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Figure 4: Adaptive threshold ¢ of different novel
classes varies on PASCAL VOC Novel Split 1

Figure 5: Comparison of the number of true pos-
itive (TP) of mined novel instances when using
different mining methods
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P e e e ke X V/ |69.572.1709 715 72.9
v v 1699 72.5 71.7 72.7 73.8

Figure 6: Percentage of offline and online
mined instances kept for training at different
iterations

Explore Offline Discriminator Co-Mining In this section, we explore how many novel instances
can be found by different mining methods. We compare TFA (Wang et al., 2020), PCB (Qiao et al.,
2021) and our Offline Discriminator Co-mining (ODC), respectively, the result is shown in Fig 5.
We only count true positives among mined novel instances that overlap a GT bounding box with
IoU >= 0.5. Although both PCB and ODC can increase the number of TPs, the increment of ODC
is more significant, especially in low-shot scenarios, e.g., +9.2, +16.0 and +30.0, +43.4 for PCB
and ODC in shots 1 and 2, respectively. This suggests the effectiveness of ODC. Please refer to
Appendix E for more detailed comparison between PCB and ODC.

Complementivity between Offline and Online Mining To understand how adaptive mingling
balances online and offline mined instances, we record the number of these two types of instances
kept after the NMS in Equ. 6 at different iterations in Fig. 6. At the beginning of the training, the on-
line teacher mines no instances and offline instances are mainly kept for training. This well explains
the first row of Tab. 4. In the second row, although introducing the offline mined novel instances
to the RPN, the performance is still bad because the pseudo labels are from the R-CNN Head of
the noisy online teacher. As the training process proceeds, online instances gradually dominate kept
instances, which demonstrates a better online teacher can discover more diverse novel instances than
the initial FSOD model. The last row of Tab. 4 shows enhancing the RPN can bring further gains.

5 CONCLUSION

In this paper, we propose Mining Implicit Novel Instances (MINI) to better tackle FSOD. MINI
unifies an offline mining mechanism and an online mining mechanism. The offline mining mecha-
nism leverages a self-supervised discriminator to collaboratively mine implicit novel instances with
a trained FSOD model. Taking the mined novel instances as auxiliary training samples, the online
mining mechanism takes a teacher-student framework to simultaneously update the FSOD model
and the mined implicit novel instances on the fly. MINI achieves new SOTA performance on various
benchmarks, which demonstrates its effectiveness.
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Table 5: Performance comparison between TFA and MINI. We use the same base and novel set as PASCAL
VOC novel splitl with the shotl setting, but we exclude images that contain a selected novel class ¢" from the
base dataset to simulate there is no co-occurred ¢, and the excluded class is marked as red. For example, the
“bird” row indicates we exclude all the images containing “bird” instances from the base dataset

(a) TFA (b) MINI

Exclude | nAP |Bird Bus Cow Motor Sofa  Exclude |[nAP|Bird Bus Cow Motor Sofa

Bird 37.2127.1 63.8 33.0 450 172  Bird 65.633.0 84.5 70.7 779 61.6
Bus 37.9]24.0 394 39.0 59.7 27,5 Bus 64.1156.9 49.1 77.1 76.5 61.1
Cow 38.5(22.6 549 43.0 549 169 Cow 65.4|57.8 84.1 46.1 77.0 62.2
Motor |36.6|18.4 57.7 41.2 427 23.0 Motor |67.5/60.6 839 73.9 523 66.8
Sofa 41.8127.3 70.0 37.1 49.3 25.1 Sofa 65.7162.4 835 758 749 32.0

Bus Motorbike Cow

Figure 7: Examples of mined similar instances from excluded class dataset, e.g., “wheel” is mined for novel
class “bus”, “bicycle” is mined for novel class “motorbike”, “horse” is mined for novel class “cow”.

APPENDIX

APPENDIX A: ROBUSTNESS OF MINI

Although co-occurrence widely exists in benchmark datasets, there may be a case that the novel
class does not co-occur with base classes. In this section, we test the robustness of MINI in such a
case. Specifically, we manually remove images that contain a selected novel class from the original
base dataset of PASCAL VOC Novel Splitl with the Shotl setting, and keep the novel dataset
unchanged. We then train a TFA and MINI on this processed dataset, the results are shown in
Table 5. Surprisingly, even the base dataset does not contain the removed novel class, our MINI can
still significantly improve the performance for the excluded class, e.g., boost nAP50 by 5.9 (from
27.1 to 33.0) for “Bird” and “9.7” (39.4 to 49.1) for bus. So what instances are mined by MINI for
these excluded novel classes? We draw some examples in Fig. 7. We can see these mined novel
instances share a strong texture or shape similarity with the exclude class, e.g., the wheel of the
base class “aeroplane” is also a part for novel class “bus”, the shape of the base class “bicycle” is
similar to the novel class “motorbike”, the texture of the base class “horse” is similar to the novel
class “cow”. We conjecture learning from these similar instances of base classes can also promote
the feature representation ability of the corresponding novel classes.

APPENDIX B: GENERALIZING TO EXTERNAL DATASETS

Currently, we only mine implicit novel instances from the base dataset, can we generalize MINI to
external unlabeled datasets in a cross-domain manner? In this section, we explore two such settings,
which adopt MS COCO (Lin et al., 2014) and Object365 (Shao et al., 2019) as external datasets for
the original base set PASCAL VOC (Everingham et al., 2010) and MS COCO, respectively. The
results are shown in Tab. 6. We adopt same hyper-parameters and mine 100 and 2000 instances on
extra datasets for each novel class in Tab. 6a and Tab. 6b, respectively. Mining only from the base
or extra set can both significantly improve the performance, but the performance of the extra set is
inferior to the base set due to the domain gap between datasets. Moreover, mining from both sets can

13
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Table 6: Generalizing MINI to mine novel instances from other unlabeled datasets

(a) PASCAL VOC (b) MS COCO
Base Set Extra Set | nAP50 Base Set  Extra Set | nAP
VOC COCO ‘ 1 2 3 5 10 COCO Object365 ‘ 10 30
X X 41.9 49.1 49.9 58.0 58.4 X X 104 147
v X 72.0 742 724 747 76.2 Ve X 21.8 273
X Ve 629 69.3 682 729 724 X v 212 264
v v 73.7 75.9 76.5 78.1 77.1 v v 23.6 29.3

Table 7: Performance comparison with pure offline and online mining on PASCAL VOC dataset

nAP50 nAP50
Method 1 2 3 5 10 Method 1 2 3 5 10
Offline, 6 = 0.5 |38.8 59.2 60.2 64.8 66.4|Online,d =05 | 39 132 15.1 11.7 6.2
Offline, § = 0.7 |19.3 485 57.1 65.2 66.9|Online, 6 =0.7 | 1.8 3.6 223 52.0 60.6
Offline, 6 = 0.9 00 7.1 16.6 22.6 57.5|Online,d =0.9 | 0.0 3.6 89 254 476
Offline, adaptive § | 58.1 63.3 62.5 67.7 67.5| Ours 72.0 74.2 724 74.7 76.2

further bring considerable gains, which demonstrates MINI can well generalize to external datasets
and discover valuable instances to enhance the original model.

APPENDIX C: COMPARISON WITH PURE OFFLINE AND ONLINE MINING

In this section, we compare MINI with pure offline and online mining mechanisms. We employ
STAC (Sohn et al., 2020) and Unbiased Teacher (UB-T) (Liu et al., 2021) as representative methods
for offline and online, respectively. As shown in Table 7, the performance of both pure offline and
online mining are far behind MINI. We adopt the same hyper-parameters setting with the official
paper except for the confidence threshold §. The original STAC adopts § = 0.9. We notice such
a high threshold can filter all novel instances, decreasing § from 0.9 to 0.5 can significantly boost
performance in lower shots, e.g., 0.0, 7.1 to 38.8, 59.2 for shots 1 and 2, respectively. But it also
degrades the performance in higher shots, e.g., nAP50 drops 0.4 and 0.5 when decreasing  from 0.7
to 0.5 for shots 5 and 10, respectively, since it will result in more false positives. Replacing the fixed
threshold with our adaptive threshold improves the performance on all shots, especially in low-shot
scenarios. For online mining, we initialize both teacher and student with TFA (Wang et al., 2020)
in the burn in stage (Liu et al., 2021). We also adopt Focal Loss (Lin et al., 2017b) as in (Liu et al.,
2021), we notice it is insufficient to resolve the severe data scarcity and extreme class imbalance
in FSOD. By adaptive mingling the offline and online mined novel instances, the proposed MINI
significantly outperforms these two counterparts, demonstrating the superiority of our method.

APPENDIX D: COMPARISON BETWEEN DIFFERENT OFFLINE DISCRIMINATORS

The offline mining mechanism leverages an offline discriminative model to collaboratively mine
implicit novel instances with the trained FSOD network, in this section we conduct a comparison
between different offline discriminators. As shown in Table 8, overall MoCo v2 is better than Ima-
geNet pre-train, especially in low-shot, e.g., K = 1, 2, 3; but slightly inferior in higher shots, e.g.,
K = 10. We adopt MoCo v2 as our offline discriminator. More powerful offline discriminators may
further improve the performance, we leave it as our future works.

APPENDIX E: COMPARISON BETWEEN OFFLINE DISCRIMINATOR CO-MINING (ODC) AND
PCB

In this section, we first revisit the inference procedure of a conventional two-stage detector, then we
compare the technique difference between Offline Discriminator Co-Mining (ODC) and PCB.
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Table 8: Performance comparison between different offline discriminators in offline mining. For ImageNet Pre-
train, we adopt a supervised-trained ResNet-50. For MoCo v2 Chen et al. (2020), we adopt a self-supervised
trained ResNet-50.

nAP50
1 2 3 5 10

ImageNet Pre-train | 62.3 672 664 703 694
MoCo v2 63.5 677 668 703 068.8

Discriminative Model ‘

TFA PCB ODC

Sheep: 0.23 + 1 S8 E Sheep: 0.15 ¥ . 88
: Cow: 0.53 1

Figure 8: Demonstration of how PCB (Qiao et al., 2021) and ODC (Offline Discriminator Co-Mining) calibrate
scores of the TFA (Wang et al., 2020) baseline. In the first row, TFA predicts the correct label “bird* for the
instance, but with low scores. Both PCB and ODC boost the corresponding score, and remain the original
correct label. In the second row, TFA predicts an incorrect label, i.e., predict “sheep” for the instance, the true
label should be “cow”. PCB can only suppress the predicted wrong scores, but can not correct the wrong label.
ODC correct the wrong label “sheep” into “cow”.

Inference Procedure For a conventional two-stage detector, e.g., Faster R-CNN (Ren et al., 2015),
the inference procedure can be formularized as follows. Given an input image x, the Region Proposal
Network (RPN) ¢f*F¥ first predicts a set of proposals P, the number of proposals is denoted as N *°,

P =" (x), |P|=N", ©)
then R-CNN Head ¢*“V classifies and regresses each proposal to yield the predicted results Y,
Y = ¢RONN(2 P), Y = {y; = (s5,b))|s: € S,b; € B}, S RN"*C BN"xCx4 " (10)

where C' denotes the number of classes, and the number of predicted scores S and boxes B equals
the number of proposals N*. Then some post-processing procedures, e.g., NMS, are applied to

yield the final detection results Y,
S’ c RNkeep B c RNkeer4 IA/ c RNk:eep (11)

where S , B , L denotes the kept predicted scores, bounding boxes and labels. The number of pre-

dicted instances equals N*°P_ which denotes the max predictions allowed per image, e.g., for MS

COCO Lin et al. (2014) N*eeP = 100. We can see the R-CNN Head determines the label in Equ. 11.

Calibration of PCB For PCB, it calibrates the scores after the R-CNN Head determines the labels.
Y = NMS(S,B), Y ={4i=($ibil)ls €5bi€B,liel},

. . . A e A (12)
S/ = PCB(IJ,Y), Y = {yil = (.§1/,bl,lz)|§zl € S/,bi S B,li S L},
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Table 9: Performance comparison between PCB (Qiao et al., 2021) and ODC (Offline Discriminator Co-
Mining) on PASCAL VOC Splitl. Online Mining is not involved here for better comparison

nAP50
1 2 3 5 10

PCB 604 648 64.1 68.1 68.2
oDC 63.5 677 66.8 70.3 68.8

Method ‘

here S’ denotes the calibrated scores by PCB. For a predicted instances y;, if the predicted label
l; is correct (top of Fig 8(b)), PCB can boost the corresponding scores. However, if the label [; is
incorrect (bottom of Fig 8(b)), PCB can only suppress the corresponding scores, but can not change
the label [;.

Calibration of ODC For ODC, it calibrates scores before the R-CNN Head determines the labels,
it modifies scores of all novel classes of each proposal as follows,

Y =¢"NN (2, P), Y = {y; = (si,b;)|s; € S,b; € B} (13)
S'=0DC(x,P,S), V' =NMS(S,B), V' ={g =@ bi)}

here S” denotes the calibrated scores of each proposal by ODC. In this way, for each predicted score
s; of a proposal, our ODC can boost the score of the correct label but suppress others, hence helping
the R-CNN heads correct the predicted labels. As shown in Fig 8(c), when TFA predicts a correct
label (top), ODC boosts the corresponding scores. Moreover, when TFA predicts an incorrect label
(bottom), ODC boosts the score of the correct label and suppress incorrect ones to help the R-CNN
Head determines the label.

Performance Comparison Table 9 compares the performance between PCB and ODC when ap-
plied to the offline mining. For a better comparison, we don’t involve online mining here. We can
see that ODC outperforms PCB on all shots, which demonstrates the superiority of our ODC over
PCB in the context of instances mining.

APPENDIX F: IMPLEMENTATION DETAILS

We implement our method based on MMDetection (Chen et al., 2019) and MMFewShot (mmfew-
shot Contributors, 2021). We employ the Faster R-CNN (Ren et al., 2015) with Feature Pyramid
Network (Lin et al., 2017a) and ResNet-101 (He et al., 2016) as base model. All models are trained
on 8 Titan-XP GPUs with batch-size 16 (2 images per GPU), and optimized by a standard SGD
optimizer with learning rate 0.02, momentum 0.9 and weight decay 10e~*. We strictly follow the
protocol introduced by TFA (Wang et al., 2020) without any modifications to initialize the M ®.
MoCo v2 (Chen et al., 2020) w/ ResNet-50 (He et al., 2016) is employed to co-mine novel instances
with FSOD model, and we take the C4 feature, i.e., the feature of the last layer of ResNet to compute
the cosine similarity. o in Equ. 5 is set to be 1.5 for all experiments, and we limit the maximum of
novel instances to be 300 and 3000 for PASCAL VOC and MS COCO, respectively. For the online
learning stage, we follow unbiased teacher (Liu et al., 2016) to apply weak and strong augmentations
to the teacher and student model, respectively. For PASCAL VOC all models are trained for 18k
iterations and decayed at 12k and 16k, respectively, and the confidence threshold § is set to be 0.7.
For MS COCO all models are trained for 160k iterations and decayed at 110k and 145k, respectively,
and the confidence threshold 9 is set to be 0.8. In the last fine-tuning stage, for PASCAL VOC, we
only fine-tune the box classifier, predictor and IoU predictor for 4k, 8k, 8k, 8k, 12k iterations for
K = 1,2,3,5,10, respectively. For MS COCO, we fine-tune the whole R-CNN head for 4k, 8k
iterations for K = 10, 30, respectively. The learning rate is set as 0.001 for both datasets.

APPENDIX G: DATASETS AND EVALUATION PROTOCOLS
We follow the same data split construction and evaluation protocols used in (Wang et al., 2020) for

fair comparisons. All experiments are evaluated on both PASCAL VOC (Everingham et al., 2010)
and MS COCO (Lin et al., 2014) datasets.
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Table 10: Ablation study for hyper-parameters of different components. Varying o and N for adaptive thresh-
olding in offline mining. Varying d for online mining. Varying S for IoU branching

| nAP50 nAP50
« |1 2 3 5 10|44 |1 2 3 5 10

00 | 636 684 667 696 677 | 05 | 190 237 134 142 184
1.5 | 635 677 668 703 688 | 0.7 | 699 725 717 727 73.8
30 | 59.8 594 659 696 672 | 09 | 652 705 698 712 714

N |1 2 3 5 10|81 2 3 5 10

150 | 624 659 66.0 689 67.7| 05 699 725 717 727 738
300 | 635 67.7 668 703 688 | 1.0 | 694 727 698 341 31.6
450 | 639 683 663 688 673 | 2.0 | 691 720 304 33.0 723

PASCAL VOC has 20 classes, which are randomly split into 15 base classes and 5 novel classes.
There are 3 different class splits, and we refer them as Novel Split 1, 2 and 3, respectively. For
each split, there exists exhaustive base instances but only K = 1,2,3,5, 10 annotated instances
for novel classes. All instances are sampled from the union of VOC07 and VOC12 train/val set
for training, and the model is tested on VOCO7 test set. The standard PASCAL VOC metric, i.e.,
Average Precision (IoU=0.5) for novel classes (nAP50) is reported.

MS COCO has 80 classes, 20 classes that overlap with PASCAL VOC are regarded as novel
classes, the remaining 60 classes are considered as base classes. We evaluate our method for K =
10, 30 shots. And the standard COCO-style metric is adopted, which averages mAP of IoUs from
0.5 to 0.95 with an interval of 0.05. We also report nAP50 and nAP75, respectively.

APPENDIX H: HYPER-PARAMETERS ABLATION

In MINI, there are 4 hyper-parameters introduced, « and N for adaptive thresholding, § for on-
line mining, and (8 for IoU branching. Table 10 analyzes the effect of different choices of hyper-
parameters. When studying o and N, we do not involve the online mining mechanism and the
fine-tuning; when studying ¢ and 5, we do not involve the fine-tuning. A smaller « and larger N
will lead to more kept mined novel instances, which is beneficial in lower shots, e.g., 1- and 2- shot,
but can be harmful in higher shots since it may result in more false positives. We can observe the
performance is not very sensitive to o and N, and we finally adopt « = 1.5 and NV = 300 for the
offline mining. During online mining, it is necessary to set a relatively high . Because a too-small
0, e.g., 6 = 0.5 can severely degrade the performance, as it will induce too many false positives
to distract the learning of the student model. And we found a large /3 will disturb the training pro-
cess, especially in higher shots. Through a coarse study, we adopt 6 = 0.7 and 8 = 0.5 for all
experiments.
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