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Abstract
To ensure that text generated by large language
models (LLMs) is in an expected format, con-
strained decoding proposes to enforce strict for-
mal language constraints during generation. How-
ever, as we show in this work, not only do such
methods incur performance overhead during gen-
eration, but many of them also significantly impair
task accuracy, if they do not correctly align the
underlying LLM sub-word vocabularies with ex-
ternal constraints. To address this, we present a
novel decoding algorithm, DOMINO, that can en-
force constraints in a fully subword-aligned fash-
ion, while leveraging pre-computation and specu-
lative decoding to achieve virtually no overhead
and in some cases even almost 2× speedup over
unconstrained decoding – thereby outperforming
existing approaches by a wide margin. We release
DOMINO as open source on GitHub.

1. Introduction
The recent success of Large Language Models (LLMs)
(Brown et al., 2020; Chen et al., 2021; OpenAI, 2023; Tou-
vron et al., 2023a;b; Anil et al., 2023; Jiang et al., 2024) has
lead to the development of various methods that facilitate
constrained generation, a method that lets users tailor the
output of an LLM to a specific task or format.

Constrained Decoding To ensure that text generated by
an LLM adheres to syntactic constraints, these methods
restrict the decoding procedure of an LLM in a way that
only permits syntactically valid tokens at each sampling step.
Doing so, the generated text can be ensured to adhere to
constraints like high-level templates (Beurer-Kellner et al.,
2023; Lundberg et al.), regular expressions (Beurer-Kellner
et al., 2023; Lundberg et al.; Willard & Louf, 2023) or
context-free grammars (Willard & Louf, 2023; Lundberg
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Prompt: A person encoded as JSON object:
Unconstrained Decoding:

{ \n ↓
··· ·" name ": ·" John ·Do e ", \n
··· ·" age ": · 3 2 , \n
··· ·" gender ": ·" male ", . . .

Valid Tokens in Greedily Constrained JSON:
[·\n\t] (whitespace) " (quote) } (closing brace)

Greedy Constraining induces sub-optimal tokenization:
{ \n ↓
··· \t " name " \t : \t " John ·Do e " \n
\t , \t " age " \t : \t 3 5 \n
\t , \t " ·occupation " \t : \t " So ftware . . .

Figure 1. Greedy (overly-invasive) constraining of LLMs can dis-
tort tokenization, leading to different output than with uncon-
strained decoding, even in the case where unconstrained generation
would produce valid output for the same prompt. Gray boxes rep-
resent vocabulary tokens, orange hue is proportional to perplexity.

et al.). Constrained decoding provides numerous upsides.
For instance, it guarantees that generated output will always
adhere to the specified syntactic constraints, and reduces
the need for ad-hoc parsing, retrying and prompting on
top of LLMs. This facilitates the use of LLMs as part of
larger pipelines or very specific tasks, without the need for
fine-tuning or additional post-processing.

Key Challenge: Token Misalignment Since LLM sub-
word token do not align directly with most given syntactic
constraints, the key challenge in constrained decoding is to
interface the LLM vocabulary with a syntactic constraint
like all output should be valid JSON. We showcase this in
Fig. 1: While in an unconstrained setting, the LLM picks
·" as the fourth token during generation, naively restricting
the LLM to only immediatly valid JSON grammar termi-
nals like just " or · , leads to the less optimal choice of \t
instead. By introducing such sub-optimal tokens, the distri-
bution of a badly-constrained LLM can easily diverge from
the unconstrained case, leading to a significant decrease in
reasoning performance and therefore downstream accuracy.
Here, the naively constrained LLM produces various high
perplexity tokens, indicating that the model likely would not
have chosen them otherwise (highlighted in Fig. 1). This
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is because naive constraining does not account for bridge
tokens that may span multiple parser terminals in the un-
derlying grammar (e.g., whitespace and double quotes, in
this example). While existing work on code generation has
made this observation before (Poesia et al., 2022), solving
this problem efficiently remains challenging, as the online
computation of all bridge tokens at each decoding step, can
be too costly in high-throughput environments.

This work: Efficient, Minimally-Invasive Constraining
In this work, we study the token misalignment problem out-
lined above, and examine its consequences for constrained
decoding, showing empirically that misalignment can lead
to a significant decrease in downstream accuracy. Based
on this observation, we propose the notion of minimally
invasive constrained decoding: A form of constraining that
enforces a grammar, but also intervenes as little as possi-
ble during generation, avoiding token misalignment and
optimizing for faithful, low-perplexity model output.

Based on this, we propose a novel constrained decoding
algorithm, DOMINO, which can enforce context-free gram-
mars in a minimally-invasive way. In contrast to existing
methods, DOMINO is highly efficient and incurs little to no
overhead, and in many cases even increases the throughput
of LLM inference over unconstrained generation, by lever-
aging pre-computation (Willard & Louf, 2023) and a novel
speculative decoding procedure for constrained decoding.
We compare DOMINO with other approaches in Table 1.

Main contributions In summary, our key contributions are:

• We identify the challenges of constrained decoding,
most notably the correct and efficient alignment of
sub-word tokens and grammar terminals (§2).

• We propose DOMINO, a novel constrained decoding
algorithm, that addresses token misalignment and lever-
ages pre-computation and speculative decoding for
very low overhead generation (§3).

• An extensive evaluation thats shows that DOMINO is
minimally-invasive, low-overhead, significantly outper-
forms other methods, and even exceeds unconstrained
generation throughput in many cases (§4).

2. Challenges of Constrained Decoding
We first introduce the required background and highlight
the challenges of efficient and token-aligned constraining.

Large Language Models (LLMs) are machine learning
models trained to complete a given text prompt. The current
generation of these models operate on sub-word tokens, such
as the commonly used Byte-Pair Encoding (BPE) (Sennrich
et al., 2016; Kudo & Richardson, 2018). Conditioned on a

Table 1. Overview of different constrained decoding methods

Regex CFG
Pre-

Computed
Minimally
Invasive

LMQL ✓ ✗ ✗ ✗
GUIDANCE ✓ (✓) ✗ (✓) ∗

OUTLINES ✓ ✓ (✓) † ✗
PICARD ✓ ✓ ✗ ✗
SYNCHROMESH ✓ ✓ ✗ ✓
LLAMA.CPP ✓ ✓ ✗ ✓ +

GCD ✓ ✓ ✗ ✓

DOMINO (ours) ✓ ✓ ✓ ✓
∗ Boundary token healing, + Up to implementation. We observe
violations in some cases, † For regex.

Algorithm 1 Constrained Decoding
Input: Checker C, LLM f , Tokenized Prompt x
Output: Completion o adhering to C

1: o← []
2: C.init()
3: loop
4: C.update(o) // advance state of C
5: m← C.mask() // compute mask
6: v ← f(x+ o) // compute logits
7: v′ ←m⊙ v′

8: t← decode(α′) // e.g., argmax or sample
9: if t = EOS then break

10: o.append(t)
11: end loop
12: return o // optionally detokenize

sequence of input tokens l1, . . . , ln the model computes a
probability distribution over the next token, from which the
next token is decoded, i.e. chosen or sampled. This process
is repeated for each token. In this context, we denote the set
of all tokens, the vocabulary, as V .

Constrained Decoding Algorithm 1 shows the general
outline used by most constrained decoding approaches. A
checker C, e.g., a parser or regex checker, is used to ensure
that given an input x the generated output o adheres to the
constraint. For each new token, C is first updated with the
latest generated sequence and then used to generate a mask
m. This mask enforces that the next token must be a valid
continuation. Each time the mask in Algorithm 1 rejects
a token that would otherwise have been chosen, we say
that the constrained decoding algorithm intervenes in the
decoding process. We can therefore say that an algorithm
that intervenes as little as possible is minimally invasive:

Definition 2.1 (Minimally invasive) A constrained decod-
ing method is minimally invasive if the number of times
it intervenes in the decoding process is restricted to the
absolute minimum necessary to ensure output validity.
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This definition ensures that a minimally invasive constrain-
ing method never overly restricts the model, and always
enables the model to leverage the full expressiveness of its
vocabulary. It also ensures that every valid output gener-
ated by the unconstrained model will be generated by the
constrained model in the same way. This is because an un-
constrained model that produces a valid output will never
produce an invalid continuation token, and thus, minimally
invasive constraining will never intervene and therefore re-
cover the same output as the unconstrained model.

Overly-Invasive Constraining On the other hand, if con-
straining is not minimally invasive, there is at least one point
during decoding where the model’s prediction is distorted in
an unnecessary way, leading to unnatural tokenization and
potentially distorting the entire model distribution. We find
that this phenomenon is common in existing constrained de-
coding methods, and that it can severely affect the model’s
task accuracy, as we show in §4 for a JSON-encoded ver-
sion of the GSM8K benchmark (Cobbe et al., 2021). There,
naive overly-invasive constraining can reduce accuracy from
41.5% in the unconstrained case to 30.8%, while minimally
invasive constraining actually achieves a slight increase in
accuracy to 41.8% (five-shot, Mistral 7B Jiang et al. (2023)).

To illustrate better, we first discuss current constrained de-
coding method, most of which implement one of the follow-
ing three strategies: i) regex-based, ii) online parser-guided
and iii) template-based constraining.

Regex-Based Decoding limited to regular expressions is
supported by many frameworks (e.g., LMQL (Beurer-Kellner
et al., 2023), OUTLINES (Willard & Louf, 2023), GUID-
ANCE (Lundberg et al.), LLAMA.CPP (Gerganov & et. al.))
and typically does not suffer from the token misalignment
problem as it is simpler to check if a token is a legal continu-
ation or not. For this, Willard & Louf (2023) also proposed
an algorithm to pre-compute a regex checker for the model
vocabulary offline, to be more efficient during inference.

Online Parser-Guided refers to running a parser and
scanner in lock-step with an LLM, and then computing
online, which tokens are valid continuations in each step.
Such algorithms (PICARD (Scholak et al., 2021), GCD (Geng
et al., 2023a), LLAMA.CPP) can support full CFGs and as
Poesia et al. (2022) (SYNCHROMESH) demonstrated, can
be built to support bridge tokens and thus to be minimally
invasive. However, all of these approaches produce com-
paratively high inference overhead, since, in the worst case,
they have to check the entire model vocabulary at each step.

Template-Based Approaches Since constrained genera-
tion can add additional overhead during inference, GUID-
ANCE and LMQL, propose a template-based approach, where

Prompt: Tell me one sentence about Thomas Cha-
pais.\n\nA: (Response In JSON)
(1a) Templated, Multi-Line Perplexity: 24.50
\n { \n ··· ·" reason ing ": ·" Th omas ·Chap ais ·is ·a
·Canadian ·politician . . .

(1b) Templated, Single-Line Perplexity: 26.75
·{ ·" reason ing ": ·" I ·don ’ t ·know ·who ·Thomas ·Chap
ais ·is . . .

(2) Re-Tokenized with Natural Tokenization Perplexity: 49.39
·{ ·" re as o ning ": ·" I ·don ’ t ·know ·who ·Thomas ·Chap
ais ·is . . .

(3) Unconstrained with Natural Tokenization Perplexity: 4.17
·{ ·" re as o ning ":⇝·" I ·don ’ t ·know ·him " ·}

Figure 2. Template-based tokens, marked as , force unnatural
tokenization and formatting, which can lead to different outputs
and increased perplexity. Gray boxes represent vocabulary tokens,
hue is proportional to perplexity.

some structure is fixed, and only parts of the output are sam-
pled under a regex constraints. For instance, templated
generation can be used to implement schema-driven JSON,
where fields are fixed. Template-based decoding is efficient
as templated tokens can be added deterministically during
generation, without invoking the LLM, thereby requiring
less model forward passes. However, this form of accelera-
tion also has its downside, as discussed next.

Template-Induced Misalignment To insert templated to-
kens without invoking the model, an external tokenizer has
to be used to translate template text into tokens. We show-
case this in Fig. 2, where we use the template-based GUID-
ANCE with Mistral-7B to generate text in JSON format,
and compare it to unconstrained generation. (1a) and (1b)
already show that depending on the concrete phrasing of
a template (e.g., whitespace, formatting), output can vary
significantly. To compare to unconstrained generation, we
compare the tokenization of template-based output (1b), to
the model-preferred, natural tokenization (2) and also re-
generate output with this naturalized template in (3). We
obtain the model-preferred tokenization by inspecting token
probabilities and choosing the most likely tokenization as
in unconstrained generation (details in App. B).

Overall, template-based outputs exhibit clearly different
outputs and much higher perplexities (perplexities 24.50−
26.75), when compared to unconstrained generation (per-
plexity 4.17). Further, when converting the template-based
output to model-preferred tokenization, shown as (2) in
Fig. 2, we observe a form of perplexity explosion (49.39),
indicating that without invasive constraining, the model is
highly unlikely to generate this output. While perplexity
and output differences are not directly indicative of output
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quality, our evaluation in §4.1 extends on this experiment,
and additionally shows that invasive template-based gener-
ation can also lead to a significant drop in task accuracy,
compared to unconstrained and less invasive approaches.

Token Healing To reduce the impact of template-induced
misalignment, GUIDANCE implements token healing (Lund-
berg & Ribeiro), a method that attempts to improve tok-
enization at the transition points between templated and
non-templated tokens. Token healing truncates the prompt
to the second-to-last token boundary, and enforces the rest
of the prompt as a prefix on generation. This can be effective
at avoiding some tokenization issues and integrating bridge
tokens, yet, most template tokens still follow a fixed, po-
tentially unnatural tokenization, which can cause the issues
discussed above.

Key Challenge This section, as summarized in Table 1,
demonstrates that the key challenge in constrained decod-
ing is to find a method that allows i) expressivity for regex,
context-free grammars and templated decoding, ii) is min-
imally invasive in all settings and iii) has low inference
overhead. Next, we discuss DOMINO, a novel constrained
decoding algorithm, that fits these requirements.

3. Efficient Aligned Constrained Decoding
In this section, we address the challenges discussed above by
introducing DOMINO, a fast minimally-invasive constrained
decoding algorithm, showcased in Fig. 3. First, §3.1 dis-
cusses the necessary preliminaries. Then, in §3.2-§3.5 we
present the main algorithm and then discuss further details.

3.1. Preliminaries

Formal Languages A formal language is a set L of finite
strings over a given alphabet Σ. A language is called regular
if it can be described by a regular expression. A language is
context-free if it can be described by a context-free grammar
(CFG). Such a grammar is described by a set of production
rules A = αBγ, where upper case names (A, B) are non-
terminals that are recursively extended and lower case greek
characters (e.g., α, β) are terminals that are part of the
language. For an example, see the grammar in Fig. 3 (a),
with the non-terminal E and terminals int, (, ), +, which
are defined either by a regex or a literal string.

All regular languages can be recognized by a non-
deterministic finite automata (NFA). A NFA is a set of states
with a start state and a set of accepting states. Connected
with transitions that are labeled with a character or the empty
string ε. We traverse or execute an NFA by starting in the
start state and whenever we read a character follow the
appropriate transitions or any ε-transitions. For a regular ex-
pression, we can construct a NFA (McNaughton & Yamada,

1960; Thompson, 1968), that when fed a string, character
by character, ends in a set of state including at least one
accepting state, if and only if the string matches the regular
expression. To illustrate this approach consider the grammar
given in Fig. 3 (a). The terminal int is given by a regex that
allows any positive integer (not starting with leading zeros)
or one or more zeros. Fig. 4 shows an NFA for this regex.

3.2. Character Scanner

Like classical parsers, DOMINO separates the CFG recog-
nition into a parser and a scanner (or lexer). The parser
enforces the high-level structure of the language, e.g., the
rules in a context-free grammar, and the scanner enforces the
low-level structure, i.e., the regular expressions of the termi-
nals. The key idea is that any legal program in a context-free
grammar is a sequence of terminals, or formally:

Lemma 3.1 Let LG be the language described by a CFG
G. Further, let r1, . . . , rn be the regular expressions of the
terminals of G and the rEOS = $. Then, it holds that:

• The union of these regular expressions r =
r1| . . . |rn|rEOS matches any terminal in G.

• The regular expression R = r+ matches all non-empty
sequences of terminals in the language.

• The language LR described by R contains all legal
programs in G, i.e., LG ⊆ LR, but also

• LR may still include illegal programs, i.e., LR ̸⊆ LG.

To construct an NFA for LR, we construct the NFA for
the regex ri for each terminal in the grammar. From the
accepting states of the invidual terminal NFAs, we add an
ε-transition to a single NFA accepting state qa. Similarly,
we add a transition from the start state q0 to the start state
of each DFA. Finally, we add a transition from q0 to qa,
to allow for the chaining of multiple tokens. This is the
standard disjuction construction for regex NFAs, however,
we do this explictly to track the sub-automata correspoding
to each terminal. This construction is showcased in Fig. 3 (b)
for the grammar in Fig. 3 (a). There, the boxes in the middle
correspond to individual NFAs like int as shown in Fig. 4.

3.3. Vocabulary-Aligned Subterminal Tree

Using a scanner S at generation time can enforce that the
generated string will be in LR, but not neccesarily in LG.
To ensure this, we need to also run a parser P on the output
as it is generated and dynamically allow and disallow some
of the transitions in S, according to the current parser state.

For this, we first lift S from the character level to the
(sub)terminal level used by the parser. To do so, for each
node in S we follow the transitions for each token in the
model vocabulary and enumerate all reachable states. Par-
ticularly, we track which terminal NFAs are partially or
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(a) Example Grammar

E = E | E + E | (E) | int

int = ([1-9][0-9]*)|(0+)

(b) Character Scanner

q0 ( qa

)

+

int

ws

EOS

(c) Vocabulary

V = {0, 1, 2, 12 , ),( , +,+11 ( , EOS}
(d) Vocabulary-aligned Subterminal Tree (offline, per node)

q[0-9]*int

0

1

2

12

(

)

+

+1

1 (

EOS

()+ EOS0 ,1 ,
2 ,12

1 (

+1

(e) Parser (online)

()+ EOS0 ,1 ,
2 ,12

1 (

+1

(12

k = 0

012
1+
2+1
( 1 +
)EOS

k = 1

012
1+
2+1
( 1 +
)EOS

k = 2

012
1+
2+1
( 1 +
)EOS

Figure 3. Running example and overview of DOMINO. (a) shows an example grammar, (b) the character level NFA for this language, (d)
one of the per-state subterminal trees for the grammar in (c). (e) shows how a parser can be used to prune this tree at inference time and
obtain token masks efficiently by traversing the tree.

int0* [0-9]*
0 [1-9]

0 [0-9]*

Figure 4. NFA for the int terminal from Fig. 3 (a). Traversed from
node int this NFA accepts all legal inputs for the terminal.
fully traversed. As grammar terminals are not neccesarily
aligned with the token vocabulary, we introduce the notion
of a subterminal as a part of a terminal NFA.

For terminal α, e.g., int, we say that S reads a:

• Full terminal if it passes q0 and reaches an accepting
state qα in the NFA for the terminal. We denote this
as . If we end in an accepting state, that also allows
further transitions, such as both accepting states in
Fig. 4, we also consider this a full terminal, but allow
further subterminals within the terminal NFA ( ).

• Start subterminal if starting from q0 we reach a non-
accepting but valid state qα for the NFA of the terminal.
We denote this as .

• End subterminal if starting from a state qα within
the NFA for α we reach an accepting state for α. We
denote this as .

• Continuation subterminal if starting from a state qα
within the NFA for α we reach another non-accepting
state for α. We denote this as .

We visit every state q in S, obtain the current (sub)terminal
α and, for each vocabulary token l ∈ V , enumerate all possi-
ble subterminal sequences {αj

1, . . . , α
j
mj
}j . Typically there

is only one such sequence unless there is ambiguity in the
grammar, e.g., in C-style languages we can not be sure if
we are reading a variable name or a keyword. Ignoring these
edge cases, we show an example of this on the left hand side
of Fig. 3 (d) for the vocabulary given in Fig. 3 (c), where
we visualize the subterminals in the previously introduced

Algorithm 2 Construct Terminal Tree
Input: CFG G, Alphabet Σ, Vocabulary V
Output: Scanner S

1: T = {}
2: for all q ∈ S.states() do
3: α← q.subterminal() // get current (sub)terminal
4: for all l ∈ V do
5: {αj

1, . . . , α
j
mj
}j ← q.traverse(l)

6: T ← T ∪ {(αj
1, . . . , α

j
mj

), l}j
7: end for
8: Tq ← PrefixTree(T )
9: end for

box notation with colors correspoding to the terminals in
Fig. 3 (b). Note that there may be tokens in the vocabulary
for which no continuation is possible, e.g., if we add an a

token to the language. After enumerating all these subtermi-
nal sequences, we organize them into a prefix tree Tq , where
we attach the corresponding vocabulary tokens l as values
to the nodes. We formalize this procedure in Algorithm 2.

3.4. Parser

While subterminal trees can be pre-computed, we still need
a parser at inference time, to disallow illegal continuations
based on the current parser state. For example, consider
the prefix tree Fig. 3 (d). If so far, we have observed the
sequence (12 and correctly advanced the parser and scanner
to this state, we are in an int terminal , that can still
be extended further. Following the prefix tree in Fig. 3 (d)
would permit continuations such as ( , which are clearly
illegal in the grammar. Thus, we need to disallow these
continuations dynamically by consulting the parser.
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At inference time traversing the so-far generated sequence o
through the scanner and parser will result in a scanner state
S and parser state P . The active state of S will be a set
of states q1, . . . , sm. The active state of P will be a parser
that tracks rules that can match the output o so far. For each
of these nodes qi we retrive the corresponding subterminal
tree Tqi and use the parser to check which of the possible
continuations are legal. The depth to which we follow these
terminal sequences in the prefix-tree is determined by the
so-called lookahead parameter k.

We showcase this in Fig. 3 (e), where so far we have read the
input (12. The parser thus knows that it has seen the partial
rule (E), in which recusively E was initialized with the int

terminal. The scanner S has been advanced similarly and
has a single active state s that corresponds to that for an int

terminal , as shown in Fig. 3 (d). In the corresponding
prefix tree Ts we can now check each outbound edge with
the parser and find that the EOS and ( can not produce
legal (sub)terminal sequences, but all other tokens do. After
traversing one level of this tree (k = 0) this includes all
number terminals, + and ). By increasing k and checking
further paths in the tree we can also include the tokens +1
and 1 ( at k = 1 and k = 2 respectively.

3.5. DOMINO

Based on this, DOMINO implements constraining that lever-
ages subterminal trees to efficiently check for legal continu-
ations in V , that, by construction, line up with the current
state, just like the pieces in a game of domino.

At a high level, DOMINO operates in two phases:

• Offline (before inference), the grammar of the lan-
guage is used to build a character-level scanner automa-
ton (Fig. 3 (b) and §3.2). For each scanner state, we
then consider the model vocabulary and determine for
all vocabulary tokens the sequence of scanner states
that are traversed when consuming them. Based on
these state transitions per token, we construct a prefix
tree for each scanner state (Fig. 3 (c+d) and §3.3).

• Online (during inference), rather than checking the
entire model vocabulary, we only traverse the prefix-
tree(s) corresponding to the current scanner state, up to
depth k and consider all collected leaves as legal con-
tinuations. To accommodate the parser at this stage, we
only explore prefix tree edges that are legal according
to the parser state (Fig. 3 (e) and §3.4).

Referring back to Algorithm 1, we compute the character
scanner S and corresponding prefix trees Tq for all q ∈ S
before inference starts (offline). When update is called in
Algorithm 1, we can then advance the scanner and parser
state. When mask is invoked , we traverse the corresponding

tree Tq to the desired depth, and take the union over the
associated tokens to compute the current mask. Here, k = 0
is already sufficient to ensure that the generated output is in
LG. If we always traverse the full prefix-trees (k = ∞ or
sufficently large), this approach is minimally invasive, as all
valid tokens will eventually be reached and included.

Overall, this enables DOMINO to handle expressive con-
straining with far less overhead than fully online approaches,
as the size of subterminal trees is much smaller than the size
of the model vocabulary, which we would need to traverse
otherwise. In case of batched, high-throughput inference, it
also allows us to share the scanner and prefix trees across
multiple samples, as they are independent of the input.

Further Optimizations On top of this, DOMINO also
supports an optimization already present in LLAMA.CPP
(Gerganov & et. al.)’s fully online approach, which we term
opportunistic masking: Rather than computing the mask for
the full logit vectors as in Algorithm 1, we can first run the
decode step of the LLM and then use the parser to check the
model-proposed token first. Only if the proposed token is
disallowed by the parser, we need to compute the rest of the
mask, and otherwise rely on the LLM to guide decoding.

To realize this in DOMINO, rather than traversing the trees
Tq from the root, we first determine the nodes linked to
the proposed token, and only then check if there exists a
parser-allowed path from the root to this node. This is can be
very effective when an LLM already naturally adheres to a
grammar, and parser transitions are expensive. In DOMINO,
oppurtunistic masking is enabled using a runtime flag.

We finally want to note, that token healing can be impl-
mented in a similar way to GUIDANCE (Lundberg et al.),
i.e., by stripping the input back to the last token boundary
and changing the beginning of the grammar to force a prefix.
However, this means that the grammar needs to be recom-
piled for the current problem and can not neccesarily be
shared between multiple instance. Note however, that this is
of lesser concern in DOMINO, as it is only relevent for the
first boundary with the prompt, where all other boundaries
are handled naturally, by DOMINO’s non-invasive masking.

3.6. Speculative Decoding

Speculative Sampling (Chen et al., 2023) is a technique to
speed up the LLM sampling process, by using a smaller
LLM to propose multiple tokens and then only evaluate
the full large LLM to confirm this token choice. This is
efficient, as the parallel nature of Transformer-based models
Vaswani et al. (2017), allows to validate multiple tokens
with a single forward pass, where rejected tokens can simply
be discarded without the need to backtrack. In DOMINO,
we adopt a similar approach to further speed up inference,
based on parser and scanner state. At any time, the active
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scanner state is (largely) given by the most recently read
subterminal α (or {αj}j if the NFA could be in multiple
possible subterminals). Similarly, we let β denote some sub-
state of the currently used parser, e.g., the currently applied
rule. Conditioned on α, β we can then learn a simple, count-
based model for speculative next token prediction:

P(l | α, β) = #{LLM chose l in state (α, β)}
#{reached state (α, β)}

.

As structured languages often are very predictable and α, β
can be strongly indicative of the next token, this mechanism
can lead to massive speed-up during inference. Further, as
we learn these counts over the parser state β, we only learn
to predict tokens that are legal in the language.

In practice, we parameterize s tokens to be predicted this
way at a time, if the P(l | α, β) is sufficiently large. This
form of speculative decoding is independent of standard
speculative decoding applied to the underlying LLM (Chen
et al., 2023), and could even be applied jointly with it.

4. Experimental Evaluation
We evaluate DOMINO in terms of downstream task accuracy,
compare its performance to multiple baselines and ablate
key parameters such as k.

Setup We evaluate on the Mistral 7B (Jiang et al., 2023)
and the Llama-2 13B (Touvron et al., 2023c) language mod-
els. As inference backends, we rely on both, transformers
(Wolf et al., 2019) and llama.cpp (Gerganov & et. al.) on
NVIDIA A100 40GB or H100 80GB GPUs. Because of its
nature, we explicitly evaluate DOMINO in an offline setting,
where all grammars are known ahead of time and do not
vary across inference requests.

Datasets We assess downstream accuracy of different con-
straining methods with the GSM8K (Cobbe et al., 2021)
benchmark for math reasoning and CoNLL-2003 (Sang &
De Meulder, 2003) for named-entity recognition (subset of
400 test samples). To examine the performance properties of
different decoding methods, we compare their overhead over
unconstrained decoding for different tasks, including the
constrained generation of JSON, JSON with Schema, the C
Programming Language, XML with Schema and more static,
regex-based generation templates similar to GUIDANCE or
LMQL programs with simple structure.

Baselines We consider the following baselines:

• Unconstrained Generation We generate output with-
out any form of constraints, using the same prompts
and inference backend.

• GUIDANCE Programs (Lundberg et al.) We construct
GUIDANCE programs to generate output in the desired

output formats. We compare template-based programs
(standard approach) and CFG-based variants, which
are whitespace agnostic (comparison in App. A).

• LLAMA.CPP Grammars (Gerganov & et. al.) We
rely on LLAMA.CPP’s support for ebnf grammars as an
online parsing baseline (also representative of (Poesia
et al., 2022) and Geng et al. (2023b)).

4.1. Task Accuracy

We first evaluate the impact of different constrained decod-
ing methods on downstream accuracy. For this, we use the
GSM8K benchmark for math reasoning and CoNLL-2003
for named-entity recognition. In App. D.1 we additionally
experiment with constrained Constituency Parsing (CP) on
the Penn Treebank dataset Marcus et al. (1993).

Setup For GSM8K and CoNLL-2003, we prompt and con-
strain the models to generate a response in a given JSON
format, instead of free-text reasoning (see App. D for ex-
amples). Our prompts consist of 5 few-shot demonstrations
from the training split, for which we manually construct
the corresponding JSON response. We then compare the
accuracy of the generated JSON responses, considering both
the validity of the JSON format and the accuracy of the final
response. The main goal of this experiment is to assess the
invasiveness of different constrained decoding methods, i.e.
how much they affect the model’s ability to generate correct
output. As a baseline we therefore assume unconstrained
generation as the gold standard, i.e. the baseline of what an
unimpeded model can achieve. We also measure perplexity
of the generated output and the overhead over unconstrained
generation in terms of throughput. For results that show the
benefit of constrained decoding in general, we refer to Geng
et al. (2023b).

Results As documented in Table 2, DOMINO achieves the
best accuracy for all tasks, while also improving through-
put well beyond unconstrained generation. In all cases,
DOMINO’s accuracy is the same or improved compared to
unconstrained generation, indicating very low or no inva-
siveness. In contrast, with standard GUIDANCE, we observe
clear artifacts of invasiveness, as accuracy drops by up to
11% points compared to unconstrained generation. And,
while GUIDANCE’s inference optimizations do increase
throughput (up to 2.02×), DOMINO accellerates inference
even further (up to 2.71×), while also maintaining high ac-
curacy. Implementing minimally invasive GUIDANCE WS

programs with flexible whitespace and formatting restores
some accuracy, but not fully, and also lowers throughput
significantly to ∼ 0.8×. LLAMA.CPP’s online parsing ap-
proach also does not appear to be fully non-invasive, al-
though accuracy seems less impaired, while throughput is
also consistently reduced to ∼ 0.8×.
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Table 2. Task Accuracy of different constrained decoding methods on GSM8K Cobbe et al. (2021) and CONLL2003 Sang & De Meulder
(2003) datasets (400 test samples). All experiments rely on 5-shot prompting with demonstrations taken from the training split.

Dataset Model Method Accuracy Well-Formed Perplexity Performance Impact

GSM8K

Mistral 7B

Unconstrained 0.415 0.952 1.636 1.0×
GUIDANCE Lundberg et al. 0.345 0.960 1.624 0.98×

GUIDANCE WS Lundberg et al. 0.403 0.976 1.737 0.54×
llama.cpp Gerganov & et. al. 0.375 0.973 1.751 0.80×

DOMINO (k = ∞) 0.418 0.968 1.739 1.77×

Llama-2 13B

Unconstrained 0.262 0.904 1.650 1.0×
GUIDANCE Lundberg et al. 0.152 0.947 1.659 1.12×

GUIDANCE WS Lundberg et al. 0.259 0.977 1.760 0.73×
llama.cpp Gerganov & et. al. 0.237 0.978 1.780 0.86×

DOMINO (k = ∞) 0.262 0.920 1.750 1.66×

CoNLL2003

Mistral 7B

Unconstrained 0.21 0.988 1.573 1.0×
GUIDANCE Lundberg et al. 0.098 0.998 1.780 2.02×

GUIDANCE WS Lundberg et al. 0.19 0.998 1.896 0.82×
llama.cpp Gerganov & et. al. 0.117 0.995 1.560 0.80×

DOMINO (k = ∞) 0.21 0.988 1.902 2.66×

Llama-2 13B

Unconstrained 0.09 0.897 1.579 1.0×
GUIDANCE Lundberg et al. 0.062 1.000 1.820 2.18×

GUIDANCE WS Lundberg et al. 0.087 0.980 1.767 0.90×
llama.cpp Gerganov & et. al. 0.080 0.922 1.786 0.86×

DOMINO (k = ∞) 0.09 0.897 1.812 2.71×
WS GUIDANCE CFG program with flexible whitespace and formatting.

Well-Formed Well-formedness is high with all constrain-
ing methods, even overly invasive ones. This shows that
well-formedness alone is not a good indicator for the quality
of a constrained decoding method. 100% well-formedness
is achieved only very rarely, as for some samples the mod-
els’ context window is exceeded, which counts as well-
formedness violation.

Output Perplexity With respect to perplexity, we observe
that DOMINO outputs typically exhibit low perplexity, i.e.
no perplexity explosion, but that other, significantly lower-
accuracy methods can also produce low perplexity outputs.
Upon manual inspection of individual outputs, we find that
the perplexity of the generated output is also not a reli-
able indicator of the quality of the generated output, as e.g.
degenerate outputs that get stuck in a loop can artificially
reduce perplexity, even though they are invalid.

4.2. Parameter Study

Next, we investigate the key parameters of DOMINO.

Lookahead To experiment with lookahead parameter k,
we evaluate on GSM8K as before, but varying k. We report
the results in Table 4. We observe that lower k values impair
performance significantly. Manual inspection shows that
depending on k, the model is forced into different whitespac-
ing behavior, as bridge tokens like }, are unavailable, lead-
ing to irregularities. This can affect reasoning, e.g. Llama-2
is unable to produce object lists of length greater than 1, if
relevant bridge tokens are missing. DOMINO with k =∞,
however, recovers and even slightly exceeds unconstrained
accuracy, demonstrating minimal invasiveness.
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Figure 5. Impact of the number of speculative tokens k on through-
put (tokens per second) with Mistral 7B and JSON generation with
and without schema, using DOMINO with transformers LLMs.

Speculation and Opportunistic Masking We also exper-
iment with the number of speculative tokens s we propose
at each decoding step, to speed up generation. For this,
we compare the generation of schema-driven JSON and
free-form JSON text with Mistral 7B. We form priors on
10 randoms samples, and then measure mean performance
across 100 generated outputs per configuration, without
updating counts. We report the results in Fig. 5.

We find speculative decoding with s ∈ {6, 8, 10} to be
particularly effective for schema-driven JSON generation, as
it achieves a throughput of 1.7x compared to unconstrained
generation. On free-form JSON output, speculation is not
effective, and DOMINO opportunistic masking is preferable,
incurring only a low 4.21% overhead.

4.3. Efficiency

Next, we examine throughput and efficiency of DOMINO.
For this, we compare unconstrained generation thrrough-
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Table 3. Impact on throughput of constrained decoding methods with different grammars, compared to unconstrained generation. We
report the change in throughput compared to generating unconstrained output with the same model and inference backend. As CFGaccel

we report DOMINO opportunistic masking or speculative decoding, depending on which is more effective.

llama.cppop

Gerganov & et. al.
guidanceHF

Lundberg et al.
DOMINOHF

(Ours)

Grammar Model CFG Template↓ CFG CFG CFGaccel

JSON (no schema)
Mistral 7B 0.79× 1.03× 0.81× 0.88× 0.96× (opportunistic)
Llama 13B 0.83× 1.03× 0.86× 0.95× 1.12× (spec. s = 10)

JSON (GSM8K schema, see App. D)
Mistral 7B 0.80× 0.77× 0.59× 0.99× 1.77× (spec. s = 10)
Llama 13B 0.86× 0.94× 0.74× 0.99× 1.66× (spec. s = 10)

C Programming Language
Mistral 7B 0.74× - - 0.41× 0.78× (opportunistic)
Llama 13B 0.81× - - 0.54× 0.85× (opportunistic)

XML (with schema)
Mistral 7B 0.80× - - 0.94× 1.52× (spec. s = 10)
Llama 13B 0.87× - - 0.98× 1.84× (spec. s = 10)

Fixed Template
Mistral 7B 0.55× 1.95× 0.92× 0.97× 1.30× (spec. s = 10)
Llama 13B 0.69× 2.05× 1.06× 0.99× 1.91× (spec. s = 10)

op llama.cpp always runs with opportunistic masking, HF Using the transformers library as inference backend.
↓ GUIDANCE templates lead to significantly worse accuracy compared to CFGs (cf. Table 2), but we show them here for completeness.

Table 4. GSM8K task accuracy with different lookahead k.

Configuration Mistral 7B Llama-2 13B

Unconstrained 0.415 0.155
DOMINO (k = 0) 0.308 0.0
DOMINO (k = 1) 0.1 0.036
DOMINO (k =∞) 0.418 0.157

put of each backend, and report the relative differences
when running with constrained generation. We do not in-
clude DOMINO’s precomputation time as part of the reported
throughputs. We note that for the tested grammars, it ranges
from 1-5s, with C being an outlier at around 20s.

Grammars We compare different constraining tasks, as
shown in Table 3. For each task, we prepare a small set of
relatively general inputs, prompting the model to generate a
response in the general distribution of the given output for-
mat (details in App. C). Where practical, we also implement
GUIDANCE programs, using their custom CFG-like syntax.

Setup We run 100 repetitions per configuration. In each,
we sample one of 5 different prompts per workload, and
sample output of up to 128 tokens from the model, using
a temperature value of 1.0. This way, we ensure that the
model produces in-distribution output, but that it still ex-
hibits diversity. Before measuring, we run 10 repetitions
of warmup, allowing our speculative mechanisms to form a
prior. After that, the learned priors remain fixed.

Results As shown in Table 3, DOMINO is highly effective
and clearly reduces the compuational load of constraining
at inference time. DOMINO outcompetes both GUIDANCE
and llama.cpp’s online parsing approach significantly. For

grammars with predictable structure (e.g. schema-driven
formats), speculative decoding is particularly effective, lead-
ing to up to 77% higher throughput over unconstrained
generation, while remaining minimally invasive.

C code generation induces the most overhead, which can
be explained by the fact that the C grammar is the most
complex of the tested workloads. Here, speculative decod-
ing does not bring any benefits, as the C code is to hard to
predict using our simple count-based model. However, by
relying on DOMINO’s opportunistic masking mode, we still
outcompete llama.cpp, running at 0.78× vs. 0.74×.

4.4. Limitations

While DOMINO’s current design is highly effective and min-
imally invasive, we also note limitations: For very large
grammars, e.g. in entity disambiguation with many entity
names, full scanner precomputation may be too expensive,
making it difficult to use DOMINO. Similarly, dynamic
or input-dependent grammars as proposed in Geng et al.
(2023a) are also not compatible with DOMINO’s current de-
sign, as the full grammar is not known ahead of time. How-
ever, both limitations could be addressed by augmenting
DOMINO with incremental or just-in-time precomputation
techniques, which is a promising direction for future work.

5. Conclusion
We have shown the need for minimally invasive, highly-
efficient constrained decoding methods. As first instantia-
tion of this for grammars, we presented DOMINO, which
leverages precomputation, speculative decoding and oppor-
tunistic masking, to implement minimally invasive con-
straining (no accuracy loss), often overhead-free or even
faster generation, and thus, high-throughput inference.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Whitespace-Flexible GUIDANCE Programs
In our experiments, we differentiate standard GUIDANCE
programs based on templates and whitespace-flexible GUID-
ANCE WS programs.

To demonstrate, consider the following example of a simple
template-based GUIDANCE program:

1 f"""{{
2 "id": {gen('id', regex='[1-9][0-9]*')},
3 "description": "A nimble fighter",
4 "name": "{gen('name', stop='"')}",
5 "age": {gen('age', regex='[1-9][0-9]*')},
6 "armor": "{select(['leather', 'chainmail', 'plate'])}",
7 "weapon": "{select(['sword', 'axe', 'bow'])}",
8 "class": "{gen('class', stop='"')}",
9 "mantra": "{gen('mantra', stop='"')}",

10 "strength": {gen('strength', regex='[1-9][0-9]*')},
11 "items": [ "{gen('item', stop='"')}", "{gen('item', stop='"'

)}", "{gen('item', stop='"')}" ],
12 }}"""

Listing 1. A standard JSON GUIDANCE program.

Here, we provide a fixed high-level template, with respect
to whitespace and formatting. Only the values of the fields
are generated by the LLM.

In contrast, a whitespace-flexible GUIDANCE WS program
for the same task would look as follows:

1 nl = "\n"
2 WS = token_limit(zero_or_more(select([' ', nl])), 16)
3
4 f"""{{{WS}"id"{WS}:{WS}{gen('id', regex='[1-9][0-9]*')}{WS},{WS}"

description":{WS}"A nimble fighter"{WS},{WS}"name"{WS}:{WS}"
{gen('name', stop='"')}"{WS},{WS}"age"{WS}:{WS}{gen('age',
regex='[1-9][0-9]*')}{WS},{WS}"armor"{WS}:{WS}"{select(['
leather', 'chainmail', 'plate'])}"{WS},{WS}"weapon"{WS}:{WS}
"{select(['sword', 'axe', 'bow'])}"{WS},{WS}"class":{WS}"{
gen('class', stop='"')}"{WS},{WS}"mantra"{WS}:{WS}"{gen('
mantra', stop='"')}"{WS},{WS}"strength"{WS}:{WS}{gen('
strength', regex='[1-9][0-9]*')}{WS},{WS}"items":{WS}[{WS}"{
gen('item', stop='"')}"{WS},{WS}"{gen('item', stop='"')}"{WS
},{WS}"{gen('item', stop='"')}"{WS}]{WS},{WS}}}"""

Listing 2. A whitespace-flexible JSON GUIDANCE program.

As shown in the snippet, all explicit templated whitespace
is replaced by a {WS} token, using the zero_or_more operator.
Using this approach, all whitespace is now also generated
by the LLM, allowing for more flexible formatting of the
output, and less explicit constraints on the LLM.

Our experiments in §4 demonstrate that the whitespace-
flexible formulation leads to higher task accuracy but also
significantly higher inference time. This is because the pro-
gram leaves more freedom to the LLM on how to concretely
generate the output. At the same time however, inference
becomes less efficient, as the LLM now also has to generate
all whitespace tokens explicitly and the GUIDANCE runtime
cannot skip over as many tokens as before.

Algorithm 3 Model-Based Retokenization
Input: LLM f , Prompt x, Target Text s
Output: f -preferred tokenization of s

1: o← []
2: while s ̸= ∅ do
3: v ← f(x+ o) // compute logits
4: t← argmax {v[t] | t ∈ V ∧ t prefix of s}
5: o.append(t)
6: s← s[|o|:] // remove prefix t from s
7: end while
8: return o

B. Model-Based Retokenization
To demonstrate differences between template-based and un-
constrained generation, we consider the task of naturalizing
a given text under a model-preferred tokenization. This is
the process of converting text to the tokenization a model
would have chosen to represent the same text during genera-
tion, when previously conditioned on some prompt. More
specifically, given a target text s, a tokenized prompt x,
and a model f with vocabulary V , we re-encode t using to-
kens from V , such that we greedily maximize the sequence
likelihood assigned by f .

We refer to this process as retokenization. We provide the
procedure for this in Algorithm 3. By greedily choosing the
highest likelihood token that aligns with the target text, we
obtain a tokenization of s, that is consistent with the model’s
preference, when forced to generate s from x. This corre-
sponds to applying argmax decoding to f , where the token
distribution of f is always masked such that it produces the
target text s. Put differently, if a model was to generate s
when conditioned on x, it would have produced the token
sequence o under argmax decoding.

While retokenization allows us to recover the model-
preferred tokenization of a given text, template-based con-
strained generation methods cannot benefit from this, as its
computational overhead is equivalent to the cost of gener-
ating all templated tokens from scratch, thereby negating
the benefits of using a template-based approach in the first
place.
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C. Grammars And Prompts
Below we include the grammars and prompts used for each
constraining task from our experiments in Section 4:
1 root ::= object
2 value ::= object | array | string | number |
3 ("true" | "false" | "null") ws
4
5 object ::=
6 "{" ws (
7 string ":" ws value
8 ("," ws string ":" ws value)*
9 )? "}" ws

10
11 array ::=
12 "[" ws (
13 value
14 ("," ws value)*
15 )? "]" ws
16
17 string ::=
18 "\"" (
19 [^"\\] |
20 "\ \" (["\ \/bfnrt] |
21 "u" [0-9a-fA-F]
22 [0-9a-fA-F]
23 [0-9a-fA-F]
24 [0-9a-fA-F]) # escapes
25 )* "\"" ws
26
27 number ::= ("-"? ([0-9] |
28 [1-9] [0-9]*))
29 ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
30
31 ws ::= ([ \ \ t\ \ n] ws)?
32
33 # Prompts used for generation
34 "A JSON file describing a person:"
35 "A JSON file of a person John Smith:"
36 "A JSON file of a person John Smith with friends"
37 "JSON of a person Jane Doe with friends"
38 "A JSON person:"

Listing 3. Basic JSON Grammar

1 root ::= object
2 value ::= object | array | string | number | ("true" | "false" |

"null") ws
3
4 object ::=
5 ws "{" ws (
6 "\"thoughts\"" ":" ws "[" ws thought (ws "," ws thought)*

"]" ws "," ws
7 "\"answer\"" ":" ws number ws
8 ) "}" ws
9

10 thought ::=
11 "{" ws (
12 "\"step\"" ":" ws string "," ws
13 "\"calculation\"" ":" ws string "," ws
14 "\"result\"" ":" ws number
15 ) "}" ws
16
17 array ::=
18 "[" ws (
19 value
20 ("," ws value)*
21 )? "]" ws
22
23 string ::=
24 "\"" (
25 [^"\\] |
26 "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]

[0-9a-fA-F]) # escapes
27 )* "\"" ws
28
29 number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]?

[0-9]+)? ws

30
31 # Optional space: by convention, applied in this grammar after

literal chars when allowed
32 ws ::= ([ \t\n] ws)?
33
34 # Prompts used for generation
35 We use 5-shot prompts for questions from GSM8K's test split as

prompt (cf. Task Accuracy Experiments).

Listing 4. Guided Math Reasoning Grammar (for GSM8K)

1 root ::= (declaration)*
2
3 declaration ::= dataType identifier ws "(" ws parameter? ws ")" ws

"{" ws statement* "}"
4
5 dataType ::= "int" ws | "float" ws | "char" ws
6 identifier ::= [a-zA-Z_] [a-zA-Z_0-9]*
7
8 parameter ::= dataType identifier
9

10 statement ::=
11 ( dataType identifier ws "=" ws expression ";" ws ) |
12 ( ( dataType identifier ws "[" ws expression ws "]" ws ( "="

ws expression )? ";" ws ) ) |
13 ( identifier ws "=" ws expression ";" ws ) |
14 ( identifier ws "(" argList? ")" ";" ws) |
15 ( "return" ws expression ";" ws ) |
16 ( "while" "(" condition ")" ws "{" statement* "}" ) |
17 ( "for" "(" forInit ";" ws condition ";" ws forUpdate ")" "{"

statement* "}" ws ) |
18 ( "if" "(" condition ")" "{" statement* "}" ("else" "{"

statement* "}")? ws ) |
19 ( singleLineComment ws ) |
20 ( multiLineComment ws )
21
22 forInit ::= dataType identifier ws "=" ws expression | identifier

ws "=" ws expression
23 forUpdate ::= identifier ws "=" ws expression
24
25 condition ::= expression relationOperator expression
26 relationOperator ::= ("<=" | "<" | "==" | "!=" | ">=" | ">")
27
28 expression ::= term (("+" | "-") term)*
29 term ::= factor(("*" | "/") factor)*
30
31 string ::=
32 "\"" (
33 [^"\\] |
34 "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]

[0-9a-fA-F]) # escapes
35 )* "\"" ws
36
37 factor ::= identifier | number | unaryTerm | funcCall |

parenExpression | subscript | string
38 unaryTerm ::= "-" factor
39 funcCall ::= identifier "(" argList? ")"
40 parenExpression ::= "(" ws expression ws ")"
41 subscript ::= identifier "[" ws expression ws "]"
42
43 argList ::= expression ("," ws expression)*
44
45 number ::= [0-9]+
46
47 singleLineComment ::= "//" [^\n]* "\n"
48 multiLineComment ::= "/*" ( [^*] | ("*" [^/]) )* "*/"
49
50 ws ::= ([ \t\n]*)
51
52 # prompts used for generation
53 "A C program that prints \"Hello, world!\":\n```c\n"
54 "A C main function that iterates over an array of integers and

prints each one:\n```c\n"
55 "A C program that prints the sum of two integers:\n```c\n"
56 "The following is a program that finds the sum of two integers in

C:\n```c\n"
57 "A C program that fills an array with the numbers 0 to 9 and

prints them:\n```c\n"

14



Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation

58 "A C implementation of a simple bubble sort:\n```c\n"

Listing 5. Simple C Program Grammar and Prompts

1 root ::= person
2
3 person ::= ( "<person>" ( ws personattributes ) "</person>" )
4 personattributes ::= nameattribute ageattribute jobattribute

friends?
5
6 nameattribute ::= "<name>" NAME "</name>" ws
7 ageattribute ::= "<age>" NUMBER "</age>" ws
8 jobattribute ::= "<job>" ws jobinfo "</job>" ws
9 friends ::= "<friends>" ws person+ ws "</friends>" ws

10
11 jobinfo ::= jobtitle jobsalary
12 jobtitle ::= "<title>" NAME "</title>" ws
13 jobsalary ::= "<salary>" NUMBER "</salary>" ws
14
15 NAME ::= ( [^<] )+
16 NUMBER ::= ( [^<] )+
17
18 # Optional space: by convention, applied in this grammar after

literal chars when allowed
19 ws ::= ([ \t\n] ws)?
20
21 # prompts used for generation
22 "An XML file describing a person:"
23 "An XML file of a person John Smith:"
24 "An XML file of a person John Smith with friends"
25 "XML of a person Jane Doe with friends"
26 "An XML person:"

Listing 6. XML (with schema) Grammar and Prompts

1 start: dict
2
3 dict: "{" content "}"
4
5 content: id_pair "," description_pair "," name_pair "," age_pair "

," armor_pair "," weapon_pair "," class_pair "," mantra_pair
"," strength_pair "," items_pair

6
7 id_pair: "\"id\"" ":" NUMBER
8 description_pair: "\"description\"" ":" "\"A nimble fighter\""
9 name_pair: "\"name\"" ":" STRING

10 age_pair: "\"age\"" ":" NUMBER
11 armor_pair: "\"armor\"" ":" (("\"leather\"") | ("\"chainmail\"") |

("\"plate\""))
12 weapon_pair: "\"weapon\"" ":" (("\"sword\"") | ("\"axe\"") | ("\"

bow\""))
13 class_pair: "\"class\"" ":" STRING
14 mantra_pair: "\"mantra\"" ":" STRING
15 strength_pair: "\"strength\"" ":" NUMBER
16 items_pair: "\"items\"" ":" "[" item "," item "," item "]"
17
18 item: STRING
19
20 STRING: /"[^\n\r"]+"/
21 NUMBER: /[0-9]+/
22
23 WS: /[ \t\n]+/
24 %ignore WS
25
26 # prompts used for generation
27 "The following is a character profile for an RPG game in JSON

format.\n```json\n",
28 "A character profile for an RPG game:\n```json\n",
29 "A character profile for an RPG game in JSON format:\n```json\n",
30 "A character that is a level 5 human fighter with 10 strength, 10

dexterity, 10 constitution, 10 intelligence, 10 wisdom, and
10 charisma:\n```json\n",

31 "JSON specifying a character that is a level 5 dwarf fighter from
a game:\n```json\n"

Listing 7. Fixed Template Grammar and Prompts

D. Structured Reasoning Outputs
In our experiments, we evaluate task accuracy on GSM8K
and CoNLL2003. For these tasks, prompted and constrained
model output looks as follows:
1 {
2 "thoughts": [
3 {
4 "step": "Find the distance between the first and

second stops",
5 "calculation": "60 - 20 - 15",
6 "result": 25
7 },
8 {
9 "step": "Find the distance between the first and

second stops",
10 "calculation": "25 + 15",
11 "result": 40
12 }
13 ],
14 "answer": 40
15 }

Listing 8. Structured Reasoning Output for GSM8K

1 {
2 "tokens": [
3 {
4 "token": "Nadim",
5 "tag": "B-PER"
6 },
7 {
8 "token": "Ladki",
9 "tag": "I-PER"

10 }
11 ]
12 }

Listing 9. Structured Reasoning Output for CoNLL2003

In practice, such outputs greatly facilitate downstream pro-
cessing of LLM outputs, as they are already in a structured
format and can be easily parsed.

Few-Shot Demonstrations For few-shot demonstrations,
we alternate between questions and answers using a simple
Q: ... \n A: ... \n ... format.

D.1. Constituency Parsing with DOMINO

We have also extended our experimental setup from Table 2
to include constituency parsing (CP) on 400 samples of the
Penn Treebank test split Marcus et al. (1993), to cover a
wider range of applications. We report the results in Table 5.

Here, we consider an output well-formed if
it corresponds to a valid constituency parse
tree, i.e. a parenthesis-based string such as
( S ( NP ( NNP company ) ( PPOS outpaced ) . . . . Like
with our main results, infinite repetition or nesting in the
parse tree can still lead to violations even when constrained,
due to maximum output length of models. We find that
for both Llama-2 and Mistral 7B, Domino consistently
performs best in terms of F1 score and even outperforms
unconstrained generation for both models. This is likely
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Table 5. Task Accuracy of different constrained decoding methods for constituency parsing (CP) on 400 samples from the Penn Treebank
test split Marcus et al. (1993). All experiments rely on 5-shot prompting with demonstrations taken from the training split.

Dataset Model Method F1 Score Well-Formed Perplexity

Constituency Parsing (Penn Treebank)

Mistral 7B

Unconstrained 0.159 0.922 2.00
GUIDANCE Lundberg et al. 0.162 0.953 2.399

GUIDANCE WS Lundberg et al. 0.159 0.925 2.388
llama.cpp Gerganov & et. al. 0.104 0.772 -

DOMINO (k = ∞) 0.163 0.953 2.477

Llama-2 13B

Unconstrained 0.106 0.897 2.219
GUIDANCE Lundberg et al. 0.115 0.993 2.806

GUIDANCE WS Lundberg et al. 0.107 0.910 2.745
llama.cpp Gerganov & et. al. 0.111 0.988 -

DOMINO (k = ∞) 0.115 0.993 2.806
WS GUIDANCE CFG program with flexible whitespace and formatting.

the case because constituency parse trees have a more
complex structure, making constrained generation more
beneficial. Our GUIDANCE baselines also perform well,
although it is not conclusive which formulation with respect
to whitespace is to be preferred. In contrast, DOMINO is
agnostic to that and performs well out-of-the-box.
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