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Abstract

As large language models are becoming more001
embedded in different user-facing services, it002
is important to be able to distinguish between003
human-written and machine-generated text to004
verify the authenticity of news articles, product005
reviews, etc. Thus, in this paper we set out to006
explore whether it is possible to use one language007
model to identify machine-generated text pro-008
duced by another language model, in a zero-shot009
way, even if the two have different architectures010
and are trained on different data. We find that011
overall, smaller models are better universal012
machine-generated text detectors: they can more013
precisely detect text generated from both small014
and larger models, without the need for any015
additional training/data. Interestingly, we find that016
whether or not the detector and generator models017
were trained on the same data is not critically018
important to the detection success. For instance019
the OPT-125M model has an AUC of 0.90 in de-020
tecting GPT4 generations, whereas a larger model021
from the GPT family, GPTJ-6B, has AUC of 0.65.022

1 Introduction023

With the rapid improvement in fluency of the text024

generated by large language models (LLMs), these025

system are being adopted more and more broadly in a026

wide range of applications, including chatbots, writing027

assistants, and summarizers. Generations from these028

models are shown to have human-like fluency (Liang029

et al., 2022; Yuan et al., 2022), making it difficult for030

human readers to differentiate machine-generated text031

from human-written text. This can have significant032

ramifications, as such LLM-based tools can be abused033

for unethical purposes like phishing, astroturfing, and034

generating fake news (He et al., 2023). As such, we035

need to be able to reliably and automatically detect036

machine generated text.037

While there has been work on training specialized038

classifiers for distinguishing between machine-039

generated text of specific models and human-written040

text (Verma et al., 2023; OpenAI), such approaches041

are not always applicable as access to training data 042

might be limited, the classifier might overfit to a given 043

model’s generation, and it would need to be constantly 044

updated to account for distribution shifts. As such, 045

zero-shot methods are developed that can detect 046

machine generated text without any training, using 047

the generator model and its likelihood distribution 048

over tokens (Mitchell et al., 2023; Gehrmann et al., 049

2019; Solaiman et al., 2019; Ippolito et al., 2020). 050

In practice, however, we often need to detect 051

machine-generations in situations where we do not 052

know which model could have been used as the text 053

generator — and even if we do know the generator, 054

we might not have white-box access to it or its logits, 055

or access might be behind a paywall (e.g. GPT3). 056

Therefore, in this paper we set out to explore 057

the zero-shot detection of machine-generated text 058

without any knowledge of the generator, or access 059

to it. We do this by exploring whether it is possible 060

to use signals from one language model (a detector 061

model) to identify machine-generated text generated 062

by another language model (the generator). We use 063

surrogate detector models, whose likelihood functions 064

we do have access to, and run zero-shot tests using 065

different signals such as likelihood, rank, log rank, 066

and curvature of the detector model over text (Ippolito 067

et al., 2020; Gehrmann et al., 2019; Mitchell et al., 068

2023) to distinguish between machine-generated and 069

human written text. We call this cross-detection. 070

We conduct an extensive empirical analysis by 071

experimenting on a slew of models with different 072

sizes (from tens of millions to billions of parameters), 073

architectures (GPTs, OPTs, Pythias) and pre-training 074

data (Webtext and the Pile). Our main finding is 075

that zero-shot cross-detection can come very close 076

to self-detection and non-zeroshot oracle in terms of 077

distinguishablity, with smaller models being the best 078

universal detectors, regardless of the generator archi- 079

tecture or training data. For instance for GPT4 the 080

AUC of using OPT-125M as a cross-detector is 0.90, 081

whereas OPT 6.7B’s AUC is 0.71. We then further in- 082
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Figure 1: Overview of our methodology: We study how models can cross-detect, i.e. distinguish between human-written
text and machine-generated text generated by another model. We create a target pool of both human-written and
machine-generated text and feed the pool to the surrogate detector model to get the value of the signal we want to use
(likelihood, curvature, etc.) and use this signal to test if the sequence is machine-generated or not.

vestigate some possible reasons for this phenomenon083

by analyzing curvature and log-likelihood of the084

different models, and find that larger models are more085

conservative in terms of the likelihood and curvature086

they assign to generations from other models. Smaller087

models, however, assign higher curvature to genera-088

tions of models their size or larger, therefore they can089

be used to cross-detect on a broader range of models.090

2 Methodology and Experimental Setup091

Figure 1 shows the methodology of our work, where092

for a given target pool of sequences (with a 50%/50%093

composition of machine-generated/human-written094

text), the task is to determine if each sequence is095

human-written or machine-generated by running096

a detection test using the likelihood surface of a097

surrogate detector model.098

Detection test. We try various detection test-based099

zero-shot methods that rely on the predicted token-100

wise conditional distributions of the generator model101

for detection. However, these methods were originally102

intended for self-detection (i.e. detecting text from103

a known, available generator using the model itself),104

whereas we test them in a cross-detection setup (i.e.105

using the surrogate detector model). We use four dif-106

ferent signals for our detection tests. (1) log-likelihood:107

average token-wise log probability, with the intuition108

that sequences with higher log probability are more109

likely to be machine-generated. (2) & (3) rank and log-110

rank (Solaiman et al., 2019) which is the average ob-111

served rank or log-rank of the tokens based on the de-112

tector model, with the intuition that machine generated113

text tends to have lower rank. (4) curvature (Mitchell114

et al., 2023; Mattern et al., 2023), which uses the local-115

optimality of a point with respect to its neighbors (i.e.116

perturbations), in the likelihood surface of the detec-117

tor model. The intuition is that if the likelihood of118

a point is much higher than most of its neighbors,119

then it is more likely to be machine-generated. For all120

these signals, the detection test places a threshold on121

the value and determines human-written vs. machine122

generated based on that. We compare results to an Or- 123

acle, non-zero shot baseline, which is the openai- 124

roberta-base model, a classifier specifically 125

trained by OpenAI to detect machine-generated text. 126

Success metric. We evaluate the success of the 127

detector by measuring the area under the ROC curve 128

(AUC), i.e. the false positive vs. true positive rate 129

curve. The higher the AUC, the more distinguishing 130

power the detection mechanism has. We use this 131

measure as it is threshold independent and measures 132

the true power of the method. 133

Models and datasets. For full details of the 134

experimental setup refer to Appendix A. Here we 135

discuss a brief summary. We use models ranging 136

from 70 Million to 6.7B parameters as detectors, 137

including the OPT, GPT, GPT-J, GPTNeo and Pythia 138

families (Biderman et al., 2023; Zhang et al., 2022; 139

Wang and Komatsuzaki, 2021). For our evaluations, 140

We use a subsample of the SQuAD (Rajpurkar et al., 141

2016) and WritingPrompts (Fan et al., 2018) datasets, 142

where the original dataset sequences are used as the 143

human-written text in the target sequence pool. We 144

then use the first 20 tokens of each human-written 145

sequence as a prompt, and feed this to the target 146

model, and have it generate completions for it. We 147

report results averaged over these datasets. 148

3 Does cross-detection work? 149

In this section we present our experimental results 150

and show that cross-detection can perform as well 151

as self-detection and come very close to a non-zero 152

shot oracle baseline. We also experiment with 153

partially trained checkpoints of different detector 154

models, and find that for larger models, partially 155

trained checkpoints are better cross-detectors than 156

fully trained ones (results are in Appendix B.5 as they 157

are not the main focus of this paper). 158

3.1 Smaller Models Are Better Detectors 159

Figure 2 shows distinguishablity results using 160

curvature as the test signal, where the rows are the 161

generator models (sizing up from bottom row to top) 162
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Figure 2: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors.
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108 109 1010 1011

#Params

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Cu
rv

at
ur

e

Machine-generated
Human-written
Detector Model

(b) Curvature: OPT-350M as Detector
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(c) Curvature: OPT-6.7B as Detector

108 109 1010 1011

#Params

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

Lo
g 

Lik
el

ih
oo

d

Machine-generated
Human-written
Detector Model

(d) Loglikelihood: OPT-125M as Detector
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(e) Logliklihood: OPT-350M as Detector
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(f) Logliklihood: OPT-6.7B as Detector

Figure 3: Comparison of curvature and log likelihood values (mean and standard deviation) for the best universal
detector (OPT-125M), a medium sized detector (OPT-350M), and a larger detector from the same family (OPT-6.7B)
on generations from models of various sizes (x-axis). The ‘Detector Model’ line shows values for when the generator
and detector are the same model. Detectors tend to show higher curvature on generations than human-written text only
for generations from models of the same size or larger.

and the columns show the detector models (sizing163

up from right to left). Each cell shows the detection164

power (AUC). The last row is the mean, which is an165

overall metric of how good of a detector that model166

is. Figure 4 shows a summary of it for the other three167

signals, with extensive heatmaps in Appendix B.6.168

We see that the bottom left has the lowest values,169

showing that larger models are not good at detecting170

machine generated text from other models, and they 171

are particularly bad at it for detecting small model 172

generations. We can also see that smaller models 173

are much better detectors, as the right side of the 174

graph has much higher AUC values. This trend 175

holds across all the four different detection tests. 176

Another observation is the correlations between the 177

dataset and model architecture of the generator 178

3



OP
T-

6.
7B

OP
T-

1.
3B

OP
T-

35
0M

OP
T-

12
5M

Detector Model

GPT4

ChatGPT

GPT3

OPT-6.7B

OPT-1.3B

OPT-350M

OPT-125M

Mean

Ge
ne

ra
tiv

e 
M

od
el

0.94 0.95 0.95 0.94

0.95 0.96 0.94 0.94

0.78 0.79 0.80 0.80

0.91 0.89 0.90 0.90

0.77 0.96 0.94 0.95

0.57 0.79 0.99 0.98

0.46 0.69 0.93 0.99

0.65 0.79 0.90 0.92

AUC using LogRank

OP
T-

6.
7B

OP
T-

1.
3B

OP
T-

35
0M

OP
T-

12
5M

Detector Model

0.76 0.78 0.81 0.81

0.74 0.75 0.75 0.77

0.72 0.71 0.72 0.73

0.82 0.83 0.85 0.85

0.80 0.84 0.87 0.88

0.76 0.81 0.88 0.89

0.74 0.80 0.87 0.90

0.76 0.80 0.84 0.85

AUC using Rank

OP
T-

6.
7B

OP
T-

1.
3B

OP
T-

35
0M

OP
T-

12
5M

Detector Model

0.94 0.95 0.95 0.94

0.94 0.95 0.94 0.94

0.79 0.81 0.82 0.82

0.88 0.86 0.88 0.88

0.72 0.94 0.93 0.94

0.52 0.75 0.98 0.96

0.40 0.62 0.90 0.99

0.61 0.75 0.88 0.91

AUC using LogLikelihood

Figure 4: Summary of AUC results for signals other than
curvature. We see a similar trend, with smaller models
providing a better distinguishing signal.

and detector models. As the heatmap shows, models179

from the same architecture family and trained on180

the same/overlapping dataset are better at detecting181

their own text, compared to models from a different182

family. For instance, for detecting text generated by183

OPT-6.7B the other models from the OPT family184

are the best cross-detectors, with AUCs ranging185

from 0.89-0.87 (OPT-6.7B self-detects with AUC186

0.91). The next best cross-detector is the smallest187

GPTNeo-125M with AUC 0.86. However, the Ope-188

nAI GPT2 model of the same size has a lower AUC189

of 0.84 (and overall the GPT2 family has the lowest190

cross-detection AUC on OPT), which we hypothesize191

is due to the larger gap in the training data, as the192

OPT and GPTNeo/GPTJ models are all trained on193

the Pile dataset, but GPT2 is trained on the Webtext.194

All in all, the difference due to the dataset/architecture195

differences is small as most of the dataset for all196

these models is comprised of web-crawled data.197

The right-most column is the non-zero shot oracle198

baseline, and as we can see cross-detection comes199

close to it, especially for larger models.200

One noteworthy observation is that OPT-125M can201

detect generations from models like GPT3 and Chat-202

GPT with relatively high AUC (0.82). However, if the203

intuitive approach of taking another large, “similar”204

model were to be taken and we were to use OPT-6.7B,205

we would get AUC of 0.70 and 0.67 for these models,206

respectively, which are both close to random (0.5).207

3.2 Curvature and Loglikelihood Breakdown208

We plot a breakdown of the curvature metric209

(Section 2) and log-likelihood values for the best210

universal detector (OPT-125M), a medium sized211

detector of the same family (OPT-350M) and a larger212

one from the same family (OPT-6.7B), shown in213

Figure 3. The y-axis is the curvature/log likelihood214

of the target generations under the detector models215

(OPT-125M, 350M or 6.7B). The x-axis is the 216

number of parameters of the generator model. 217

We can see that for the smaller detector model 218

(Figures 3a and 3d), the mean curvature and 219

log-likelihood values for the generated text are consis- 220

tently higher than the curvature for the human-written 221

text. However, for the larger model (Figure 3c and 3f), 222

the curvature and log-likelihood values for the 223

machine-generated text is in most cases smaller than 224

or around the same value as the human written text. 225

The curvature and log-likelihood values for human 226

written text for both graphs are stable since the text 227

is the same and doesn’t depend on the target model. 228

We can also see that overall the curvature and 229

likelihood values for the larger model are higher, 230

especially for the original text, than those of the 231

smaller model, and the values for text generated by 232

the other models have lower curvature and likelihood 233

value. This shows that the larger model places higher 234

likelihood on the human written text and fits it better. 235

The smaller model, however, assigns lower curvature 236

and likelihood to the human-written text compared to 237

generations by a large gap, and the assigned values are 238

overall lower than those of the large model. Broadly 239

we observe that all models respond similarly to 240

machine generated text from other models, so long 241

as the other model is same size or bigger. In other 242

words, they place high likelihood on text from larger 243

models. However, for models smaller than them- 244

selves, they place lower likelihood and curvature. As 245

such, smaller models are better universal detectors, 246

as the size of the set of sequences they assign higher 247

likelihood and curvature to is bigger than it is for large 248

models, and this higher curvature is much higher than 249

the curvature assigned to the human written text. The 250

spikes in all the sub-figures of Figure 3 graphs are 251

for the detector model detecting its own text. 252

4 Conclusion 253

With the increasing prevalence of LLMs it becomes 254

crucial to differentiate between text written by 255

humans and text generated by machines so as to avoid 256

fake news and impersonations. As such, we set out 257

to explore the possibilities of using existing models 258

to detect generations from unknown sources, and 259

distinguish them from human written text. We find 260

that when using zero-shot detection methods, smaller 261

models are overall better at detecting generations, and 262

larger models are poor detectors. Our results offer 263

hope of robust general purpose protection against 264

LLMs used with nefarious intentions. 265
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Limitations266

Although we see high AUCs for black-box detection267

of machine generated text in our experiments, this268

does not necessarily mean that these detection meth-269

ods are not avoidable, and that they can be applied to270

all models and achieve high performance. We present271

further experiments in Appendix B.7 to see the272

performance degradation when paraphrasing is used273

to avoid detectors, and find it to be not significant.274

However, further experiment are needed to evaluate275

the generalization of our findings to other architec-276

tures and setups. As LLMs continue to change and277

detection evasion methods become more prevalent,278

so must methods for detection and validation studies.279
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A Extended Experimental Setup432

A.1 Models433

We want to experiment with a wide range of mod-434

els, with different architectures, parameter counts435

and training datasets, therefore we use the following436

model families in our experiments: Facebook’s OPT437

(we use the 125M, 350M, 1.3B, and 6.7B models),438

EleutherAI’s GPT-J, GPTNeo and Pythia (Biderman439

et al., 2023) (we use GPTNeo-125M, GPTNeo-1.3B,440

GPTNeo-2.7B, GPTJ-6B and Pythia models ranging441

from 70M to 2.8B parameters), and OpenAI’s GPT442

models (distilGPT, GPT2-Small, GPT2-Medium,443

GPT2-Large, GPT2-XL, GPT-3 and ChatGPT).444

We also have experiments where we use partially445

trained models as detectors. For those experiments,446

we only use the Pythia models as they are the only447

ones with available, open-source partially trained448

checkpoints. For each Pythia models, there is also449

a de-duplicated version available, where the model450

is trained on the de-duplicated version of the data, as451

opposed to the original dataset. All the models we use452

are obtained from HuggingFace (Wolf et al., 2019).453

A.2 Dataset454

Evaluation dataset. We follow Mitchell et al.455

(2023)’s methodology for pre-processing and feed-456

ing the data. We use a subsample of the SQuAD457

dataset (Rajpurkar et al., 2016), where the original458

dataset sequences are used as the human-written text459

in the target sequence pool. We then use the first 20 to-460

kens of each human-written sequence as a prompt, and461

feed this to the target model, and have it generate com-462

pletions for it. We then use this mix of generations and463

human-written text to create the target pool for which464

we do the detection. In all cases, following the method-465

ology from Mitchell et al. (2023), our pool consists of466

300 human-written target samples, and 300 machine-467

generated samples, so the overall pool size is 600.468

Pre-training datasets for the generative models.469

The ElutherAI and Facebook models (GPTJ, GPT-470

Neo, Pythia and OPT families) are all trained on the471

Pile dataset (Gao et al., 2020), a curated collection472

of 22 English language datasets (consisting of473

web-crawled data, academic articles, dialogues, etc.).474

As mentioned above there are two versions of each475

Pythia model (Biderman et al., 2023), one version is476

trained on Pile, the other is trained on de-duplicated477

Pile. The de-duplicated Pile is approximately 207B478

tokens in size, compared to the original Pile which479

contains 300B tokens. There is limited information480
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Figure 5: AUC of the three cross-detectors from Figure 3
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Figure 6: Summary of the cross-detection area under the
ROC curve (AUC) results for a selection of generative
(the 4 models over the X axis) and detector (OPT-125M
and OPT-6.7B) models. We can see that the smaller OPT
model is a better universal cross-detector. Full results are
shown in Figure 2.

and access to the training data of the OpenAI models. 481

The GPT-2 family is reportedly trained on the 482

WebText dataset, GPT-3 is trained on a combination 483

of the Common Crawl 1, WebText2, books and 484

Wikipedia, and there is not any information released 485

about the training data of ChatGPT. 486

B Additional Plots and Experiments 487

B.1 Does neighborhood choice matter? 488

Our estimation of “curvature” hinges upon generating 489

numerous perturbations (neighbors) and comparing 490

their loss with that of a target point. Therefore, if 491

these perturbed neighbors are not sufficiently nearby 492

and lie in a different basin of the likelihood surface, 493

our measure of curvature is not accurate (the closer 494

the perturbed points are, the more accurate estimation 495

of curvature we achieve). The perturbation method di- 496

rectly impacts the size and shape of the neighborhood 497

we create. Therefore, we compare different pertur- 498

1https://commoncrawl.org
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bation schemes in order to see how sensitive detectors499

of different sizes are to neighborhood choice.500

We investigate two different methods for changing501

the distance of the generated perturbations: (1) we502

change the mask filling model size, by experimenting503

with T5-Small, T5-Large and T5-3B (Wolf et al., 2019;504

Raffel et al., 2020) to test the intuition that larger mask-505

filling models, generate semantically closer neighbors506

than a smaller model, we present the extended results507

for this in Appendix B.4. A similar analysis is also508

conducted in (Mitchell et al., 2023), we however, do509

a more extensive analysis on numerous models of510

different sizes and probe the curvature values. (2) We511

change the percentage of the tokens that get masked512

and replaced by the mask-filling model, as the more513

tokens we mask and replace, the farther the generated514

perturbations would be. (3) Finally, we look into how515

many tokens we actually need in the generated/human-516

written sequences to create a neighborhood and be517

able to accurately distinguish the texts.518

B.2 Masking Percentage519

Figure 7 shows the results for the experiment where520

we change the percentage of tokens that are masked,521

to produce the neighbors. In all previous experiments,522

we used 15% masking with mask span length of 2 to-523

kens following the experimental setup in Mitchell et al.524

(2023). In this section, however, we change the per-525

centage of the masked tokens (and we set the masking526

to be contiguous) to see how it affects the curvature527

mean and standard deviation values, and the AUCs.528

We can see that as the masking percentage decreases529

(from 90% to 2%), the AUCs and the self-detection530

power of models increase rather consistently. When531

we go to 1%, however, we see the AUC drop. If we532

look at Figure 7e which depicts the curvature measures533

for the 1% masking, we see that the curvatures over-534

lap between machine-generated and human-written535

text, which we hypothesize is because our implemen-536

tation does not enforce that re-sampled words must537

differ from the words they are replacing. Thus, for the538

smallest masking percentage, it is possible that some539

perturbations are identical to the target, which may540

explain reduced detection accuracy in this setting2.541

B.3 How many tokens do we need for detection? 542

Figure 8 shows how the length of the target sequence 543

affects the sequence’s detectablity (AUC of detection), 544

and how many tokens we need to be able to do 545

precise detection. We compare sequences of different 546

lengths, ranging from 10 tokens to 200, for four 547

different models with four different parameter 548

counts, on the SQuAD dataset. In this setup we 549

target self-detection. We can see that the longer 550

the sequence, the easier it is to distinguish if it is 551

human-written or machine-generated, and 75-100 552

tokens seems like the point where we hit diminishing 553

returns. We can also see that across different sequence 554

lengths, as models get smaller, the detection power 555

increases, as seen throughout the rest of the paper. 556

B.4 Ablating Mask Filling Models 557

Figure 12 shows the curvature numbers for each 558

model trying to detect its own generations, so for 559

each model the generator is also the detector. We 560

experiment with three perturbation generating models, 561

with three different sizes: (1) T5-small (60 million 562

parameters) (2) T5-Large (770 million parameters) 563

(3) T5-3B (3 billion parameter). The intuition behind 564

using three model sizes is to see the effect of having a 565

better replacement model on the measured curvatures 566

and the detection power of the detector models. 567

We can see that as the masking model sizes down 568

(going from top to the bottom subfigures), the overall 569

curvature values for both human-written and machine- 570

generated text increases (going from 0.2 maximum 571

in Figure 12a to 0.6 maximum in Figure 12c), and 572

the two sets of texts become less distinguishable. T5- 573

Small produces low-quality (low-fluency) neighbors 574

that are assigned lower likelihoods by the detector 575

model, resulting in high curvature numbers for both 576

human and machine generated text, making them 577

indistinguishable. As we improve the mask filling 578

model, however, the generated neighbors become of 579

higher quality (and semantically closer to the target 580

point), thereby creating a more accurate estimate of 581

the curvature and providing better distinguishablity, 582

as shown by the AUC numbers in Figure 12d. 583

2Its noteworthy that the slight discrepancy between the results
for 15% masking in this section and the previous section is that
there, the mask span length was 2 so the masked portion of the
sequence is not contiguous. In this experiment, however, we use
contiguous masking.
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relatively high accuracy.

B.5 Partially584

Trained Models are Better Detectors585

We take different training checkpoints of the Pythia586

models (Biderman et al., 2023) at different steps (steps587

1k, 5k, 10k, 50k, 100k and 143k) with different sizes588

(2.8B, 410M, and 70M), and use them as detectors of589

generations from the 4 target models. Figure 13 shows590

the results for this experiment (Figures 9 and 10 show591

entire heatmaps of this experiment). For each model592

we can see that the final checkpoint is consistently593

the worst one in terms of machine-generated text594

detection, and it is one of the middle checkpoints595

that has the best performance. Our hypothesis for this596

is similar to that of Section 3, where we believe that597

partially trained models have not yet fit to the training598

data tightly (and have a smoother surface), so they 599

over claim other models’ generations as their own, 600

whereas the longer a model is trained, the sequences 601

it ranks higher as its own narrow down. 602

B.6 Extensive Heatmaps 603

We provide the full heatmaps from experiments of 604

Section 3 here, to provide a detailed breakdown. 605

Figures 2 and 13 (full heatmap is Fig. 9 in Appendix) 606

show the AUC of cross-detection for different models. 607

Figures 11 and 10 in Appendix show how close each 608

detector comes, in terms of AUC, to self-detection. 609

Figures 14, 15 and 16 show the full heatmaps for 610

signals other than curvature. 611

We provide a summary of Figure 2 in Figure 6, 612

where we have presented the numbers from the best 613

overall detector with mean AUC of 0.92 (OPT-125M) 614

and the biggest model of the same family, OPT-6.7B 615

with average AUC of 0.46. 616

B.7 Detection 617

performance under a paraphrase attack 618

We present additional results where we perform 619

an adaptive paraphrasing attack (Sadasivan et al., 620

2023) on the machine generated text and then 621

evaluate cross-detection performance. We conducted 622

experiments on the SQuAD test set. You can find the 623

results in Tables 1 and 2. 624

We can see that paraphrasing machine-generated 625

text does reduce detection performance to some 626

degree. However, the detection accuracy after the 627

paraphrase attack is high enough for detection to still 628

9



Py
th

ia
-2

.8
B-

dd
-1

k

Py
th

ia
-2

.8
B-

dd
-5

k

Py
th

ia
-2

.8
B-

dd
-1

0k

Py
th

ia
-2

.8
B-

dd
-5

0k

Py
th

ia
-2

.8
B-

dd
-1

00
k

Py
th

ia
-2

.8
B-

dd
-1

43
k

Py
th

ia
-1

.4
B-

dd
-1

k

Py
th

ia
-1

.4
B-

dd
-5

k

Py
th

ia
-1

.4
B-

dd
-1

0k

Py
th

ia
-1

.4
B-

dd
-5

0k

Py
th

ia
-1

.4
B-

dd
-1

00
k

Py
th

ia
-1

.4
B-

dd
-1

43
k

Py
th

ia
-4

10
M

-d
d-

1k

Py
th

ia
-4

10
M

-d
d-

5k

Py
th

ia
-4

10
M

-d
d-

10
k

Py
th

ia
-4

10
M

-d
d-

50
k

Py
th

ia
-4

10
M

-d
d-

10
0k

Py
th

ia
-4

10
M

-d
d-

14
3k

Py
th

ia
-1

60
M

-d
d-

1k

Py
th

ia
-1

60
M

-d
d-

5k

Py
th

ia
-1

60
M

-d
d-

10
k

Py
th

ia
-1

60
M

-d
d-

50
k

Py
th

ia
-1

60
M

-d
d-

10
0k

Py
th

ia
-1

60
M

-d
d-

14
3k

Py
th

ia
-7

0M
-d

d-
1k

Py
th

ia
-7

0M
-d

d-
5k

Py
th

ia
-7

0M
-d

d-
10

k

Py
th

ia
-7

0M
-d

d-
50

k

Py
th

ia
-7

0M
-d

d-
10

0k

Py
th

ia
-7

0M
-d

d-
14

3k

Detector Model

ChatGPT

GPT3

OPT-6.7B

GPTJ-6B

GPTNeo-2.7B

GPT2-XL

OPT-1.3B

GPTNeo-1.3B

GPT2-Large

GPT2-Medium

OPT-350M

OPT-125M

GPTNeo-125M

GPT2

DistilGPT2

Mean

Ge
ne

ra
tiv

e 
M

od
el

0.75 0.75 0.70 0.60 0.54 0.52 0.75 0.78 0.75 0.68 0.64 0.64 0.75 0.79 0.78 0.76 0.73 0.73 0.72 0.77 0.76 0.75 0.74 0.73 0.75 0.78 0.78 0.79 0.76 0.75

0.83 0.80 0.77 0.70 0.66 0.67 0.80 0.80 0.79 0.75 0.72 0.72 0.81 0.83 0.80 0.81 0.78 0.78 0.78 0.81 0.82 0.81 0.81 0.81 0.80 0.81 0.81 0.83 0.82 0.82

0.83 0.84 0.81 0.77 0.67 0.67 0.83 0.85 0.83 0.81 0.78 0.77 0.84 0.85 0.85 0.84 0.84 0.82 0.83 0.85 0.85 0.84 0.84 0.84 0.82 0.84 0.84 0.84 0.84 0.83

0.82 0.84 0.82 0.78 0.73 0.71 0.83 0.84 0.83 0.80 0.79 0.77 0.84 0.83 0.84 0.84 0.84 0.82 0.84 0.83 0.84 0.83 0.82 0.82 0.81 0.82 0.82 0.82 0.82 0.82

0.84 0.87 0.87 0.78 0.69 0.65 0.83 0.87 0.87 0.84 0.80 0.79 0.84 0.87 0.87 0.88 0.87 0.87 0.83 0.87 0.87 0.87 0.87 0.86 0.83 0.85 0.85 0.85 0.86 0.85

0.85 0.90 0.89 0.76 0.63 0.60 0.85 0.90 0.91 0.85 0.78 0.77 0.86 0.90 0.90 0.91 0.89 0.89 0.85 0.89 0.89 0.90 0.90 0.90 0.85 0.88 0.88 0.88 0.88 0.88

0.87 0.89 0.86 0.69 0.56 0.53 0.86 0.90 0.89 0.80 0.72 0.71 0.85 0.90 0.90 0.89 0.86 0.87 0.87 0.90 0.90 0.90 0.90 0.89 0.86 0.88 0.88 0.89 0.88 0.89

0.90 0.93 0.91 0.74 0.61 0.56 0.90 0.93 0.93 0.87 0.78 0.80 0.90 0.92 0.92 0.93 0.93 0.91 0.90 0.91 0.92 0.93 0.92 0.92 0.89 0.91 0.91 0.91 0.91 0.91

0.90 0.93 0.90 0.73 0.59 0.55 0.89 0.93 0.94 0.86 0.77 0.77 0.90 0.93 0.94 0.92 0.92 0.91 0.89 0.92 0.93 0.93 0.93 0.93 0.89 0.91 0.91 0.92 0.92 0.92

0.87 0.91 0.88 0.59 0.44 0.37 0.85 0.93 0.91 0.80 0.65 0.65 0.85 0.92 0.93 0.91 0.90 0.88 0.86 0.91 0.91 0.93 0.94 0.92 0.85 0.90 0.90 0.90 0.91 0.92

0.96 0.95 0.88 0.58 0.41 0.36 0.94 0.97 0.95 0.79 0.62 0.64 0.93 0.98 0.97 0.94 0.90 0.90 0.94 0.97 0.97 0.97 0.96 0.95 0.95 0.97 0.97 0.97 0.97 0.97

0.96 0.92 0.79 0.38 0.25 0.22 0.94 0.97 0.91 0.62 0.41 0.43 0.93 0.98 0.97 0.87 0.81 0.78 0.95 0.98 0.98 0.97 0.96 0.96 0.95 0.98 0.98 0.98 0.98 0.98

0.95 0.90 0.75 0.35 0.25 0.21 0.93 0.97 0.91 0.60 0.39 0.40 0.93 0.98 0.97 0.86 0.77 0.76 0.93 0.98 0.98 0.97 0.96 0.96 0.94 0.97 0.98 0.97 0.97 0.97

0.95 0.92 0.78 0.38 0.24 0.21 0.92 0.97 0.92 0.64 0.42 0.44 0.92 0.98 0.96 0.89 0.80 0.81 0.92 0.98 0.97 0.97 0.96 0.95 0.93 0.97 0.97 0.98 0.97 0.97

0.97 0.76 0.54 0.23 0.15 0.13 0.92 0.91 0.74 0.40 0.24 0.26 0.91 0.96 0.90 0.68 0.55 0.55 0.92 0.97 0.96 0.90 0.89 0.86 0.95 0.98 0.97 0.97 0.97 0.97

0.88 0.87 0.81 0.60 0.49 0.46 0.87 0.90 0.87 0.74 0.63 0.64 0.87 0.91 0.90 0.86 0.83 0.82 0.87 0.90 0.90 0.90 0.89 0.89 0.87 0.90 0.90 0.90 0.90 0.89

AUC of Distinguishing Human Text from Generations

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: AUC heatmap for cross-detection, where the rows are generative models and columns are the surrogate detector
models from the Pythia family, at different training step checkpoints (1k, 5k, 10k, 50k, 100k and 143k), both sorted
by model size. We can see that partially trained models are better detectors.
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Figure 10: AUC difference between self-detection and cross-detection heatmap (to better see how close cross-detection
comes to self detection), here the rows are generative models and columns are the surrogate detector models from the
Pythia family, at different training step checkpoints (1k, 5k, 10k, 50k, 100k and 143k), both sorted by model size. This
plot is basically Figure 9, where each cell in a row is subtracted by the self-detection AUC for that row.

be practically useful (the mean AUC for OPT 125M629

goes from 0.946 without paraphrase to 0.84 with para-630

phrase). While at first this might seem surprising, in a 631

sense, detecting the outputs of the paraphrase system 632
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Figure 11: AUC difference between self-detection and cross-detection heatmap (to better see how close cross-detection
comes to self detection), where the rows are generative models and columns are the surrogate detector models, both sorted
by model size. This plot is basically Figure 2, where each cell in a row is subtracted by the self-detection AUC for that row.

(we use T5, according to the (Sadasivan et al., 2023))633

is just another type of cross-detection: the paraphrase634

system is itself a language model. We’ve already seen635

in other experiments that small detectors are capable636

of accurate detection of outputs from completely unre-637

lated language models – the paraphrase model seems638

to be no different, if somewhat further afield with639

respect to its training data and architecture (encoder-640

decoder). Finally, the trend of smaller models being641

better detectors holds up even after paraphrasing.642

C Related Work643

The problem of machine-generated text detection has644

already been studied for multiple years using a variety645

of different approaches (Ippolito et al., 2020; Jawahar646

et al., 2020; Uchendu et al., 2020, 2021): Both647

Gehrmann et al. (2019) and Dugan et al. (2022) have648

found that humans generally struggle to distinguish649

between human- and machine-generated text, thereby650

motivating the development of automatic solutions.651

Among those, some methods aim to detect machine-652

generated text by training a classifier in a supervised653

manner (Bakhtin et al., 2019; Uchendu et al., 2020),654

while others perform detection in a zero-shot manner655

(Solaiman et al., 2019; Ippolito et al., 2020). There is 656

also a line of work that relies on bot detection through 657

question answering (Wang et al., 2023; Chew and 658

Baird, 2003), which is outside the scope of this paper. 659

Most recently, Mitchell et al. (2023) introduced the 660

zero-shot method DetectGPT, which is based on the 661

hypothesis that texts generated from a LLM lie on 662

local maxima, and therefore negative curvature, of the 663

model’s probability distribution. Other strategies have 664

been proposed to enable the detection of machine- 665

generated text in the wild. Particularly through efforts 666

on the side of the LLM provider, more powerful 667

detection methods can be devised. One such method 668

is watermarking, which injects algorithmically 669

detectable patterns into the released text while ideally 670

preserving the quality and diversity of language 671

model outputs. Watermarks for natural language 672

have already been proposed by Atallah et al. (2001) 673

and have since been adapted for outputs of neural 674

language models (Fang et al., 2017; Ziegler et al., 675

2019). Notable recent attempts for transformer based 676

language models include work by Abdelnabi and Fritz 677

(2021), who propose an adversarial watermarking 678

transformer (AWT). While this watermarking method 679
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Table 1: Detection power w/o using a praphrasing attack to avoid detection.

Generator/Distinguisher OPT-6.7b OPT-1.3b OPT-350m OPT-125m

OPT-6.7b 0.915 0.888 0.881 0.867
OPT-1.3b 0.565 0.978 0.937 0.931
OPT-350m 0.320 0.780 1.000 0.989
OPT-125m 0.186 0.588 0.960 0.999
mean 0.496 0.808 0.944 0.946

Table 2: Detection power with using a praphrasing attack to avoid detection.

Generator/Distinguisher OPT-6.7b OPT-1.3b OPT-350m OPT-125m

OPT-6.7b 0.752 0.730 0.677 0.698
OPT-1.3b 0.458 0.879 0.756 0.789
OPT-350m 0.239 0.521 0.954 0.895
OPT-125m 0.131 0.409 0.811 0.978
mean 0.395 0.635 0.800 0.840

is dependent on the model architecture, Kirchenbauer680

et al. (2023) propose a watermark that can be applied681

to texts generated by any common autoregressive682

language model. As a strategy more reliable than683

watermarking, Krishna et al. (2023) suggest a684

retrieval-based approach: By storing all model685

outputs in a database, LLM providers can verify686

whether a given text was previously generated by687

their language model. In practice, this would however688

require storage of large amounts of data and highly689

efficient retrieval techniques in order to provide fast690

responses as the number of generated texts grows.691

12



108 109

#Params

0.05

0.00

0.05

0.10

0.15

0.20

Cu
rv

at
ur

e

Machine-generated
Human-written

(a) T5-3B

108 109

#Params

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cu
rv

at
ur

e

Machine-generated
Human-written

(b) T5-Large

108 109

#Params

0.1

0.2

0.3

0.4

0.5

0.6

Cu
rv

at
ur

e

Machine-generated
Human-written

(c) T5-Small

108 109

#Params

0.6

0.7

0.8

0.9

1.0

AU
C

Mask Model
T5-3b
T5-Large
T5-Small

(d) AUCs for different perturbation (masking) models
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Figure 13: Summary of the results for cross-detection power of different detector models trained for different number
of steps. Each subfigure shows a different detector model, and the x-axis shows the training step for the checkpoint used
as a detector. The results for all 15 generator models are shown in Figure 9.

OP
T-

6.
7B

GP
TJ

-6
B

Py
th

ia
-2

.8
B

Py
th

ia
-2

.8
B-

dd

GP
TN

eo
-2

.7
B

GP
T2

-X
L

Py
th

ia
-1

.4
B

Py
th

ia
-1

.4
B-

dd

OP
T-

1.
3B

GP
TN

eo
-1

.3
B

GP
T2

-L
ar

ge

Py
th

ia
-4

10
M

Py
th

ia
-4

10
M

-d
d

GP
T2

-M
ed

iu
m

OP
T-

35
0M

Py
th

ia
-1

60
M

Py
th

ia
-1

60
M

-d
d

OP
T-

12
5M

GP
TN

eo
-1

25
M

GP
T2

Di
st

ilG
PT

2

Py
th

ia
-7

0M

Py
th

ia
-7

0M
-d

d

Detector Model

GPT4

ChatGPT

GPT3

OPT-6.7B

GPTJ-6B

GPTNeo-2.7B

GPT2-XL

OPT-1.3B

GPTNeo-1.3B

GPT2-Large

GPT2-Medium

OPT-350M

OPT-125M

GPTNeo-125M

GPT2

DistilGPT2

Mean

Ge
ne

ra
tiv

e 
M

od
el

0.94 0.92 0.94 0.94 0.94 0.95 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.93 0.94 0.94 0.92 0.94 0.91 0.91 0.91

0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.96 0.95 0.95 0.94 0.95 0.95 0.94 0.93 0.93 0.94 0.92 0.94 0.92 0.90 0.90

0.78 0.78 0.80 0.80 0.80 0.80 0.80 0.81 0.79 0.81 0.80 0.81 0.81 0.80 0.80 0.82 0.81 0.80 0.82 0.80 0.81 0.81 0.81

0.91 0.74 0.78 0.78 0.82 0.82 0.81 0.82 0.89 0.84 0.84 0.84 0.85 0.84 0.90 0.85 0.86 0.90 0.86 0.85 0.85 0.86 0.86

0.80 0.90 0.83 0.83 0.86 0.83 0.85 0.86 0.85 0.87 0.84 0.87 0.88 0.85 0.87 0.88 0.88 0.87 0.88 0.86 0.85 0.88 0.87

0.74 0.71 0.80 0.80 0.94 0.84 0.85 0.85 0.85 0.89 0.87 0.90 0.90 0.89 0.90 0.91 0.91 0.90 0.92 0.90 0.89 0.91 0.91

0.72 0.67 0.77 0.77 0.82 0.96 0.83 0.83 0.85 0.86 0.93 0.89 0.90 0.94 0.91 0.90 0.91 0.91 0.91 0.94 0.91 0.90 0.90

0.77 0.67 0.75 0.75 0.81 0.84 0.82 0.82 0.96 0.86 0.88 0.89 0.89 0.90 0.94 0.91 0.92 0.95 0.92 0.91 0.92 0.92 0.92

0.69 0.66 0.75 0.76 0.83 0.82 0.83 0.83 0.84 0.96 0.87 0.91 0.91 0.90 0.92 0.94 0.94 0.93 0.94 0.92 0.92 0.94 0.94

0.66 0.61 0.72 0.72 0.79 0.88 0.81 0.81 0.84 0.85 0.97 0.90 0.91 0.95 0.93 0.93 0.94 0.94 0.93 0.96 0.94 0.93 0.93

0.49 0.45 0.57 0.57 0.65 0.76 0.68 0.68 0.72 0.75 0.85 0.84 0.84 0.96 0.89 0.90 0.90 0.91 0.90 0.94 0.92 0.90 0.90

0.57 0.51 0.61 0.61 0.69 0.74 0.71 0.71 0.79 0.79 0.82 0.87 0.87 0.88 0.99 0.95 0.95 0.98 0.95 0.94 0.96 0.96 0.96

0.46 0.42 0.50 0.50 0.59 0.64 0.61 0.61 0.69 0.70 0.74 0.81 0.82 0.82 0.93 0.94 0.95 0.99 0.95 0.94 0.97 0.97 0.97

0.38 0.36 0.43 0.43 0.52 0.56 0.54 0.53 0.58 0.64 0.67 0.76 0.76 0.76 0.87 0.94 0.94 0.93 0.99 0.92 0.96 0.97 0.97

0.35 0.33 0.43 0.43 0.49 0.60 0.53 0.53 0.57 0.61 0.71 0.75 0.76 0.82 0.86 0.92 0.92 0.93 0.92 0.98 0.97 0.95 0.95

0.32 0.33 0.38 0.38 0.46 0.48 0.47 0.46 0.48 0.57 0.59 0.68 0.69 0.71 0.81 0.92 0.91 0.91 0.93 0.94 1.00 0.98 0.98

0.65 0.62 0.68 0.68 0.74 0.78 0.75 0.75 0.79 0.80 0.83 0.85 0.85 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92

AUC of Distinguishing Human Text from Generations using LogRank

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Log Rank.

14



OP
T-

6.
7B

GP
TJ

-6
B

Py
th

ia
-2

.8
B

Py
th

ia
-2

.8
B-

dd

GP
TN

eo
-2

.7
B

GP
T2

-X
L

Py
th

ia
-1

.4
B

Py
th

ia
-1

.4
B-

dd

OP
T-

1.
3B

GP
TN

eo
-1

.3
B

GP
T2

-L
ar

ge

Py
th

ia
-4

10
M

Py
th

ia
-4

10
M

-d
d

GP
T2

-M
ed

iu
m

OP
T-

35
0M

Py
th

ia
-1

60
M

Py
th

ia
-1

60
M

-d
d

OP
T-

12
5M

GP
TN

eo
-1

25
M

GP
T2

Di
st

ilG
PT

2

Py
th

ia
-7

0M

Py
th

ia
-7

0M
-d

d

Detector Model

GPT4

ChatGPT

GPT3

OPT-6.7B

GPTJ-6B

GPTNeo-2.7B

GPT2-XL

OPT-1.3B

GPTNeo-1.3B

GPT2-Large

GPT2-Medium

OPT-350M

OPT-125M

GPTNeo-125M

GPT2

DistilGPT2

Mean

Ge
ne

ra
tiv

e 
M

od
el

0.76 0.72 0.73 0.74 0.74 0.75 0.76 0.77 0.78 0.76 0.75 0.77 0.77 0.73 0.81 0.67 0.67 0.81 0.78 0.74 0.71 0.75 0.76

0.74 0.72 0.71 0.71 0.74 0.73 0.71 0.73 0.75 0.76 0.72 0.72 0.71 0.71 0.75 0.61 0.64 0.77 0.74 0.70 0.66 0.69 0.72

0.72 0.72 0.73 0.72 0.72 0.70 0.73 0.73 0.71 0.72 0.71 0.73 0.73 0.71 0.72 0.73 0.74 0.73 0.72 0.71 0.70 0.72 0.72

0.82 0.78 0.77 0.77 0.78 0.77 0.79 0.80 0.83 0.81 0.79 0.80 0.81 0.79 0.85 0.82 0.82 0.85 0.81 0.79 0.79 0.81 0.81

0.79 0.81 0.78 0.78 0.79 0.76 0.80 0.80 0.81 0.81 0.77 0.81 0.81 0.79 0.82 0.82 0.82 0.83 0.82 0.79 0.79 0.81 0.81

0.78 0.78 0.78 0.78 0.81 0.78 0.81 0.81 0.82 0.82 0.79 0.83 0.83 0.80 0.84 0.85 0.85 0.85 0.85 0.81 0.81 0.84 0.85

0.78 0.76 0.77 0.77 0.79 0.86 0.79 0.80 0.82 0.81 0.86 0.82 0.83 0.87 0.85 0.85 0.85 0.86 0.83 0.87 0.82 0.84 0.84

0.80 0.77 0.77 0.77 0.79 0.79 0.80 0.80 0.84 0.82 0.81 0.82 0.83 0.82 0.87 0.85 0.85 0.88 0.84 0.83 0.82 0.85 0.86

0.78 0.77 0.78 0.78 0.80 0.77 0.81 0.81 0.82 0.84 0.79 0.83 0.84 0.80 0.86 0.87 0.87 0.87 0.86 0.81 0.82 0.86 0.87

0.77 0.75 0.76 0.76 0.78 0.84 0.79 0.79 0.82 0.81 0.86 0.82 0.83 0.87 0.86 0.85 0.86 0.86 0.84 0.88 0.83 0.85 0.85

0.76 0.72 0.75 0.75 0.77 0.83 0.79 0.79 0.81 0.81 0.86 0.82 0.83 0.88 0.86 0.86 0.86 0.87 0.85 0.88 0.84 0.86 0.87

0.76 0.72 0.74 0.74 0.77 0.76 0.77 0.78 0.81 0.80 0.78 0.82 0.83 0.81 0.88 0.87 0.87 0.89 0.86 0.83 0.84 0.88 0.89

0.74 0.70 0.72 0.72 0.75 0.75 0.76 0.76 0.80 0.79 0.77 0.81 0.82 0.80 0.87 0.88 0.87 0.90 0.86 0.83 0.85 0.89 0.89

0.71 0.68 0.70 0.69 0.74 0.73 0.74 0.74 0.78 0.78 0.76 0.80 0.81 0.79 0.86 0.87 0.87 0.88 0.88 0.83 0.85 0.89 0.90

0.72 0.68 0.70 0.70 0.73 0.81 0.75 0.75 0.79 0.78 0.84 0.81 0.81 0.86 0.86 0.87 0.87 0.88 0.86 0.89 0.86 0.88 0.89

0.66 0.67 0.67 0.67 0.73 0.71 0.71 0.71 0.74 0.77 0.75 0.78 0.79 0.81 0.84 0.86 0.85 0.86 0.86 0.86 0.87 0.88 0.89

0.76 0.74 0.74 0.74 0.77 0.77 0.77 0.77 0.80 0.79 0.79 0.80 0.81 0.80 0.84 0.83 0.83 0.85 0.83 0.82 0.81 0.83 0.84

AUC of Distinguishing Human Text from Generations using Rank

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Rank.
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Figure 16: AUC heatmap for cross-detection, where the rows are generator models and columns are the surrogate detector
models, both sorted by model size. We can see that smaller models are better detectors and larger models are the worst
models in terms of detection power. The signal used here is Loglikelihood.
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