
Information-Theoretic Foundations for
Neural Scaling Laws

Hong Jun Jeon
Department of Computer Science

Stanford University
Stanford, CA 94305

hjjeon@stanford.edu

Benjamin Van Roy
Stanford University
Stanford, CA 94305
bvr@stanford.edu

Abstract

Neural scaling laws aim to characterize how out-of-sample error behaves as a
function of model and training dataset size. Such scaling laws guide allocation
of a computation resources between model and data processing to minimize error.
However, existing theoretical support for neural scaling laws lacks rigor and clarity,
entangling the roles of information and optimization. In this work, we develop
rigorous information-theoretic foundations for neural scaling laws. This allows us
to characterize scaling laws for data generated by a two-layer neural network of
infinite width. We observe that the optimal relation between data and model size is
linear, up to logarithmic factors, corroborating large-scale empirical investigations.
Concise yet general results of the kind we establish may bring clarity to this topic
and inform future investigations.

1 Introduction

In recent years, foundation models have grown immensely, with some embodying trillions of trainable
parameters. While larger models have in general produced better results, they also require much more
compute to train. It has become impractical to perform hyperparameter sweeps at the scale of these
modern models. This has required bypassing the practice of tuning hyperparameters via extensive
trial and error, as was previously common in deep learning.

Among other things, hyperparameters control 1) the size, measured in terms of the parameter count p,
of the neural network model and 2) the number T of training tokens. If each parameter is adjusted
in response to each token then the computational requirements of training scale will the product
of these two quantities. For any compute budget C, one should carefully balance between p and
T . Too few training tokens leads to model estimation error, while too few parameters gives rise
to mispecification error. As evaluating performance across multiple choices of p and T becomes
computationally prohibitive at scale, alternative kinds of analysis are required to guide allocation of
computational resources.

Kaplan et al. [2020] and Hoffmann et al. [2022a] have proposed the following procedure for allocating
a large compute budget: 1) Evaluate test errors of models produced using various small compute
budgets C with many different allocations to parameters p versus training tokens T . 2) Extrapolate
to estimate the relation between p and T for large C.

To give a sense of scales involved here, Hoffmann et al. [2022a] evaluate test errors across “small”
models for which p × T ranges from around 1018 to 1022 and extrapolates out to “large” models
at around 1024. Kaplan et al. [2020] and Hoffmann et al. [2022a] each extrapolate based on a
hypothesized scaffolding function. Kaplan et al. [2020] guess a scaffolding function based on results

38th Conference on Neural Information Processing Systems M3L Workshop (NeurIPS 2024).

observed in small scale experiments. Hoffmann et al. [2022a] carry out an informal and somewhat
speculative mathematical analysis to guide their choice (see their Appendix D).

The analysis of Hoffmann et al. [2022a] is somewhat generic rather than specialized to the particular
neural network architecture used in that paper. In this paper, building on the work of Jeon and
Van Roy [2022a,b], we develop rigorous information-theoretic foundations and use them to derive
similar scaling laws. To keep things simple and concrete, we carry out the analysis with a particular
data generating process for which neural networks are well-suited. The sorts of arguments developed
by Hoffmann et al. [2022a] are just as relevant to this context as they are to language models.

Hoffmann et al. [2022a] suggest that the compute optimal trade-off between parameter count and
number of training tokens is linear, though the authors expressed some doubt and considered other
possibilities that are near-linear as well. We establish an upper bound on the minimal information-
theoretically achievable expected error as a function of p and T and derive the relation required to
minimize this bound for each compute budget. For large compute budgets, this relation is linear, as
suggested by Hoffmann et al. [2022a].

Our main contributions include a first rigorous mathematical characterization of the compute-optimal
efficient frontier for a neural network model and development of information-theoretic tools which
enable that. A limitation of our analysis is in its simplified treatment of computational complexity as
the product of the model and data set sizes; we do not assume any constraints on computation beyond
those imposed by choices of p and T . In particular, we analyze, algorithms which carry out perfect
Bayesian inference with respect to a model that is misspecificified due to its restricted size. While
this abstracts away the details of practical training algorithms, empirical evidence suggests that our
idealized framework leads to useful approximations [Zhu et al., 2022]. In spite of these limitations,
we hope our results set the stage for further mathematical work to guide hyperparameter selection
when training large neural networks.

2 A Framework for Learning

2.1 Probabilistic Framework

We define all random variables with respect to a common probability space (Ω,F,P). Recall that a
random variable F is simply a measurable function Ω 7→ F from the sample space Ω to an outcome
set F .

The probability measure P : F 7→ [0, 1] assigns likelihoods to the events in the σ − algebra F. For
any event E ∈ F, P(E) to denotes the probability of the event. For events E,G ∈ F for which
P(G) > 0, P(E|G) to denotes the probability of event E conditioned on event G.

For realization z of a random variable Z, P(Z = z) is a function of z. We denote its value evaluated
at Z by P(Z). Therefore, P(Z) is a random variable (it takes realizations in [0, 1] depending on the
value of Z). Likewise for realizations (y, z) of random variables Y,Z, P(Z = z|Y = y) is a function
of (y, z) and P(Z|Y) is a random variable which denotes the value of this function evaluated at
(Y, Z).

If random variable Z : Ω 7→ ℜK has density pZ w.r.t the Lebesgue measure, the conditional
probability P(E|Z = z) is well-defined despite the fact that for all z, P(Z = z) = 0. If function
f(z) = P(E|Z = z) and Y : Ω 7→ ℜK is a random variable whose range is a subset of Z’s, then we
use the← symbol with P(E|Z ← Y) to denote f(Y). Note that this is different from P(E|Z = Y)
since this conditions on the event Z = Y while P(E|Z ← Y) indicates a change of measure.

2.2 Data

We consider a stochastic process which generates a sequence (Xt, Yt+1 : t ∈ Z+) of data pairs. For
all t, we let Ht denote the history (X0, Y1, . . . , Xt−1, Yt, Xt) of experience. We assume that there
exists an underlying latent variable F such that (X0, X1, . . .) ⊥ F and F prescribes a conditional
probability measure F (·|Ht) to the next label Yt+1. In the case of an iid data generating process, this
conditional probability measure would only depend on Ht via Xt. Note that the current pre-training
objective of foundation models falls under this iid setting in which for all t, Xt is a random segment
of the training corpus and Yt+1 is the subsequent token. As our framework is Bayesian, we represent
our uncertainty about F by modeling it as a random variable with prior distribution P(F ∈ ·).

2

2.3 A Learning Objective

We focus on a particular notion of error which facilitates analysis via Shannon-information theory
and reflects the objective of modern foundation models. For all t ∈ Z+, our algorithm is tasked with
providing a predictive distribution Pt of Yt+1 which may depend on the history of data which it has
already observed Ht. We express such an algorithm as π for which Pt = π(Ht). As aforementioned,
an effective learning system ought to leverage data as it becomes available and perform well across
all time. As a result, for any time horizon T ∈ Z+, we are interested in quantifying the cumulative
expected log-loss:

LT,π =
1

T

T−1∑
t=0

Eπ [− lnPt(Yt+1)] .

Note that since we take all random variables to be defined with respect to a common probability
space, the expectation E integrates over all random variables which we do not condition on. We
use the subscript π in Eπ to specify that all predictions Pt for all t are produced by π. As Yt+1 is
the random variable which represents the next label that is generated by the underlying stochastic
process, Pt(Yt+1) denotes the probability that our algorithm’s prediction Pt assigns to label Yt+1.

It is important to note that even for an omniscient algorithm, the minimum achievable log-loss is not 0.
Consider the omniscient algorithm which produces for all t the prediction P ∗

t = P(Yt+1 ∈ ·|F,Ht).
Even this agent incurs a loss of:

1

T

T−1∑
t=0

Eπ [− lnP(Yt+1|F,Ht)] =
1

T

T−1∑
t=0

H(Yt+1|F,Ht)

where our point follows from the fact that the conditional entropy (H) of a discrete random variable
Yt+1 is non-negative. As a result, we define the reducible error as:

LT,π = LT,π −
1

T

T−1∑
t=0

H(Yt+1|F,Ht)

=
1

T

T−1∑
t=0

E [dKL (P
∗
t (·)∥Pt(·))] .

reducible error represents the error which is reducible via observing additional data and fitting a
larger model. Therefore, we expect that this error will consist of two terms which reflect 1) the error
due to estimation via finite data, 2) the error due to approximation with a finite parameter model.

3 Error of Constrained Predictors

We introduce a general upper bound on the reducible error of a constrained predictor. While the
formulations remain abstract in this section, a useful running example is the following: Assume that
F is an infinite width neural network which generates the data and F̃ is a finite width network.

3.1 A Constrained Predictor

F may exhibit endless complexity, likely beyond what can be represented with finite memory
hardware. To represent the predictions made by a constrained predictor, we first define a random
variable F̃ whose range is a subset of F ’s. As aforementioned, this random variable can be a
lossy compression of F i.e. if F is represented by an infinite-width neural network, F̃ could be a
finite-width approximation. For all t, let the constrained predictor be:

P̃t(·) =
∑
f̃

P(F̃ = f̃ |Ht) · P(Yt+1 ∈ ·|F = f̃ , Xt).

3

The predictor performs inference on F̃ but performs predictions as if F = F̃ . We let

LT (F̃) =
1

T

T−1∑
t=0

E
[
dKL

(
P ∗
t (·)∥P̃t(·)

)]
.

3.2 Error of Constrained Predictor

We now upper bound the error of this constrained predictor as a sum of mutual information (denoted
I) which represents estimation error and an expected KL divergence which corresponds to error due
to misspecification.

Theorem 3.1. For all T ∈ Z++ and random variables F : Ω 7→ F , F̃ : Ω 7→ F̃ for which F̃ ⊆ F ,
if ((Xt, Yt+1) : t ∈ Z+) is iid conditioned on F , then

L̃T (F̃) ≤ I(F ; F̃)

T
+ E

[
dKL

(
P ∗
t (·)∥P̂t(·)

)]
,

where P̂t(·) = P(Yt+1 ∈ ·|F ← F̃ ,Xt).

The first term denotes the estimation error or the error which is reducible via access to more data.
This is evident by the fact it decreases linearly in T and the numerator reflects the complexity of F̃ .
The more nats of information that F̃ contains about the data stream, the more data will be required to
arrive at a good predictor.

The second term denotes the misspecification error or the error which is reducible via a larger learning
model. The closer that F̃ approximates F , the smaller the KL divergence between P ∗

t and P̂t will
be. In the following section, we will use Theorem 3.1 to derive a concrete neural scaling law for an
infinite-width neural network example.

We note that while the above result provides a clean decomposition into estimation and misspecifi-
cation error, the result is but an upper bound. Notably, the inequality comes from an application of
the log-sum inequality for which equality only holds when the misspecified predictions P̃t(·) match
the correctly specified predictions P(Yt+1 ∈ ·|Ht) almost surely. A future analysis which tightens
this results or provides suitable lower bounds would strengthen the following analysis which derives
optimal scaling laws with respect to this upper bound.

3.3 Scaling Law

For a FLOP constraint C = p · T , it is clear that there is a tension between p and T in minimizing
the upper bound in Theorem 3.1. This can be seen by first fixing a FLOP count C and substituting
T = C/p. The upper bound becomes:

p · I(F ; F̃)

C
+ E

[
dKL

(
P ∗
t (·)∥P̂t(·)

)]
.

Note that the first term is increasing in p whereas the second term is decreasing in p. Therefore,
under a fixed FLOP budget, the designer ought to select a value of p which effectively balances the
two sources of error.

4 An Illustrative Example

4.1 Data Generating Process

The generating process is described by a neural network with d inputs, a single asymptotically wide
hidden layer of ReLU activation units, and a linear output layer. We denote by F the associated
mapping from input to output. Inputs and binary labels are generated according to Xt

iid∼ N (0, Id)
and P(Yt+1 = 1|F,Xt) = σ(F (Xt)) where σ denotes the sigmoid function.

As alluded to by the asymptotic width, F is a nonparametric model which we will outline now. Let
θ̄ be distributed according to a Dirichlet process with base distribution uniform(Sd−1) and scale

4

parameter K. Realizations of this Dirichlet process are probability mass functions on a countably
infinite subset of Sd−1. LetW = {w ∈ Sd−1 : θ̄w > 0} denote this set. For all w ∈ W ,

θw =

{
θw with probability 1/2,
−θw otherwise.

Finally, we have that
F (Xt) =

√
K + 1 ·

∑
w∈W

θwReLU
(
w⊤Xt

)
.

SinceW has countably infinite cardinality, F is characterized by a neural network with infinite width.
We let θ = (θw : w ∈ W) and W = (w : w ∈ W) denote the weights of such neural network and
hence

F (Xt) =
√
K + 1 · θ⊤ReLU(WXt).

Note that the mean and variance structure satisfy

E[F (X)] = 0, E[F (X)2] = 1/2.

Therefore, this model remains nontrivial as d and K grow as all of the above quantities are invariant
of d and K.

4.2 Constrained Predictor

We will study the scaling law associated with a particular constrained predictor characterized by a
neural network of width n. Let w̃1, w̃2, . . . , w̃n be distributed iid Categorical(θ̄), whereW are the
classes. For any ϵ > 0, let Sd−1

ϵ be an ϵ-cover w.r.t ∥ · ∥2 and for all i ∈ [n], let

w̃i,ϵ = argmin
v∈Sd−1

ϵ

∥w̃i − v∥22.

Finally, let

F̃n,ϵ(Xt) =

√
K + 1

n
·

n∑
i=1

sign (θw̃i)ReLU
(
w̃⊤

i,ϵXt

)
.

Let θ̃ ∈ ℜn is (sign(θw̃i
)/n : i ∈ [n]) and W̃ϵ ∈ ℜn×d is (w̃i,ϵ : i ∈ [n]). Therefore,

F̃n,ϵ(Xt) =
√
K + 1 · θ̃⊤ReLU

(
W̃ϵXt

)
.

We consider the performance of a constrained agent which for all t, produces the prediction P̃t(·) =∑
f̃

P(F̃n,ϵ = f̃ |Ht) · P(Yt+1 ∈ ·|F = f̃ , Xt).

Note that this agent performs inference on the constrained model F̃n,ϵ and produces predictions about
Yt+1 as if F̃n,ϵ were the function F which produced the data.

4.3 Error Bound

We will now study the error incurred by the constrained predictor described above. We define

L̃T,n,ϵ =
1

T

T−1∑
t=0

E
[
dKL

(
P (Yt+1 ∈ ·|θ,Xt) ∥P̃t(·)

)]
as the loss of interest.
Theorem 4.1. For all n,K, T ∈ Z++ and ϵ ≥ 0, if for all t ∈ {0, 1, 2, . . . , T − 1}, (Xt, Yt+1) is
generated by F , then

L̃T,n,ϵ ≤
K ln

(
1 + n

K

)
·
(
ln(2n) + d ln

(
3
ϵ

))
T︸ ︷︷ ︸

estimation error

+
3K(1 + dϵ2)

n︸ ︷︷ ︸
misspecification error

.

5

The estimation error represents the error which is incurred in the process of learning F̃ from HT .
Notably, this error decays linearly in T , but only depends logarithmically in n. The misspecification
error represents the error which persists due to the fact that we approximate F via F̃n,ϵ. As a result, this
error decreases with greater n and smaller ϵ, but is independent of T . If we let L̃T,n = infϵ>0 L̃T,n,ϵ,
then
Corollary 4.2. For all n ≥ 3,K ≥ 2, T ∈ Z++, if for all t ∈ {0, 1, 2, . . . , T − 1}, (Xt, Yt+1) is
generated by F , then

L̃T,n ≤
dK ln

(
1 + n

K

) (
ln(e36TK) + 2

d ln(2n)
)

2T
+

3K

n
.

4.4 Resulting Scaling Law

Corollary 4.2 provides an upper bound on loss which we conjecture to be tight within logarithmic
factors. This upper bound characterizes how the loss ought to grow/decay as functions of the network
width n, the dataset size T , and complexity of the datat generating process d,K. We can therefore
analytically derive a compute-optimal allocation by selecting n and T which minimizes the upper
bound subject to the FLOP budget: d · n · T ≤ C. The following Theorem states the resulting
compute-optimal allocation.
Theorem 4.3. (compute-optimal parameter count) For all d,K ∈ Z++ and FLOP counts
C ∈ Z++, if K ≥ 2, d ≥ 3, and n∗ minimizes the upper bound of Corollary 4.2 subject to
d · n · T ≤ C, then

d · n∗ = Θ̃
(√

C
)
.

We provide a proof in Appendix A.2. Note that d · n∗ denotes the compute-optimal parameter count
and hence, this result corroborates the insights of Hoffmann et al. [2022b] that, up to logarithmic
factors, the optimal parameter count grows as square root of the FLOP count (equivalently linearly in
the training dataset size).

5 Conclusion

Our results provide a first step in developing rigorous mathematics for the purposes of analyzing
scaling laws for foundation models. We hope that this will inspire further theoretical research on the
subject. Our analysis is based on an error upper bound and furthermore, our analysis restricts attention
to single-hidden-layer feedforward neural networks. Generalizing the results to treat state-of-the-art
architectures remains an open issue. Furthermore, we have only considered allocation of pretraining
compute. State-of-the-art performance in modern application domains relies on subsequent fine-
tuning (see, e.g., [Ziegler et al., 2019]) through reinforcement learning from human feedback. How
best to allocate resources between pretraining and fine-tuning is another area that deserves attention.
An information-theoretic framework that treats pretraining, fine-tuning, and decision making in a
unified and coherent manner, perhaps in the vein of [Lu et al., 2021], might facilitate theoretical
developments on this front.

References
J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.

Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. v. d. Driessche, B. Damoc,
A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre. Training
compute-optimal large language models, 2022a. URL https://arxiv.org/abs/2203.15556.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.
Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv
preprint arXiv:2203.15556, 2022b.

H. J. Jeon and B. Van Roy. An information-theoretic framework for deep learning. In Advances in
Neural Information Processing Systems, volume 35, 2022a.

H. J. Jeon and B. Van Roy. An information-theoretic framework for supervised learning, 2022b. URL
https://arxiv.org/abs/2203.00246.

6

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.00246

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/
abs/2001.08361.

X. Lu, B. Van Roy, V. Dwaracherla, M. Ibrahimi, I. Osband, and Z. Wen. Reinforcement learning, bit
by bit, 2021. URL https://arxiv.org/abs/2103.04047.

Y. Zhu, H. J. Jeon, and B. Van Roy. Is stochastic gradient descent near optimal?, 2022. URL
https://arxiv.org/abs/2209.08627.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences, 2019. URL https://arxiv.org/abs/
1909.08593.

7

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2103.04047
https://arxiv.org/abs/2209.08627
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

A Proofs of Theoretical Results

Theorem 3.1. For all T ∈ Z++ and random variables F : Ω 7→ F , F̃ : Ω 7→ F̃ for which F̃ ⊆ F ,
if ((Xt, Yt+1) : t ∈ Z+) is iid conditioned on F , then

L̃T (F̃) ≤ I(F ; F̃)

T
+ E

[
dKL

(
P ∗
t (·)∥P̂t(·)

)]
,

where P̂t(·) = P(Yt+1 ∈ ·|F ← F̃ ,Xt).

Proof.

L̃T (F̃)

=
1

T

T∑
t=0

E

dKL

P ∗
t (·)

∥∥∥∥∑
f̃∈F̃

P(Yt+1 ∈ ·|F = f̃ , Ht) · P(F̃ = f̃ |Ht)

=

1

T

T−1∑
t=0

I(Xt+1;F |Ht) + E

dKL

P(Yt+1 ∈ ·|Ht)

∥∥∥∥∑
f̃∈F̃

P(Yt+1 ∈ ·|F = f̃ , Ht) · P(F̃ = f̃ |Ht)

=

1

T

T−1∑
t=0

I(Xt+1;F |Ht)

+
1

T

T−1∑
t=0

E

∑
f̃∈F̃

∑
y∈Y

P(Yt+1 = y|Ht) · P(F̃ = f̃ |Yt+1 = y,Ht) ln
P(Yt+1 = y|Ht)∑

f̃∈F̃ P(Yt+1 = y|F = f̃ , Ht) · P(F̃ = f̃ |Ht)

=

1

T

T−1∑
t=0

I(Xt+1;F |Ht)

+
1

T

T−1∑
t=0

E

∑
f̃∈F̃

∑
y∈Y

P(Yt+1 = y|Ht) · P(F̃ = f̃ |Yt+1 = y,Ht) ln

∑
f̃∈F̃ P(Yt+1 = y|Ht) · P(F̃ = f̃ |Yt+1 = y,Ht)∑
f̃∈F̃ P(Yt+1 = y|F = f̃ , Ht) · P(F̃ = f̃ |Ht)

(a)

≤ 1

T

T−1∑
t=0

I(Xt+1;F |Ht)

+
1

T

T−1∑
t=0

E

∑
y∈Y

∑
f̃∈F̃

P(Yt+1 = y|Ht) · P(F̃ = f̃ |Yt+1 = y,Ht) ln
P(Yt+1 = y|Ht) · P(F̃ = f̃ |Yt+1 = y,Ht)

P(Yt+1 = y|F = f̃ , Ht) · P(F̃ = f̃ |Ht)

=

1

T

T−1∑
t=0

I(Xt+1;F |Ht)

+
1

T

T−1∑
t=0

E
[
dKL

(
P(F̃ ∈ ·|Yt+1, Ht)∥P(F̃ ∈ ·|Ht)

)]
+ E

[
dKL

(
P(Yt+1 ∈ ·|Ht)∥P(Yt+1 ∈ ·|F ← F̃ ,Ht)

)]
=

1

T

T−1∑
t=0

E [dKL (P(Yt+1 ∈ ·|F,Ht)∥P(Yt+1 ∈ ·|Ht))]

+
1

T

T−1∑
t=0

I(Yt+1; F̃ |Ht) + E
[
dKL

(
P(Yt+1 ∈ ·|Ht)∥P(Yt+1 ∈ ·|F ← F̃ ,Ht)

)]
=

1

T

T−1∑
t=0

I(Yt+1; F̃ |Ht) + E
[
dKL

(
P(Yt+1 ∈ ·|F,Ht)∥P(Yt+1 ∈ ·|F ← F̃ ,Ht)

)]
=

I(HT ; F̃)

T
+

1

T

T−1∑
t=0

E
[
dKL

(
P(Yt+1 ∈ ·|F,Ht)∥P(Yt+1 ∈ ·|F ← F̃ ,Ht)

)]
,

8

where (a) follows from the log-sum inequality.

A.1 Proof of Dirichlet Process Results

Lemma A.1. (squared error upper bounds KL) For all real-valued random variables G and G̃, if
Y is a binary random variable for which P(Y = 1|G) = 1

1+e−G , then

E
[
dKL(P(Y ∈ ·|G)∥P(Y ∈ ·|G← G̃))

]
≤ E

[(
G− G̃

)2]
.

Proof.

E
[
dKL(P(Y ∈ ·|G)∥P(Y ∈ ·|G← G̃))

]
= E

[
1

1 + eG
ln

(
1 + eG̃

1 + eG

)]

+ E

[
1

1 + e−G
ln

(
1 + e−G̃

1 + e−G

)]
(a)

≤ E
[(

G− G̃
)2]

where (a) follows from the fact that for all x, y ∈ ℜ, 1
1+ex ln

(
1+ey

1+ex

)
+ 1

1+e−x ln
(

1+e−y

1+e−x

)
≤

(x− y)2.

Lemma A.2. For all d, n,N ∈ Z++, if X ∼ N (0, Id), then

E
[(

F (X)− F̃n,0(X)
)2]
≤ K + 1

n
.

Proof.

E
[(

θ⊤ReLU(WX)− θ̃⊤ReLU(W̃X)
)2] (a)

≤ K + 1

n2
· E
[
ReLU(W̃X)⊤

(
θ̃θ̃⊤

)
ReLU(W̃X)

]
=

K + 1

n2
· E
[
ReLU(W̃X)⊤InReLU(W̃X)

]
≤ E

[
K + 1

n2
·

n∑
i=1

(w̃⊤
i,0X)2

]

=
K + 1

n
.

where (a) follows from the fact that the two functions have equal conditional expectation conditioned
on θ.

Lemma A.3. For all d, n,K ∈ Z++,

E
[
dKL

(
P(Y ∈ ·|F,X)∥P(Y ∈ ·|F ← F̃n,0, X)

)]
≤ K + 1

n
.

Proof.

E
[
dKL(P(Y ∈ ·|F,X)∥P(Y ∈ ·|F ← F̃n,0, X))

]
(a)
= E

[(
F (X)− F̃n,0(X)

)2]
(b)

≤ K + 1

n
,

where (a) follows from Lemma A.1, (c) follows from the fact that the distribution of θ is the
limiting distribution limN→∞ of a Dirichlet [K/N, . . . ,K/N] random variable, (d) follows from
the dominated convergence theorem, and (e) follows from Lemma A.2.

9

Lemma A.4. For all d, n,K ∈ Z++,

E
[
(Fn,0(X)− Fn,ϵ(X))

2
]
≤ d(K + 1)ϵ2

n
.

Proof.

E
[
(Fn,0(X)− Fn,ϵ(X))

2
]
= E

(K + 1) ·

∥∥∥∥∥
n∑

i=1

θ̃i
(
ReLU(w̃⊤

i,0X)− ReLU(w̃⊤
i,ϵX)

)∥∥∥∥∥
2

= E

[
(K + 1) ·

n∑
i=1

θ̃2i ·
∥∥(ReLU(w̃⊤

i,0X)− ReLU(w̃⊤
i,ϵX)

)∥∥2]

≤ d(K + 1)ϵ2

n

Lemma A.5. For all d, n,K ∈ Z++ and ϵ ≥ 0,

E
[
dKL

(
P(Y ∈ ·|F,X)∥P(Y ∈ ·|F ← F̃n,ϵ, X)

)]
≤ 3K(1 + dϵ2)

n
.

Proof.

E
[
dKL

(
P(Y ∈ ·|F,X)∥P(Y ∈ ·|F ← F̃n,ϵ, X)

)] (a)

≤ E
[(

F (X)− F̃n,ϵ(X)
)2]

= E
[
2 (F (X)− Fn,0(X))

2
+ 2 (Fn,0(X)− Fn,ϵ(X))

2
]

(b)

≤ 2(K + 1)

n
+

2d(K + 1)ϵ2

n

≤ 3K(1 + dϵ2)

n
,

where (a) follows from Lemma A.1 and (b) follows from Lemmas A.4 and A.5.

Lemma A.6. (entropy upper bound) For all d, n,K ∈ Z++ and ϵ > 0,

H(F̃n,ϵ) ≤ K ln
(
1 +

n

K

)
·
(
ln(2n) + d ln

(
3

ϵ

))
.

Proof.

H(F̃n,ϵ)
(a)

≤ E

[∑
w∈W

1|θ̃w|>0 ·
(
ln(2n) + d ln

(
3

δ

))]
(b)

≤ K ln
(
1 +

n

K

)(
ln(2n) + d ln

(
3

δ

))
where (a) follows from the fact that the output weight can take on at most 2n different values
(−n

√
K+1
n ,− (n−1)

√
K+1

n , . . . ,−
√
K+1
n ,

√
K+1
n , . . . n

√
K+1
n) and the fact that |Sd−1

ϵ | ≤ (3/δ)d and
(b) follows as a commonly known fact about the number of unique classes of a dirichlet-multinomial
distribution.

Theorem 4.1. For all n,K, T ∈ Z++ and ϵ ≥ 0, if for all t ∈ {0, 1, 2, . . . , T − 1}, (Xt, Yt+1) is
generated by F , then

L̃T,n,ϵ ≤
K ln

(
1 + n

K

)
·
(
ln(2n) + d ln

(
3
ϵ

))
T︸ ︷︷ ︸

estimation error

+
3K(1 + dϵ2)

n︸ ︷︷ ︸
misspecification error

.

10

Proof. The result follows from Theorem 3.1 and Lemmas A.6 and A.5

Corollary 4.2. For all n ≥ 3,K ≥ 2, T ∈ Z++, if for all t ∈ {0, 1, 2, . . . , T − 1}, (Xt, Yt+1) is
generated by F , then

L̃T,n ≤
dK ln

(
1 + n

K

) (
ln(e36TK) + 2

d ln(2n)
)

2T
+

3K

n
.

Proof. The result holds from Theorem 4.1 by setting ϵ2 =
nK ln(1+ n

K)

4T (K+1) and the fact that for n ≥
3,K ≥ 2, 36T (K+1)

nK ln(1+n/K) ≤ 36KT .

A.2 Optimal Width

Theorem 4.3. (compute-optimal parameter count) For all d,K ∈ Z++ and FLOP counts
C ∈ Z++, if K ≥ 2, d ≥ 3, and n∗ minimizes the upper bound of Corollary 4.2 subject to
d · n · T ≤ C, then

d · n∗ = Θ̃
(√

C
)
.

Proof.

n∗ = argmin
n∈[Cd]

3K

n
+

K ln
(
1 + n

K

)
· ln (2n)

t
+

dK ln
(
1 + n

K

) (
1 + 1

2 ln (36KT)
)

t
; s.t. n · d · t ≤ C

= argmin
n∈[Cd]

3

n
+

ln
(
1 + n

K

)
· ln (2n)

t
+

d ln
(
1 + n

K

) (
1 + 1

2 ln (36KT)
)

t
; s.t. n · d · t ≤ C

= argmin
n∈[Cd]

3

n
+

nd ln
(
1 + n

K

)
· ln (2n)

C
+

nd2 ln
(
1 + n

K

) (
1 + 1

2 ln
(
36KC
nd

))
C

(a)
= n s.t.

3

n2
=

d
(
ln
(
1 + n

K

)
+ ln

(
1 + n

K

)
ln(2n) + n

K+n ln (2n)
)

C

+
d2 ln

(
1 + n

K

)
ln
(
36KC
nd

)
2C

+
d2n

C(n+K)
+

nd2 ln
(
36KC
nd

)
2C (n+K)

= n s.t. C =
dn2

(
ln
(
1 + n

K

)
+ ln

(
1 + n

K

)
ln(2n) + n

K+n ln (2n)
)

3

+
d2n2 ln

(
1 + n

K

)
ln
(
36KC
nd

)
6

+
d2n3

3(n+K)
+

n3d2 ln
(
36KC
nd

)
6 (n+K)

.

where (a) follows from 1st order optimality conditions

Due to monotonicity, we can drive upper and lower bounds for the value of n via lower and upper
bounds of the above RHS respectively.

We begin with the upper bound for n∗:

n∗
(a)

≤ n s.t. C =
d2n2

3

=

√
3C

d
.

where (a) follows from the fact that d2n2/3 is a lower bound of the above RHS.

We now derive the lower bound for n∗:

n∗
(a)

≥ n s.t. C = dn2 ln(2n) ln(36KC)

= Ω̃

(√
C

d

)
.

11

where (a) follows from the fact that dn2 ln(2n) ln(36KC) is an upper bound of the above RHS. The
result follows.

12

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We develop a rigorous information-theoretic framework to analyze scaling
laws which provides clarity to the topic and corroborates empirical phenomena in the space.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

13

Justification: We outline how the theoretical foundations of Hoffmann et al. and Kaplan et
al. are ad-hoc and the purpose of our piece is to study the problem rigorously.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, assumptions are in the theorem statements and proofs are in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experiments in this paper.

Guidelines:

14

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: No code or data in this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: No experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

16

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is purely mathematical so it does not have any of the ethical concerns
listed in the NeurIPS code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The work is mathematical aimed at understanding the phenomenon of neural
scaling laws. Any societal impact would be many layers removed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

18

paperswithcode.com/datasets

Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

	Introduction
	A Framework for Learning
	Probabilistic Framework
	Data
	A Learning Objective

	Error of Constrained Predictors
	A Constrained Predictor
	Error of Constrained Predictor
	Scaling Law

	An Illustrative Example
	Data Generating Process
	Constrained Predictor
	Error Bound
	Resulting Scaling Law

	Conclusion
	Proofs of Theoretical Results
	Proof of Dirichlet Process Results
	Optimal Width

