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Abstract

The success of score-based models largely stems from the idea of denoising a dif-
fusion process given by a collection of time-indexed score fields. While diffusion-
based models have achieved impressive results in sample generation, leveraging
them for sound probabilistic inference—particularly for sampling from arbitrary
conditional distributions—remains challenging. Briefly, this difficulty arises be-
cause conditioning information is only observed for clean data and not available
for higher noise levels, which would be required for generating exact conditional
samples. In this paper, we introduce an effective approach to DIffusion-free SCOre
matching (DISCO), which sidesteps the need for time-dependent score fields al-
together. Our method is based on a principled objective that estimates only the
score of the (slightly perturbed) data distribution. In our experiments, score models
learned with DISCO are competitive with state-of-the-art diffusion models in terms
of sample quality. More importantly, DISCO yields a more faithful representation
of the underlying data distribution and—crucially—enables sampling from arbi-
trary conditional distributions. This capability opens the door to sound and flexible
probabilistic reasoning with score-based models.

1 Introduction

Diffusion-based score models set the current state of the art in many generative modeling tasks,
producing samples of unprecedented fidelity. These models fit the score function rather than the
density, waiving the need for the model’s normalization constant (Hyvarinen and Dayan) [2005]).
While a connection to auto-encoders leads to effective learning via denoising score matching (DSM)
(Vincent, 2011), this objective fits the score only close to the data manifold, effectively ignoring
low-density regions, leading to poor sample quality. To fix this, a key technique was the idea of
generative modeling by reversing a diffusion process (Sohl-Dickstein et al., 2015;Song et al., 2020),
which specifies a collection of time-indexed distributions. Intuitively, diffusion takes care that the
model is fit on a large support, not only close to the data manifold, leading to excellent sample quality.

However, generating high-quality samples is not the only objective of probabilistic modeling. Prob-
ability theory is, at its core, a rigorous framework for reasoning under uncertainty (Jaynes, |1995;
Pearl, |1988)). In particular, computing marginals (sum rule), which corresponds to accounting for
unobserved variables, and conditionals (product rule), which incorporates observed evidence, are
the fundamental operations in probabilistic reasoning (Ghahramani, 2015}, and lie at the core of
Bayesian methods, inverse problems and optimal decision making. Hence, the central question of
this paper is: Can score-based models serve as sound probabilistic reasoners and provide access
to exact marginals and conditionals? Here, we focus on drawing faithful samples from arbitrary
marginals or conditionals, which might be used in Monte Carlo-based inference.

For marginals, one can draw samples from the joint distribution and simply discard the variables
corresponding to the marginalized dimensions, yielding an exact marginal sample. However, exact
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Figure 1: Conditional sampling in a low-dimensional setting. We train a score-based diffusion
model and an energy-based DISCO model on samples of a 2-dimensional Gaussian mixture model
(pa, left). We produce conditional samples from the learned models, x5 ~ pg(z2 | 1 = 1.75), and
compare these with ground truth conditional samples derived via rejection sampling (right). For
the diffusion-trained model we use gradient guidance (Ho et al.| 2022)), the replacement heuristic
(Song et al., 2020) and twisted SMC (Wu et al., [2023)), for which the produced samples follow a
substantially different distribution than the ground truth, illustrating a clear failure case for these
methods. In contrast, conditional samples from DISCO using tempered SMC follow the ground truth
distribution faithfully (see supplementary for details).

conditional sampling is much more challenging due to the diffusion process, as conditioning the
whole stochastic process on the available observations is intractable. Various strategies to address
this problem have been proposed, which, however, are either heuristic, e.g. (Song et al.| 2020} [Ho
et al.;, 2022; [ Kawar et al., [2022)) or have only asymptotic exactness guarantees, e.g. (Wu et al., 2023)).
While these methods can produce compelling results for conditional tasks such as image inpainting,
they fail to produce unbiased samples from conditionals, as can be demonstrated even on simple toy
problems such as in Figure

In this paper, we address this problem by challenging the assumption that diffusion-based training of
score-models is a pressing requirement, and propose an effective approach to DIffusion-free SCOre
matching (DISCO). By starting from a mixture of generalized Fisher divergences, specified by an
array of “noisy” proposal distributions, we arrive at a principled score matching objective. This
objective, albeit reminiscent to diffusion training, only fits the (slightly perturbed) data distribution
rather than a full diffusion process, while taking care that the score field is also fit outside the data
manifold. With this approach, conditioning becomes simple: in the learned score, one can fix the
values of observed variables and apply sampling only with respect to the unobserved variables.

In experiments, we show that DISCO produces samples of high visual quality, achieving FID scores
on CIFAR-10 competitive with state-of-the-art diffusion models. More importantly, DISCO provides
a more faithful representation of the underlying data distribution and enables accurate sampling from
arbitrary conditional distributions, as illustrated in Figure[I] This capability opens the door to sound
and flexible probabilistic reasoning with score-based models.

2 Background

Score-Based Modeling. In generative modeling, we are given i.i.d. samples {x(?) € RP W
from a data distribution p4(x), and aim to learn a parametric model pg that approximates p, well.
Parameterizing a proper density pg introduces the challenge of normalization, i.e., ensuring that
fR b Po(x) dx = 1. Score-based modeling (Hyvérinen and Dayan, 2005) circumvents this issue by
learning the score of the data density, defined as Vy log p4(x), which is invariant to the normalizing
constant. The idea is to use a neural network sg : R” — RP to represent the model score and
minimize the Fisher divergence:

F(pall s6) := Ex~p, [ Vxlog pa(x) — se(x)]3] Q)



Since the Fisher divergence involves the unknown score V logpg(x), it is generally unsuitable
for direct optimization. This motivates the use of alternative objectives that do not require ex-
plicit access to Vx log p4(x). A particularly popular variant is denoising score matching (DSM),
which approximates the score of a perturbed data distribution p, (X) = [ pa(x) ¢(x | x) dx, where
q(X|x) := N(x|x,02I) is a Gaussian perturbation kernel with fixed noise level . Concretely,
minimizing the objective

Losm(0) = Ep, 9% [[IVzlogg(x|x) — s6(%)]3] )

is equivalent to minimizing Fisher divergence, as Vg Lpsm(0) = Vo F (ps || se) for all 8 (Vincent,
2011). This objective and its gradients can be efficiently estimated using data samples, as it only
depends on the score of the perturbation kernel, given by Vi log ¢(X | x) = (x — X)/0?.

In (2), one chooses the fixed noise level o to be small so that the perturbed distribution p, closely
approximates the data distribution p;. However, this implies that in regions far from the data manifold,
P, almost never samples points, so the learned score is essentially arbitrary there. Since sampling
(e.g., via Langevin MCMC) typically starts far from the manifold, these inaccurate estimates lead the
sampler to drift into random directions, yielding poor samples (Song and Ermon, [2019).

Diffusion Models. Diffusion models address the limitations of naive DSM by learning a multitude of
score vector fields, each corresponding to a different noise level applied to the data distribution (Sohl-
Dickstein et al., [2015} [Song et al.| 2020). Formally, let the clean data be denoted by x¢ ~ pg, and
define the conditional distribution ¢;(x: | Xo) via the forward diffusion process x; = a(t)xg + o(t)e
where € ~ N(0,1) and ¢ € [0, 7] for some 7' > 0. In this work, we focus primarily on the variance-
exploding (VE) formulation (Song et al.,[2020), where «(¢) = 1 and only the noise scale o (t) varies
over time. This process defines a family of progressively noisier distributions {p;(x;)}+c[o, 1], Where

pe(xt) = [ @ (x¢ | x0) pa(x0) dxo.

A time-dependent score network is then trained to approximate the score function sg(x,t) =
Vi log pi(x) for all x € R and ¢ € [0, 7], by minimizing Lpn(8), defined as

Etxox; [Mt) [V, log pi(xe | x0) — s(x:,1)|[3] )

where t ~ p(t), Xo ~ pa(Xo), and x; ~ q:(X¢ | Xo). Here p(t) is some distribution over [0, 7] and
A(t) is a positive weighting function.

After training, the score network sg is used for sample generation, aiming to approximate draws from
po. Popular approaches are numerical integration of the reverse-time SDE (Song et al., [2020) and
ancestral sampling (Ho et al.||2020). A key advantage of diffusion models over standard DSM is that,
due to training across multiple noise levels, the score network is also informed in low-density regions.

3 Diffusion-Free Score Matching

While only the approximate data score at ¢ = 0 is of actual interest, diffusion models introduce the
overhead of an entire family of score functions, making conditional sampling challenging. Specifically,
when splitting the data variable x into unobserved variables x" and conditioned variables x°, the goal
is to sample x* ~ p(x* | x®). When dealing with only a single score field Vx log p(x), conditioning
becomes straightforward, since the conditional score is simply the joint score with clamped x°:

Vxulog p(x",x°) = Vyxu log p(x* | X°) + Vxu log p(x°) @
———
=0

However, drawing conditional samples with diffusion models requires Vi, log p:(x¢ | x§) for each
t > 0, which is intractable to compute.

In this paper, we reconsider the assumption that diffusion-based learning is strictly necessary for
learning expressive score-based models. Instead, we aim to learn just a single score field, which
allows us to sample any conditional according to {@). To this end, we start with a slight modification
of the Fisher divergence:

Definition 1. ¢-Weighted Fisher Divergence. Let p, and q be probability densities over RP whose
supports satisfy supp(pq) C supp(q). We define the g-weighted Fisher divergence as

Fa(pall s6) := Exnq [[IVxlogpa(x) = se(x)II3] ®)



Like the Fisher divergence F in Equation (T, also ,; measures the score-mismatch between p; and
the model sg, but in expectation over a proposal distribution g rather than p,. It is easy to show that
Fy(pa || se) = 0 implies F(pq || se) = 0, hence F is a principled divergence.

Next, we adopt from diffusion models the idea of using a family of Gaussian perturbed distributions
where q;(x; |x) = N(x¢|x,0(t)?I) is a Gaussian perturbation kernel indexed by ¢ € [0, 7],
p(x¢,X) = g4 (x¢ | X) pa(x) is the joint of a data sample x and a perturbed version x;, and p;(x;) =
fpt (x¢,x) dx.

Unlike as in diffusion models, we do not aim to approximate the p;(x;)’s for ¢ > 0, but use them
merely as proposals for F,. We propose to minimize a weighted mixture of q-weighted Fisher
divergences:

-/T"mix(pd H 59) = Et~p(t) [/\(t) ‘7:1)1, (pd || 59)] (6)
= Eiop(ty [A®) Exonp, [[IVx, log pa(xe) — so(x)I[3]] Q)

Also Fpiy is a principled objective, since, as A(t) is positive and F,, is non-negative, Fnix(pq || S0) =
0 implies that F,, (pq || s¢) = O for almost all ¢ € [0, T].

Fmix requires the true data score Vy log ps(x) which is not available. Hence, we adopt a similar
approach as in (Vincent, 2011) and replace p; with a slightly Gaussian-perturbed version p/;(x) =
po(x), i.e. the perturbed data distribution at the lowest noise level. Given that o(0) is small, fitting
p); instead of py is a worthwhile goal. With this modification, we are able to derive the following
principled objective, the DIffusion-free SCOre matching loss (DISCO loss):

Theorem 1. Let py be the true data distribution, p(t) a distribution over [0,T), and A(t) a positive
weighting function. Further, let q;(Xt | X), p+(x:) and p(x | X¢) be defined as above. Let py (x| x¢) =
P (X¢,X) /e (X4) be the posterior at noise level o(t') and let q(t,x,x¢) := po(x|x¢) pe(xt) p(t).
The DISCO loss Lpisco(0), defined as

Eqrxx0) [ME) |V, 1og go (x| %) — so(xe)]3] ®

has the same parameter gradients as Fi(p; || se).-

The proof can be found in the supplementary. From Theorem |1|it follows that, given that sg has
sufficient capacity, the global minimizer of Lpjgco will learn the true score of pii and since we
employ an array of noisy proposal distributions, we make sure that sg gets informed far from the data
manifold.

DISCO Training. Estimating Lpisco for training is straightforward, except for one part. In order
to sample from ¢(¢, x, x¢), we first sample ¢ ~ p(¢). Subsequently, we sample x; ~ p;(x:), by first
sampling some (intermediate) data sample x’ ~ p4 and then its perturbed version x; ~ ¢¢(x: | X’).
The challenging part is then to sample po(x | x;))'| However, as we usually have only finitely many
training data points D = {x(}N | the data distribution is the empirical distribution py(x) =
Pemp(X) == o Zivzl §(x() — x) where 6(-) denotes the Dirac-delta function. From Bayes’ law, we
obtain

_ 9 (x¢ | x) Pemp (x)
Polelx) = T )

which induces a probability mass function over D. Thus, we compute p(x(?) | x;) o< go(x; | x(?)
for each x(Y) € D and sample x from the normalized mass functio

DISCO Samples. If we only have access to the learned score sg(x), we may use samplers like
Unadjusted Langevin Dynamics (ULA) to draw asymptotically exact samples. However, in our low-
dimensional experiments, we parameterize an energy-based DISCO model as sg(x) := —VxFg(x),
where Fj is a scalar-valued neural network. In this setting, we can employ more sophisticated

Note the asymmetry in this principle, where x; is generated by a perturbation at “high” noise levels, but the
posterior po(x | x¢) is over clean data “assuming x. had been generated by po (lowest noise level).” In particular,
the intermediate sample x” which was used to produce x; does not necessarily have high probability under
po(x | x¢), especially for large o (¢).

?If |D| is large, we can draw an approximate posterior sample using either a mini-batch or more sophisticated
techniques which are discussed in the supplementary.
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Figure 2: Comparison of the Lo norms of the scores of a vanilla diffusion model at ¢ = 0 (left),
an energy-based DISCO model (center), and the ground truth empirical distribution of the Moons
dataset (smoothed with o(0) = 0.1, which is the target p/, for DISCO). Note that the diffusion model
systematically underestimates the magnitudes of scores that are far from the data manifold.

MCMC sampling strategies: We use Sequential Monte Carlo (SMC) (Naesseth et al,[2019; [Doucet]
et all, 2001}, [Chopin et al., 2020}, [Del Moral et al.,[2006) with Hamiltonian Monte Carlo (HMC) steps
to sample from a sequence of fempered distributions (see supplementary for details).

4 Related Work

Conditional Sampling in Diffusion Models. Many approximations to the true conditional
po(xy | x§) have been proposed: |Song et al.| (2020) introduce the replacement method, a popu-
lar heuristic that estimates the conditional score at time ¢ as

Vi log py(x;' | x5) = Vi log py (x| X7) ©)

where X¢ is drawn from the known distribution p;(x§ | x§) = N (x§; a(t)x§,o(t)?I). This ap-
proximation enjoys no theoretical guarantees and often fails to produce samples coherent with the

conditioning information (Ho et al.| 2022).

Gradient guidance w 2022) rehes on the fact that Vi, log ps (x¢ | x§) = Vi, log pe(x§ | x¢) +
Vi, logp:(x¢). While Vi, log p(x:) is known via 50, the intractable quantlty pt(x0 | x¢) is approxi-
mated, often by NV (x§; 2 (xe (x¢, t)), o(t)2I), where Xg(x,t) = x + o (t)?sg(x, ) is the “denoised”
input, and (x) returns only the observed coordinates in x. At each noise level ¢, the approxima-
tion of the conditional score Vy, log p:(x} | x¢) is used to perform sampling. Note that computing
Vi, log N'(x§; Q(Xg (x4, 1)), o(t)2]) involves backpropagating through the neural network, making
this approximation computationally expensive. Again, this heuristic provides unreliable estimates
(Zhang et all[2023)) and comes with no theoretical guarantees.

introduced the twisted diffusion sampler (TDS), which uses gradient guidance in
a twisted sequential Monte Carlo (SMC) procedure as an approximation to the (unknown) optimal
twisting function. Due to this, the sampler will not produce exact samples for any finite number
of simulated particles. In contrast, DISCO guarantees asymptotically exact samples, even when
simulating a single particle.

5 Experiments

Low-Dimensional GMM. To experimentally validate DISCO in a low-dimensional setting, we
train both a vanilla diffusion model and an energy-based DISCO model on a two-dimensional
Gaussian mixture model (GMM). In Figure[T|we compare the quality of samples from the conditional
distribution pg(z2 | 1 = 1.75), using popular heuristic conditional sampling techniques which are
explained in the supplementary material. We find that only the DISCO model produces faithful
samples, while all other methods fail to preserve the relative weights of the Gaussian components.
Details and additional results for other datasets and GMMs with varying dimensionality are provided
in the supplementary material.



- Pa A", S wd b LN A
, -V-‘r "'— ru:'] —
" s K s i sl I

s -W‘\ SEUTEEL T 5 o i ™

—_51 f;]ﬂ"’”'!l""ﬂ' |_‘HH
ol e w APTEEN T el

Figure 3: Unconditional samples from a score-based DISCO model trained on CIFAR-10. This
model achieves an FID score of 3.80.

Moons Dataset. We further trained a standard diffusion model and an energy-based DISCO model
on the popular Moons dataset (make_moons in scikit-learn (Pedregosa et all 2011)). In Figure 2]
we visualize the Lo norms of learned scores (for the diffusion model the one corresponding to ¢t = 0)
and the score of the empirical data distribution, Gaussian smoothed with ¢(0) = 0.1, which is
the actual target distribution p/, for DISCO. We see that DISCO excellently fits the target score,
underpinning its role as principled score matching objective. The diffusion model does not fit the
data score well for areas far from the data. This is to be expected, as the diffusion formalism does not
even strive to represent a single data score, but “distributes” the generative process over a hierarchy
of time-dependent score-fields.

CIFAR-10. To demonstrate that DISCO performs well in high-dimensional generative modeling
tasks, we use the model architecture proposed in (Karras et al.,[2022)) and train an unconstrained score
model with DISCO on the CIFAR-10 dataset (Krizhevsky et al.,2009). Using the second-order Heun
sampler Karras et al.[(2022)), we achieve a competitive FID score of 3.80 on unconditional CIFAR-10,
where state-of-the-art with diffusion models is 1.79 (Zhang et al.| 2024). This demonstrates that
directly learning a single data score can lead to high visual sample quality. In the supplementary, we
discuss experimental details and DISCO’s capability for image inpainting via conditional sampling.

6 Conclusions

In this paper, we challenge the prevailing belief that diffusion processes are essential for training
effective score-based generative models. We introduce DISCO, a diffusion-free score matching
framework that avoids time-indexed score fields in favor of learning a single, time-independent score
function. Our results demonstrate that this approach is not only viable but also competitive with
diffusion models in terms of visual sample quality. More importantly, DISCO provides a principled
foundation for exact conditional sampling, which has remained elusive for traditional diffusion-based
models. This ability opens the door to using such models as sound probabilistic reasoners, positioning
DISCO as powerful tool for a wide array of tasks in probabilistic modeling, beyond mere sample
generation. For example, our method might be beneficial for designing molecular structures that
satisfy target binding affinities or for sampling physically plausible protein conformations conditioned
on partial structural constraints.
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A DISCO Sampling

Since it is well known that Langevin algorithms suffer from slow mixing times if the target distribution
is multimodal, we employ fempering strategies (Neal,|1996) by considering a sequence of distributions

{pﬂi }?zo with
g, (x) o po(x)” (10)

where 0 = By < --- < B, = 1is a schedule of inverse temperature parameters. As 8 — 0, pg
approaches a uniform distribution, and as § — 1, we recover the original model pg. Tempering
simply scales the score, i.e., Vx log pg(x) = 8V log pe(x). In the same way, we can also temper
any conditional distribution of pg given by ().

In our low-dimensional experiments, we use BlackJAX (Cabezas et al.,|2024) and apply tempered
sequential Monte Carlo (SMC) with an adaptive schedule for the inverse temperatures ;|| For
the results in Figure[I] we perform systematic resampling after a single Hamiltonian Monte Carlo
(HMC) step, using 10 leapfrog integration steps. All other heuristic methods are configured to allow
approximately the same number of function evaluations for a fair comparison.

B Time-Independence in Score-Based Models

Most similar in spirit to DISCO is the work by Li et al. (L1 et al., 2023, who share the idea
of only learning Vy log po(x) using a score-matching objective. However, they do not minimize
Lpisco, but a variant which they term multiscale denoising score matching (MDSM), which is
Lpisco when (incorrectly) setting (¢, x, x;) := p(¢)pa(x)p:(x: | x) in (). This objective in fact

2
learns s5(x¢) = Ep¢|x,) %th logpt(xt)} , 1.e. a posterior average over p; scores, where the

posterior over noise levels is reweighted. Thus, the claim of (L1 et al., [2023)) that sj only learns
the score of py is erroneous (see Section|[E.2] details). Their main motivation is also not conditional
sampling but on analyzing diffusion training.

A key property in DISCO is that the score network is independent of ¢, while diffusion-based models
inherently rely on a notion of time. Yet, there have been attempts to minimize Lpy with neural
networks where (1) time enters in a simple way, or (2) time does not enter into the network sg(x)
at all. (Song and Ermon, |2020) proposed to model sg(x,t) := cg(x)/0(t) where £¢ is a time-
independent neural network. However, it is easy to see that the true scores of different noise levels
are not just scaled versions of another, i.e., there exists no constant ¢ such that Vx log p;, (x) =
¢+ Vxlogpy, (x) Vx,t1 # to, except for the trivial case where pg is Gaussian. Thus, even with
infinite capacity in 9, we cannot learn the true scores. In fact, one can interpret this parameterization
as learning a single distribution whose tempered versions try to match the diffused distributions p;.
Recently, |Sun et al.| (2025)) studied the effect of minimizing Lpy; with a time-independent network
s6(x). Doing so results in a minimizer sj(x;) = Ep; |x,) [Vx, log p¢(x¢)], which learns to average
the scores of p; over the posterior distribution of noise levels (see Section @]) Sun et al.| (2025)
argue that in high dimensions, p(t | x;) is close to §(t — tx, ), where x; = xg + tx,€,& ~ N (0, ),
and hence, sj(x;) ~ Vy, log Dty (x¢). However, this work is clearly distinct to DISCO, as we try to
regress Vy log po(x) only.

3A fixed linear schedule for §; also performs adequately.
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Figure 4: Wasserstein-1 distance between (approximate) conditional samples and ground-truth
conditional samples for each sampling scheme and dimension D € {2,10,50}. When D = 2 (left),
DISCO substantially outperforms all other approaches. When D = 10 (middle), TDS performs
well on average, but fails on certain conditionals: When using TDS, the maximum W; observed
was 4.29, while the maximum W; was 0.42 with DISCO. We emphasize that such failure cases are
detrimental for sound and consistent reasoning. When D = 50 (right), DISCO again outperforms all
other methods in terms of average /1. Note that since we compare against the ground-truth GMM
conditional distribution, the errors shown here are due to sampling inaccuracy and model mismatch,
where the latter is typically larger in higher dimensions.

C Posterior Sampling

When optimizing Lpisco, we need to draw samples from the ¢ = 0 posterior

~ qo(x¢ %) pa(x)
Poloe|xe) = po(xt)

When we set pi(X) = Pemp(X), we can draw exact samples from po(x | x;): Given x; € RP, we
compute ¢(x; |x*) for each x(*) € D, and sample x from the normalized mass function over
elements in D. Intuitively, since the perturbation kernel ¢(x; | x()) is an isotropic Gaussian, it will
assign more probability mass to points x(?) that are close to x(¥). This is distinct but reminiscent

of the popular (minibatch) optimal transport techniques in the flow matching literature (Tong et al.|
2023).

Sampling from the posterior in this way needs O(NN D) operations, where N = |D|. In our low-
dimensional experiments (N = 100,000 and D € {2,10,50}) we do not observe any significant
slowdown during model training. In our high-dimensional CIFAR-10 experiments, we draw approxi-
mate posterior samples by using minibatches of size 512.

Future work may explore utilizing techniques like Locality Sensitive Hashing (Gionis et al., [1999)
or k-d Trees to efficiently get the k nearest neighbors of x;, and then compute the mass function
over just these neighbors. If ¢(0) is sufficiently small, this will be a good approximation to the true
posterior mass function over all elements in D.

D Experimental Details

D.1 Low-Dimensional Setting

GMM Experimental Setup. To quantitatively evaluate the performance of DISCO w.r.t. condi-
tional sampling, we train several small energy-based models (parameterized using an MLP) using
both Lpisco, and the regular diffusion objective Lpy;. For each dimension D € {2,10,50}, we
randomly generate parameters of a 20-component Gaussian Mixture Model (GMM) in R, and use
100, 000 samples from the GMM as our training dataset.
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Figure 5: CIFAR-10 Inpainting with the DISCO model. First Column: CIFAR-10 test image
from each class. Second Column: Pixels from the test images we condition on. Other Columns:
Inpaintings with different random seeds using the DISCO model in conjunction with the replacement
heuristic. Best viewed zoomed in.

We use a batch size of 1024 and the Adam optimizer with learning rate 10~* and
otherwise default parameters. When D = 2, we train the models for 50, 000 gradient steps, and when
D > 2, we train for 100, 000 steps. We use a variance exploding formulation with a(t) = 1 for all ¢,
and use 100 exponentially spaced noise scales o(t;), with 0(0) = 0.1 and ¢(T") = 2. For D = 50,
we increase o(T') to 5.

After training, we sample 100 test points x(*) from the GMM, and want to draw from the conditional
distribution over the last coordinate in x(¥, given the others. In the DISCO model, we use the
SMC sampler described above, with systematic resampling after 2 HMC steps, which use 2 leapfrog
integration steps each. To sample from the diffusion-based models, we employ several popular
heuristics sampling schemes: Twisted Diffusion Sampler (TDS) 2023), Gradient Guidance
2022), and the Replacement Heuristic 2020). We use all of these heuristics
in conjunction with 100 steps of ancestral sampling, roughly taking the same number of function
evaluations as sampling from the DISCO model’|. For each test point, we draw 1024 (approximate)
conditional samples from each model and compute the Wasserstein-1 distance (/1) to 1024 true
samples from the ground-truth conditional GMM. We repeat this 3 times with different random
seeds and visualize the distribution of W over all test points and random seeds in Figure {] (for
each D € {2,10,50}). We find it to be beneficial for DISCO sampling to slightly lower o (0) after
training, i.e., we sample from a slightly “cooled down” version of the learned distribution: In all
DISCO experiments shown in Figure[d] we thus train with o/(0) = 0.1 and sample with o/(0) = 0.07.

As shown in Figure[d] we can easily find failure cases where methods like TDS cannot produce faithful
conditional samples. In contrast, the DISCO model consistently performs well in the worst-case
setting.

*Since we apply adaptive tempering when sampling from the DISCO model, the number of function
evaluations per conditional sample is not static. In all experiments, the DISCO sampler needs less function
evaluations than the diffusion model samplers.
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In the main text, we show qualitative results of a similar GMM experiment with D = 2, except that
(1) we parameterize the diffusion model to output the score directly (instead of the energy), and (2)
we show kernel-density estimates of both the approximate model conditional, and the true model
conditional (obtained via rejection sampling). In contrast, the experiment we show here compares the
approximate model conditional and the ground-truth GMM conditionalE]

Network Architecture. The network architectures of the diffusion models and DISCO models are
identical, except that the diffusion models receive the noise level o(t) as input, while the DISCO
models do not. In the former case, we use a simple positional embedding for o (), which we
concatenate to the input. Moreover, following Tancik et al.| (2020)), we also use the same positional
embedding for each coordinate in the input x. The remainder of the MLP consists of 4 blocks (with
residual connections), where each block contains 2 affine layers followed by leaky ReL.U activations,
and normalization layers at the start of each block, after the first affine layer (InstanceNorm++
introduced in|Song and Ermon/(2019)). All affine layers in these blocks are maps RE — RE where
we choose K = 128 when D = 2, K = 256 when D = 10, and K = 512 when D = 50. The final
block is followed by the same normalization and activation layers, and a final affine layer mapping
from RX to RP. When parameterizing the score directly, we use the output of the final hidden layer
Z as our score approximation. When building an energy-based model, we follow Du et al.| (2023) and
compute the energy Eg as —||z|3.

D.2 CIFAR-10

We use the popular EDM implementatiorﬁ (Karras et al.,|2022) which defines a denoising network
Dg(x), where the score network is then given as

sg(x) := Dea(z((iﬁ X

Since Vy, log qo(x: | x0) = (x0 — x¢)/0(0)?, it follows that Lpisco then simplifies to
Lpisco(8) = 7(0) ™ Eqaxx,) [AB)llx — Do(xy)]13] (12)

where we simply drop o(0) % because it is a constant factor w.r.t. 8. Karras et al.[{(2022) model their
time-dependent denoiser as

(11)

Do (Xa t) = Cskip(t)x + Coul(t)FB (Cin(t)xa Cnoise(t)) (13)
where Fy(+, ) is the direct output of the neural network, and Cskip» Cout> Cin» Cnoise are scalar-valued
functions. Inspired by (Sun et al., 2025)), we choose time-independent constants cgip = 0.5,

Cout = Cin = 1, and do not use cyeise because we model a time-independent network. Finally, we
train Dg(x) = 0.5x + Fyp(x) with the same hyperparameter configuration as Karras et al. (2022ﬂ on
8 Quadro RTX 8000 GPUs, which took roughly 2 days. To minimize Lpisco, We approximately
sample from the posterior py(x | X;) using a mini-batch of data.

We use the second-order Heun sampler with 18 steps (i.e., NFE = 35) (Karras et al.| 2022) to produce
the samples shown in Figure[3] achieving an FID score of 3.80. We also experiment with energy-based
DISCO models, but observe worse visual fidelity in the generated samples, which is consistent with
findings in (Salimans and Hol 2021).

CIFAR-10 Inpainting. We use the DISCO model described in the main paper in an inpainting
experiment. The results are shown in Figure 5} In this experiment, we use the popular replacement
heuristic to inpaint images. We find that running the Heun EDM sampler does not produce visually
pleasing samples when using the true conditional scores directly. We hypothesize that this is due to
fact that during training, the model has never seen images where some pixels are clean and others are
noisy and thus, it fails to generalize to these cases. We leave investigation of this to future work but
note that training directly on such augmented clean/noisy images may alleviate this issue.

SWe make this modification because generating true samples from the model conditional via rejection
sampling is intractable in high dimensions.

*https://github.com/NVlabs/edm

"To be exact, except for the discussed changes, we use the configuration of their
cifar10-32x32-uncond-vp model.
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E Proofs

E.1 DISCO Objective

Let p(t) be a prior distribution over a “time” paramete t € [0,T1], let pg denote the data distri-
bution, and let & : [0,7] — Rsg and o : [0,7] — Rs( be positive functions of time. Given
the distributions p(t,x,x;) := p(t)pa(x )pt(xt | x) with p;(x; | %) = N (x4 a(t)x,o(t)*I) and
q(t, x,%x¢) 1= p(t)pe(x¢)po(x | x¢) with pe(x¢) = [ pe(x¢ | x)pa(x) dx and

(X|X) po(Xt|X)pd( )
Po(x¢)
we will show that the DISCO Loss
Lp1sco () = Eq(txx) [NV, 1og po(x | %) — sa(x:)|13] (14)
is equivalent to
Fmix(po || s9) = ]Ep(t) [)‘(t)]:pt (po || 39)] Ep(t)E;nf(xf) [ ()| Vx, log po(x;) — Se(Xt)Hg} (15)
up to an additive constant independent of 6. As defined above, po(x) is the slightly Gaussian-

perturbed version of pg and is also called p/; in the main text.

Proof. We see that
Lo1sco(0) = Eq(rxx,) [ME)[Vx, logpo(x: | %) — s6(x:) 3]
= Ep(t)p. (x1) P‘(t) Epo (x| x1) [va log po(x¢ | x) — SG(Xt)Hgﬂ
We have
Epox |x0) [V 10g po(x: | %) — s6(x1)[[3]
= Epy(x|x) [V log po(x1 [ X)[5 — 2V, log po(x: | x) Tsg(xe) + || 50.(x)|I3]
=1 = 2B x| x) [V J0g po(x¢ | %)] " s0(x2) + 50 (x2)|3
= ¢+ | Epq (x| x) [V, 108 po (1 [ X)] — 50(x4) 13

where cq, co are constants w.r.t. 8. We notice that

IEpo(XIXt) [Vx, logpo(x: |x)] = /pO(X | %)V, log po(x; | x) dx

:/ x1p0(XtIX) e
Cpolxe|x)
:/ Xt|Xp0 )Vtio Xt‘X) dx
Po X¢) Po(x¢ | Xx)
:/ xfpo (x¢ | x) dx
po Xt
= Vx,Do(xt | x) dx
= [ WO Vamb )0
1
= ——Vy, X)po (x| x) dx
5V [ om0
1
= ——Vx,po(x
po(Xt) po( t)

= Vyx, logpo(x;)

and hence,

o x| x) [V, log po(xe | %)) = so(x¢) 13 = [ Vx, log po(xt) — se(x:)I3

8We want to stress that it has only the meaning of time in diffusion models, while in DISCO it indexes a
family of successively noisier proposal distributions.
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which implies that

Lp1sco(0) = Epypexe) [ME) Epoix %) [[[Vx, 10g po(x¢ | x) — se(x¢)[|3]] + const.
= Ep(t)p, (x) [M1) [V, log po(x¢) — se(x¢)[|3] + const.
=E p(t) [A(t )}-pt (po || se)] + const.

which concludes the proof. O

E.2 Multiscale Denoising Score Matching
We show that the multiscale denoising score matching (MDSM) (Li et al., 2023)) objective
Lypsm(0) = Ep(t)pd(X)pt(Xt [ x) [)‘(t) [V, log po(x: | x) — se (Xt)H%] (16)

has the minimizer sj(x;) = Ep¢|x,) {%{vat 1ogpt(xt)] when A(t) = 1 and a(t) = 1 forall ¢
(variance exploding).

Proof. For convenience, we assume A(t) = 1, as this can always be subsumed into the prior p(t) with-
out affecting the minimizer. Moreover, we assume «(t) = 1. With p(t, x, x¢) = p(t)pa(x)p:(x¢ | ),
we denote with p(x;) the marginal over x; (not to be confused with p,(x;), which conditions on ).
We have

Lapsm(0) = Eopypype (x| %) | Vx, 108 po(x¢ | x) — so(x¢) ]3] a7
= Ep(x)p(t | xo)pe (x| x0) [V, 108 Do (¢ | X) = 50(x¢)[[3] (18)
=E p(x¢)p(t|x¢) [”E x| x¢t) [th lng()(Xt | X)] - Sg(Xt)”g] + const. (19)

where the last step follows the same argument as in Section With R(xy,t) :=
Ep, (x| x:) [V, l0og po(x; | x)] and repeating this argument, we see that

Epixnp(t | x0) 1ROkt t) = s0(x0) 3] = Epy) [1Bpex,) [R(xe, 1)] — s0(x2)[3] + comst. (20)

where clearly, the minimizer is

sg(xt) = Ep(r| x,) [R(x¢,1)] (21)
= Ep(t [ x¢)pe (x| %) [VXz log po (Xt | X)] . (22)

Expanding Vy, log po(x: | x) = (x — x;)/0(0)?, we get

‘() — x—%] _ Ep,(x 10 [X] = %t
50(Xt) = Ep(t 1 x)pe (x| x2) [0(0)2} = Epte1x) [ (0)2 23)
Via Tweedie’s formula, we can express the posterior mean as E, x|x,)[X] = X +

o (t)?Vx, log p(x;), and thus,

. x; + 0 (t)?Vx, logp(x:) — x o(t)?
sp(xt) = Ep(t | x0) t (t) = ¢ (X¢) t} =Ept|x:) [U((O))vat log pe(x¢) (24)

which concludes the proof. O

This shows that the claim made in|Li et al.|(2023) that sj;(x) only learns V log po(x) is incorrect.

E.3 Time-Independent Diffusion Models
We show that minimizing Lpy with a time-independent score model sg(x;), i.e.,

Lon(0) = Etxoix, [ME) |V, log pe (1 | x0) — se(x)13] (25)

leads to a minimizer s3(x¢) = E, | x,) [V, log pi(x¢)] when A(t) = 1 and a(t) = 1 for all ¢.
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Proof. As the proof looks almost identical to Proof [E-2] we will only briefly sketch it and refer the
reader to Sun et al.| (2025) for more details. With R(x,t) := Ep, (x| x,) [Vx, logps(x: [ X)], we
again have that

N X —X
so(Xt) = Ep(tx,) [RX0,8)] = Epe | x0)pe (x| x1) [a(t)zt} (26)
Again via Tweedie’s formula, we obtain
\ x¢ +0(t)*Vix, log pe(x¢) — x
Sg (Xt) = Ep(t | x¢) : O'(t)2 L : = Ep(t | x¢) [vXt log Dt (Xt)] (27)
which concludes the proof. O
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