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Abstract

The success of score-based models largely stems from the idea of denoising a dif-
fusion process given by a collection of time-indexed score fields. While diffusion-
based models have achieved impressive results in sample generation, leveraging
them for sound probabilistic inference—particularly for sampling from arbitrary
conditional distributions—remains challenging. Briefly, this difficulty arises be-
cause conditioning information is only observed for clean data and not available
for higher noise levels, which would be required for generating exact conditional
samples. In this paper, we introduce an effective approach to DIffusion-free SCOre
matching (DISCO), which sidesteps the need for time-dependent score fields al-
together. Our method is based on a principled objective that estimates only the
score of the (slightly perturbed) data distribution. In our experiments, score models
learned with DISCO are competitive with state-of-the-art diffusion models in terms
of sample quality. More importantly, DISCO yields a more faithful representation
of the underlying data distribution and—crucially—enables sampling from arbi-
trary conditional distributions. This capability opens the door to sound and flexible
probabilistic reasoning with score-based models.

1 Introduction

Diffusion-based score models set the current state of the art in many generative modeling tasks,
producing samples of unprecedented fidelity. These models fit the score function rather than the
density, waiving the need for the model’s normalization constant (Hyvärinen and Dayan, 2005).
While a connection to auto-encoders leads to effective learning via denoising score matching (DSM)
(Vincent, 2011), this objective fits the score only close to the data manifold, effectively ignoring
low-density regions, leading to poor sample quality. To fix this, a key technique was the idea of
generative modeling by reversing a diffusion process (Sohl-Dickstein et al., 2015; Song et al., 2020),
which specifies a collection of time-indexed distributions. Intuitively, diffusion takes care that the
model is fit on a large support, not only close to the data manifold, leading to excellent sample quality.

However, generating high-quality samples is not the only objective of probabilistic modeling. Prob-
ability theory is, at its core, a rigorous framework for reasoning under uncertainty (Jaynes, 1995;
Pearl, 1988). In particular, computing marginals (sum rule), which corresponds to accounting for
unobserved variables, and conditionals (product rule), which incorporates observed evidence, are
the fundamental operations in probabilistic reasoning (Ghahramani, 2015), and lie at the core of
Bayesian methods, inverse problems and optimal decision making. Hence, the central question of
this paper is: Can score-based models serve as sound probabilistic reasoners and provide access
to exact marginals and conditionals? Here, we focus on drawing faithful samples from arbitrary
marginals or conditionals, which might be used in Monte Carlo-based inference.

For marginals, one can draw samples from the joint distribution and simply discard the variables
corresponding to the marginalized dimensions, yielding an exact marginal sample. However, exact
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Figure 1: Conditional sampling in a low-dimensional setting. We train a score-based diffusion
model and an energy-based DISCO model on samples of a 2-dimensional Gaussian mixture model
(pd, left). We produce conditional samples from the learned models, x2 ∼ pθ(x2 |x1 = 1.75), and
compare these with ground truth conditional samples derived via rejection sampling (right). For
the diffusion-trained model we use gradient guidance (Ho et al., 2022), the replacement heuristic
(Song et al., 2020) and twisted SMC (Wu et al., 2023), for which the produced samples follow a
substantially different distribution than the ground truth, illustrating a clear failure case for these
methods. In contrast, conditional samples from DISCO using tempered SMC follow the ground truth
distribution faithfully (see supplementary for details).

conditional sampling is much more challenging due to the diffusion process, as conditioning the
whole stochastic process on the available observations is intractable. Various strategies to address
this problem have been proposed, which, however, are either heuristic, e.g. (Song et al., 2020; Ho
et al., 2022; Kawar et al., 2022) or have only asymptotic exactness guarantees, e.g. (Wu et al., 2023).
While these methods can produce compelling results for conditional tasks such as image inpainting,
they fail to produce unbiased samples from conditionals, as can be demonstrated even on simple toy
problems such as in Figure 1.

In this paper, we address this problem by challenging the assumption that diffusion-based training of
score-models is a pressing requirement, and propose an effective approach to DIffusion-free SCOre
matching (DISCO). By starting from a mixture of generalized Fisher divergences, specified by an
array of “noisy” proposal distributions, we arrive at a principled score matching objective. This
objective, albeit reminiscent to diffusion training, only fits the (slightly perturbed) data distribution
rather than a full diffusion process, while taking care that the score field is also fit outside the data
manifold. With this approach, conditioning becomes simple: in the learned score, one can fix the
values of observed variables and apply sampling only with respect to the unobserved variables.

In experiments, we show that DISCO produces samples of high visual quality, achieving FID scores
on CIFAR-10 competitive with state-of-the-art diffusion models. More importantly, DISCO provides
a more faithful representation of the underlying data distribution and enables accurate sampling from
arbitrary conditional distributions, as illustrated in Figure 1. This capability opens the door to sound
and flexible probabilistic reasoning with score-based models.

2 Background

Score-Based Modeling. In generative modeling, we are given i.i.d. samples {x(i) ∈ RD}Ni=1
from a data distribution pd(x), and aim to learn a parametric model pθ that approximates pd well.
Parameterizing a proper density pθ introduces the challenge of normalization, i.e., ensuring that∫
RD pθ(x) dx = 1. Score-based modeling (Hyvärinen and Dayan, 2005) circumvents this issue by

learning the score of the data density, defined as ∇x log pd(x), which is invariant to the normalizing
constant. The idea is to use a neural network sθ : RD → RD to represent the model score and
minimize the Fisher divergence:

F(pd ∥ sθ) := Ex∼pd

[
∥∇x log pd(x)− sθ(x)∥22

]
(1)
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Since the Fisher divergence involves the unknown score ∇x log pd(x), it is generally unsuitable
for direct optimization. This motivates the use of alternative objectives that do not require ex-
plicit access to ∇x log pd(x). A particularly popular variant is denoising score matching (DSM),
which approximates the score of a perturbed data distribution pσ(x̃) =

∫
pd(x) q(x̃ |x) dx, where

q(x̃ |x) := N (x̃ |x, σ2I) is a Gaussian perturbation kernel with fixed noise level σ. Concretely,
minimizing the objective

LDSM(θ) := Epd(x)q(x̃ |x)
[
∥∇x̃ log q(x̃ |x)− sθ(x̃)∥22

]
(2)

is equivalent to minimizing Fisher divergence, as ∇θLDSM(θ) = ∇θF(pσ ∥ sθ) for all θ (Vincent,
2011). This objective and its gradients can be efficiently estimated using data samples, as it only
depends on the score of the perturbation kernel, given by ∇x̃ log q(x̃ |x) = (x− x̃)/σ2.

In (2), one chooses the fixed noise level σ to be small so that the perturbed distribution pσ closely
approximates the data distribution pd. However, this implies that in regions far from the data manifold,
pσ almost never samples points, so the learned score is essentially arbitrary there. Since sampling
(e.g., via Langevin MCMC) typically starts far from the manifold, these inaccurate estimates lead the
sampler to drift into random directions, yielding poor samples (Song and Ermon, 2019).

Diffusion Models. Diffusion models address the limitations of naïve DSM by learning a multitude of
score vector fields, each corresponding to a different noise level applied to the data distribution (Sohl-
Dickstein et al., 2015; Song et al., 2020). Formally, let the clean data be denoted by x0 ∼ pd, and
define the conditional distribution qt(xt |x0) via the forward diffusion process xt = α(t)x0 + σ(t)ε
where ε ∼ N (0, I) and t ∈ [0, T ] for some T > 0. In this work, we focus primarily on the variance-
exploding (VE) formulation (Song et al., 2020), where α(t) = 1 and only the noise scale σ(t) varies
over time. This process defines a family of progressively noisier distributions {pt(xt)}t∈[0,T ], where
pt(xt) =

∫
qt(xt |x0) pd(x0) dx0.

A time-dependent score network is then trained to approximate the score function sθ(x, t) ≈
∇x log pt(x) for all x ∈ RD and t ∈ [0, T ], by minimizing LDM(θ), defined as

Et,x0,xt

[
λ(t) ∥∇xt

log pt(xt |x0)− sθ(xt, t)∥22
]

(3)

where t ∼ p(t), x0 ∼ pd(x0), and xt ∼ qt(xt |x0). Here p(t) is some distribution over [0, T ] and
λ(t) is a positive weighting function.

After training, the score network sθ is used for sample generation, aiming to approximate draws from
p0. Popular approaches are numerical integration of the reverse-time SDE (Song et al., 2020) and
ancestral sampling (Ho et al., 2020). A key advantage of diffusion models over standard DSM is that,
due to training across multiple noise levels, the score network is also informed in low-density regions.

3 Diffusion-Free Score Matching

While only the approximate data score at t = 0 is of actual interest, diffusion models introduce the
overhead of an entire family of score functions, making conditional sampling challenging. Specifically,
when splitting the data variable x into unobserved variables xu and conditioned variables xc, the goal
is to sample xu ∼ p(xu |xc). When dealing with only a single score field ∇x log p(x), conditioning
becomes straightforward, since the conditional score is simply the joint score with clamped xc:

∇xu log p(xu,xc) = ∇xu log p(xu |xc) +∇xu log p(xc)︸ ︷︷ ︸
=0

(4)

However, drawing conditional samples with diffusion models requires ∇xt
log pt(xt |xc

0) for each
t > 0, which is intractable to compute.

In this paper, we reconsider the assumption that diffusion-based learning is strictly necessary for
learning expressive score-based models. Instead, we aim to learn just a single score field, which
allows us to sample any conditional according to (4). To this end, we start with a slight modification
of the Fisher divergence:
Definition 1. q-Weighted Fisher Divergence. Let pd and q be probability densities over RD whose
supports satisfy supp(pd) ⊆ supp(q). We define the q-weighted Fisher divergence as

Fq(pd ∥ sθ) := Ex∼q

[
∥∇x log pd(x)− sθ(x)∥22

]
(5)
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Like the Fisher divergence F in Equation (1), also Fq measures the score-mismatch between pd and
the model sθ , but in expectation over a proposal distribution q rather than pd. It is easy to show that
Fq(pd ∥ sθ) = 0 implies F(pd ∥ sθ) = 0, hence Fq is a principled divergence.

Next, we adopt from diffusion models the idea of using a family of Gaussian perturbed distributions
where qt(xt |x) := N (xt |x, σ(t)2I) is a Gaussian perturbation kernel indexed by t ∈ [0, T ],
pt(xt,x) = qt(xt |x) pd(x) is the joint of a data sample x and a perturbed version xt, and pt(xt) =∫
pt(xt,x) dx.

Unlike as in diffusion models, we do not aim to approximate the pt(xt)’s for t > 0, but use them
merely as proposals for Fq. We propose to minimize a weighted mixture of q-weighted Fisher
divergences:

Fmix(pd ∥ sθ) = Et∼p(t) [λ(t)Fpt(pd ∥ sθ)] (6)

= Et∼p(t)

[
λ(t)Ext∼pt

[
∥∇xt log pd(xt)− sθ(xt)∥22

]]
(7)

Also Fmix is a principled objective, since, as λ(t) is positive and Fpt
is non-negative, Fmix(pd ∥ sθ) =

0 implies that Fpt
(pd ∥ sθ) = 0 for almost all t ∈ [0, T ].

Fmix requires the true data score ∇x log pd(x) which is not available. Hence, we adopt a similar
approach as in (Vincent, 2011) and replace pd with a slightly Gaussian-perturbed version p′d(x) :=
p0(x), i.e. the perturbed data distribution at the lowest noise level. Given that σ(0) is small, fitting
p′d instead of pd is a worthwhile goal. With this modification, we are able to derive the following
principled objective, the DIffusion-free SCOre matching loss (DISCO loss):
Theorem 1. Let pd be the true data distribution, p(t) a distribution over [0, T ], and λ(t) a positive
weighting function. Further, let qt(xt |x), pt(xt) and pt(x |xt) be defined as above. Let pt′(x |xt) =
pt′(xt,x)/pt′(xt) be the posterior at noise level σ(t′) and let q(t,x,xt) := p0(x |xt) pt(xt) p(t).
The DISCO loss LDISCO(θ), defined as

Eq(t,x,xt)

[
λ(t) ∥∇xt

log q0(xt |x)− sθ(xt)∥22
]

(8)

has the same parameter gradients as Fmix(p
′
d ∥ sθ).

The proof can be found in the supplementary. From Theorem 1 it follows that, given that sθ has
sufficient capacity, the global minimizer of LDISCO will learn the true score of p′d and since we
employ an array of noisy proposal distributions, we make sure that sθ gets informed far from the data
manifold.

DISCO Training. Estimating LDISCO for training is straightforward, except for one part. In order
to sample from q(t,x,xt), we first sample t ∼ p(t). Subsequently, we sample xt ∼ pt(xt), by first
sampling some (intermediate) data sample x′ ∼ pd and then its perturbed version xt ∼ qt(xt |x′).
The challenging part is then to sample p0(x |xt).1 However, as we usually have only finitely many
training data points D = {x(i)}Ni=1, the data distribution is the empirical distribution pd(x) =

pemp(x) :=
1
N

∑N
i=1 δ(x

(i) − x) where δ(·) denotes the Dirac-delta function. From Bayes’ law, we
obtain

p0(x |xt) =
q0(xt |x) pemp(x)

p0(xt)

which induces a probability mass function over D. Thus, we compute p0(x
(i) |xt) ∝ q0(xt |x(i))

for each x(i) ∈ D and sample x from the normalized mass function2.

DISCO Samples. If we only have access to the learned score sθ(x), we may use samplers like
Unadjusted Langevin Dynamics (ULA) to draw asymptotically exact samples. However, in our low-
dimensional experiments, we parameterize an energy-based DISCO model as sθ(x) := −∇xEθ(x),
where Eθ is a scalar-valued neural network. In this setting, we can employ more sophisticated

1Note the asymmetry in this principle, where xt is generated by a perturbation at “high” noise levels, but the
posterior p0(x |xt) is over clean data “assuming xt had been generated by p0 (lowest noise level).” In particular,
the intermediate sample x′ which was used to produce xt does not necessarily have high probability under
p0(x |xt), especially for large σ(t).

2If |D| is large, we can draw an approximate posterior sample using either a mini-batch or more sophisticated
techniques which are discussed in the supplementary.
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Figure 2: Comparison of the L2 norms of the scores of a vanilla diffusion model at t = 0 (left),
an energy-based DISCO model (center), and the ground truth empirical distribution of the Moons
dataset (smoothed with σ(0) = 0.1, which is the target p′d for DISCO). Note that the diffusion model
systematically underestimates the magnitudes of scores that are far from the data manifold.

MCMC sampling strategies: We use Sequential Monte Carlo (SMC) (Naesseth et al., 2019; Doucet
et al., 2001; Chopin et al., 2020; Del Moral et al., 2006) with Hamiltonian Monte Carlo (HMC) steps
to sample from a sequence of tempered distributions Neal (1996) (see supplementary for details).

4 Related Work

Conditional Sampling in Diffusion Models. Many approximations to the true conditional
p0(x

u
0 |xc

0) have been proposed: Song et al. (2020) introduce the replacement method, a popu-
lar heuristic that estimates the conditional score at time t as

∇xu
t
log pt(x

u
t |xc

0) ≈ ∇xu
t
log pt(x

u
t | x̂c

t) (9)

where x̂c
t is drawn from the known distribution pt(x

c
t |xc

0) = N (xc
t ;α(t)x

c
0, σ(t)

2I). This ap-
proximation enjoys no theoretical guarantees and often fails to produce samples coherent with the
conditioning information (Ho et al., 2022).

Gradient guidance (Ho et al., 2022) relies on the fact that ∇xt
log pt(xt |xc

0) = ∇xt
log pt(x

c
0 |xt)+

∇xt
log pt(xt). While ∇xt

log pt(xt) is known via sθ , the intractable quantity pt(x
c
0 |xt) is approxi-

mated, often by N (xc
0; Ω(x̂θ(xt, t)), σ(t)

2I), where x̂θ(x, t) = x+ σ(t)2sθ(x, t) is the “denoised”
input, and Ω(x) returns only the observed coordinates in x. At each noise level t, the approxima-
tion of the conditional score ∇xt log pt(x

u
t |xc

t) is used to perform sampling. Note that computing
∇xt logN (xc

0; Ω(x̂θ(xt, t)), σ(t)
2I) involves backpropagating through the neural network, making

this approximation computationally expensive. Again, this heuristic provides unreliable estimates
(Zhang et al., 2023) and comes with no theoretical guarantees.

(Wu et al., 2023) introduced the twisted diffusion sampler (TDS), which uses gradient guidance in
a twisted sequential Monte Carlo (SMC) procedure as an approximation to the (unknown) optimal
twisting function. Due to this, the sampler will not produce exact samples for any finite number
of simulated particles. In contrast, DISCO guarantees asymptotically exact samples, even when
simulating a single particle.

5 Experiments

Low-Dimensional GMM. To experimentally validate DISCO in a low-dimensional setting, we
train both a vanilla diffusion model and an energy-based DISCO model on a two-dimensional
Gaussian mixture model (GMM). In Figure 1 we compare the quality of samples from the conditional
distribution pθ(x2 |x1 = 1.75), using popular heuristic conditional sampling techniques which are
explained in the supplementary material. We find that only the DISCO model produces faithful
samples, while all other methods fail to preserve the relative weights of the Gaussian components.
Details and additional results for other datasets and GMMs with varying dimensionality are provided
in the supplementary material.
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Figure 3: Unconditional samples from a score-based DISCO model trained on CIFAR-10. This
model achieves an FID score of 3.80.

Moons Dataset. We further trained a standard diffusion model and an energy-based DISCO model
on the popular Moons dataset (make_moons in scikit-learn (Pedregosa et al., 2011)). In Figure 2
we visualize the L2 norms of learned scores (for the diffusion model the one corresponding to t = 0)
and the score of the empirical data distribution, Gaussian smoothed with σ(0) = 0.1, which is
the actual target distribution p′d for DISCO. We see that DISCO excellently fits the target score,
underpinning its role as principled score matching objective. The diffusion model does not fit the
data score well for areas far from the data. This is to be expected, as the diffusion formalism does not
even strive to represent a single data score, but “distributes” the generative process over a hierarchy
of time-dependent score-fields.

CIFAR-10. To demonstrate that DISCO performs well in high-dimensional generative modeling
tasks, we use the model architecture proposed in (Karras et al., 2022) and train an unconstrained score
model with DISCO on the CIFAR-10 dataset (Krizhevsky et al., 2009). Using the second-order Heun
sampler Karras et al. (2022), we achieve a competitive FID score of 3.80 on unconditional CIFAR-10,
where state-of-the-art with diffusion models is 1.79 (Zhang et al., 2024). This demonstrates that
directly learning a single data score can lead to high visual sample quality. In the supplementary, we
discuss experimental details and DISCO’s capability for image inpainting via conditional sampling.

6 Conclusions

In this paper, we challenge the prevailing belief that diffusion processes are essential for training
effective score-based generative models. We introduce DISCO, a diffusion-free score matching
framework that avoids time-indexed score fields in favor of learning a single, time-independent score
function. Our results demonstrate that this approach is not only viable but also competitive with
diffusion models in terms of visual sample quality. More importantly, DISCO provides a principled
foundation for exact conditional sampling, which has remained elusive for traditional diffusion-based
models. This ability opens the door to using such models as sound probabilistic reasoners, positioning
DISCO as powerful tool for a wide array of tasks in probabilistic modeling, beyond mere sample
generation. For example, our method might be beneficial for designing molecular structures that
satisfy target binding affinities or for sampling physically plausible protein conformations conditioned
on partial structural constraints.
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A DISCO Sampling

Since it is well known that Langevin algorithms suffer from slow mixing times if the target distribution
is multimodal, we employ tempering strategies (Neal, 1996) by considering a sequence of distributions
{pβi

}ni=0 with
pβi

(x) ∝ pθ(x)
βi (10)

where 0 = β0 < · · · < βn = 1 is a schedule of inverse temperature parameters. As β → 0, pβ
approaches a uniform distribution, and as β → 1, we recover the original model pθ. Tempering
simply scales the score, i.e., ∇x log pβ(x) = β∇x log pθ(x). In the same way, we can also temper
any conditional distribution of pθ given by (4).

In our low-dimensional experiments, we use BlackJAX (Cabezas et al., 2024) and apply tempered
sequential Monte Carlo (SMC) with an adaptive schedule for the inverse temperatures βi.3 For
the results in Figure 1, we perform systematic resampling after a single Hamiltonian Monte Carlo
(HMC) step, using 10 leapfrog integration steps. All other heuristic methods are configured to allow
approximately the same number of function evaluations for a fair comparison.

B Time-Independence in Score-Based Models

Most similar in spirit to DISCO is the work by Li et al. (Li et al., 2023), who share the idea
of only learning ∇x log p0(x) using a score-matching objective. However, they do not minimize
LDISCO, but a variant which they term multiscale denoising score matching (MDSM), which is
LDISCO when (incorrectly) setting q(t,x,xt) := p(t)pd(x)pt(xt |x) in (8). This objective in fact
learns s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt
log pt(xt)

]
, i.e. a posterior average over pt scores, where the

posterior over noise levels is reweighted. Thus, the claim of (Li et al., 2023) that s∗θ only learns
the score of p0 is erroneous (see Section E.2 details). Their main motivation is also not conditional
sampling but on analyzing diffusion training.

A key property in DISCO is that the score network is independent of t, while diffusion-based models
inherently rely on a notion of time. Yet, there have been attempts to minimize LDM with neural
networks where (1) time enters in a simple way, or (2) time does not enter into the network sθ(x)
at all. (Song and Ermon, 2020) proposed to model sθ(x, t) := εθ(x)/σ(t) where εθ is a time-
independent neural network. However, it is easy to see that the true scores of different noise levels
are not just scaled versions of another, i.e., there exists no constant c such that ∇x log pt1(x) =
c · ∇x log pt2(x) ∀x, t1 ̸= t2, except for the trivial case where p0 is Gaussian. Thus, even with
infinite capacity in εθ , we cannot learn the true scores. In fact, one can interpret this parameterization
as learning a single distribution whose tempered versions try to match the diffused distributions pt.
Recently, Sun et al. (2025) studied the effect of minimizing LDM with a time-independent network
sθ(x). Doing so results in a minimizer s∗θ(xt) = Ep(t |xt) [∇xt

log pt(xt)], which learns to average
the scores of pt over the posterior distribution of noise levels (see Section E.3). Sun et al. (2025)
argue that in high dimensions, p(t |xt) is close to δ(t− txt

), where xt = x0 + txt
ε, ε ∼ N (0, I),

and hence, s∗θ(xt) ≈ ∇xt
log ptxt

(xt). However, this work is clearly distinct to DISCO, as we try to
regress ∇x log p0(x) only.

3A fixed linear schedule for βi also performs adequately.
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Figure 4: Wasserstein-1 distance between (approximate) conditional samples and ground-truth
conditional samples for each sampling scheme and dimension D ∈ {2, 10, 50}. When D = 2 (left),
DISCO substantially outperforms all other approaches. When D = 10 (middle), TDS performs
well on average, but fails on certain conditionals: When using TDS, the maximum W1 observed
was 4.29, while the maximum W1 was 0.42 with DISCO. We emphasize that such failure cases are
detrimental for sound and consistent reasoning. When D = 50 (right), DISCO again outperforms all
other methods in terms of average W1. Note that since we compare against the ground-truth GMM
conditional distribution, the errors shown here are due to sampling inaccuracy and model mismatch,
where the latter is typically larger in higher dimensions.

C Posterior Sampling

When optimizing LDISCO, we need to draw samples from the t = 0 posterior

p0(x |xt) =
q0(xt |x) pd(x)

p0(xt)
.

When we set pd(x) = pemp(x), we can draw exact samples from p0(x |xt): Given xt ∈ RD, we
compute q(xt |x(i)) for each x(i) ∈ D, and sample x from the normalized mass function over
elements in D. Intuitively, since the perturbation kernel q(xt |x(i)) is an isotropic Gaussian, it will
assign more probability mass to points x(i) that are close to x(i). This is distinct but reminiscent
of the popular (minibatch) optimal transport techniques in the flow matching literature (Tong et al.,
2023).

Sampling from the posterior in this way needs O(ND) operations, where N = |D|. In our low-
dimensional experiments (N = 100, 000 and D ∈ {2, 10, 50}) we do not observe any significant
slowdown during model training. In our high-dimensional CIFAR-10 experiments, we draw approxi-
mate posterior samples by using minibatches of size 512.

Future work may explore utilizing techniques like Locality Sensitive Hashing (Gionis et al., 1999)
or k-d Trees to efficiently get the k nearest neighbors of xt, and then compute the mass function
over just these neighbors. If σ(0) is sufficiently small, this will be a good approximation to the true
posterior mass function over all elements in D.

D Experimental Details

D.1 Low-Dimensional Setting

GMM Experimental Setup. To quantitatively evaluate the performance of DISCO w.r.t. condi-
tional sampling, we train several small energy-based models (parameterized using an MLP) using
both LDISCO, and the regular diffusion objective LDM. For each dimension D ∈ {2, 10, 50}, we
randomly generate parameters of a 20-component Gaussian Mixture Model (GMM) in RD, and use
100, 000 samples from the GMM as our training dataset.
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Figure 5: CIFAR-10 Inpainting with the DISCO model. First Column: CIFAR-10 test image
from each class. Second Column: Pixels from the test images we condition on. Other Columns:
Inpaintings with different random seeds using the DISCO model in conjunction with the replacement
heuristic. Best viewed zoomed in.

We use a batch size of 1024 and the Adam optimizer (Kingma, 2014) with learning rate 10−4 and
otherwise default parameters. When D = 2, we train the models for 50, 000 gradient steps, and when
D > 2, we train for 100, 000 steps. We use a variance exploding formulation with α(t) = 1 for all t,
and use 100 exponentially spaced noise scales σ(ti), with σ(0) = 0.1 and σ(T ) = 2. For D = 50,
we increase σ(T ) to 5.

After training, we sample 100 test points x(i) from the GMM, and want to draw from the conditional
distribution over the last coordinate in x(i), given the others. In the DISCO model, we use the
SMC sampler described above, with systematic resampling after 2 HMC steps, which use 2 leapfrog
integration steps each. To sample from the diffusion-based models, we employ several popular
heuristics sampling schemes: Twisted Diffusion Sampler (TDS) (Wu et al., 2023), Gradient Guidance
(Ho et al., 2022), and the Replacement Heuristic (Song et al., 2020). We use all of these heuristics
in conjunction with 100 steps of ancestral sampling, roughly taking the same number of function
evaluations as sampling from the DISCO model4 . For each test point, we draw 1024 (approximate)
conditional samples from each model and compute the Wasserstein-1 distance (W1) to 1024 true
samples from the ground-truth conditional GMM. We repeat this 3 times with different random
seeds and visualize the distribution of W1 over all test points and random seeds in Figure 4 (for
each D ∈ {2, 10, 50}). We find it to be beneficial for DISCO sampling to slightly lower σ(0) after
training, i.e., we sample from a slightly “cooled down” version of the learned distribution: In all
DISCO experiments shown in Figure 4, we thus train with σ(0) = 0.1 and sample with σ(0) = 0.07.

As shown in Figure 4, we can easily find failure cases where methods like TDS cannot produce faithful
conditional samples. In contrast, the DISCO model consistently performs well in the worst-case
setting.

4Since we apply adaptive tempering when sampling from the DISCO model, the number of function
evaluations per conditional sample is not static. In all experiments, the DISCO sampler needs less function
evaluations than the diffusion model samplers.
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In the main text, we show qualitative results of a similar GMM experiment with D = 2, except that
(1) we parameterize the diffusion model to output the score directly (instead of the energy), and (2)
we show kernel-density estimates of both the approximate model conditional, and the true model
conditional (obtained via rejection sampling). In contrast, the experiment we show here compares the
approximate model conditional and the ground-truth GMM conditional.5

Network Architecture. The network architectures of the diffusion models and DISCO models are
identical, except that the diffusion models receive the noise level σ(t) as input, while the DISCO
models do not. In the former case, we use a simple positional embedding for σ(t), which we
concatenate to the input. Moreover, following Tancik et al. (2020), we also use the same positional
embedding for each coordinate in the input x. The remainder of the MLP consists of 4 blocks (with
residual connections), where each block contains 2 affine layers followed by leaky ReLU activations,
and normalization layers at the start of each block, after the first affine layer (InstanceNorm++
introduced in Song and Ermon (2019)). All affine layers in these blocks are maps RK → RK , where
we choose K = 128 when D = 2, K = 256 when D = 10, and K = 512 when D = 50. The final
block is followed by the same normalization and activation layers, and a final affine layer mapping
from RK to RD. When parameterizing the score directly, we use the output of the final hidden layer
z as our score approximation. When building an energy-based model, we follow Du et al. (2023) and
compute the energy Eθ as −∥z∥22.

D.2 CIFAR-10

We use the popular EDM implementation6 (Karras et al., 2022) which defines a denoising network
Dθ(x), where the score network is then given as

sθ(x) :=
Dθ(x)− x

σ(0)2
(11)

Since ∇xt
log q0(xt |x0) = (x0 − xt)/σ(0)

2, it follows that LDISCO then simplifies to

LDISCO(θ) = σ(0)−4 Eq(t,x,xt)

[
λ(t)∥x−Dθ(xt)∥22

]
(12)

where we simply drop σ(0)−4 because it is a constant factor w.r.t. θ. Karras et al. (2022) model their
time-dependent denoiser as

Dθ(x, t) := cskip(t)x+ cout(t)Fθ(cin(t)x, cnoise(t)) (13)

where Fθ(·, ·) is the direct output of the neural network, and cskip, cout, cin, cnoise are scalar-valued
functions. Inspired by (Sun et al., 2025), we choose time-independent constants cskip = 0.5,
cout = cin = 1, and do not use cnoise because we model a time-independent network. Finally, we
train Dθ(x) = 0.5x+Fθ(x) with the same hyperparameter configuration as Karras et al. (2022)7 on
8 Quadro RTX 8000 GPUs, which took roughly 2 days. To minimize LDISCO, we approximately
sample from the posterior p0(x |xt) using a mini-batch of data.

We use the second-order Heun sampler with 18 steps (i.e., NFE = 35) (Karras et al., 2022) to produce
the samples shown in Figure 3, achieving an FID score of 3.80. We also experiment with energy-based
DISCO models, but observe worse visual fidelity in the generated samples, which is consistent with
findings in (Salimans and Ho, 2021).

CIFAR-10 Inpainting. We use the DISCO model described in the main paper in an inpainting
experiment. The results are shown in Figure 5: In this experiment, we use the popular replacement
heuristic to inpaint images. We find that running the Heun EDM sampler does not produce visually
pleasing samples when using the true conditional scores directly. We hypothesize that this is due to
fact that during training, the model has never seen images where some pixels are clean and others are
noisy and thus, it fails to generalize to these cases. We leave investigation of this to future work but
note that training directly on such augmented clean/noisy images may alleviate this issue.

5We make this modification because generating true samples from the model conditional via rejection
sampling is intractable in high dimensions.

6https://github.com/NVlabs/edm
7To be exact, except for the discussed changes, we use the configuration of their

cifar10-32x32-uncond-vp model.
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E Proofs

E.1 DISCO Objective

Let p(t) be a prior distribution over a “time” parameter8 t ∈ [0, T ], let pd denote the data distri-
bution, and let α : [0, T ] → R>0 and σ : [0, T ] → R>0 be positive functions of time. Given
the distributions p(t,x,xt) := p(t)pd(x)pt(xt |x) with pt(xt |x) := N (xt;α(t)x, σ(t)

2I) and
q(t,x,xt) := p(t)pt(xt)p0(x |xt) with pt(xt) =

∫
pt(xt |x)pd(x) dx and

p0(x |xt) =
p0(xt |x)pd(x)

p0(xt)
,

we will show that the DISCO Loss

LDISCO(θ) := Eq(t,x,xt)

[
λ(t)∥∇xt log p0(xt |x)− sθ(xt)∥22

]
(14)

is equivalent to

Fmix(p0 ∥ sθ) = Ep(t) [λ(t)Fpt(p0 ∥ sθ)] = Ep(t)Ept(xt)

[
λ(t)∥∇xt log p0(xt)− sθ(xt)∥22

]
(15)

up to an additive constant independent of θ. As defined above, p0(x) is the slightly Gaussian-
perturbed version of pd and is also called p′d in the main text.

Proof. We see that

LDISCO(θ) = Eq(t,x,xt)

[
λ(t)∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

= Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]]

We have

Ep0(x |xt)

[
∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

= Ep0(x |xt)

[
∥∇xt

log p0(xt |x)∥22 − 2∇xt
log p0(xt |x)⊤sθ(xt) + ∥sθ(xt)∥22

]
= c1 − 2Ep0(x |xt) [∇xt

log p0(xt |x)]⊤ sθ(xt) + ∥sθ(xt)∥22
= c2 + ∥Ep0(x |xt) [∇xt

log p0(xt |x)]− sθ(xt)∥22
where c1, c2 are constants w.r.t. θ. We notice that

Ep0(x |xt) [∇xt
log p0(xt |x)] =

∫
p0(x |xt)∇xt

log p0(xt |x) dx

=

∫
p0(x |xt)

∇xt
p0(xt |x)

p0(xt |x)
dx

=

∫
p0(xt |x)p0(x)

p0(xt)

∇xtp0(xt |x)
p0(xt |x)

dx

=

∫
p0(x)∇xt

p0(xt |x)
p0(xt)

dx

=
1

p0(xt)

∫
p0(x)∇xt

p0(xt |x) dx

=
1

p0(xt)
∇xt

∫
p0(x)p0(xt |x) dx

=
1

p0(xt)
∇xtp0(xt)

= ∇xt log p0(xt)

and hence,

∥Ep0(x |xt) [∇xt log p0(xt |x)]− sθ(xt)∥22 = ∥∇xt log p0(xt)− sθ(xt)∥22
8We want to stress that it has only the meaning of time in diffusion models, while in DISCO it indexes a

family of successively noisier proposal distributions.
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which implies that

LDISCO(θ) = Ep(t)pt(xt)

[
λ(t)Ep0(x |xt)

[
∥∇xt log p0(xt |x)− sθ(xt)∥22

]]
+ const.

= Ep(t)pt(xt)

[
λ(t) ∥∇xt log p0(xt)− sθ(xt)∥22

]
+ const.

= Ep(t) [λ(t)Fpt(p0 ∥ sθ)] + const.

which concludes the proof.

E.2 Multiscale Denoising Score Matching

We show that the multiscale denoising score matching (MDSM) (Li et al., 2023) objective

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
λ(t) ∥∇xt

log p0(xt |x)− sθ(xt)∥22
]

(16)

has the minimizer s∗θ(xt) = Ep(t |xt)

[
σ(t)2

σ(0)2∇xt log pt(xt)
]

when λ(t) = 1 and α(t) = 1 for all t
(variance exploding).

Proof. For convenience, we assume λ(t) = 1, as this can always be subsumed into the prior p(t) with-
out affecting the minimizer. Moreover, we assume α(t) = 1. With p(t,x,xt) = p(t)pd(x)pt(xt |x),
we denote with p(xt) the marginal over xt (not to be confused with pt(xt), which conditions on t).
We have

LMDSM(θ) = Ep(t)pd(x)pt(xt |x)
[
∥∇xt log p0(xt |x)− sθ(xt)∥22

]
(17)

= Ep(xt)p(t |xt)pt(x |xt)

[
∥∇xt log p0(xt |x)− sθ(xt)∥22

]
(18)

= Ep(xt)p(t |xt)

[
∥Ept(x |xt) [∇xt

log p0(xt |x)]− sθ(xt)∥22
]
+ const. (19)

where the last step follows the same argument as in Section E.1. With R(xt, t) :=
Ept(x |xt) [∇xt

log p0(xt |x)] and repeating this argument, we see that

Ep(xt)p(t |xt)

[
∥R(xt, t)− sθ(xt)∥22

]
= Ep(xt)

[
∥Ep(t |xt) [R(xt, t)]− sθ(xt)∥22

]
+ const. (20)

where clearly, the minimizer is

s∗θ(xt) = Ep(t |xt) [R(xt, t)] (21)

= Ep(t |xt)pt(x |xt) [∇xt log p0(xt |x)] . (22)

Expanding ∇xt log p0(xt |x) = (x− xt)/σ(0)
2, we get

s∗θ(xt) = Ep(t |xt)pt(x |xt)

[
x− xt

σ(0)2

]
= Ep(t |xt)

[Ept(x |xt) [x]− xt

σ(0)2

]
(23)

Via Tweedie’s formula, we can express the posterior mean as Ept(x |xt) [x] = xt +

σ(t)2∇xt
log pt(xt), and thus,

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt

log pt(xt)− xt

σ(0)2

]
= Ep(t |xt)

[
σ(t)2

σ(0)2
∇xt

log pt(xt)

]
(24)

which concludes the proof.

This shows that the claim made in Li et al. (2023) that s∗θ(x) only learns ∇x log p0(x) is incorrect.

E.3 Time-Independent Diffusion Models

We show that minimizing LDM with a time-independent score model sθ(xt), i.e.,

LDM(θ) = Et,x0,xt

[
λ(t) ∥∇xt

log pt(xt |x0)− sθ(xt)∥22
]
, (25)

leads to a minimizer s∗θ(xt) = Ep(t |xt) [∇xt
log pt(xt)] when λ(t) = 1 and α(t) = 1 for all t.
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Proof. As the proof looks almost identical to Proof E.2, we will only briefly sketch it and refer the
reader to Sun et al. (2025) for more details. With R(xt, t) := Ept(x |xt) [∇xt log pt(xt |x)], we
again have that

s∗θ(xt) = Ep(t |xt) [R(xt, t)] = Ep(t |xt)pt(x |xt)

[
x− xt

σ(t)2

]
(26)

Again via Tweedie’s formula, we obtain

s∗θ(xt) = Ep(t |xt)

[
xt + σ(t)2∇xt log pt(xt)− xt

σ(t)2

]
= Ep(t |xt) [∇xt

log pt(xt)] (27)

which concludes the proof.
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