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Abstract

Stability guarantees have emerged as a principled way to evaluate feature attri-
butions, but existing certification methods rely on heavily smoothed classifiers
and often produce conservative guarantees. To address these limitations, we intro-
duce soft stability and propose a simple, model-agnostic, sample-efficient stability
certification algorithm (SCA) that yields non-trivial and interpretable guarantees
for any attribution method. Moreover, we show that mild smoothing achieves a
more favorable trade-off between accuracy and stability, avoiding the aggressive
compromises made in prior certification methods. To explain this behavior, we
use Boolean function analysis to derive a novel characterization of stability under
smoothing. We evaluate SCA on vision and language tasks and demonstrate the
effectiveness of soft stability in measuring the robustness of explanation methods.

1 Introduction

Powerful machine learning models are increasingly deployed in practice. However, their opacity
presents a major challenge when adopted in high-stakes domains, where transparent explanations are
needed in decision-making. In healthcare, for instance, doctors require insights into the diagnostic
steps to trust a model and effectively integrate it into clinical practice [32]. In the legal domain,
attorneys must likewise ensure that model-assisted decisions meet stringent judicial standards [53]].

There is much interest in explaining the behavior of complex models. One popular class of explanation
methods is feature attributions [39}51]], which aim to select the input features most important to a
model’s prediction. However, many explanations are unstable, such as in Figure[T} where additionally
including a few features may change the output. Such instability suggests that the explanation may
be unreliable [47, 165} [72]. This phenomenon has motivated efforts to quantify how model predictions
vary with explanations, including the effects of adding or removing features [55. 68| and the influence
of the selection’s shape [23 154]. However, most existing works focus on empirical measures [3],
with limited formal guarantees of robustness.

To address this gap, prior work in Xue et al. [70]] considers stability as a formal certification framework
for robust explanations. In particular, a hard stable explanation is one where adding any small number
of features, up to some maximum tolerance, does not alter the prediction. However, finding this
tolerance is non-trivial: for an arbitrary model, one must exhaustively enumerate and check all possible
perturbations in a computationally intractable manner. To overcome this, Xue et al. [70] introduce the
MusS algorithmic framework for constructing smoothed models, which have mathematical properties
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Figure 1: An unstable explanation. Given an input image (left), the LIME explanation method [51]]
identifies features (middle, in pink) that preserve Vision Transformer’s [17] prediction. However, this
explanation is not stable: adding just three more features (right, in yellow) flips the predictions.

for efficiently and non-trivially lower-bounding the maximum tolerance. While this is a first step
towards certifiably robust explanations, it yields conservative guarantees and relies on smoothing.

In this work, we introduce soft stability, a new form of stability with mathematical and algorithmic
benefits over hard stability. As illustrated in Figure [2] hard stability certifies whether all small
perturbations to an explanation yield the same prediction, whereas soft stability quantifies how often
the prediction is maintained. Soft stability may thus be interpreted as a probabilistic relaxation of hard
stability, which enables a more fine-grained analysis of explanation robustness. Crucially, this shift
in perspective allows for model-agnostic applicability and admits efficient certification algorithms
that provide stronger guarantees. This work advances our understanding of robust feature-based
explanations, and we summarize our contributions below.

Soft stability is practical and certifiable To address the limitations of hard stability, we introduce
soft stability as a more practical and informative alternative property in Section 2} Its key metric, the
stability rate, provides a fine-grained characterization of robustness across perturbation radii. Unlike
hard stability, soft stability yields non-vacuous guarantees even at larger perturbations and enables
meaningful comparisons across different explanation methods.

Sampling-based methods achieve better stability guarantees We introduce the Stability Certi-
fication Algorithm (SCA) in Section 3] a simple, model-agnostic, sampling-efficient approach for
certifying both hard and soft stability with rigorous statistical guarantees. The key idea is to directly
estimate the stability rate, which enables certification for both types of stability. We show in Section[3]
that SCA gives stronger certificates than smoothing-based methods like MusS.

Mild smoothing can theoretically improve stability Although SCA is model-agnostic, we find
that mild MuS-style smoothing can improve the stability rate while preserving model accuracy. Unlike
with MusS, this improvement does not require significantly sacrificing accuracy for smoothness. To
study this behavior, we use Boolean analytic techniques to give a novel characterization of stability
under smoothing in Section ] and empirically validate our findings in Section 5}

2 Background and Overview

Feature attributions are widely used in explainability due to their simplicity and generality, but they
are not without drawbacks. In this section, we first give an overview of feature attributions. We then
discuss the existing work on hard stability and introduce soft stability.

2.1 Feature Attributions as Explanations

Let f : R™ — R™ be a classifier that maps each input z € R" to a vector of m class scores. A feature
attribution method assigns an attribution score a; € R to each input feature x; that indicates its
importance to the prediction f(x). The notion of importance is method-dependent: in gradient-based
methods [59}163]], a; typically denotes the gradient at x;, while in Shapley-based methods [39}162], it
represents the Shapley value of z;. For real-valued attribution scores, it is common to convert them
into binary vectors by selecting the top-£ highest-scoring features [46 [51]].
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Figure 2: Soft stability offers a fine-grained measure of robustness. For Vision Transformer [[17],
LIME’s explanation [51] is only hard stable up to radius » < 2. In contrast to hard stability’s
binary decision at each r, soft stability uses the stability rate 7, to quantify the fraction of < r-
sized perturbations that preserve the prediction, yielding a more fine-grained view of explanation
stability. Note that hard stability (when 7,. = 1) is a form of adversarial robustness tailored for feature
attributions.

2.2 Hard Stability and Soft Stability

Many evaluation metrics exist for binary-valued feature attributions [3]. To compare two attributions
a,a’ € {0,1}", it is common to check whether they induce the same prediction with respect to a
given classifier f : R” — R™ and input z € R™. Let (z ® «) € R" be the a-masked variant of z,
where © is the coordinate-wise product of two vectors. We write f(z ® a) & f(z ® ') to mean
that the masked inputs x ® o and z ® « yield the same prediction under f. This way of evaluating
explanations is related to notions of faithfulness, fidelity, and consistency in the explainability
literature [47]], and is commonly used in both vision [26]] and language [40. [71]].

It is often desirable that two similar attributions yield the same prediction [72]. While similarity can
be defined in various ways, such as overlapping feature sets [47]], we focus on additive perturbations.
Given an explanation «, we define an additive perturbation o’ as one that includes more features
than «. This is based on the intuition that adding information (features) to a high-quality explanation
should not significantly affect the classifier’s prediction.

Definition 2.1 (Additive Perturbations). For an attribution « and integer-valued radius > 0, define
r-additive perturbation set of « as:

Aq(a) ={a' €{0,1}":a' > a, |’ — a| <1}, (1)
where o’ > « iff each ag > «; and || counts the non-zeros in a binary vector (i.e., the £° norm).

The binary vectors in A,.(«) represent attributions (explanations) that superset « by at most r features.
This lets us study explanation robustness by studying how a more inclusive selection of features
affects the classifier’s prediction. A natural way to formalize this is through stability: an attribution o
is stable with respect to f and x if adding a small number of features does not alter (or rarely alters)
the prediction. One such formulation of this idea is hard stability.

Definition 2.2 (Hard Stabilityﬂ [70]). For a classifier f and input x, the explanation « is hard-stable
with radius 7 if: f(z ® /) 2 f(z ©® ) forall &’ € A,.

In essence, hard stability is a form of adversarial robustness tailored for feature attributions. The
certification process verifies that an explanation « is robust against a worst-case adversary who adds
up to r features to make it fail. Specifically, o has a certified hard stability radius of r if one can
formally prove that all perturbations o’ € A,.(«) induce the same prediction. While this guarantee is
powerful, its certification is not straightforward, as existing algorithms suffer from costly trade-offs
that we later discuss in Section[3.1] This practical barrier motivated our development of soft stability:
a probabilistic relaxation of hard stability that offers a more tractable yet meaningful way to quantify
robustness.

2Xue et al. [[70]] equivalently call this “incrementally stable” and define “stable” as a stricter property.
3Although probabilistic notions of robust explainability have been studied in the literature [[12} 52} 166} 671,
soft stability stands out as a one-sided notion of robustness.
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Figure 3: Similar explanations may have different stability rates. Despite visual similarities, the
explanations generated by LIME [51]] (middle) and SHAP [39] (right), both in blue, have different
stability rates at radius » = 2. In this example, SHAP’s explanation is more stable than LIME’s.

Definition 2.3 (Soft Stability). For a classifier f and input x, define the stability rate ,.(f, x, ) as
the probability that the prediction remains unchanged when « is perturbed by up to r features:

(f,z,a) = a/ler‘ [f(zx®d) = f(x®a)], wherea' ~ A, is uniformly sampled.  (2)

When f, z, « are clear from the context, we will simply write 7,. for brevity. An important aspect of
soft stability is that it can distinguish between the robustness of two similar explanations. In Figure[3]
for example, LIME and SHAP find significantly overlapping explanations that have very different
stability rates. We further study the stability rate of different explanation methods in Section [5}

Relation Between Hard and Soft Stability Soft stability is a probabilistic relaxation of hard
stability, with 7,, = 1 recovering the hard stability condition. Conversely, hard stability is a valid but
coarse lower bound on the stability rate: if 7. < 1, then the explanation is not hard stable at radius r.
This relation implies that any certification for one kind of stability can be adapted for the other.

3 Certifying Stability: Challenges and Algorithms

We begin by discussing the limitations of existing hard stability certification methods, particularly
those based on smoothing, such as MuS [70]. We then introduce the Stability Certification Algorithm
(SCA) in Equation (3), providing a simple, model-agnostic, and sample-efficient way to certify both
hard (Theorem [3.2) and soft (Theorem [3.1)) stability at all perturbation radii.

3.1 Limitations in (MuS) Smoothing-based Hard Stability Certification

Existing hard stability certifications rely on a classifier’s Lipschitz constant, which is a measure of
sensitivity to input perturbations. While the Lipschitz constant is useful for robustness analysis [14]],
it is often intractable to compute and difficult to approximate [20) 43| (64, [69]. To address this,
Xue et al. [[70] construct smoothed classifiers with analytically known Lipschitz constants. Given a
classifier f, its smoothed variant f is defined as the average prediction over perturbed inputs: f(z) =
+ Zf\il f(z®), where (V... 2(N) ~ D(z) are perturbations of . If D is appropriately chosen,

then the smoothed classifier f has a known Lipschitz constant « that allows for efficient certification.
We review MuS smoothing in Definition .T]and its hard stability certificates in Theorem|[C.1]

Smoothing has severe performance trade-offs A key limitation of smoothing-based certificates
is that the stability guarantees apply to f rather than f. Typically, the smoother the classifier, the
stronger its guarantees (larger certified radii), but this comes at the cost of accuracy. This is because
smoothing reduces a classifier’s sensitivity, making it harder to distinguish between classes [6} 25].

Smoothing-based hard stability is conservative Even when a smoothing-based certified radius is
obtained, it is often conservative. The main reason is that this approach depends on a global property,
the Lipschitz constant x, to make guarantees about local perturbations o' ~ A,.(«). In particular, the

certified hard stability radius of f scales as O(1/k), which we elaborate on in Theorem
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Figure 4: The stability certification algorithm (SCA). Given an explanation « € {0,1}" for a
classifier f and input x € R™, we estimate the stability rate 7, as follows. First, sample perturbed
masks @’ ~ A,.(«) uniformly with replacement. Then, compute the empirical stability rate 7., defined
as the fraction of samples that preserve the prediction: 7, = & >, 1[f(z® /) & f(z®a)]. Witha
properly chosen sample size IV, both hard and soft stability can be certified with statistical guarantees.

3.2 Sampling-based Algorithms for Certifying Stability

Our key insight is that both soft and hard stability can be certified by directly estimating the stability
rate through sampling. This leads to a simple algorithm, illustrated in Figure [4|and formalized below:

N
1 i .
7= N Z 1[f(z® D)= flzo )], where o a™) ~ A(a) are sampled i.i.d. (3)
i=1
The estimator 7,. provides a statistical approximation of soft stability. With an appropriate sample
size N, this estimate yields formal guarantees for both hard and soft stability.
Theorem 3.1 (Certifying Soft Stability with SCA). Let 7, be the stability rate estimator defined

in @), computed with N > % for any confidence parameter 6 > 0 and error tolerance € > 0.
Then, with probability at least 1 — 0, the estimator satisfies |7 — 7| < e.

Proof. The result follows by applying Hoeffding’s inequality to the empirical mean of independent
Bernoulli random variables X" ...  X(V) where each X() = 1[f(z ® o)) = f(z 0 ). O

SCA can also certify hard stability by noting that 7,, = 1 implies a high-confidence guarantee.

Theorem 3.2 (Certifying Hard Stability with SCA). Let 7, be the stability rate estimator defined

in Equation , computed with sample size N > 101;)(3;1(2) for any confidence parameter § > 0

and error tolerance € > 0. If 7, = 1, then with probability at least 1 — §, a uniformly sampled
o' ~ A, («) violates hard stability with probability at most e.

Proof. We bound the probability of the worst-case event, where the explanation is not hard stable
at radius r, meaning 7, < 1 — ¢, yet the estimator satisfies 7. = 1. Because each a® ~ A, is
uniformly sampled, this event occurs with probability

Pr(f, =1|7. <1—¢]<(1—¢)"N <4,
which holds whenever N > log(d)/log(1 — ¢). O

In both hard and soft stability certification, the required sample size N depends only on ¢ and 4, as
T, is a one-dimensional statistic. Notably, certifying hard stability requires fewer samples, since the
event being verified is simpler. In both settings, SCA provides a simple alternative to MuS that does
not require smoothing.

Implementing SCA The main computational challenge is in sampling o’ ~ A,.(«) uniformly.
When r < n — |a], this may be done by: (1) sampling a perturbation size k ~ {0,1,...,r} with
probability ("7/*)/|A, ()], where |A,(a)| = 37_; ("7/!); and then (2) uniformly selecting &
zero positions in « to flip to one. To avoid numerical instability from large binomial coefficients, we
use a Gumbel softmax reparametrization [27] to sample in the log probability space.



4 Theoretical Link Between Stability and Smoothing

While SCA does not require smoothing to certify stability, we find that applying mild MuS-style
smoothing can improve the stability rate while incurring only a minor accuracy trade-off. While this
improvement is unsurprising, it is notable that the underlying smoothing mechanism is discrete. In
contrast, most prior work relies on continuous noise distributions [14]]. Below, we introduce this
discrete smoothing method, MuS, wherein the main idea is to promote robustness to feature inclusion
and exclusion by averaging predictions over randomly masked (dropped) inputs.

Definition 4.1 (Musﬂ (Random Masking)). For any classifier f and smoothing parameter A € [0, 1],
define the random masking operator M) as:

Myf(z) = szeIrEn()\)" flx®2z), wherez,...,z, ~Bern(\) are i.i.d. samples. (€))

Here, f = M, f is the smoothed classifier, where each feature is kept with probability A. A smaller
A implies stronger smoothing: at A = 1, we have f = f; at A = 1/2, half the features of  © z are

dropped on average; at A = 0, f reduces to a constant classifier. We summarize our main results
in Section 4.T) with details in Section[4.2] and extended discussions in Appendix [A]and Appendix [B]

4.1 Summary of Theoretical Results

Our main theoretical tooling is Boolean function analysis [48]], which studies real-valued functions of
Boolean-valued inputs. To connect this with evaluating explanations: for any classifier f : R® — R™
and input € R", define the masked evaluation f,(a) = f(z ® «). Such f, : {0,1}" — R™ is
then a Boolean function, for which the random masking (MuS) operator M is well-defined because
Myf(z ® a) = My fz(a). To simplify our analysis, we consider a simpler form of prediction
agreement for classifiers of the form f,, : {0,1}" — R, where for o/ ~ A, («) let:

fo(@) = fola) if [fa(a) = fala)] <, )
where -y is the distance to the decision boundary. E] This setup can be derived from a general m-class

classifier once the x and « are given. In summary, we establish the following.

Theorem 4.2 (Smoothed Stability, Informal of Theorem [B.4). Smoothing improves the lower bound
on the stability rate by shrinking its gap to 1 by a factor of \. Consider any classifier f, and
attribution o that satisfy Equation (), and let Q) depend on the monotone weights of f, then:

1- % <r(fora) = 1- ? < 1. (Myfa, ). ©)

Theoretically, smoothing improves the worst-case stability rate by a factor of A\. Empirically, we
observe that smoothed classifiers tend to be more stable. Interestingly, we found it challenging to
bound the stability rate of M-smoothed classifiers using standard Boolean analytic techniques, such
as those in widely used references like [48]]. This motivated us to develop novel analytic tooling to
study stability under smoothing, which we discuss next.

4.2 Challenges with Standard Boolean Analytic Tooling and New Techniques

It is standard to study Boolean functions via their Fourier expansion. For any A : {0,1}" — R, its
Fourier expansion exists uniquely as a linear combination over the subsets of [n] = {1,...,n}:

hla) = Y h(S)xs(a), )
SCln]

where each () is a Fourier basis function with weight /(S), respectively defined as:
1
on

xs(@) = [J(-1)*, xo(@) =1, R(S)= > h(a)xs(a). ®)

i€es ae{0,1}n

*We use the terms MuS, random masking, smoothing, and M interchangeably, depending on the context.

>In the special case where the model outputs a sorted probability vector with p; > pa > - -+ > p,,, we let
~v = (p1 — p2)/2. This is half the gap between the top two classes, which ensures that even if p; decreases by -,
it remains the highest class.



The Fourier expansion makes all the £ = 0,1, ..., n degree (order) interactions between input bits
explicit. For example, the AND function h(aq, @) = a1 A 2 is uniquely expressible as:

1 1 1 1
h(ai, az) = XX@(a) - 1X{1}(04) - EX{z}(Oé) + 1X{1,2}(04)~ 9

To study how linear operators act on Boolean functions, it is common to isolate their effect on each
term. With respect to the standard Fourier basis, the operator M) acts as follows.

Theorem 4.3. For any standard basis function Xs and smoothing parameter \ € [0, 1],

Myxs(e) = > AT =0T (a). (10)
TCS

For any function h:{0,1}™ — R, its smoothed variant Myh has the Fourier expansion

Mah(a) = S MyR(T)xr(a), where Myh(T) = AT S7 (1 - 0)I5-TIh(s). 1)
TCln] 52T

This result shows that smoothing redistributes weights from each term S down to all of its subsets
T C S, scaled by a binomial decay Bin(|S|, ). However, this behavior introduces significant
complexity in the algebraic manipulations and is distinct from that of other operators commonly
studied in literature, making it difficult to analyze stability with existing techniques.

Although one could, in principle, study stability using the standard basis, we found that the monotone
basis was better suited to describing the inclusion and exclusion of features. While this basis is also
known in game theory as unanimity functions, its use in analyzing stability and smoothing is novel.
Definition 4.4 (Monotone Basis). For each subset T' C [n], define its monotone basis function as:

1 if a; = 1forall ¢ € T (all features of 1" are present),
1ﬂ®={ o = re T alfe present) (12)

0 otherwise (any feature of 7' is absent).

The monotone basis provides a direct encoding of set inclusion, where the example of conjunction is
now concisely represented as 171 2y (a1, @2) = a1 A ap. Similar to the standard basis, the monotone
basis also admits a unique monotone expansion for any function h : {0, 1}" — R and takes the form:

= > WI)1r(e), where h(T) =Y h(S), h(®)=h0,), (13

TCn) SCT

where h(T) are the recursively defined monotone weights at each T' C [n], with h(T) being the
evaluation of & on the natural {0, 1}"-valued representation of T'. A key property of the monotone
basis is that the action of M is now a point-wise contraction at each 7T'.

Theorem 4.5. For any function h : {0,1}" — R, subset T C [n], and \ € [0, 1], the smoothed
classifier experiences a spectral contraction of

Myb(T) = ATTI(T), (14)
where m(T) and h(T) are the monotone basis coefficients of Myh and h at subset T, respectively.

In contrast to smoothing in the standard basis (Theorem @, smoothing in the monotone basis
exponentially decays each weight by a factor of A1, which better aligns with the motifs of existing
techniques. [°| As previewed in Theorem | the stability rate of smoothed classifiers can be bounded
via the monotone weights of degree < r, which we further discuss in Appendix [B]

5 Experiments

We evaluate the advantages of SCA over MuS, which is currently the only other stability certification
algorithm. We also study how stability guarantees vary across vision and language tasks, as well
as across explanation methods. Moreover, we show that mild smoothing, defined as A > 0.5
for Definition[4.1] often improves stability while preserving accuracy. We summarize our key findings
here and defer full technical details and additional experiments to Appendix [C]

5The standard smoothing operator is random flipping: let Tph () = E, gem(q)n [A((c + 2) mod 2)] for any

p €[0,1] and ¢ = (1 — p)/2. Then, the standard Fourier basis contracts as T, xs () = p/%/xs(c).
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Figure 5: SCA certifies more than MusS. Soft stability certificates obtained through SCA are
stronger than those obtained from MuS, which quickly become vacuous as the perturbation size
grows. When using MuS with smoothing parameter A\, guarantees only exist for perturbation radii
< 1/2\. Moreover, the smaller the )\, the worse the smoothed classifier accuracy, see Figure
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Figure 6: Soft stability varies across explanation methods. For vision models, LIME and SHAP
yield higher stability rates than gradient-based methods, with all methods outperforming the random
baseline. On RoBERTa, however, the methods are less distinguishable. Note that a perturbation of
size 100 affects over half the features in a patched image input with n = 196 features.

Experimental Setup We used Vision Transformer (ViT) [[17] and ResNet50/18 [24]] as our vision
models and RoBERTa [38]] as our language model. For datasets, we used a 2000-image subset of
ImageNet (2 images per class) and six subsets of TweetEval (emoji, emotion, hate, irony, offensive,
sentiment), totaling 10653 samples. Images of size 3 x 224 x 224 were segmented into 16 x 16
patches, for n = 196 features per image. For text, each token was treated as one feature. We used
five feature attribution methods: LIME [51]], SHAP [39], Integrated Gradients [63]], MFABA [75l],
and a random baseline. We selected the top-25% of features as the explanation.

Question 1: How do SCA’s guarantees compare to those from MuS? We begin by comparing
the SCA-based stability guarantees to those from MuS. To facilitate comparison, we derive stability
rates for MuS-based hard stability certificates (Theorem [C.I)) using the following formulation:
[{(z, a) : CertifiedRadius( M fo., o) > 1}

Total number of z’s '

Stability rate at radius r = (15)
In Figure[3] we present results for LIME across different MuS smoothing parameters \, along with
the SCA-based soft (Theorem [3.T)) and hard (Theorem [3.2)) stability certificates. SCA yields non-
trivial guarantees even at larger perturbation radii, whereas MuS-based certificates become vacuous
beyond a radius of 1/2\. A smaller A improves MuS guarantees but significantly degrades accuracy
(see Figure[), resulting in certificates for less accurate classifiers. Section Appendix [C.2] presents an
extended comparison of SCA and MuS over various explanations, where we observe similar trends.

Question 2: How does stability vary across explanation methods? We next show in Figure|[6]
how the SCA-certified stability rate varies across different explanation methods. Soft stability can
effectively distinguish between explanation methods in vision, with LIME and SHAP yielding the
highest stability rates. However, this distinction is less clear for ROBERTa and for MuS-based hard
stability certificates, further studied in Appendix[C.3] Furthermore, we show ablations on the top-k
feature selection in Appendix [C.4]

Question 3: How well does mild smoothing (A > 0.5) improve stability? We next empirically
study the relation between stability and mild smoothing, for which A > 0.5 is too large to obtain hard
stability certificates. We show in Figure[7)the stability rate at different A, where we used 32 Bernoulli
samples to compute smoothing (Definition . T)). We used 200 samples from our subset of ImageNet
and 200 samples from TweetEval that had at least 40 tokens, and a random attribution to select 25%
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Figure 8: Mild smoothing (A > 0.5) preserves accuracy. We report accuracy at three key smoothing
levels: (A = 1.0, in green) the original, unsmoothed classifier; (A = 0.5, in orange) a mildly smoothed
classifier, the largest A for which hard stability certificates can be obtained; (A = 0.25, in red) a
heavily smoothed classifier, where MuS can only certify at most a perturbation radius of size 2.

of the features. We see that smoothing generally improves stability, and we study setups with larger
perturbation radii Appendix|[C.3]

Question 4: How well do mildly smoothed classifiers trade off accuracy? We analyze the impact
of MuS smoothing on classifier accuracy in Figure [§ and highlight three key values: the original,
unmodified classifier accuracy (A = 1.0), the largest smoothing parameter usable in the certification
of hard stability (A = 0.5), and the smoothing parameter used in many hard stability experiments
of [70] (A = 0.25). We used 64 Bernoulli samples to compute smoothing (Definition [4.1)). These
results demonstrate the utility of mild smoothing. In particular, transformers (ViT, RoOBERTa) exhibit
a more gradual decline in accuracy, likely because their training involves random masking.

6 Related Work

Feature-based Explanations Feature attributions are a popular class of explanation methods. Early
examples include gradient saliency [59]], LIME [51], SHAP [39], Integrated Gradients [63], and
SmoothGrad [61]]. More recent works include DIME [42], LAFA [73], CAFE [15]], DoRaR [50],
MFABA [73]], various Shapley value-based methods [62], and methods based on influence func-
tions [10} 33]. While feature attributions are commonly associated with vision models, they are
also used in language [41] and time series modeling [56]. However, they have known limita-
tions [[11} (18] 144} 160]. We refer to [45] 47, 58] for general surveys, to [32| 49] for surveys on
explainability in medicine, and to [4, 53] for surveys on explainability in law.

Evaluating and Certifying Explanations There is much work on empirically evaluating feature
attributions [143) 116} 28] 31}, 147, |54 [74]], with various notions of robustness [21} [29]]. Probabilistic
notions of robust explainability are explored in [12} |52} 166} 67]], though stability is notable in that
it is a form of one-sided robustness. There is also growing interest in certified explanations. For
instance, certifying that an explanation is robust to adding [[70] and removing [36] features, that
it is minimal [9, [12]], or that the attribution scores are robustly ranked [22]]. A related notion of
probabilistic guarantees exists for analyzing the explanation method itself [30], which quantifies how
much the feature attribution changes as the input is perturbed. However, the literature on certified
explanations is still emergent.



7 Discussion

Many perturbations relevant to explainability are inherently discrete, such as feature removal or
token substitution. This contrasts with continuous perturbations, e.g., Gaussian noise, which are
more commonly studied in adversarial robustness literature. This motivates the development of new
techniques for discrete robustness, such as those inspired by Boolean analysis. In our case, this
approach enabled us to shift away from traditional Lipschitz-based techniques to provide an alternative
analysis of robustness. Our work highlights the potential of discrete methods in explainability.

Our stability framework generalizes adversarial robustness. Hard stability, the case where 7,, = 1, is
certified robustness against an adversary adding up to r features. However, this discrete, structural
attack model differs from the continuous ¢,-norm perturbations common in adversarial robustness.
Soft stability offers a more nuanced evaluation, where the stability rate 7, quantifies an explanation’s
success under random additive attacks, providing a richer characterization of its robustness. Thus,
in this view, stability itself can be interpreted as a form of adversarial robustness. If an explanation
achieves a stability rate of 1 at some radius, it is adversarially robust up to that perturbation radius.
Consequently, high stability rates, ideally at 1, are desirable indicators of robust explanations.

8 Conclusion

Soft stability is a form of stability that enables fine-grained measures of explanation robustness
to additive perturbations. We introduce SCA to certify stability and show that it yields stronger
guarantees than existing smoothing-based certifications, such as MuS. Although SCA does not
require smoothing, mild smoothing can improve stability at little cost to accuracy, and we use
Boolean analytic tooling to explain this phenomenon. We validate our findings with experiments on
vision and language models across a range of explanation methods.

Potential directions include adaptive smoothing based on feature importance and ranking [22]], as well
as selectively smoothing only parts of the features [57]. One could also study stability-regularized
training in relation to adversarial training. Other directions include robust explanations through
other families of probabilistic guarantees, such as those based on conformal prediction [5 8 [13}35].
Additionally, it would be interesting to investigate how well explanation stability aligns with human
evaluations of quality.
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A Analysis of Smoothing with Standard Techniques

In this appendix, we analyze the smoothing operator M) using classical tools from Boolean function
analysis. Specifically, we study how smoothing redistributes the spectral mass of a function by
examining its action on standard Fourier basis functions. This sets up the foundation for our later
motivation to introduce a more natural basis in Appendix [B| First, recall the definition of the random
masking-based smoothing operator.

Definition A.1 (MuS [70] (Random Masking)). For any classifier f : R” — R™ and smoothing
parameter A € [0, 1], define the random masking operator M), as:

My f(x) = ZNBeIrEn(/\)" flx®z), wherez,...,z, ~ Bern(\) are i.i.d. samples.  (16)

To study M), via Boolean function analysis, we fix the input z € R™ and view the masked classifier
fz(a) = f(x © a) as a Boolean function f, : {0,1}™ — R™. In particular, we have the following:

M)\f(l‘ O] Oé) = M/\fz(a) = M)xfﬂC@Oc(ln)' (17)

This relation is useful from an explainability perspective because it means that features not selected
by «a (the z; where a;; = 0) will not be seen by the classifier. In other words, this prevents a form of
information leakage when evaluating the informativeness of a feature selection.

A.1 Background on Boolean Function Analysis

A key approach in Boolean function analysis is to study functions of the form & : {0,1}" — R by
their unique Fourier expansion. This is a linear combination indexed by the subsets S C [n] of form:

h(e) = > h(S)xs(a), (18)
SCln]

where each x s («) is a Fourier basis function, also called the standard basis function, with weight
h(S). These quantities are respectively defined as:

xs(@) = (=D, xola) =1, E(S)=2in > hla)xs(a). (19)

icS ac{0,1}"
The functions x s : {0,1}"™ — {+1} form an orthonormal basis on {0, 1}" in the sense that:

(s = LB D@l =g 5 xs@u@={y goo @0

~Bern(1/2)"™
« m(1/2) ae{0,1}"

Consequently, all of the 2" weights h(S) (one for each S C [n]) are uniquely determined by

the 2™ values of h(a) (one for each o € {0,1}™) under the linear relation E(S) = (h,xs) as
in Equation . For example, one can check that the function h(y, as) = a1 A g is uniquely
expressible in this basis as:
1 1 1 1
h(ar, az2) = 2x0(a) = 7xqp(a) = xqep(@) + 1xq2p(e). 1))

We defer to O’Donnell [48]] for a more comprehensive introduction to Boolean function analysis.

A.2 Basic Results in the Standard Basis

We now study how smoothing affects stability by analyzing how M) transforms Boolean functions in
the standard Fourier basis. A common approach is to examine how M), acts on each basis function
X s, and we show that smoothing causes a spectral mass shift from higher-order to lower-order terms.

Lemma A.2. For any standard basis function xs and X € [0, 1],

Myxs(a) =Y A1 = NIy (a). (22)
TCS
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Proof. We first expand the definition of yg(«) to derive:

Myxs(a) =E [J(=1)*= (23)
€S
= H E (—1)% (by independence of z1, ..., z,)
jes ©
= [T =% +x=n, (24)
i€S

We then use the distributive property (i.e., expanding products over sums) to rewrite the product

[l;cg(---) as a summation over T' C S to get
Myxs(@)=>_| [ a=» (H A(l)"”) (25)
TCS \jes—T €T
= > (1= NFTNTxr (o), (26)
TCS
where 7" acts like an enumeration over {0, 1}" and recall that x7(a) = [[,c (). O

In other words, M) redistributes the Fourier weight at each basis y g over to the 2!5| subsets T C S
according to a binomial distribution Bin(].S|, ). Since this redistribution is linear in the input, we can
visualize M) as a R?"*2" upper-triangular matrix whose entries are indexed by T', S C [n], where

[TI(1 _ \)IS=TI ;
(My)rs = {A (1-=2X) if T' C .S, 27
0 otherwise.

Using the example of h(ay, as) = ay A ae, the Fourier coefficients of Myh may be written as:
Mh(D) 1 (1= (1-x) (=121 A (2 - A)?
Mh({1}) | _ A ML=X| [ R | _1{=22=0] g
Myh({2}) A AN A2 4| -A2-A)

Mh({1,2}) A h({1,2}) A

where recall that ﬁ(S’ ) =1/4forall S C {1, 2}. For visualization, it is useful to sort the rows and
columns of M} by inclusion and partition them by degree. Below is an illustrative expansion of
M), € R8>8 for n = 3, sorted by inclusion and partitioned by degree:

ol {1t {2} 3 | {12y {13 {23} | {1,2,3}
0 T[A=X) =X @A=XN]O-=X)N2 1= 1-=-X2] 1-)3
{1} A A1=X) A1-=-2X) A1 —)N)?
{2} A A1 =) AM1=X) | A1 = )\)2
{3} A A1 =X) A1 =X) | A1 —-))?
{1,2} A2 A2(1—=N)
{1,3} A2 A2(1 =)
{2,3} A2 >\2(1 —A)
{1,2,3} A3
(29)
Because the columns of M) sum to 1, we have the identity:
Z m(T) = Z h(S), for any function h : {0,1}" — R. (30)
TC[n] SCln]

Moreover, M, may be interpreted as a downshift operator in the sense that: for each T' C [n], the

Fourier coefficient ]\/4,\\h(T) depends only on those of E(S ) for S O T The following result gives a

more precise characterization of each M, h(T) in the standard basis.
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Lemma A.3. For any function h : {0,1}" — Rand X € [0, 1],

Myh(a) = S MyR(T)xr(a), where Myh(T) = AT S™ (1 - 0)I5-TIh(s). @31
TCln] ST

Proof. This follows by analyzing the T-th row of M) as in Equation (29). Specifically, we have:

Myh(a) = Y h(S)Maxs(e) (32)
SCln]
= Z TL(S) Z M = NIS=Thr () (LemmalA.2)
SCn] TCS
= > xr(e) D AT = N)5TR(S), (33)
TC[n] §oT
M R(T)
where the final step follows by noting that each M,\\h(T) depends only on h(S) for § D T. O

The expression derived in Lemma[A.3]shows how spectral mass gets redistributed from higher-order
to lower-order terms. To understand how smoothing affects classifier robustness, it is helpful to
quantify how much of the original function’s complexity (i.e., higher-order interactions) survives
after smoothing. The following result shows how smoothing suppresses higher-order interactions by
bounding how much mass survives in terms of degree > k.

Theorem A.4 (Higher-order Spectral Mass After Smoothing). For any function h : {0,1}" — R,
smoothing parameter X € [0,1], and 0 < k < n,

> BPLADI<  Pro (XK Y [R(S). (34)
T T >k ~Bin(n,A) 5:|S[>k

Proof. We first apply Lemma to expand each ]\//[,\\h(T) and derive

> LD < Y 3 AT - NI R(S) (35)
T:|T|>k T:|T|>k S2T
8 s ,
= > sy (M)va-ays 36)
S:|S|>k j=k J
Pr Y >k]
Y ~Bin(|S|,\)

where we re-indexed the summations to track the contribution of each \?L(S )| for |S| > k. To yield
the desired result, we next apply the following inequality of binomial tail CDFs given |S| < n:

Pr Y >k < Pr [X > k] (37)
Y ~Bin(]S|,\) X ~Bin(n,\)

O

Our analyses with respect to the standard basis provide a first step towards understanding the random
masking operator M. However, the weight-mixing from our initial calculations suggests that the
standard basis may be algebraically challenging to work with.

A.3 Analysis in the Biased Fourier Basis

While analysis on the standard Fourier basis reveals interesting properties about M, it suggests that
this may not be the natural choice of basis in which to analyze random masking. Principally, this
is because each M), xs is expressed as a linear combination of x where 7' C S. By “natural”, we
instead aim to express the image of M), as a single term. One partial attempt is an extension of the
standard basis, known as the p-biased basis, which is defined as follows.
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Definition A.5 (p-Biased Basis). For each subset S C [n], define its p-biased function basis as:

p—a;
Eg\/p p?

(38)

Observe that when p = 1/2, this is the standard basis discussed earlier. The p-biased basis is

orthonormal with respect to the p-biased distribution on {0, 1}" in that:

1 ifS=T
p p _ ?
B @ ={) oD

On the p-biased basis, smoothing with a well-chosen A induces a change-of-basis effect.

Lemma A.6 (Change-of-Basis). For any p-biased basis function x'; and X € [p, 1],

[S]/2
Mgl = (122) )

Proof. Expanding the definition of M}, we first derive:

P — iz
M p
AXS(O[) szern()\)" [H ]

— ;%
= H E - (by independence of z1, . ..
i€S l VP~ p ‘|

H D — )‘az
ies VP~ p
We then rewrite the above in terms of a (p/\)-biased basis function as follows:

Myxh (o H ALY T (/) —

€S VP
I A\F p/A I /N e

ics -2 /N = (/N)?
—-p  (p/A)—
lenq (p/A) — p/ A)?

_ <Ap)5'/2 (p/N) —«
l1-p (p/N) — (p/A)?

X% (a)

When measured with respect to this changed basis, M provably contracts the variance.
Theorem A.7 (Variance Reduction). For any function h : {0,1}"™ — Rand X € [p, 1],

A-p
V Myh <[ — Vi h(a)l.
awBerr?‘é?/A)" [ A (Oé)] - (1 — p) awBe?rf(p)" [ (Oé)]

If the function is centered at o, gern(p)» [N(a)] = 0, then we also have:

[Mah(a)’] < E [h(e)?].

a~Bern(p/A)™ a~Bern(p)
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Proof. We use the previous results to compute:

Vi DLh@] = Var M 3D RS
O‘NBern(p/)\)n[ A ( )} a~Bern(p/A)" AS%:] ( )XS( )

(by unique p-biased representation of h)

Aop\SE
= Var ATE (S o
a~Bern(p/A\)" Z < 1— p> ( )XS ( )

| SCIn]
(by linearity and Lemma [A.6)
A—p\ "l A
= Z () h(S)? (Parseval’s by orthonormality of Xg/ )
L—p
S#0
A\ — N
§(1—§>Zh(5)2 (Og%glbecausepgx\ﬁl)
S£0
A—p , . »
=|— Var  [h(a)]  (Parseval’s by orthonormality of %)
1— P ) a~Bern(p)™

leading to the first desired inequality. For the second inequality, we continue from the above to get:
E  [h(a)’] =h(0)%+ > h(S)? (48)

a~Bern(p)™

S#0
——
Var [h(a)]
[Mah(e)?] = Mah(9)? + 3 Myh(S)?, (49)
a~Bern(p/A)" 520

Var [Mxh(a)]
where recall that 1(0)) = E4[h(a)] = 0 by assumption. O

The smoothing operator M) acts like a downshift on the standard basis and as a change-of-basis on
a well-chosen p-biased basis. In both cases, the algebraic manipulations can be cumbersome and
inconvenient, suggesting that neither is the natural choice of basis for studying M. To address this
limitation, we use the monotone basis in Appendix [B|to provide a novel and tractable characterization
of how smoothing affects the spectrum and stability of Boolean functions.

B Analysis of Stability and Smoothing in the Monotone Basis

While the standard Fourier basis is a common starting point for studying Boolean functions, its
interaction with M), is algebraically complex. The main reason is that the Fourier basis treats 0 — 1
and 1 — 0 perturbations symmetrically. In contrast, we wish to analyze perturbations that add
features (i.e., &’ ~ A, (a)) and smoothing operations that remove features. This mismatch results
in a complex redistribution of terms that is algebraically inconvenient to manipulate. We were thus
motivated to adopt the monotone basis (also known as unanimity functions in game theory), under
which smoothing by M) is well-behaved.

B.1 Monotone Basis for Boolean Functions

For any subset T' C [n], define its corresponding monotone basis function 11 : {0,1}" — {0,1} as:
1 ifa; = 1forall¢ € T (all features in S present),
1r(a) = : N (50)

0 otherwise (any feature in 7" is absent),

where let 1¢(«) = 1. First, we flexibly identify subsets of [n] with binary vectors in {0, 1}", which
lets us write 7' C «vif ¢ € T implies a;; = 1. This gives us useful ways to equivalently write 17 (a):

1 ifT Ca,
1 = P = . 51
r(a) H “ {0 otherwise. D

€T
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The monotone basis lets us more compactly express properties that depend on the inclusion or
exclusion of features. For instance, the earlier example of conjunction h(a) = ;3 A @z may be
equivalently written as:

ar Aag = 14 9y () (monotone basis)
1 1 1 1 .
= ZXV)(CV) - ZX{I}(Q) - ZX{z}(a) + ZX{1,2}(04) (standard basis)

Unlike the standard bases (both standard Fourier and p-biased Fourier), the monotone basis is not
orthonormal with respect to {0, 1}" because

E 1 1 = P T C a] = 2715V 52
QNW}”[ s(a)1r(a)] aN{oﬂ}n[SU C a] , (52)

where note that S UT C «a iff both S C aand T' C a. However, the monotone basis does satisfy
some interesting properties, which we describe next.
Theorem B.1. Any function h : {0,1}"™ — R™ is uniquely expressible in the monotone basis as:

h(e) = Y h(T)1r(a), (53)

TC(n]

where ?L(T ) € R are the monotone basis coefficients of h that can be recursively computed via:

W(T) =W(T) = Y h(S), h()=h(0,), (54)

SCT

where h(T) denotes the evaluation of h on the binary vectorized representation of T.

Proof. We first prove existence and uniqueness. By definition of 17, we have the simplification:

h(a) = Y h(T)1r(a) = > h(T). (55)

TC[n] TCa

This yields a system of 2" linear equations (one for each h(c)) in 2" unknowns (one for each h(T)).
We may treat this as a matrix of size 2" x 2™ with rows indexed by h(«) and columns indexed by

h(T), sorted by inclusion and degree. This matrix is lower-triangular with ones on the diagonal
(17(T) = 1 and 17(cr) = 0 for |T'| > a; like a transposed Equation (29)), and so the 2" values of

h(«) uniquely determine h (7).

For the recursive formula, we simultaneously substitute o — 7" and 7' — S in Equation (55) to write:

h(T) = h(T)+ > h(S), (56)

SCT

and re-ordering terms yields the desired result. O

B.2 Smoothing and Stability in the Monotone Basis

A key advantage of the monotone basis is that it yields a convenient analytical expression for how
smoothing affects the spectrum.

Theorem B.2 (Smoothing in the Monotone Basis). Let M) be the smoothing operator as in Defini-
tion[A.1] Then, for any function h : {0,1}™ — R and T C [n], we have the spectral contraction:

Myh(T) = ATh(D),

where m(T) and h(T) are the monotone basis coefficients of Mxh and h at T, respectively.
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Proof. By linearity of expectation, it suffices to study how M), acts on each basis function:

My1r(a) = . E o [1r(a®2)] (by definition of M)
= E i2i by definition of 1
By [H(a z )] (by definition of 17(«))
€T
= H (ai E [zl]> (by independence of z1, ..., z,)
. z;~Bern(X)
€T
=AT117(a) (Elz] =N
O

The monotone basis also gives a computationally tractable way of bounding the stability rate.
Crucially, the difference between two Boolean functions is easier to characterize. As a simplified
setup, we consider classifiers of form & : {0,1}" — R, where for 8 ~ A,.(a) let:

h(B) = h(e) if [h(B) = h(a)] <. (57)

Such h and its decision boundary v may be derived from a general classifier f : R™ — R™ once x
and « are known. This relation of the decision boundary then motivates the difference computation:

h(B) —h(a) = > W(T)Ar(B) —1r(a) = > A(T), (58)

TC[n] TCH\a, T#D

where recall that 17(3) — 17(a) = 1iff T # @ and T C 3 \ . This algebraic property plays a key
role in tractably bounding the stability rate. Specifically, we upper-bound the instability rate 1 — 7,.:

L-r= Pr [Jh(3) - h(a)| > ] (59)

An upper bound of form 1 — 7. < @, where ) depends on the monotone coefficients of h, then
implies a lower bound on the stability rate 1 — @) < 7,.. We show this next.

Lemma B.3 (Stability Rate Bound). For any function h : {0,1}" — [0, 1] and attribution o €
{0,1}" that satisfy Equation (57), the stability rate 7, is bounded by:

-7 <= Z Z ) Pr [I8\al 2 4], (60)

V=11
ITI k

where

1 [IB\ef 2k =

_Z ( ) A, = zjo (”ﬂo") (61)
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Proof. We can directly bound the stability rate as follows:

L=m = Pr [1h(8) = h(e)] > ] (62)
1
<— E [h(B)—h Markov’s inequalit
<2 B [0(8) = ho)] (Markov's inequality)
1 ~
<> E Z [ (T)| (by Equation (38), triangle inequality)
VA rha
T40
1O ~
= AT Z Z Z |R(T)| (enumerate 3 € A, (o) by its size, k)
NAS sarek TEma
T#0
1 ~
= TZ Z Z|h(T)| (the & = 0 term is zero, and let S = 3\ «)
1A k=1 SC[n]\a TCS
1S|=k T#D
1 < ~
= AL SN D) {S S\ a: SDT,[S| <} (re-index by T)
k=1 T‘%ﬂ[‘n:];a Total times that 1 (T") appears
1 ~
= — . >
S > > DI Pr [18\al = k] (63)
k=1TC[n]\«
[T|=k
O

An immediate consequence from Theorem [B.2]is a stability rate bound on smoothed functions.
Theorem B.4 (Stability of Smoothed Functions). Consider any function h : {0,1}™ — [0, 1] and

attribution o € {0,1}" that satisfy Equation (57). Then, for any X € [0,1],
AQ
1——= STT(h7a) = 1_7 STT(MX]%OCL (64)

where

3

Q= (D) Pr [18\al > k] (65)

Proof. This follows from applying Theorem [B.2]to Lemma[B.3| by noting that:

1< ~
1 —7.(Myh,a) < N § A § |h(T)] 'Bf& [16\ a| > k] (66)
k=1 TC[n)\a
|T|=k
O

Moreover, we also present the following result on hard stability in the monotone basis.

Theorem B.5 (Hard Stability Bound). For any function h : {0,1}" — [0,1] and attribution
a € {0, 1}" that satisfy Equation (57), let

¥ = argmax max E MT)| <~|. (67)
r>0 BB\a|<r T
CB\a,T#0

Then, h is hard stable at o with radius r*.
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Proof. This follows from Equation (58) because it is equivalent to stating that:

r* =argmax max [|h(B) — h(a)| <7]. 68
gmax s ([1(5) — h(o)| <) %

h(B)2h(c)
O

In summary, the monotone basis provides a more natural setting in which to study the smoothing
operator M. While M), yields an algebraically complex weight redistribution under the standard
basis, its effect is more compactly described in the monotone basis as a point-wise contraction at each
T C [n]. In particular, we are able to derive a lower-bound improvement on the stability of smoothed
functions in Theorem [B.4

C Additional Experiments
In this section, we include experiment details and additional experiments.

Models For vision models, we used Vision Transformer (ViT) [[17], ResNet50, and ResNet18 [24]).
For language models, we used RoBERTa [38].

Datasets For the vision dataset, we used a subset of ImageNet that contains two images per class,
for a total of 2000 images. The images are of size 3 x 224 x 224, which we segmented into grids
with patches of size 16 x 16, for a total of n = (224/16)? = 196 features. For the language dataset,
we used six subsets of TweetEval (emoji, emotion, hate, irony, offensive, sentiment) for a total of
10653 items; we omitted the stance subset because their corresponding fine-tuned models were not
readily available.

Explanation Methods For feature attribution methods, we used LIME [51], SHAP [39], Integrated
Gradients [63]], and MFABA [75]] using the implementation from exlib. E] Each attribution method
outputs a ranking of features by their importance score, which we binarized by selecting the top-25%
of features.

Certifying Stability with SCA We used SCA (Equation (3)) for certifying soft stability (Theo-
rem with parameters of ¢ = § = 0.1, for a sample size of N = 150. We use the same N when
certifying hard stability via SCA-hard (Theorem [3.2)). Stability rates for shorter text sequences were
right-padded by repeating their final value. Where appropriate, we used 1000 iterations of bootstrap
to compute the 95% confidence intervals.

Compute We used a cluster with NVIDIA GeForce RTX 3090 and NVIDIA RTX A6000 GPUs.

C.1 Certifying Hard Stability with MuS

We next discuss how Xue et al. [70] compute hard stability certificates with MuS-smoothed classifiers.
Theorem C.1 (Certifying Hard Stability via MuS [70]). For any classifier f : R™ — [0, 1]™ and

A €10,1], let f = My f be the MuS-smoothed classifier. Then, for any input x € R™ and explanation
a € {0,1}", the certifiable hard stability radius is given by:

1r- _
Feert = 55 | iz ©0) = oz © )], (69)
where f1(x © ) and fo(x © a) are the top-1 and top-2 class probabilities of f(x © a).

Each output coordinate fi,..., fm is also A-Lipschitz to the masking of features:
lfizoa) = filzoad)| < AMa—«|, foralla,o’ € {0,1}"andi=1,...,m. (70)

That is, the keep-probability of each feature is also the Lipschitz constant (per earlier discussion:
k = A). Note that deterministically evaluating M) f,, would require 2" samples in total, as there

"https://github.com/BrachioLab/exlib
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Figure 9: SCA certifies more than MuS. An extended version of Figure[5] SCA-based stability
guarantees are typically much stronger than those from MusS.

are 2" possibilities for Bern(\)™. Interestingly, distributions other than Bern(\)™ also suffice to
attain the desired Lipschitz constant, and thus a hard stability certificate. In fact, Xue et al. [70]
constructs such a distribution based on de-randomized sampling [34]], for which a smoothed classifier
is deterministically computed in < 2" samples. However, our Boolean analytic results do not readily
extend to non-Bernoulli distributions.

C.2 SCA vs. MuS on Different Explanation Methods

We show in Figure[9]an extension of Figure[5] where we include all explanation methods. Similar
to the main paper, we observe that SCA typically obtains stronger stability certificates than Mus§,
especially on vision models. On RoBERTa, MuS certificates can be competitive for small radii, but

this requires a very smooth classifier (A = 0.125).

CJ3

MuS-based Hard Stability Certificates

We show in Figure [I0] that MuS-based certificates struggle to distinguish between explanation
methods. This is in contrast to SCA-based certificates, which show that LIME and SHAP tend to be
more stable. The plots shown here contain the same information as previously presented in Figure [0}
except that we group the data by model and certification method.
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Figure 10: MuS-based hard stability struggles to distinguish explanation methods. SCA-based
stability certificates (top two rows) show that LIME and SHAP tend to be the most stable.

C.4 Ablation on Top-k Feature Selection

To see the stability of explanation methods across different selections of top-k, we show an ablation
study in Figure[T1] Notably, we observe that SHAP is generally the most stable, whereas Integrated
Gradients and the random baseline tend to be the least stable.

C.5 Stability vs. Smoothing

We show in Figure[I2] an extension of Figure[7, where we plot perturbations at larger radii. While
stability trends extend to larger radii, the effect is most pronounced at smaller radii. Nevertheless, even
mild smoothing yields benefits at radii beyond what MuS can reasonably certify without significantly

degrading accuracy.
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Figure 11: Soft stability rates on different top-£ selection. SHAP tends to be the most stable
method, particularly for vision models. On the other hand, Integrated Gradients and the random
baseline are usually the least stable. Note that the top-25% row of plots is the same one as shown
earlier in Figure[6]
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Figure 12: Mild smoothing (A > 0.5) can improve stability. An extended version of Figure[7} The
improvement is more pronounced at smaller radii (top row) than at larger radii (bottom row).

C.6 Computational Efficiency of Certification

Certifying soft stability requires % forward passes of the model. However, the exact wall-clock
time depends on system and implementation-specific details. In particular, batched evaluation of the
samples can speed up the individual per-sample forward pass, as we show in Table[TJusing different

batch sizes. We report statistics for each model averaged over 100 samples from its respective dataset.

26



Baseline

Effective Time per Pass (ms) with Batching

Model Time (ms) Batch Size 5 Batch Size 10 Batch Size 15

ViT 3.944+0.17 1.60+0.06 (2.46x) 1.44+0.05(2.74%x) 1.46 £ 0.06 (2.71x)
ResNet50 3.82+0.10 0.84 +0.07 (4.52x) 0.48+0.08 (7.99x) 0.40+ 0.01 (9.57x)
ResNetl8 1.62+0.12 0.39+£0.04 (4.10x) 0.24 +£0.01 (6.72x) 0.19 + 0.01 (8.50x)
RoBERTa 4.81 +0.14 3.84 +0.10(1.25x) 3.66 £0.09 (1.31x) 3.77 +£0.13 (1.28x%)

Table 1: Batching significantly reduces the effective time per forward pass. We compare the
baseline single-pass time against the effective per-pass time achieved during stability certification
(which requires N = 150 passes for ¢ = § = 0.1). The speedup factor relative to the baseline is
shown in parentheses.
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Figure 13: Random masking and flipping are fundamentally different. On the standard Fourier
spectrum, random masking (left) causes a down-shift in spectral mass, where note that the orange and
green curves are higher than the blue curve at lower degrees. In contrast, the more commonly studied
random flipping (right) causes a point-wise contraction: the curve with smaller ) is always lower.

C.7 Random Masking vs. Random Flipping

We next study how the Fourier spectrum is affected by random masking and random flipping (i.e., the
noise operator), which are respectively defined for Boolean functions as follows:

Myh(a) = Z~Be]}::n(/\)" (Mo © 2)] (random masking)
1—X .
Tah(a)= E  [h((a+2)mod2)], ¢=—— (random flipping)
z~Bern(g)™ 2

In both cases, A ~ 1 corresponds to mild smoothing, whereas A =~ 0 corresponds to heavy smoothing.
To study the difference between random masking and random flipping, we randomly generated a
spectrum via h(S) ~ N (0, 1) for each S C [n]. We then average the mass of the randomly masked
and randomly flipped spectrum at each degree, which are respectively:

Average mass at degree k from random masking = Z |J\/4,\\h(S )| (71)
5:|S|=k

Average mass at degree k from random flipping = Z |T/,\71(S )| (72)
S:|S|=k

We plot the results in Figure[T3] which qualitatively demonstrates the effects of random masking and
random flipping on the standard Fourier basis.

D Additional Discussion

Alternative Formulations of Stability There are other ways to reasonably define stability. For
example, one might define 7—j, as the probability that the prediction remains unchanged under an
exactly k-sized additive perturbation. A conservative variant could then take the minimum over
T—1,...,T=r. The choice of formulation affects the implementation of the certification algorithm.

SCA vs. MuS While MusS offers deterministic (hard) guarantees, it is conservative and limited to
small certified radii, making it less practical for distinguishing between feature attribution methods.
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In contrast, SCA uses statistical methods to yield high-confidence probabilistic (soft) guarantees on
the stability rate. More broadly, probabilistic guarantees are relevant for modern, large-scale systems
as they are often more flexible and efficient than their deterministic counterparts. They have seen use
in medical imaging [19], drug discovery [7l], autonomous driving [37]], and anomaly detection [33],
often through conformal prediction [5} 8} [13]].

Limitations While soft stability provides a more fine-grained and model-agnostic robustness
measure than hard stability, it remains sensitive to the choice of attribution thresholding and masking
strategy. While standard, we only focus on square patches and top-25% selection. Additionally,
our certificates are statistical rather than robustly adversarial, which may be insufficient in some
high-stakes settings.

Broader Impact Our work is useful for developing robust explanations for machine learning models.

This would benefit practitioners who wish to gain a deeper understanding of model predictions. While
our work may have negative impacts, it is not immediately apparent to us what they might be.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

¢ Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist'",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We support our claims with both theoretical proofs and experimental evaluations.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims made in
the paper.
 The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.
¢ The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.
» The authors are encouraged to create a separate "Limitations" section in their paper.
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* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We give some proofs of our claims in the main paper, as well as more in-depth
treatment in Appendix [A]and Appendix [B]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our experimental setup in Section[5]and Appendix [C] Moreover, we
will make our code available open source when it is okay to do so.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
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access to the model. In general. releasing code and data is often one good way to accomplish

this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]

Justification: We will make our code available as open source when permitted to do so.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips!
cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions

(if applicable).
Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We give detailed descriptions of experiment setup in Section [5|and Appendix [C|

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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8.

10.

Answer: [Yes]
Justification: We report error bars where appropriate.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

¢ It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures

symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they

were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We describe compute resources in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our ability and knowledge, we have conformed to the NeurIPS Code
of Ethics.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in Appendix
Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release new models and data.
Guidelines:
* The answer NA means that the paper poses no such risks.
* Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: All assets are properly credited in the paper.
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
» The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
¢ For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.
« If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

33


paperswithcode.com/datasets

13.

14.

15.

16.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: We do not have human participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We used an LLLM, RoBERTa, only for evaluating the stability of explanation
methods.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLM:s as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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