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Abstract

Shuffling-type gradient methods are favored in
practice for their simplicity and rapid empirical
performance. Despite extensive development of
convergence guarantees under various assump-
tions in recent years, most require the Lipschitz
smoothness condition, which is often not met in
common machine learning models. We highlight
this issue with specific counterexamples. To ad-
dress this gap, we revisit the convergence rates of
shuffling-type gradient methods without assuming
Lipschitz smoothness. Using our stepsize strategy,
the shuffling-type gradient algorithm not only con-
verges under weaker assumptions but also match
the current best-known convergence rates, thereby
broadening its applicability. We prove the conver-
gence rates for nonconvex, strongly convex, and
non-strongly convex cases, each under both ran-
dom reshuffling and arbitrary shuffling schemes,
under a general bounded variance condition. Nu-
merical experiments further validate the perfor-
mance of our shuffling-type gradient algorithm,
underscoring its practical efficacy.

1. Introduction

Gradient-based optimization has always been a critical area
due to its extensive practical applications in machine learn-
ing, including reinforcement learning (Sutton and Barto,
2018), hyperparameter optimization (Feurer and Hutter,
2019), and large language models (Radford et al., 2018).
While numerous gradient-based algorithms have been devel-
oped for convex functions (Nemirovskij and Yudin, 1983;
Nesterov, 2013; d’ Aspremont et al., 2021), research on non-
convex functions has become particularly active in recent
years, driven by advances in deep learning. Notably, with
unbiased stochastic gradients and bounded variance, SGD
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achieves an optimal complexity of O(e~*) (Ghadimi and
Lan, 2013), which matches the lower bound established by
Arjevani et al. (2023).

In practice, however, random shuffling-type methods have
demonstrated advantages over traditional SGD. These meth-
ods, which involve iterating over data in a permuted order
rather than drawing i.i.d. samples, are widely used in deep
learning frameworks due to their simplicity and computa-
tional efficiency. Empirical studies have shown that such
methods often outperform standard SGD in terms of conver-
gence speed and generalization ability (Bottou, 2009; 2012).
Notably, shuffling-based training has been found to mitigate
gradient variance, leading to smoother optimization trajecto-
ries compared to purely stochastic updates (Giirbiizbalaban
et al., 2021; HaoChen and Sra, 2019).

Theoretical analyses of shuffling-type methods have gained
significant attention in recent years, aiming to explain their
empirical success while tackling the unique challenges
posed by the lack of independence between consecutive
updates. Many early works focused on convex optimiza-
tion, often relying on strong convexity assumptions to estab-
lish linear or sublinear convergence rates (Giirbiizbalaban
et al., 2021; HaoChen and Sra, 2019; Safran and Shamir,
2020). More recently, research efforts have extended be-
yond the convex setting (Mishchenko et al., 2020; Nguyen
et al., 2021; Koloskova et al., 2023), suggesting that random
reshuffling can exhibit faster convergence than SGD even in
nonconvex settings under certain conditions, such as when
gradient noise is structured or exhibits low variance.

Despite these advances, most theoretical analyses rely on
the Lipschitz smoothness assumption, which imposes re-
strictive upper and lower bounds on the gradient variations.
While this assumption holds in many standard optimiza-
tion settings, it fails to capture a broad class of important
machine learning models, including deep language models
(Zhang et al., 2019), phase retrieval (Chen et al., 2023),
and distributionally robust optimization (Chen et al., 2023).
As a result, many practical scenarios remain outside the
scope of existing theoretical guarantees. To address this gap,
our work develops new techniques to analyze the conver-
gence of shuffling-type gradient algorithms under relaxed
smoothness assumptions, aiming to provide a more compre-
hensive theoretical foundation applicable to a wider range
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of machine learning models.

We consider the following finite sum minimization problem:

min, {F(w) = ;Zf(w;i)}, (P)

where f(-;4) : R? — R is smooth and possibly nonconvex
fori € [n] := {1,...,n}. Problem (P) covers empirical
loss minimization as a special case, therefore can be viewed
as formulation for many machine learning models, such
as logistic regression, reinforcement learning, and neural
networks.

‘We summarize our main contributions as follows:

* We proved the convergence of the shuffling-type gradi-
ent algorithm under non-uniform smoothness assump-
tions, where the Hessian norm is bounded by a sub-
quadratic function ¢ of the gradient norm. With specific
stepsizes and a general bounded variance condition, we
achieved a total complexity of (9(np2i €~3) gradient
evaluations for the nonconvex case with random reshuf-
fling, and O(nz+'e=3) for arbitrary scheme, where
0 < p < 2is the degree of function ¢ . These results
match those with Lipschitz smoothness assumptions
in Nguyen et al. (2021) when p = 0 and /-smoothness
degenerates to Lipschitz smoothness.

* For the strongly convex case, we established a complex-
~ 1
ity of O(n% ¢~ 2) for random reshuffling. In the non-
e - ptl _ 3
strongly convex case, the complexity is O(n"z €~ 2)
for random reshuffling. Without assuming bounded
. . . ~ 1

variance, we established complexity of O(ne~2) for
arbitrary scheme in strongly convex case, and O(ne™ 3 )
in non-strongly convex case.

* We conducted numerical experiments to demonstrate
that the shuffling-type gradient algorithm converges
faster than SGD on two important non-Lipschitz
smooth applications.

2. Preliminaries
2.1. Shuffling-Type Gradient Algorithm

In practice, the random shuffling method has demonstrated
its superiority over SGD, as shown in Bottou (2009) and Bot-
tou (2012). Specifically, Bottou (2009) shows that shuffling-
type methods achieve a convergence rate of approximately
O(1/T?), where T is the iteration count. Beyond shuffling-
type stochastic gradient methods, variants such as SVRG
have been applied in various scenarios, including decentral-
ized optimization, as discussed in Shamir (2016) and De
and Goldstein (2016).

The analysis of shuffling-type methods has a long history.
For convex cases, Giirbiizbalaban et al. (2021) demonstrated
that when the objective function is a sum of quadratics or
smooth functions with a Lipschitz Hessian, and with a dimin-
ishing stepsize, the average of the last update in each epoch
of RGA converges strictly faster than SGD with probabil-
ity one. Additionally, they showed that when the number
of epochs T is sufficiently large, the Reshuffling Gradi-
ent Algorithm (RGA) asymptotically converges at a rate of
O(1/T?). Similarly, Nguyen et al. (2021) established a con-
vergence rate of O(1/T?) for strongly convex and globally
L-smooth functions. Furthermore, with uniform sampling
and a bounded variance assumption or convexity on each
component function, they showed that the convergence rate
can be improved to O(1/nT?).

In contrast, there is not much research on nonconvex cases.
For example, Nguyen et al. (2021) demonstrated a conver-
gence rate of O(T~2/3); Koloskova et al. (2023) proved

. 2 2\ 2
a convergence rate of O (,} + min { (%2)*, (%) ’

for single shuffling gradient method; Wang et al. (2024)
analyzed Adam algorithm with random reshuffling scheme
under (Lg, L1)-smoothness but they did not explicitly show
the convergence rate.

2.2. Counterexamples

Although L-smoothness is empirically false in LSTM
(Zhang et al., 2019) and Transformers (Crawshaw et al.,
2022), we give some concrete counterexamples to demon-
strate the popularity of non-Lipschitz functions in this sec-
tion. First we give two machine learning examples, then we
mention some common non-Lipschitz functions.

Example 1. The first example is distributionally robust
optimization (DRO), which is a popular optimization frame-
work for training robust models. DRO is introduced to
deal with the distribution shift between training and test
datasets. In (Levy et al., 2020), it is formulated equivalently
as follows.
. o o [(Hw; &) =0

Bl 00 = B () o)
where w and 6 are the parameters to be optimized, £ is a sam-
ple randomly drawn from data distribution P, £(w; &) is the
loss function, ©* is the conjugate function of the divergence
function 1) we choose to measure the difference between
distributions, and A > 0 is the regularization coefficient.
It is proved in Jin et al. (2021) that L(w, ) is not always
Lipschitz-smooth even if £(w; &) is Lipschitz-smooth and
the variance is bounded.

Example 2. The second example is the phase retrieval
problem. Phase retrieval is a nonconvex problem in X-
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ray crystallography and diffraction imaging (Drenth, 2007;
Miao et al., 1999). The goal is to recover the structure of a
molecular object from intensity measurements. Let 2 € R?
be the true object and y,. = |a, z|? forr = 1,...,m, where
a, € R?. The problem is to solve:

min f(z) := L

min f(2)i= 5= > — o 2P @

r=1

This objective function is a high-order polynomial in high-
dimensional space, thus it does not belong to the L-smooth
function class.

Example 3. There are many common functions that are
not Lipschitz smooth, including polynomial functions with
order > 2, exponential functions, logarithmic functions and
rational functions.

2.3. Relaxation of Lipschitz Smoothness

Because of the existence of these counterexamples, people
have recently been investigating about smoothness assump-
tions that are more general than the traditional Lipschitz
smoothness. In Zhang et al. (2019), (Lo, L1)-smoothness
was proposed as the first relaxed smoothness notion moti-
vated by language modeling. It is defined as below:

Definition 2.1. ((Lg, L1)-smoothness) A real-valued dif-
ferentiable function f is (L, L1)-smooth if there exist con-
stants Ly, L1 > 0 such that

IV2f(w)[| < Lo + La ||V f(w)]].

Lipschitz smoothness can be viewed as a special case
of (Lo, L1) smoothness when L; = 0. Under (Lo, L1)-
smoothness assumption, various convergence algorithms
have been developed including clipped or normalized
GD/SGD (Zhang et al., 2019), momentum accelerated
clipped GD/SGD (Zhang et al., 2020), ADAM (Wang et al.,
2022) and variance-reduced clipping (Reisizadeh et al.,
2023) with optimal sample complexity on stochastic non-
convex optimization.

Other relaxed smoothness assumptions include asymmet-
ric generalized smoothness motivated by distributionally
robust optimization (Jin et al., 2021) and its extension to
a-symmetric generalized smoothness (Chen et al., 2023)
and /-smoothness (Li et al., 2023a). In this paper, we use
the definition of /-smoothness as below:

Definition 2.2. (/-smoothness) A real-valued differen-
tiable function f is /-smooth if there exists some non-
decreasing continuous function ¢ : [0,4+00) — (0, +00)
such that for any w € dom(f) and constant C' > 0,

B(w,WC’M) C dom(f); and for any w,ws €
B, qrestwney -

IV f(wi) =V f(w2)l| < L[V F(w)][ + C) - [lwr = wal|

Another equivalent definition of /-smoothness in Li et al.
(2023a) is:

Definition 2.3. A real-valued differentiable function f is
£-smooth for some non-decreasing continuous function ¢ :
[0,4+00) — (0, +00) if

IV2f (@) < eIV f()ID)
almost everywhere.

In the proof of sections we focus on Definition 2.2, though
Definition 2.3 provides a clearer perspective on the relation-
ship between ¢-smoothness and other smoothness notions.
Both (L, L1)-smoothness and traditional Lipschitz smooth-
ness can be seen as special cases of /-smoothness. It is
straightforward to verify that the loss functions in phase
retrieval and distributionally robust optimization (DRO)
satisfy /-smoothness. While extensive research has been
conducted based on (Lg, L;)-smoothness, comparatively
less work has been done under the more general /-smooth
framework. Xian et al. established convergence results for
generalized GDA/SGDA and GDmax/SGDmax in minimax
optimization, while Zhang et al. (2024) analyzed MGDA
for multi-objective optimization under ¢-smoothness.

3. Algorithm

As demonstrated in our counterexamples, the Lipschitz
smoothness assumption does not always hold in problem (P).
In such non-Lipschitz scenarios, gradients can change dras-
tically, posing a significant challenge for these algorithms.
To address this issue, we propose a new stepsize strategy, de-
tailed in Algorithm 1 and section 4, to improve performance
under these challenging conditions. This strategy aims to
choose the stepsize to accommodate the variance and insta-
bility in gradients, thereby enhancing the robustness of the
optimization process.

In this algorithm, we start with an initial point wg. During
each iteration ¢ € [T, either all the samples are shuffled,
or we keep the order of the samples as in the last epoch.
This reshuffling introduces variance in the order of samples,
which can help mitigate issues related to gradient instability.

For each step j € [n], we use the gradient from a single sam-

ple with number 7r§t> to update the weights w. The notation

7r§t) is used to denote the j-th element of the permutation

7(®) for j € [n]. Each outer loop through the data is counted
as an epoch, and our convergence analysis focuses on the
performance after the completion of each full epoch.
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Algorithm 1 Shuffling-type Gradient Algorithm

Initialization: Choose an initial point @y € dom(F').
fort=1,2,--- T do

Set w(()t) = Wi_1;
Generate permutation 7() of [n].

Compute non-increasing stepsize 7;.

forj=1,---,ndo
Update 0 = ' | — v f(w® ;7).
end for
Set w, := wﬁﬁ_
end for

There are multiple strategies to determine 7(*):

o If 7(*) is a fixed permutation of [n], Algorithm 1 func-
tions as an incremental gradient method. This method
maintains a consistent order of samples, which can
simplify the analysis and implementation.

« If 7(Y) is shuffled only once in the first iteration and
then used in every subsequent iteration, Algorithm 1
operates as a shuffle-once algorithm. This strategy
introduces randomness at the beginning but maintains
a fixed order thereafter, providing a balance between
randomness and stability.

o If 7(®) is regenerated in every single iteration, Algo-
rithm 1 becomes a random reshuffling algorithm. This
approach maximizes the randomness in the sample or-
der, potentially offering the most robustness against
the erratic behavior of non-Lipschitz gradients by con-
stantly changing the sample order.

Although the random reshuffling scheme is most used in
practice, each of these strategies offers distinct advantages
and can be selected based on the specific requirements and
characteristics of the optimization problem at hand. For
this reason, we will give convergence rates for random and
arbitrary shuffling scheme.

4. Convergence Analysis
4.1. Main Results

In this section, we present the main results of our conver-
gence analysis. Our findings indicate that, with proper step-
sizes, it is possible to achieve the same convergence rate, up
to a logarithm difference, as under the Lipschitz smoothness
assumption. First, we introduce the following assumptions
regarding problem (P). Assumption 4.1 is a standard as-
sumption, and Assumption 4.2 requires all F' and f(-;4) to
be /-smooth.

Assumption 4.1. dom(F) := {w € R? :
+oo} # B and F* := inf,, cpa F'(w) > —oc.

Flw) <

Assumption 4.2. F and f(-;¢) are ¢-smooth for some sub-
quadratic function ¢, Vi € [n].

Here, we assume all functions share the same ¢ func-
tion without loss of generality, as we can always choose
the pointwise maximum of all their ¢ functions. We de-
fine p to be the degree of the ¢ function such that p =
sup, o {p|limy o0 égﬁ) > 0}. Since ¢ is sub-quadratic,
we have 0 < p < 2.

Next, we introduce our assumption about the gradient vari-
ances.

Assumption 4.3. There exist two constants o, A € (0, +00)
such that Vi € [n],

1 n
S IV wii) -
i=1

s., Yw € dom(F).

F(w)|* < A|VF(w)|* + 0%, 3)

Since component gradients behave as gradient estimations
of the full gradient, this assumption can be viewed as a gen-
eralization of the more common assumption E[|V F'(w; &) —
VF(w)|] < o2, which is used in most /-smooth work.

4.1.1. NONCONVEX CASE

Let us denote A; := F(w(()l)) — F*. Under Assumptions
4.1 to 4.3, we have the following result for random shuffling
scheme. Proofs can be found in Appendix A.1.1 and A.1.2.

Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold,
Let {1 }1_, be generated by Algorithm 1 with random
reshuffling scheme. For any 0 < 0 < 1, we denote
H = 4?% G = sup{u > Ofu? < 2/(2u) - H},

= /2(1 +nA)G + V2no, L = ((2G"). For any

€ > 0, choose n; and T such that

nA1
<
" BT

then with probability at least 1 — 6, we have ||VF(wét)) | <
G foreveryl1 <t <T

—ZHVF

3244
’r}7“5627

)P < e

oG/t =

O(nkTp €), we can achieve a complexity of T = O(2 E )
2iL

Remark 4.5. By choosing n, = n =

outer iterations and O(™——) total number of gradient eval-
uations, ignoring constants where p is the order of the /¢
function in Definition 2.2. As p goes to 0, ¢-smoothness
degenerates to the traditional Lipschitz smoothness, and
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our total number of gradient evaluations goes to O(g)
once again, which matches the complexity in Corollary 1 of

Nguyen et al. (2021). If e < 1/4/n, one possible stepsize is
— _ ne
= 2L /A 417

Our result here has polynomial dependency on %, T =

O _%_ﬁ). It is important to note that, in our setting,
0 accounts for the probability that Lipschitz smoothness
does not hold—a consideration absent in standard Lipschitz
smoothness settings. Therefore, the dependency here is not
as good as in L-smoothness cases. In fact, a polynomial de-
pendency on § is typical in papers with similar smoothness
assumptions, e.g. in Li et al. (2023a), Li et al. (2023b), Xian
et al. and Zhang et al. (2024).

Next we consider arbitrary 7(*) scheme in Algorithm 1.

Theorem 4.6. Suppose Assumptions 4.1, 4.2 and 4.3 hold.
Let {1, }]_| be generated by Algorithm 1 with arbitrary
scheme. Define H = 21, G := sup{u > Olu? < 2/(2u) -
H}, G == /2(1 + nA)G +/2no, L := {(2G"). For any

€ > 0, choose n; and T such that

T
1 24, 8A;
L 3 < , T > :
"= RBAL ) ;m T 30227 T onre?
then we have HVF(w(()t))H < G foreveryl <t <T and
1 T
¢
7 2 NIVE@)|? < €.
t=1

This theorem gives the convergence rate for arbitrary scheme

in Algorithm 1. By choosing , = n = O ( Y n,}T) =

@) (%), we achieve a complexity of O (Z—f) outer iter-
2

n

. L1
ations and O (" =3
constants. Without the randomness in 7 in every iteration,
the complexity’s dependency on n is increased by O(y/n).

One possible stepsize is n = L\/ﬁ.

) total gradient evaluations, ignoring

4.1.2. STRONGLY CONVEX CASE

For strongly convex case, we give results for both random
reshuffling scheme and arbitrary scheme, with constant
learning rate. Proof can be found in Appendix A.2.

Assumption 4.7. Function F' in (P) is u-strongly convex
on dom(F).

Theorem 4.8. Suppose Assumptions 4.1, 4.2, 4.3 and 4.7
hold. Let {1;}]_, be generated by Algorithm 1 with ran-
dom reshuffling scheme. For any 0 < & < 1, we denote
H := max{% logé + Ay, 4?1 }, G = sup{u > Olu? <

20(2u) - H}, G' := \/2(1 + nA)G ++/2no, L := £(2G").

For any € > 0, if we choose 1, and T' such that

4log(/nT) Ay T
—p= BV ) sy 2L 2
= w77 7 "V nde’ log(y/nT) —

4 [ 8 [To2L?
— 2,L\/2(3A+2),L Y
L max ’ ( + )7 o ’I’L/j,(5€7 TLAl )

then for any 0 < § < 1, with probability at least 1 — 6 we
have

Fwi™) - F* <e

In Theorem 4.8, we can achieve a complexity of
~ -1 . . ~ +1

o (in e‘é) outer iterations and O (in e_%) total gra-
. . . ~ 1—3 . .

dient evaluations with n = O (nTp e%), ignoring con-

stants. This matches the result in Nguyen et al. (2021) with

the same assumptions in the degenerate case of p = 0. The

dependence on § is T’ = (’)((5_%_ﬁ).

It is not hard to follow proof of Theorem 4.6 for arbitrary
scheme in strongly convex case and achieve a complexity
of O (ngﬂe’%) total gradient evaluations. Here we give
a slightly stronger result where we remove Assumption 4.3
to match the corresponding result in Lipschitz smooth case.
Theorem 4.9. Suppose Assumptions 4.1, 4.2 and 4.7 hold.
Let {1 }1_, be generated by Algorithm I with arbitrary
scheme. We denote S = {w|F(w) < F(wél))}, G =
max, {[|Vf(w;i)||w € S,i € [n]}, L :=¥{(2G"). For any
€ > 0, choose 1y and T' such that

6log(T Aqp?
Ne="1n= g()g 21N2 27
uT 9(u? + L?)o?

~ 1. 12L%log(T

T= 0t > 2L 10alT)

I
where o, is the standard deviation at w,.. Then we have

IVF(w)|| < G" and

F(wéTJrl)) —F*<e

In Theorem 4.9, we achieve a complexity of o (6*1/ 2)
outer iterations and O (ne’l/ 2) total gradient evaluations

with n = O (n_le%), ignoring constants. It should be
noted that the constant G’ here is implicitly determined
by constant p and can potentially be large. Therefore, the
complexity here cannot be directly compared with those in

Theorem 4.6 or 4.8.

4.1.3. NON-STRONGLY CONVEX CASE

Next we consider the case where only non-strongly convex-
ity are assumed. In the following theorem, we assume the
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optimal solution exists and denote one as w,, the standard
deviation at w, as o, := \/% S IV f(wsy;d)||? and the

average value of {wét)}thl as wr = 7 Z?:l wét). Proof
for this section can be found in Appendix A.3.
Assumption 4.10. Functions f(-;7) in (P) are convex
ondom(F), for all i € [n].

Theorem 4.11. Suppose Assumptions 4.1, 4.2, 4.3 and 4.10
hold. Let {1 }]_, be generated by Algorithm 1 with random
reshuffling scheme. For any 0 < § < 1, define H, G, G’, L
as in Theorem 4.4. For any € > 0, choose ny = nand T
such that

- 1 o nAL 530wl — w,|?
= oL /?H’\/TJ%W 2LTo?

1
4wl —w,|?

nde

T>

b

then with probability at least 1 — §, we have ||VF(w(()t)) I <
G forevery1 <t <T and

Flor) — F* <e.

By choosing n = O <ﬁ) -0 (nl‘TPEO.s)’ we

—1
n

achieve a complexity of O ( CE

outer iterations and

pt+l
O <"€1_25 ) total number of gradient evaluations, ignoring

constants. The dependency on § is T' = (9(5_%_ﬁ ). If
/ne

20y/A 417

Similarly, we can follow proof of Theorem 4.6 for arbitrary

. . P
scheme and achieve a complexity of O (”:1_5 ) total gra-

€ < 1/n, one possible stepsize is 7 =

dient evaluations. Now we give a result without variance
assumption 4.3.

Theorem 4.12. Suppose Assumptions 4.1, 4.2 and 4.10
hold. Let {w;}L_, be generated by Algorithm 1 arbi-
trary scheme. Define S = {w|F(w) < F(wél))}, G =
max,{||Vf(w;i)||w € S,i € [n]} < oo, L = £(2G").
For any € > 0, choose 0, = n and T such that

1 3€
< —/—=T=0 -5y > 170 7l
=G\ ar (=) = ne

then we have HVF(w(()t))H < Gforeveryl <t <T and

in F —F*<e
mmin (wr) <e

By choosing 7 = O({/7), we have the complexity of
O(=25) outer iterations and O(—f5) total number of gradi-
ent evaluations, ignoring constants. One possible stepsize is
77 G’ \/Z .

4.2. Proof Sketch and Technical Novelty

Broadly speaking, our approach involves two main goals:
first, demonstrating that Lipschitz smoothness is maintained
with high probability along the training trajectory {; }, and
second, showing that, conditioned on Lipschitz smoothness,
the summation of gradient norms is bounded with high
probability. Here we slightly abuse the term ’Lipschitz’
and ’Lipschitz smoothness’ to refer to the property between
neighboring steps along the training trajectory.

For the first goal, in Lemma A.4, we prove by induction that
when starting an iteration with a bounded gradient, the entire
training trajectory during this iteration will have bounded
gradients. Consequently, we only need to verify the Lip-
schitz smoothness condition at the start of each iteration.
However, at this point, the two goals become intertwined.
We need Lipschitz smoothness to bound the gradient dif-
ferences, but we also need the gradient norm bounds to
establish Lipschitz smoothness. Our solution is to address
both issues simultaneously.

Assuming that, before a stopping time 7, Lipschitz smooth-
ness holds, we bound the gradient norm up to that time in
Lemma A.5. However, this process is nontrivial. Since we
are examining behavior before a stopping time, every expec-
tation is now conditioned on ¢ < 7, rendering all previous
estimations for shuffling gradient algorithms inapplicable.
This presents a contradiction: we want to conditionon ¢ < 7
when applying Lipschitz smoothness, but we do not want
this condition when estimating other quantities. In Lemma
A.5, we find a method to separately handle these two require-
ments, allowing us to achieve both goals simultaneously.

4.3. Limitations and Future works

Although we have proved upper bounds for the complexity
of shuffling gradient algorithms, there are certain limitations
in our work that we leave for future research:

* First, as is common with many optimization algorithms,
it is challenging to verify that the bounds presented are
indeed the lower bounds. Future work could explore
improving these results, for instance, by reducing the
dependency on § to a logarithmic factor, or by proving
that the current bounds are, in fact, tight lower bounds.

* Second, although we showed results for arbitrary shuf-
fling schemes, there are better results for single shuf-
fling under Lipschitz smoothness, for example Ahn
et al. (2020) proved O(—+z) convergence rate for
strongly convex objectives. It is interesting to see
whether we can achieve the same convergence rate

with /-smoothness as well.

¢ The results in Theorem 4.9 and Theorem 4.12 depends
on constant G’ that can be potentially very large and
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hard to verify. In the absence of both Lipschitz smooth-
ness and bounded variance, the behavior of gradients
can be hard to track. We hope our results here can be a
first step for future work.

e Lastly, shuffling gradient methods have been inte-
grated with variance reduction techniques (Malinovsky
et al., 2023). Exploring the performance of these al-
gorithms under relaxed smoothness assumptions is an-
other promising direction for future work.

5. Numerical Experiments

We compare reshuffling gradient algorithm (Algorithm 1)
with SGD on multiple /-smooth optimization problems to
prove its effectiveness. Experiments are conducted with
different shuffling schemes, on convex, strongly convex and
nonconvex objective functions, including synthetic func-
tions, phase retrieval, distributionally robust optimization
(DRO) and image classification.

5.1. Convex and Strongly Convex Settings

We first consider convex functions f; x(x) = x + kx;
of z € R for all (i,k) € & = {1,2,...,50} x
{-10,-9,...,9,10}, as well as their sample average
flx) = ng,oZ(k,i)eg fir(z) = %2?21 zj. It can
be easily verified that f and all f;; are convex but not
strongly convex, and /-smooth (with £(u) = 3u?/3) but
not Lipschitz-smooth. Then we compare reshuffling gra-
dient algorithm (Algorithm 1) with SGD on the objec-
tive min,cgso f(x). Specifically, for each SGD update
x & —nVfri(z), (k,i) € £ is obtained uniformly at
random. For Algorithm 1, we adopt three shuffling schemes
as elaborated in Section 3. The fixed-shuffling scheme and
shuffling-once fix all permutations 7(*) respectively to be
the natural sequence (1, —10), (1, —9), ... (50, 10) and its
random permutation at the beginning, while the uniform-
shuffling scheme obtains permutations 7(*) uniformly at ran-
dom and independently for all iterations ¢. We implement
each algorithm 100 times with initialization zo = [1, ..., 1]
and fine-tuned stepsizes 0.01 (i.e., n = 0.01 for SGD and
% = 0.01 for Algorithm 1), which takes around 3 min-
utes in total. We plot the learning curves of f(x;) averaged
among the 100 times, as well as the 95% and 5% percentiles
in the left of Figure 1, which shows that Algorithm 1 with
all shuffling schemes converges faster than SGD.

Then we consider strongly convex functions f;x(x) =
exp(z; — k) + exp(k — ;) + 3|z for (i,k) € € and

1.0
—+— SGD
0.8 —— Fixed-shuffling
0.6 —— Shuffle-once
X —=— Uniform-shuffling
0.4
0.21
0.0 v = i3 v ——%
0 2000 4000 6000 8000 10000
Iteration t
5000 —— SGD
—— Fixed-shuffling
4500 A —— Shuffle-once
3 —=— Uniform-shuffling
=
4000
3500 .
0 2000 4000 6000 8000 10000
Iteration t
Figure 1: Experimental Results on Convex (up) and

Strongly-convex (down) Objective Functions.

their sample average below.

1 1
F@) =t O furle) = gllellP+
(kji)eE
exp(n + 1) — exp(—
1050[exp(1) — 1]

’fl) 50
Z[exp(xj) + exp(—z;)].

All these functions f; ;, and f are 1-strongly convex and /-
smooth (with ¢(u) = 5u + 5) but not Lipschitz-smooth. We
repeat the experiment in the same procedure above, except
that all the stepsizes are fine-tuned to be 10~°. The result
is shown in the right of Figure 1, which also shows that
Algorithm 1 with all shuffling schemes converges faster
than SGD.

5.2. Application to Phase Retrieval and DRO

We compare SGD with Algorithm 1 on phase retrieval and
distributionally robust optimization (DRO), which are ¢-
smooth but not Lipschitz smooth. We use similar setup as
in (Chen et al., 2023).

In the phase retrieval problem (2), we select m = 3000
and d = 100, and generate independent Gaussian variables
x,a, ~ N(0,0.51,), initialization zo ~ N(5,0.514), as
well as y; = |a, z|? + n; with noise n; ~ N(0,42) fori =

1,...,m. We select constant stepsizes 2 x 1076 and n§t) =

0997 for SGD and Algorithm 1 respectively by fine-tuning
and implement each algorithm 100 times. For Algorithm 1,
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le6

—— SGD

—=— Fixed-shuffling
2.04 ¥ —— Shuffle-once
—— Uniform-shuffling

00 02 04 06 08 10
Iteration t le3

2.001% —— SGD

—— Fixed-shuffling
—— Shuffle-once
1.509 | —=— Uniform-shuffling

1.751

™M
5125
1.00
0.75 1
0.50 1
0 1 2 3 4
Iteration t le3

Figure 2: Experimental Results on Phase Retrieval (up) and
DRO (down).

we adopt three shuffling schemes as elaborated in Section
3. The fixed-shuffling scheme and shuffling-once fix all
permutations 7(*) respectively to be the natural sequence
1,2,...,3000 and its random permutation at the beginning,
while the uniform-shuffling scheme obtains permutations
7(*) uniformly at random and independently for all iterations
t. We plot the learning curves of the objective function
values averaged among the 100 times, as well as the 95%
and 5% percentiles in the left of Figure 2, which shows
that Algorithm 1 with shuffle-once and uniform-shuffling
schemes converge faster than SGD.

In the DRO problem (1), we select A = 0.01 and ¥*(t) =
3 (t42)2 —1 (corresponding to 7 being x? divergence). For
the stochastic samples £, we use the life expectancy data’
designed for regression task between the life expectancy
(target) and its factors (features) of 2413 people, and prepro-
cess the data by filling the missing values with the median
of the corresponding features, censorizing and normaliz-

"https://www.kaggle.com/datasets/
kumarajarshi/life-expectancy-who?resource=
download

3 801
3
© 601
3
|9
g —+— SGD

40 : ]
= —— Fixed-shuffling
£ —— Shuffle-once
£ 20 - .
2 —s=— Uniform-shuffling

0 1000 2000 3000 4000 5000 6000
Iteration t

70
3 601
> 501
©
3 40 —+— SGD
< 304 —— Fixed-shuffling
i
R,

—— Shuffle-once
—s— Uniform-shuffling

0 1000 2000 3000 4000 5000 6000
Iteration t

Figure 3: Experimental Results on Cifar 10 Dataset.

ing all the features 2, removing two categorical features

(“country” and “status”), and adding standard Gaussian
noise to the target to get robust model. We use the first
2000 samples {z;,v;}2%9° with features z; € R** and
targets y; € R for training. We use the loss function
le(w) = (ye — x?w)z + 0.1 234:1 In (1 + |w@|)) of
w = [wM;. . ;wBY] € R3 for any sample z¢,ye. We
use initialization 9 = 0.1 and wy € R3* from standard
Gaussian distribution.

Then similar to phase retrieval, we implement both SGD
and the three sampling schemes of Algorithm 1 100 times

with stepsizes nj(»t) = 1 = 107 ".We evaluate U(z;) :=
min,er L(z¢,n) every 10 iterations. The average, 5% and
95% percentiles of ¥(x;) among the 100 implementations
are plotted in the right of Figure 2, which shows that Algo-

rithm 1 with fixed shuffling converges faster than SGD.

5.3. Application to Image Classification

We train Resnet18 (He et al., 2016) with cross-entropy loss
for image classification task on Cifar 10 dataset (Krizhevsky,
2009), using SGD and Algorithm 1 with three shuffling
schemes. We implement each algorithm 100 times with
batchsize 200 and stepsize 1073, After every 250 iterations,
we evaluate the sample-average loss value as well as clas-

The detailed process of filling missing values and censoriza-
tion: https://thecleverprogrammer.com/2021/01/
06/1life-expectancy—-analysis-with-python/


https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download
https://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
https://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
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sification accuracy on the whole training dataset and test
dataset. The average, 5% and 95% percentiles of these eval-
uated metrics among the 100 implementations are plotted in
Figure 3, which shows that Algorithm 1 with fixed-shuffling
scheme outperforms SGD on both training and test data, and
Algorithm 1 with the other two shuffling schemes outper-
forms SGD on training data.

6. Conclusion

We revisited the convergence of shuffling-type gradient algo-
rithms under relaxed smoothness assumptions, establishing
their convergence for nonconvex, strongly convex, and non-
strongly convex settings. By introducing a more general
smoothness condition, we demonstrated that these meth-
ods achieve competitive convergence rates without requir-
ing Lipschitz smoothness, extending their applicability to a
broader range of optimization problems. Our analysis cov-
ers both random reshuffling and arbitrary shuffling schemes,
showing that properly chosen step sizes can ensure effi-
cient convergence in both cases. Numerical experiments
further validate our theoretical findings, demonstrating that
shuffling-type methods outperform SGD in non-Lipschitz
scenarios. These results provide a foundation for future
work on shuffling-based optimization, including its integra-
tion with variance reduction techniques, possible tighter
bounds in certain situations and its application to large-scale
machine learning problems.
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A. Appendix / supplemental material
A.1. Nonconvex Case Analysis

In this section we prove the theorems in section 4.1.1.
A.1.1. LEMMAS
In this part we use notations as defined in Theorem 4.4, for completeness we repeat them here:

_aa
6

G = /21 + nA)G +V2no, L := ((2G").

H: ,G = sup{u > 0|u? < 20(2u) - H} < o0,

We first state some lemmas that are useful in our proof. The following lemma is a natural corollary of Definition 2.2, by the
fact that ¢ is non-decreasing.

Lemma A.1. If F is (-smooth, for any w € dom(F) satisfying |[VF(w)| < G, we have B(w, G/¢(2G)) Cdom(F'). For
any wy,wy € B(w, G/L(2@Q))),
IVE(wy) = VE(ws)|| < £(2G)[|wy — wal|,

0(2G)

F(w) < F(ws) + (VF(wz), w1 — wa) + Tle — wyl|?.

The following lemma gives relationship between ||V f(w; )| and || VF(w)]|.

Lemma A.2. If Assumption 4.3 is true, we have
IV f(w;d)|l < v2(1 +nA)[|[VF(w)| + v2no.

Proof. From Assumption 4.3 we have that
IV f(wsd)|[* < 2|V f(w;d) = VF(w)]]* + 2| VF (w)|?

<2) |IVF(w;i) = VF(w)|* + 2| VF (w)||?
=1

< 2nA||VE(w)|? + 2no? + 2||VF(w)|?

=2(1 +nA)||VF(w)|* + 2no>.

Taking square root on both sides and notice that | VF(w)|| > 0, o > 0 we have the conclusion. O

According to Lemma A.2, for w such that | VF (w)|| < G is true, we have

IV f(w;d)]| < \/MG +vV2no =G’
holds for all ¢ € [n].

In our proof, we want that with high probability, L-Lipschitz smoothness in Lemma A.1, for both F(w) and f(w;1),

between w(()t) and w§t> is true, for ¢t € [T, 4, j € [n]. For that purpose, we can prove the following inequalities with high

probability, for ¢ € [T7:
IVF (i) < G
w§) —wP|| < G'/UG + &)
IV f(ws4)| < G, Vi € [n];
o —w|| < G'162G"), V5 € [n]. @)

11
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By Lemma A.2 we know that the third inequality in (4) holds if the first inequality is true. Noticing that (G + G’) < ¢(2G"),
it suffices to prove that, for t € [T,

IV (i) < G, [w” —wi|| < G'/02G"), ) € [n]. )

For the first inequality, it can be hard to bound the gradient norm directly. The following lemma states the connection
between gradient norm and function value of an /-smooth function.

Lemma A.3. (Lemma 3.5 in Li et al. (2023a)) If F is £-smooth, then
IVE(w)[]* < 202 VF (w)]]) - (F(w) — F¥)
for any w edom(F).

Since /¢ is sub-quadratic, with Lemma A.3 we can bound the gradient norm by bounding the difference between the function
value and the optimal value. To ease the proof, let us define the following stopping time:

7 i=min{t|F(wl) = F* > H} A (T +1).

For t < 7, we have ||VF(w0 )|| < G based on the definition of 7 and Lemma A.3, so the first inequality in (5) is satisfied.
The following lemma proves that the other inequality in (5) is true for ¢ < 7 as well, therefore guarantees the Lipschitz
smoothness before 7.

we have for all k € [n] and t € [T, wét) - w,(Ct)H2 < G'/E(2G).

Lemma Ad4. Fort <7, n < 2 T

Proof. We use induction to prove that

n G
EB(wo , (2G/)),j:0,1,...7n.
First of all, this claim is true for 7 = 0. Now suppose the claim is true for j < k — 1, i.e.,
® . ® G _
[wy” —w;”|| < E(QG’)"? =0,1,...,k—1,

we try to prove it for w,i Y. From Lemma A. 1, we have Lipschitz smoothness, for all f(w;1%), between w( ) and w(*) if

J<k-1

Since we have
IV f(ws4)l < &, Vi € [n],

forany i € [n]and j € [k — 1] we have
IV F (w50 < IV F s + IV F(wl?50) = Vi o)) < &+ Ljwl? —wi| < 26",

Hence, by the algorithm design we have

k—1 / / '
— . () 26 G _ G
n ||vf( ] ) J )” Z n — L - €(2G/)’

Jj=0

.Mw

I
=)

k—1
t (t Nt t t
ok =i = ||>° V(i m?)| <

J

where the third inequality uses & < n and 7; < 5. By induction, the claim is true. O

Therefore, we have the desired Lipschitz smoothness property in Lemma A.1 for ¢ < 7. Our next target is to bound
P(r <T).

To simplify the notations, let us define

k—1
1

o) = Y (Visal) = Vi)
j=0

12
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as the average of differences between the gradients at the start of iteration ¢ and the actual gradients we used until step 7 in
the ¢-th outer iteration. It is worth mentioning that the actual step in ¢-th outer iteration is —n; [V F'(w )) +elf )].

Now we bound the probability of event {7 < T'} by bounding the expectation of function value at the stopping time.

Lemma A.5. With parameters chosen in Theorem 4.4, we have

E[F(w(”) — F*] < 2A,.

Proof. Foranyt < T,

F(w(Hl)) _ F(w(t))

L
S(VE (i), 0™ —w?) + g™ — wfd|?

L 2
=~ m(VF ("), VF () + ) + TV (wf) + P
n Ln?
= = S UIVE@IP + 19 F () + PP = 601) + IV E () + D)

Nt Tt
<= S IVE@) | + 5 e

n—1
Mt t n: L? (t) t)
— S IVE@eI? + 75 =3 — w1 (©)
k=0
Here the first and last inequalities are from Lemma A.1 and the second is because 7; < 5. Taking summation from ¢ = 1

tot = 7 — 1 and taking expectation we have

T—1

E[F(wf”) = F7] < A —E[Y_ 2VF(w(”)|P) +E2”f Zn 12]. )

t=1

Now let us get a bound for the last term on the right hand side. For any ¢ € [T], k € [n], from Algorithm 1 and
Cauchy-Schwarz inequality we have

k*n? 2
||w](:) ”2 t Hk ZVf w;'s jJZl)H

k-1 3k2n?
t t t t
(Vs m500) = VF (g )[P + =5 [V ()
=0

_3kn7 1
<)
n -

J
o k—1

3kn
+ 5t DIVl = Vw1
j=0

Let us denote the 3 terms on the RHS as Al(t k), A2 (t,k) and A3(t, k), i.e. Hw,(:) fw((,t) 2 < Ai(t, k)+Az(t, k)+As(t, k).

Since we are interested in E[3)7_} '” Z ||w,(:) - wét)HQ], we need to bound E[Y7 ”55 125 At k)] for
1=1,2,3.
For A;(t, k), since 7(*) is randomly chosen, let F; := o (71 ... 7(1)) be the o-algebra generated in Algorithm 1, for
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t € [T] we have

277, 1 o n—1 2 9 k—1
NeL 3k“n 1
(1) Fia] = 5= 3 =5 Bl >0 VAl = VE@w?)|P|Fia)
j=0

2n &=
n—1 n—1
77tL2 3k277t2 ’I’L*k 1 (t) (t) 2
= E — E \Y 1)-VF
m ~ n2 k(n—1)n o IV f(wy’si+1) el
% 377t2k( — k) 2 2
< A||VF
<m ;:Oj o AT+ o)
3
03 L2
< S (AIVE ()| + o).

Here the second equation comes from variance of randomized reshuffling variables, (Lemma 1 in Mishchenko et al. (2020));
(n—1)n(n+1) < n?(n—1)
6 = 3

the first inequality is from assumption 4.3; the last inequality is because ZZ’;& k(n—k) =
Let {Z; };<7 be a sequence such that Z; = 0 and for any ¢ € [2, T,

2n1

ZAlt—l k).

We know {Z;} is a supermartingale. Since 7 is a bounded stopping time, by optional stopping theorem, we have E[Z] <
E[Z1], which leads to

32
Zi = Zios = =TS (A|VF ()| + o7

’” Z Ay (t, k)] < E| Z P L (A|VF (w1 + o2)).
2n
For As(t, k), for any ¢ € [T, taking summation over k we have S"7— Aa(t, k) < nn? IVF (w2, therefore

in

-1
’” ZAgtk <1EZ”t ||VF )121.
=1

For As(t, k), for any t < 7, by Lemma A.1 we have
3kL2n? (t ¢
As(t,k) < th =y

Taking summation over k, taking expectation we have

E[Z’”L ZAgtkKEX;gm ZH O _ 2],
t

t=1

Now putting these together, we have

71 3,9 71 3,9
n; L n; L
§j|| P = w7 <E[Y - - (AIVE(wg)I? + %)+ ELY AV F(wg)]]
t=1 t=1 t=1

3773L
Z d ZH R

Since ny < 57 f =7 we have 372 L < "fé ’ , rearranging the terms we have
T—1n—-1
E[Y D lhwy” — wg”?) < E[ Zzn ]+ m[z R+ DIVR@)P) ®)
t=1 j=0
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Put this into (7) we have,

<+ E[Y (- 2o Rl + Zn =)
t=1
(8) 71 L20'2 3 7—1 A )
SAHE[Y T S (- G+ un L) VE () 2]
t=1 t=1
-1 L20'27]3 T—1 m
<A +E S (R IvE@)?)] ©)
t=1 t=1

Here the third inequality is from 7, <

—_— <
<57 m and the last inequality is because 17, > O and 7 < T' 4 1.

Since Y1, 72 < A%, we have E[F(w{™) — F*] < 2A,. O

Now we can bound the probability that 7 = 7"+ 1.
Lemma A.6. With the parameters in Theorem 4.4, we have

P(r <T) < 6/2.

Proof. From Lemma A.5 and the value of H we have

P(r <T)<P (Y _F* > H) < <222
(r<T) SPF@) - F* > H) < ==L < Z0 - o
O
A.1.2. PROOF FOR THEOREMS IN NONCONVEX CASES
Proof for Theorem 4.4
Proof. From (9) we have
7'—177 () 2 2 T
E[F(w]) — F* JE[ 0t B (w 2}<A <A, 10
[F(wg) — F*] + ;4IIV (wp )| <A1+ Zm 1 (10)
Therefore, since § < 1 we have
A
b >E[ZHVF (t) )| }
>P(r =T+ 1)E [ZHVF N2l =T +1]

[ZHVF NPT =T +1].

l\.')\»—~

By Markov’s inequality and our choice of T', we have

( ZHVF (t)y ||2>62\T=T+1) < 162, gg.
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From Lemma (A.6) we have P(7 < T)) < $. Therefore,
T
P({ TZ IVF(@{")|2 > v {r < T})
<P(r < T ( ZHVF NE>eElr=T+1)
Jy 0
<-4+ -=0
2 + 2
1
Since L = £(2G") = Q(G'?) = Q(n%), withn = O({/ 2 ) and T = (9( 5—) we have the complexity. O

The following lemma is useful in the proof of arbitrary scheme.

Lemma A.7. (lemma 6 in (Nguyen et al., 2021)) Fort < T and 0 < ny < %ﬁ we have
n—1
>l — w2 < nn2((84 + 2)[VE (wf) | + 307).

Proof for Theorem 4.6

Proof. From inequality (6) we have forany ¢ < 7,

Fwi™) - F(wé”)

||VF< )2 + ZH T
T L2[<3A +2)|[ V(i) |* +307]
2
3 3L2 2
< — LVF @)+ o

2 )
where the second inequality is from Lemma A.7 and the last inequality is from 7, <

= L\/ﬁ Now taking summation of
t from 1 to 7 — 1 we have

T—1
T T 3L2 2§
F(uf?) = F* < Flul)) = F*+ Y 2 VF@()|? < A1 + Z < 2A,,
t=1

where the last inequality is because 7 < T' 4 1 and the choice of 7;. Therefore we have 7 = T' 4 1 since H > 2/A;. On the
other hand, we also have

851 L 5 v AP

T =
T
t
=Y IVE@)*
=1
Therefore, we have
SA
= Z IVF(w)|? < =~ < &
T77T
from our choice of 7. O
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A.2. Strongly Convex Case Analysis

Lemma A.8. Ifwe let H > % log(2) + Ay and 1, = 1, we have T > % log(2).

Proof. From inequality (6) we have for ¢t < 7

n—1
t+1 t n t nL? t t
Fwy ™) = Plug”) < —ZIVE )P+ 5= D lwy — w1
k=0
372 (£)\12 2
U ¢ " LA[(BA + 2)[|[VE(wy ) [|* + 307
< 3 IVE@)I? + ’
2 2
3no?
— 8 )
where the last inequality is from < ———— < L. From the definition of 7 we have

— L/2(34+42) — 2L

Proof for Theorem 4.8

Proof. From Lemma A.6 and the parameter choices we have P(7 < T') <

NS

Now we try to bound F’ (w(()T)) — F*. In the strongly convex case, for ¢ < 7 we have

n—1
1 Mt L*n;
Fluwy ™) < Flug)) = ZIVE )P+ 5 D oy — g

=0

n—1

I o T Ln

< Flwy) = S (F(wg”) = F?) = ZIVF @) P + = 3 ol — w2,
j=0

here the first inequality is from (6) and the second one is from strongly convexity. We can rearrange the items and write the
above inequality as

25203
Fluf™) - F < (1= B () - F) + =2 1 Aq), (a1
where A(t) is defined as
L*n, = t t Nt t Lo}
A(t) =50 > g — P = JIVE ()P~ == (12)
2n s 4 n
Letn, =n:= %&{m, we want 1 — &7 > 0, therefore we need log(\:,;ﬁT) > 2. Taking expectation and summation we
have
BIF(ef”) - F) < Bl - 2016, + 2E00 g ey
o - 2 ! nu 2
T7—1
KN \r—1—¢
E 1—— A(t
+ES (-]

2522 71
< AEfexp(—pur/2)] + 22T L[S A(t)

v t=1
de 1 L?0?log?(v/nT) =
< =
< T+ (A Mg ) +EY A,

t=1
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where the second inequality is from 1 — z < exp(—=x) for z € (0, 1) and the last inequality is from Lemma A.8, P(1 <

< 1 1 3 : < 1 1
T') < /2 and the value of 7. Now if we look at the last item, we can notice from (8), by using < TVAGATY) = s /AT

that we already have

Therefore, we have

8 JrnT2

% 1 (Al + 8L%0* IOgQ(\/ﬁT)) > E[F( (T)) — F*]

>P(r =T+ DE[Fw ™) = F*|r =T +1]
1
> SEIF( 0y P lr =T+ 1).
E[F(w{" ™) = F*r =T +1
P(F(M(TJrl)) _F*> 6|T =T+ 1) < [ (wo ) |T + ]
€
§ 2 8202 log?(y/nT)
< —
4 + enT? (Al + u3 )
L0, 0,80
—4 8 8 2

where the last line is from the constraint on T.

Proof for Theorem 4.9

Proof. The algorithm starts from w(()l) and we define S = {w|F(w) < F (wél))}. Since F' is strongly-convex, we have S

being compact. Therefore, we can define G’ = max,, {||V f(w;i)||w € S,i € [n]} < .

If we have w(()t) € Sforallt € [T], we have ||Vf(w(()t); i)|| < G’ fort € [T] and ¢ € [n]. On the other hand, by definition
of F' we have |VF (w(()t)) || < G’ fort € [T). Therefore, by Lemma A.4 we have Lipschitz smoothness between w(()t) and

w§t), for both F(w) and f(w;1), for ¢t € [T], i, € [n]. The rest of the proof then follows the one in Lipschitz smoothness
case (theorem 1 in Nguyen et al. (2021)).

Now we prove that w(()t) € S, fort € T. The statement is obviously true for t = 1. Now for ¢ € [2, T, assume that we
already proved the conclusion for 1,--- ;¢ — 1, we can use Lipschitz smoothness in the first £ — 1 iterations. Therefore,
from theorem 1 in Nguyen et al. (2021) we have that

D 2
F(uw) = F(w,) < (1—pp) "' Ay + 7"

where p = &£, D = (u* 4+ L?)o2. On the other hand, since 1 < AIT"Q we have
D772 2

D
(L—pn)' A+ - < (1 —=pn)Ar+ 77’ <A

Therefore, we have F’ (w(()t)) < F(w(()l)), which means w(()t) cs.
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A.3. Non-strongly Convex Case Analysis
Proof for theorem 4.11

Proof. From Lemma A.6 we know P(r < T) < 2.

Fort < 7, if n, = n, from lemma 7 in (Nguyen et al., 2021) we have that

7] 2Ln
w$ ™™ = w.||? < [JwS? —w.|]® = 2p[F(w) - EZHEijwMjHHQ (13)

. . . n 1
where w, is the optimal solution. If we denote A(f) = > 1| || > - . Vi(wem g+1)H2 and let o, =
\/% S IV f(ws;4)]]2, we have that for any ¢ € [T]

2

E[A(t)] = Z(ﬂ—i)QE nl—z ZVf(w*, J(?l — VF(w,)
=0 =i
= Z:O ,m JZ::O IV £ (w12
_ n(n+1)o?
B 6

(n+1)
B[ (a0 - 20517 o
> (a0 - "
t=1
Taking summation from ¢ = 0 to 7 — 1 for (13) and taking expectation we have
T—1 < T—1
t « 1 2Ln? n(n+1)o?2
B[y (F(wy”) = F)] < g — wu|® + = 5-E[} - =]
t=1 t=1
(1) 9 QLTngaf
< — w, =
< g = w2+ =51
where the second inequality uses 7 < T" 4 1. Therefore, we have
7—1
1 1 2LT77 t X
(106 =l + 2ETTL) 5 (Y (PGl - P
t=1
1 *
>3 B[ (F( — FY|r=T+1].

t=1

If we define wp = % Zthl w(()t), from convexity we have

1 T
F(or) = F* < ) [Flug) = F7).

t=1
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Consider the event F := {F'(wr) — F* > €}, we have
1
P(Flr=T+1) <IP( Z(F(w((]t)) —F)>er=T+1)

E [Zil(F(wét’) ~ FO)lr =T +1]
Te

1 (1) 2 2LT’I730'3<)
(w? = wn? + =51

IN

A
3
Sz
|
5

where the last two inequalities are from the choices of 1) and 7', separately. O
Proof for Theorem 4.12

Proof. Similar to Theorem 4.9, if we have w(()t) € S fort € [T], we have the desired Lipschitz smoothness.

Now we prove the conclusion by trying to prove that w(()t) € S fort € [T]. The statement is obviously true for t = 1. Now
for ¢ € [2,TY, assume that we already proved the conclusion for 1,- - - ,¢ — 1, we can use Lipschitz smoothness in the first
t — 1 iterations. Therefore, from (13) we have

n—1 n-—1
t t—1 t—1 o, 2L7° t—1
0§ —wall* < g™ = wal? = 20{F (w ™) = F]+ == ST Y Vi (was V)
i=1  j=i

If F (w((,tfl)) — I <'¢, we have the desired conclusion.

If F(wét_l)) — F* > ¢ since < &7/ 3¢, we have

>
n—1
™ = w2 <l 2 2me + 203 26
o 7 < wg » ne+ —3 n—1
=1
3,3
(t) 2 2Ln° n” o
< ) — .|~ 29 + 2222

< Jwg? — w.||?.

Therefore, if F(w(()t)) — F* > efort € [T], we have w((f) € S for t € [T]. Taking summation we have that

T
2 Y [F(wy”) — Flw.)] < [lw§” —w.|? +
t=1

2LG"213T
—

Therefore we have

T
1 1 2LG213T
SIF(w) — Flw.)] < - (wé” w4 3’7) <e

However, this contradict the assumption that F'(w, ) — F* > € for t € [T']. Therefore, there must be ¢ € [T] such that
Fw{")—F* <e.
O
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