
MxMoE: Mixed-precision Quantization for MoE with Accuracy and
Performance Co-Design

Haojie Duanmu 1 2 Xiuhong Li 3 Zhihang Yuan 3 Size Zheng 4 Jiangfei Duan 5

Xingcheng Zhang 2 Dahua Lin 2 5 6

Abstract
Mixture-of-Experts (MoE) models face deploy-
ment challenges due to their large parameter
counts and computational demands. We explore
quantization for MoE models and highlight two
key insights: 1) linear blocks exhibit varying quan-
tization sensitivity, and 2) divergent expert acti-
vation frequencies create heterogeneous compu-
tational characteristics. Based on these observa-
tions, we introduce MxMoE, a mixed-precision
optimization framework for MoE models that
considers both algorithmic and system perspec-
tives. MxMoE navigates the design space de-
fined by parameter sensitivity, expert activation
dynamics, and hardware resources to derive effi-
cient mixed-precision configurations. Addition-
ally, MxMoE automatically generates optimized
mixed-precision Group-GEMM kernels, enabling
parallel execution of GEMMs with different pre-
cisions. Evaluations show that MxMoE out-
performs existing methods, achieving 2.4 lower
Wikitext-2 perplexity than GPTQ at 2.25-bit and
delivering up to 3.4× speedup over full precision,
as well as up to 29.4% speedup over uniform quan-
tization at equivalent accuracy with 5-bit weight-
activation quantization. Our code is available at
https://github.com/cat538/MxMoE.

1. Introduction
Mixture-of-Experts (MoE) architectures have established
themselves as a cornerstone of modern large language mod-
els, driving state-of-the-art performance across diverse AI
tasks (Jiang et al., 2024; The Mosaic Research Team, 2024;

1Shanghai Jiao Tong University 2Shanghai AI Laboratory
3Peking University 4ByteDance Seed 5The Chinese University
of Hong Kong 6CPII under InnoHK. Correspondence to: Haojie
Duanmu <duanmuhaojie@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Yang et al., 2024; Muennighoff et al., 2024; Liu et al.,
2024b).These models replace dense MLP blocks in dense
Large Language Models (LLMs) with specialized MoE com-
ponents, each containing a routing mechanism and multiple
expert networks. Through dynamic token-to-expert alloca-
tion during inference, MoE architectures achieve superior
model capacity while maintaining computational efficiency
equivalent to their dense counterparts. However, these per-
formance advantages introduce critical deployment chal-
lenges that existing hardware systems struggle to address.
First, the memory footprint of MoE model is usually several
times that of Dense model. For instance, DeepSeek-V3’s
671B parameters exceed the memory capacity of eight H100
GPUs in standard configurations (Liu et al., 2024b). Second,
while the architecture activates only a subset of experts per
token during inference, scenarios such as prefill phase or
large-batch serving can trigger widespread expert activa-
tion, resulting in considerable computational overhead (Kim
et al., 2022a).

Mixed-precision quantization, which allocates different bit-
widths to different parts of the model based on certain cri-
teria, has been shown to enhance MoE model performance
(Huang et al., 2024; Tang et al., 2024). However, the added
complexity of mixed-precision schemes often leads to in-
creased system overhead, making it more challenging to
achieve tangible improvements in wall-clock time (Dettmers
et al., 2022).

In this paper, we focus on achieving a mixed-precision
scheme that balances both model accuracy and hardware
efficiency. Our goal is to enhance MoE model quantization
while simultaneously achieving meaningful acceleration. To
this end, we first conduct an experimental analysis of the
MoE block, leading to two key insights: 1 There is a sig-
nificant variation in quantization sensitivity across different
linear blocks within an MoE block. Unlike previous work
(Li et al., 2024; Huang et al., 2024), our findings suggest
that allocating bitwidth at the linear block level, rather than
the expert level, may yield better results. 2 The activa-
tion frequencies of different experts exhibit large variance
within an MoE block. From a hardware perspective, this
variance implies that different computational characteristics

1

https://github.com/cat538/MxMoE

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

(e.g., memory-bound and compute-bound) coexist within
an MoE block, indicating potential benefits from applying
diverse quantization schemes tailored to these distinct com-
putational characteristics.

Building on these insights, we propose MxMoE, a frame-
work designed to derive an optimal mixed-precision quan-
tization strategy through accuracy and performance co-
design. MxMoE first navigates the interplay among pa-
rameter sensitivity, expert activation patterns, and hardware
resources, optimizing within this multidimensional design
space with other constrains to identify the most effective
mixed-precision quantization schemes. Furthermore, Mx-
MoE automatically generates a GPU kernel tailored to the
identified strategies, efficiently orchestrating linear blocks
with different precision in a parallel manner to exploit hard-
ware.

2. Background
2.1. Quantization

Quantization aims to map a continuous value x to a discrete
set of values. This can be represented as: x̂ = Q(x), where
Q(·) represents the quantization function, which can be
either non-uniform or uniform. We focus on uniform quanti-
zation where the set of discrete values is evenly spaced. The
uniform min-max quantization operation can be expressed
as:

x̂ = round
(
x− xmin

∆

)
·∆+ xmin

where xmin is the minimum value of the quantization range,
∆ is the quantization step size, and the rounding function
applies rounding to target domain, which is the source of
the quantization error.

LLM quantization mainly focuses on weight-only or weight-
activation quantization. Weight-only methods (Frantar et al.,
2022; Lin et al., 2024a; Kim et al., 2023) only involves
quantization of model weight. Weight-activation meth-
ods (Dettmers et al., 2022; Xiao et al., 2022) quantize both
model weight and intermediate activation. In this work, we
focus on MoE block quantization, covering both methods.
Another lines of work, KV cache quantization (Liu et al.,
2024c; Hooper et al., 2024; Yue et al., 2024; Duanmu et al.,
2024) is orthogonal to our work.

2.2. MoE Mechanism and Group-GEMM

In MoE models, the routing mechanism dynamically selects
a subset of E experts for each input token’s hidden state,
assigning corresponding weights {we}Ee=1. For the e-th
expert, the computation is given by:

W e
down

(
σ(W e

gate(Xe))⊙W e
up(Xe)

)
(1)

where W e
gate, W e

up, and W e
down are linear transformations, σ

represents the activation function and ⊙ represents element-
wise multiplication. The final output F is the weighted sum
of the outputs from all experts:

F =

E∑
e=1

W e
down

(
σ(W e

gate(Xe))⊙W e
up(Xe)

)
⊙ we (2)

A straightforward method for executing such operation on
hardware is sequential execution, where the summation in
Eq. 2 is expanded, and each expert is processed individually
before aggregating the results. However, since the com-
putation independence, this operation can be parallelized.
Notably, the shape of the input Xe and the corresponding
weight matrix may vary across different experts. The ap-
proach that concurrently processes multiple independent
General Matrix Multiply (GEMM) with different shapes
is referred to as Group-GEMM. Unlike Batched-GEMM,
where sub-problems have exactly the same shape, Group-
GEMM deals with sub-problems that have varying dimen-
sions, requiring a more careful design. CUTLASS (Thakkar
et al., 2023) provides a high-performance implementation
capable of efficiently handling the parallel execution of in-
dependent GEMM operations.

3. Motivation
3.1. Heterogeneous Quantization Sensitivity

Recent studies have demonstrated that neural network com-
ponents exhibit heterogeneous sensitivity to bitwidth, with
quantization affecting different parameters to varying ex-
tents (Wang et al., 2019; Dong et al., 2019). This heteroge-
neous sensitivity can be leveraged through mixed-precision,
where different bitwidths are allocated to parameters based
on their sensitivity. Such schemes typically outperform
uniform-precision quantization in terms of accuracy.

In the context of MoE models, several works have inves-
tigated the behavioral differences among experts. These
studies show that, due to the influence of training dynamics,
not all experts are equal. Some experts specialize in spe-
cific tokens, contributing less to the overall generation (Liu
et al., 2024b; Xue et al., 2024). Building on this idea, we
extend the concept of heterogeneity to the quantization of
MoE models. Specifically, we systematically investigate
quantization sensitivity across different architectural dimen-
sions of MoE models by analyzing the sensitivity of various
experts and their corresponding linear blocks.

As illustrated in Fig. 1a, our analysis reveals two key struc-

2

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

0 10 20 30 40 50 60

50

100

150

200

Q
ua

nt
 L

os
s

w8a8_g-1_sym
w4a4_g-1_sym
w4a4_g128_sym

w8a16_g-1_asym
w4a16_g128_asym
w3a16_g128_asym

0 10 20 30 40 50 60
Expert ID

100

200

300

Q
ua

nt
 L

os
s

Gate_proj
Down_proj

(a)

0 30 60 90 120 150 180
AI (FLOPs/Byte)

0

150

300

450

600

TO
PS

FP16
W8A8
W4A4
W4A16
W2A16

0 20 40 60
Expert ID

0

50

100

150

200

250

300

Ac
ti

va
ti

on
 F

re
qu

en
cy

15.3x

W4A16 Friendly
W8A8 Friendly

(b)

Figure 1. (a) Quantization loss across experts in DeepSeekV2-Lite’s 11th layer under various quantization schemes (top), and across linear
components (Gate proj/Down proj) under the w4a4 g-1 sym configuration (bottom). The quantization notation wxay gz b denotes
x-bit weights, y-bit activations, group size z (-1 indicates per-channel/token) with symmetric (sym) or asymmetric (asym) quantization.
The quantization loss metric is formally defined in Section 4.2.1. (b) Roofline performance analysis for RTX 4090 GPU (left) and expert
activation frequency distribution in DeepSeekV2-Lite’s 11th layer (right).

tural patterns. First, experts exhibit divergent sensitivity
profiles: for example, Expert 40 suffers significantly greater
performance degradation under quantization compared to
Expert 37. Second, sensitivity varies considerably across
the components within a single expert: the Down proj block
in Expert 40 requires higher precision than the Gate proj
block within the same expert.

These observations motivate our linear-block granularity
strategy: assigning different bitwidth to linear-blocks in
MoE blocks to preserve model accuracy. Unlike recent
studies that adopt expert-level mixed-precision schemes (Li
et al., 2024; Huang et al., 2024), our approach focuses on
allocating bitwidths at the linear block level. In Section 5.4,
we demonstrate the superiority of this linear-block-level
allocation strategy. Another line of recent research explores
fine-grained mixed-precision approaches at the channel or
element level (Kim et al., 2023; Zhao et al., 2024). However,
these approaches incur significant computational overhead
due to irregular memory access patterns and the need for
bitwidth lookup operations (Dettmers et al., 2022).

3.2. Hardware Friendly Quantization

The computational efficiency of different quantization
schemes varies depending on the specific characteristics
of the computation (Lin et al., 2024b). The effectiveness
of these schemes is fundamentally determined by the arith-
metic intensity (AI), defined as the ratio of FLOPs to mem-
ory access in bytes (Williams et al., 2009). Weight-only
quantization mitigates memory bandwidth limitations by
reducing data transfer, whereas weight-activation quantiza-
tion leverages low-precision arithmetic units to accelerate
compute-intensive operations (Frantar et al., 2024). Our

roofline analysis on the Nvidia RTX-4090 (Fig. 1b) identi-
fies distinct performance regimes: for GEMM operations
with shape [m,n, k] where n, k ≫ m, the arithmetic inten-
sity simplifies to A = m. For example, our analysis shows
that W4A16 outperforms W8A8 when A < 83 and W2A16
outperformes W4A4 when A < 42.

In addition, we observe that MoE architectures exhibit
significant computational heterogeneity. For instance,
our evaluation of DeepSeekV2-Lite on the HumanEval-X
dataset (Zheng et al., 2023) reveals that expert activation
frequencies within individual MoE blocks vary by over 10×
(Fig. 1b). Considering W8A8 and W4A16, the computa-
tional heterogeneity implies that within a single MoE block,
operations that are suited for W8A8 and W4A16 coexist
simultaneously, as predicted by the roofline model. This
characteristic, distinct from dense LLMs, suggests that by
strategically combining quantization schemes across experts,
we can potentially achieve better performance than uniform
precision quantization.

From a hardware-friendly perspective, it is possible to select
the most efficient quantization schemes based on compu-
tational characteristics. For example, W2A16 generally
outperforms W4A16, and W4A4 outperforms W8A8. How-
ever, as discussed in Section 3.1, the allocation of bitwidth
plays a critical role in model accuracy. Simply optimiz-
ing for performance may degrade model accuracy, while
focusing exclusively on accuracy can result in suboptimal
performance.

3

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

0

10

20

30

40

50

60

70

80
TF

LO
PS

3.14
11.45

74.90

39.10

85.44

FP16(CUTLASS)

0.11x
0.41x

2.70x

1.41x

3.08x

HQQ-Aten(W4)
VLLM-Marlin-MoE(W4)
MxMoE(W4)
MxMoE(W8A8)
MxMoE(mix-precision)

Figure 2. Comparison of the computation throughput of low-
precision MoE block. W4 denotes 4-bit per-channel symmetric
weight-only quantization, while W8A8 refers to 8-bit per-channel
symmetric weight-activation quantization. The problem consists
of 60 experts, each with a shape of [N,K] = [2816, 2048] (from
Qwen2 MoE1.5), with each token activating 4 experts. The total
number of input tokens is set to 512.

3.3. Algorithm-System Co-Design and Challenges

The analysis presented raises a fundamental question: can
we design a quantization scheme specifically tailored to
MoE models that effectively balancing model accuracy and
computational efficiency? Our findings suggest that het-
erogeneous quantization sensitivity at the linear-block level
within MoE models significantly affects accuracy, while
hardware resources determine the maximum achievable
computational efficiency. Moreover, the variation in expert
activation frequencies introduces divergent computational
demands, which is crucial for identifying the optimal quan-
tization strategy. Therefore, an effective mixed-precision
quantization scheme must take into account three key fac-
tors: 1) parameter sensitivity, 2) expert activation frequen-
cies, and 3) hardware characteristics.

For a given mixed-precision scheme, system-level support
is necessary to translate theoretical performance improve-
ments into actual wall-clock time reductions. While nu-
merous works have optimized low-precision operators for
dense LLMs (Zhao et al., 2024; Lin et al., 2024b), these ap-
proaches are often ill-suited for the MoE models. To demon-
strate this, we leverage two widely used low-precision ker-
nels: HQQ and VLLM-Marlin-MoE to build a MoE blocks
with 4-bit weight, as shown in Fig. 2. HQQ, which does not
fuse dequantization, significantly underperforms the full-
precision baseline. Marlin (Frantar et al., 2024) is a highly
optimized W4A16 kernel achieves SOTA performance for
W4A16 GEMM. The VLLM community (Kwon et al., 2023)
adopts Marlin to build the VLLM-Marlin-MoE kernel. It se-
quentially invokes the Marlin kernel multiple times for each
expert, which results in suboptimal GPU utilization. These
shortcomings intensify when introducing mixed-precision
configurations, as existing kernel designs lack the architec-

tural flexibility to handle precision-heterogeneous expert
computations efficiently.

We propose MxMoE to address above challenges. Mx-
MoE tightly couple 1) a hardware-aware bitwidth allocation
scheme that respects parameter sensitivity and activation
patterns with 2) a specialized computation engine that elim-
inates kernel launch overhead and enables parallel mixed-
precision expert execution.

4. Method
4.1. Overview

Tile Scheduler

Quantized MoE Block

Allocator

Hardware

Information

Memory

Budget

Input

Range
…

gate up down𝑬𝒏

Gate up down𝑬𝟏

gate up down𝑬𝟐

…

Mixed-Precision

Group-GEMM

Quant Loss

Profile Data

Offline Statistics

Expert Act

Pattern

w4a16 g128 asym
w8a8 g-1 sym
w4a4 g-1 sym
w2a16 g128 asym

Avaliable Strategies

CTA1

…

CTA2

…

CTA3

…

Other Priors

MoE Block

Figure 3. Overview of MxMoE.

The workflow of MxMoE is illustrated in Fig. 3. 1 First,
MxMoE’s allocator takes statistical data specific to the MoE
model as input, navigating the interplay between param-
eter sensitivity, expert activation patterns, and hardware
resources. It then optimizes within this multidimensional
design space to identify the mixed-precision quantization
scheme. 2 Next, MxMoE generates a mixed-precision
Group-GEMM kernel tailored to the identified scheme, ef-
ficiently orchestrating linear blocks with varying precision.
During runtime, the automatically generated tile scheduler
maps mixed-precision computation tasks to hardware in a
load-balanced manner, fully parallelizing the MoE block.

We begin by formalizing the impact of quantization and ex-
pert activation frequency on model accuracy and execution
performance, providing a comprehensive understanding of
the design space for mixed-precision scheme. Subsequently,
we present our solution and discuss the system-level support
required for mixed-precision MoE blocks.

4.2. Hardware-Aware Bitwidth Allocation

For a Given M -layer MoE model with parameter W and
input X , the objective of bitwidth allocation in MxMoE is to
minimize both the perturbation introduced by quantization
and the total execution time of all MoE blocks in the model:

min(L(W,X)− L(Wq, Xq))
r · (

M∑
i

Ti)
1−r (3)

4

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

where r is a hyper-parameter balancing the trade-off be-
tween model accuracy loss and execution time. In this study,
we adopt the setting presented in (Choukroun et al., 2019)
which assumes a positive correlation between the change
in the intermediate output of the quantized model and the
final output. Therefore, minimizing the intermediate output
loss leads to minimize the loss item in Eq.3. Furthermore,
since the model is executed sequentially, minimizing the ex-
ecution time of individual MoE blocks contributes directly
to reducing the overall execution time item in Eq.3. Thus,
the objective simplifies to minimizing the output loss L and
execution time T of a single mixed-precision MoE block:

minLr · T 1−r (4)

To further detail the formulation, we decompose the terms
L and T systematically.

4.2.1. QUANTIZATION LOSS FORMULATION

Let S denote the set of hardware-supported quantization
schemes (e.g., W6A6 is still unsupported by most exist-
ing hardware, while FP8 is supported on Nvidia RTX-4090
but not A100). For an MoE block comprising E experts,
each containing N linear blocks (typically N = 3 for mod-
ern architectures, corresponding to gate proj, up proj, and
down proj). The composite loss aggregates individual quan-
tization effects as:

L =

E∑
i=1

N∑
j=1

|S|∑
k=1

∆i,j,k · xi,j,k (5)

where xi,j,k ∈ {0, 1} denotes the binary selection variable
for applying the k-th quantization scheme to the j-th lin-
ear block in expert i. The perturbation coefficient ∆i,j,k

quantifies the output distortion when using scheme k, com-
puted via Euclidean distance between full-precision (O) and
partially quantized (Ô) MoE block outputs:

∆ =
∥∥∥Ô−O

∥∥∥
2

(6)

For practical estimation, we employ a small calibration set
(e.g., 128 samples from WikiText2) to compute ∆i,j,k val-
ues. Each linear block in expert i is sequentially quantized
with scheme k ∈ S, with the corresponding output pertur-
bation statistically estimated across calibration samples.

4.2.2. RUNTIME COST MODELING

To model the execution time T of mixed-precision MoE
blocks, we first analyze individual linear blocks. Given
input token distributions and expert activation frequencies,
we derive GEMM shapes for each linear-block based on
per-expert token allocations. On modern GPUs, GEMM

is decomposed into multiple sub-problems, known as tiles,
mapped to SMs for parallel execution. MxMoE generates
candidate tile configurations for each quantization scheme
and profiles their runtime costs ct ahead-of-time. For a lin-
ear block with scheme s, tile decomposition is represented
as (ct, nt), where nt denotes the tile count.

The computational task of a MoE block can be represented
as a list of such pairs, and our goal is to estimate the ex-
ecution time for this set of tasks mapped to the GPU. In
our system design, all tiles are parallelized across the SMs,
and the total execution time of the MoE block depends on
the longest execution time across all SMs: T = maxPi=1 Ti

where P is the number of SMs. However, the use of the
maximum operator complicates the optimization procedure.
To address this, we approximate based on the observed fact:
the number of tiles decomposed from a MoE block substan-
tially exceeds the number of SMs. Therefore, the execution
time of the entire MoE block can be approximated as the
serial execution time of all tiles, divided by the number of
SMs P :

T =
1

P

E∑
i=1

N∑
j=1

|S|∑
k=1

|T |∑
t=1

ci,j,k,t · yi,j,k,t · xi,j,k

where T represents candidate tile configurations, ci,j,k,t
denotes execution time of linear-block (i, j) under scheme
k with tile configuration t, and yi,j,k,t ∈ {0, 1} is indicating
variable for selecting tile configurations. Our experiments
show that this approximation is effective because the total
number of tiles is typically much larger than the number of
SMs.

The optimization under certain memory budget M is formu-
lated as an ILP problem:

MINIMIZE Lr · T (1−r)

WHERE L =

E∑
i=1

N∑
j=1

|S|∑
k=1

∆i,j,k · xi,j,k

WHERE T =
1

P

E∑
i=1

N∑
j=1

|S|∑
k=1

|T |∑
t=1

ci,j,k,t · yi,j,k,t · xi,j,k

SUBJECT TO xi,j,k ∈ 0, 1,

|S|∑
k=1

xi,j,k = 1, ∀i, j

SUBJECT TO yi,j,k,t ∈ 0, 1,

|T |∑
t=1

yi,j,k,t = 1, ∀i, j, k

SUBJECT TO

E∑
i=1

N∑
j=1

|S|∑
k=1

Wi,j,k · xi,j,k ≤ M

(7)

5

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

We first gather offline statistics ∆ and expert activation
patterns. The execution time c for each linear block, un-
der every quantization scheme and tile configuration, is
then estimated based on pre-profiled single-tile runtime
costs. This ILP is subsequently solved to determine de-
sired mixed-precision schemes and tile configurations while
ensure the quantized weight strictly adhere the memory bud-
get. Following quantization scheme allocation, we apply
randomized Hadamard transformations to model weights us-
ing the incoherence processing used in QuaRot (Ashkboos
et al., 2024), then perform GPTQ-based quantization (Fran-
tar et al., 2022). Activations are dynamically quantized at
runtime according to the corresponding allocated scheme.

4.3. Mixed-Precision GEMM Orchestration

wbits: 4, abits:16, gsize: -1, sym: false;

BM: 16, BN:128, BK: 64;

WM: 1, WN: 4, WK: 2;

Compatible Tile Configs: same warp count

Incompatible Tile Configs: different warp count

8
wbits: 8, abits: 8, gsize: -1, sym: true;

BM:128, BN:128, BK: 64;

WM: 2, WN: 4, WK: 1; 8

wbits: 4, abits:16, gsize: -1, sym: true;

BM: 64, BN:128, BK: 32;

WM: 2, WN: 2, WK: 1; 4
wbits: 8, abits:16, gsize: -1, sym: true;

BM:128, BN:128, BK: 64;

WM: 2, WN: 4, WK: 1; 8

Figure 4. MxMoE ensures that tile configurations for different pre-
cisions have the same number of warps.

As discussed in Section 3.3, sequentially processing com-
putations for each expert is inefficient. CUTLASS does not
support heterogeneous precisions. Fusing heterogeneous-
precision GEMMs introduces two fundamental challenges:
1) Optimal tile sizes and warp layouts vary across precisions,
making a unified kernel for all possible precisions inherently
suboptimal, and 2) The large number of possible precision
combinations makes developing a custom kernel for each
combination prohibitively costly. MxMoE addresses these
challenges through an automated kernel generation frame-
work that consists of three key components: micro-kernel
specialization, resource configuration, and tile scheduling.

Micro-Kernel Specialization. We introduce configurable
CTA-level micro-kernels implemented as CUDA device
functions, designed with Cooperative-Thread-Group (CTA)
index independence to enable subsequent horizontal fusion.
Each micro-kernel’s resources are specified via C++ tem-
plate parameters, while memory access patterns are opti-
mized for specific quantization schemes through meticulous
hand-tuning of compute-to-memory access pipelines.

For instance, the W2A16 micro-kernel integrates fused de-

quantization with bit manipulation techniques for optimized
integer-to-float conversion (Kim et al., 2022b), while the
W4A4-g128 variant employs multistage software pipelining
that enforces strict adherence to 128 quantization group con-
straints. Following bitwidth allocation, MxMoE generates
a tile scheduler with a precision-aware routing logic, com-
posing heterogeneous GEMM operations into unified kernel
execution streams. We discuss in detail the advantages of
micro kernel specilization over other possible approaches in
App. A.2.

Resource Configuration. We next address the configu-
ration of computational resources for horizontally fused
mixed-precision Group-GEMM kernels. Building on the
hardware-aware bitwidth allocation in Eq. 7, MxMoE de-
rives tile configurations optimized for each quantization
method under two critical constraints. First, warp count
consistency is enforced across all micro-kernel tile con-
figurations as shown in Fig. 4. Second, shared memory
allocation follows the maximum requirement among fused
operations. These two constraints ensures compliance with
the CUDA programming model’s requirement for uniform
resources across CTAs (as shown in Fig. 3).

To mitigate shared memory waste from divergent tile sizes,
we employ k-dimension tiling (slice-K). As illustrated in
Fig. 4, the tile size for W4A16 is substantially smaller than
that of W8A8. This disparity results in shared memory
under-utilization for W4A16 micro-kernel. Our solution
introduces additional parallelism along the k-dimension
for W4A16 configurations through strategic tile partition-
ing. This dual-purpose optimization simultaneously reduces
warp under-utilization while increasing shared memory uti-
lization.

Tile Schedule. Finally, MxMoE optimizes the scheduling
of tiles with heterogeneous precision requirements. The
execution time of tiles varies significantly across different
precision and tile shape configuration, making the schedul-
ing order a critical determinant of overall completion time.
This is a classic makespan minimization problem. While dy-
namic programming can achieve optimal solution, MxMoE
implements an efficient greedy heuristic that prioritizes com-
putationally intensive tiles. Given that the number of tiles in
MoE blocks typically exceeds the available SM count by a
substantial margin, this approach achieves near-optimal per-
formance (Graham, 1966) while significantly reducing the
scheduling overhead compared to dynamic programming
solutions.

5. Experiments
5.1. Experimental Setup

Model Configurations. We evaluate MxMoE on three open-
source MoE architectures: DeepSeek (Liu et al., 2024a),

6

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

Table 1. We evaluate on the following datasets: Arc-Challenge (AC), Arc-Easy (AE), HellaSwag (HS), LAMBADA-openai (LO),
LAMBADA-standard (LS), PIQA (PQ), and WinoGrande (WG). GPTQ⋆ denotes GPTQ with random Hadamard transformation
preprocessing. #Bits indicates the quantization bitwidth for GPTQ and Quarot (uniform bitwidth), and the average bitwidth for MxMoE.

Model Method #Bits (W-ACT) AC↑ AE↑ HS↑ LO↑ LS↑ PQ↑ WG↑ Avg.↑ PPL↓

DeepSeekV2-Lite

Baseline 16-16 48.98 76.22 77.91 72.33 67.90 80.20 71.19 70.68 5.92

GPTQ⋆ 3.25-16 47.35 75.04 76.44 70.41 65.65 79.05 71.27 69.32 6.18
GPTQ⋆ 2.25-16 37.63 63.47 65.45 52.53 48.55 74.59 64.09 58.04 8.49
QuaRot 4-4 41.81 67.51 74.12 50.01 45.86 75.52 63.38 59.74 8.44
MxMoE 3.25-16 47.87 74.58 76.85 71.10 65.85 79.27 70.09 69.37 6.08
MxMoE 2.25-16 40.36 68.86 68.63 59.56 54.01 75.08 67.80 62.04 7.01
MxMoE 5-5 46.76 74.37 77.38 68.41 64.99 79.38 69.22 68.64 6.16

Qwen1.5-MoE

Baseline 16-16 44.03 69.53 77.26 71.28 64.62 80.47 69.30 68.07 6.79

GPTQ⋆ 3.25-16 43.34 68.60 75.35 68.68 62.80 79.22 66.54 66.36 7.15
GPTQ⋆ 2.25-16 30.89 47.14 60.77 43.72 34.81 69.97 56.20 49.07 11.19
QuaRot 4-4 27.13 40.74 57.10 35.61 25.33 66.43 51.93 43.47 18.44
MxMoE 3.25-16 43.77 66.04 75.92 69.71 62.82 79.11 68.03 66.49 7.02
MxMoE 2.25-16 31.66 53.28 62.80 56.43 51.00 71.33 61.25 55.39 8.79
MxMoE 5-5 42.92 66.04 76.27 70.06 63.40 80.58 67.80 66.72 7.01

Qwen2-MoE

Baseline 16-16 55.20 77.19 84.09 74.35 62.62 82.32 72.14 72.56 5.84

GPTQ⋆ 3.25-16 53.67 75.88 82.90 73.36 63.24 81.01 70.96 71.57 6.11
GPTQ⋆ 2.25-16 38.82 57.66 71.27 58.99 49.72 73.29 60.30 58.58 7.98
QuaRot 4-4 33.19 42.72 54.34 23.02 9.53 63.87 50.12 39.54 110.66
MxMoE 3.25-16 53.84 76.30 82.81 72.39 60.95 81.34 69.69 71.05 6.18
MxMoE 2.25-16 45.05 68.86 77.13 66.00 56.61 75.41 62.90 64.57 7.57
MxMoE 5-5 54.86 75.55 82.69 72.87 62.68 79.49 70.96 71.30 6.25

Mixtral-8×7B

Baseline 16-16 66.38 85.39 85.95 77.28 73.06 85.20 76.72 78.57 3.88

GPTQ⋆ 3.25-16 64.42 84.01 85.12 76.77 71.76 83.79 76.16 77.43 4.17
GPTQ⋆ 2.25-16 48.89 72.35 76.95 68.39 61.44 77.15 67.72 67.56 5.69
QuaRot 4-4 50.60 68.69 75.65 40.95 38.83 76.88 61.01 58.94 9.06
MxMoE 3.25-16 64.25 84.22 85.04 76.98 71.86 84.17 75.93 77.49 4.15
MxMoE 2.25-16 48.98 72.77 77.44 68.68 62.18 76.28 68.90 67.89 5.63
MxMoE 5-5 64.08 83.71 85.10 76.21 71.78 83.79 73.80 76.92 4.20

Mixtral (Jiang et al., 2024), and Qwen (Yang et al., 2024)
as detailed in Table 2. DeepSeek-V2-Lite employs a hy-
brid architecture: the first layer employs dense MLP instead
of MoE blocks in other layers which are quantized with
GPTQ 4-bit per-channel asymmetric quantization in our
experiments. We focus on the quantization of MoE blocks,
retaining full precision for the attention modules. Experi-
ments conducted on Nvidia RTX-4090.

Table 2. Architectural Specifications of Evaluated MoE Models
Model Variant Params (GB) Experts TopK

Mixtral-8×7B-Instruct-v0.1 92.9 8 2
Qwen1.5-MoE 26.7 60+4 4
Qwen2-MoE-Instruct 106.9 64+8 8
DeepSeek-V2-Lite 29.3 64+2 6

Calibration. MxMoE requires offline calibration to deter-
mine the sensitivity of linear-block and expert activation
frequencies for bitwidth allocation. For all experiments, we
use 128 sequences, each of length 4096, drawn from the
Wikitext2 training set (Merity et al., 2016). This calibra-
tion process typically takes from several minutes to a few
hours depending on the model size. To enhance quantiza-

tion accuracy, we apply a random hadamard transformation.
We disabled online rotations because they failed on some
models like DeepSeek-V2-Lite due to the shape constrain.
For weight quantization, MxMoE employs GPTQ, using the
same calibration set with that of bitwidth allocation.

5.2. Accuracy Results

For weight-only quantization we test 3-bit and 2-bit quanti-
zation, comparing with GPTQ, configured with group size
128, asymmetric min-max quantization, where the scale and
zero-point are stored in 16-bit format, resulting in an aver-
age bitwidth of 3.25 and 2.25, respectively. To ensure fair-
ness, we apply the same random Hadamard transformation
for GPTQ. MxMoE use r = 1 as extremely low-bitwidth
implies resource-constrained environment, where model ac-
curacy is more important. The results in Tab. 1 show that
GPTQ suffers significant performance degradation at 2.25-
bit, while MxMoE consistently outperforms GPTQ across
all models. At 3.25-bit, MxMoE outperforms GPTQ in
most models except Qwen2-MoE. This exception may stem
from inaccuracies in the sensitivity statistics, amplified by
inter-layer dependencies (Yue et al., 2024). Using a cross-
layer loss as sensitivity metric instead layer loss in Eq. 6

7

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

#Tokens: 512
0

20

40

60

80

100

TF
LO

PS

#Tokens: 8192
0

200

400

600

TF
LO

PS

5.92

5.94

5.96

5.98

6.00

6.00

6.50

7.00

7.50

8.00

8.50
#Tokens: 512

0

25

50

75

100

#Tokens: 8192
0

200

400

600

6.80

6.85

6.90

7.50

10.00

12.50

15.00

17.50

#Tokens: 512
0

25

50

75

100

125

#Tokens: 8192
0

200

400

600

800

5.85

5.88

5.90

5.92

5.95

20.00

40.00

60.00

80.00

100.00

#Tokens: 512
0

25

50

75

100

125

#Tokens: 8192
0

200

400

600

800

3.88

3.90

3.93

3.95

3.98

4.00

PP
L

4.00

5.00

6.00

7.00

8.00

9.00

PP
L

DeepSeek-V2-Lite Qwen1.5-MoE Qwen2-MoE Mixtral 8x7B
FP16 W4A16 W8A8 W4A4 MxMoE(W4.25A15.5) MxMoE(W5A5)

Figure 5. Computational throughput of MoE blocks across models and precision settings. W4A16 denotes 4-bit weight-only per-channel
asymmetric quantization; W8A8 and W4A4 denote 8/4-bit weight-activation per-channel symmetric quantization. Number followed
MxMoE represents the average bitwidth for weight and activation. The ⋆ symbols indicate corresponding perplexity values on WikiText2.

may mitigate this issue, and we leave this to future work.
Improvement of MxMoE on Mixtral is relative margin. This
is due to Mixtral’s fewer experts (Tab. 2), resulting in a more
limited mixed-precision design space.

For weight-activation quantization, we compare MxMoE
with Quarot (Ashkboos et al., 2024). MxMoE use r =
0.75. We focus on 4-bit as 8-bit is almost lossless. Quarot
experiences a significant accuracy drop at 4-bit across all
models, while MxMoE achieves substantial improvements
with just 1 additional bit (i.e. average 5-bit). These gains
are attributed to the higher sensitivity of certain activations
to bitwidth, as shown in prior studies (Dettmers et al., 2022;
Sun et al., 2024). By allocating higher bitwidth for the
sensitive activation, MxMoE delivers notable performance
improvements. The sources of accuracy gains under this
configuration are rigorously dissected in App. A.1.

5.3. Performance Analysis

Due to the lack of established low-precision Group-GEMM
baselines, we evaluate both uniform-bitwidth and mixed-
precision kernels generated by MxMoE. MxMoE use r =
0.75 for all the mixed-precision scheme. 16-bit Group-
GEMM kernel is from CUTLASS. we assess the computa-
tional throughput of MoE blocks across different models,
only expert computation is counted as other operations (
gating, topk, sort etc.) is negligible. We randomly sam-
ple sequences from WikiText-2 with lengths of 512 and
8192 tokens, respectively representing memory-bound and
compute-bound workloads. As shown in Fig. 5, mixed-
precision scheme achieve substantial performance improve-
ments: 1.6− 2.7× throughput increase for memory-bound
workloads and 3−3.4× for compute-bound workloads com-
pared to full-preicision.

Table 3. Comparison of different allocation granularities. Test with
5-bits weight-activation quantization. Evaluation metrics are the
same as described in settings.

Model PPL↓ Avg-Acc↑
Linear Expert Linear Expert

DeepSeek-V2-Lite 6.11 6.32 69.01 67.88
Qwen1.5-MoE 6.95 6.98 67.35 67.11

For the memory-bound scenario (512 tokens), W8A8 con-
sistently underperforms both W4A16 and W4.25A15.5, as
the limited tokens per expert make MoE block computations
memory-bound. MxMoE (W4.25A15.5) not only achieves
better accuracy than W4A16 but also delivers up to 25%
higher throughput on Qwen1.5-MoE. This improvement
stems from our hardware-aware bitwidth allocation strategy,
which assigns lower-precision activations to frequently acti-
vated experts that form compute-bound operations (as dis-
cussed in Section 3.2). In the compute-bound scenario (8192
tokens), we compare against W4A4 and W8A8. While
W4A4 offers significant speedup at the cost of substan-
tially increased perplexity, and W8A8 maintains accuracy
with minimal acceleration, MxMoE (W5A5) achieves up to
29.4% performance improvement over W8A8 while main-
taining comparable perplexity to full-precision models.

5.4. Ablation Studies

Effect of bitwidth allocation granularity. MxMoE employ
linear-block level allocation instead of expert-level alloca-
tion in previous studies. We also perform bitwidth allocation
at expert level as shown in table 3. The results demonstrate
that linear-block allocation consistently outperforms expert-
level allocation.

8

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

0.0 0.25 0.5 0.75 1.0
Hyper-Parameter r

550

575

600

625

650
TO

PS

6.0

6.5

7.0

7.5

8.0

8.5

PP
L

60

62

64

66

68

Av
g-

Ac
c.TOPS

PPL
Avg-Acc.

Figure 6. Impact of the hyperparameter r on the trade-off between
model accuracy and performance. Model: DeepSeek-V2-Lite.

Impact of the hyperparameter. MxMoE introduces the
hyperparameter r to balance efficiency and accuracy. We
employ r = 0.75 in all experiments except extremely low-
bitwidth weight-only quantization in Tab. 1, where r = 1.
Intuitively, r = 1 prioritizes maximizing accuracy, while
r = 0 focuses solely on efficiency. Now we quantitatively
investigate the impact of the tradeoff parameter. As shown
in Fig. 6, performance improves as r decreases, at the cost
of reduced accuracy. Notably, when optimizing for both
objectives, such as at r = 0.75, we observe significant per-
formance gains with minimal accuracy drop. This highlights
the effectiveness of hardware-aware bitwidth allocation.

6. Conclusion
We propose MxMoE, an accuracy-performance co-design
framework for MoE mixed-precision quantization. MxMoE
allocates bitwidth through joint optimization of computa-
tional efficiency and model accuracy and generates opti-
mized mixed-precision Group-GEMM kernels, achieving
significant acceleration while preserving model accuracy.

Acknowledgements
The authors would like to thank the diligent anonymous re-
viewers for their constructive feedback. Project supported by
Shanghai Municipal Science and Technology Major Project.
This study was supported in part by the InnoHK initiative
of the Innovation and Technology Commission of the Hong
Kong Special Administrative Region Government.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B.,

Cameron, P., Jaggi, M., Alistarh, D., Hoefler, T., and
Hensman, J. Quarot: Outlier-free 4-bit inference in ro-
tated llms. arXiv preprint arXiv:2404.00456, 2024.

Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P. Low-
bit quantization of neural networks for efficient inference.
In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pp. 3009–3018. IEEE,
2019.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. Hawq: Hessian aware quantization of neural
networks with mixed-precision. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 293–302, 2019.

Duanmu, H., Yuan, Z., Li, X., Duan, J., Zhang, X., and
Lin, D. Skvq: Sliding-window key and value cache
quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
Gptq: Accurate post-training quantization for genera-
tive pre-trained transformers. ArXiv, abs/2210.17323,
2022. URL https://api.semanticscholar.
org/CorpusID:253237200.

Frantar, E., Castro, R. L., Chen, J., Hoefler, T., and Alis-
tarh, D. Marlin: Mixed-precision auto-regressive paral-
lel inference on large language models. arXiv preprint
arXiv:2408.11743, 2024.

Graham, R. Bounds on multiprocessing timing anomalies.
Bell System Tech. J., 45:1563–1581, 1966.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Huang, W., Liao, Y., Liu, J., He, R., Tan, H., Zhang, S., Li,
H., Liu, S., and Qi, X. Mc-moe: Mixture compressor
for mixture-of-experts llms gains more. arXiv preprint
arXiv:2410.06270, 2024.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

9

https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:253237200

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Kim, Y. J., Henry, R., Fahim, R., and Awadalla, H. H. Who
says elephants can’t run: Bringing large scale moe mod-
els into cloud scale production. ArXiv, abs/2211.10017,
2022a. URL https://api.semanticscholar.
org/CorpusID:253708032.

Kim, Y. J., Henry, R., Fahim, R., and Awadalla, H. H.
Who says elephants can’t run: Bringing large scale
moe models into cloud scale production. arXiv preprint
arXiv:2211.10017, 2022b.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Li, P., Jin, X., Cheng, Y., and Chen, T. Examining post-
training quantization for mixture-of-experts: A bench-
mark. arXiv preprint arXiv:2406.08155, 2024.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:
Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87–100, 2024a.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C.,
and Han, S. Qserve: W4a8kv4 quantization and sys-
tem co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024b.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C.,
Dengr, C., Ruan, C., Dai, D., Guo, D., et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434,
2024a.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Muennighoff, N., Soldaini, L., Groeneveld, D., Lo, K., Mor-
rison, J., Min, S., Shi, W., Walsh, P., Tafjord, O., Lambert,

N., et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. Massive
activations in large language models. arXiv preprint
arXiv:2402.17762, 2024.

Tang, P., Liu, J., Hou, X., Pu, Y., Wang, J., Heng, P.-A.,
Li, C., and Guo, M. Hobbit: A mixed precision expert
offloading system for fast moe inference. arXiv preprint
arXiv:2411.01433, 2024.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H.,
Yan, E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A.,
Nicely, M., Merrill, D., Blasig, D., Qiao, F., Majcher, P.,
Springer, P., Hohnerbach, M., Wang, J., and Gupta, M.
CUTLASS, January 2023. URL https://github.
com/NVIDIA/cutlass.

The Mosaic Research Team. Introducing DBRX:
A New State-of-the-Art Open LLM, 2024. URL
https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:
Hardware-aware automated quantization with mixed pre-
cision. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8612–8620,
2019.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
2009.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han, S.
Smoothquant: Accurate and efficient post-training quanti-
zation for large language models. ArXiv, abs/2211.10438,
2022. URL https://api.semanticscholar.
org/CorpusID:253708271.

Xue, F., Zheng, Z., Fu, Y., Ni, J., Zheng, Z., Zhou,
W., and You, Y. Openmoe: An early effort on open
mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie,
L. Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm

10

https://api.semanticscholar.org/CorpusID:253708032
https://api.semanticscholar.org/CorpusID:253708032
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

serving. Proceedings of Machine Learning and Systems,
6:196–209, 2024.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y.,
Wang, Z., Shen, L., Wang, A., Li, Y., Su, T., Yang, Z., and
Tang, J. Codegeex: A pre-trained model for code gener-
ation with multilingual benchmarking on humaneval-x.
In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5673–5684,
2023.

11

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

A. Appendix
A.1. Case Study: Detailed Analysis of MxMoE W5A5 Scheme

Table 4. WikiText2 perplexity under different weight-activation
bitwidth (RTN-token/channel quantization). Column: activation
bitwidth, row: weight bitwidth.

#Bits 4 5 6 7 8

4 68079.039 41.433 11.298 9.406 8.068

5 12305.585 38.707 9.715 8.169 7.335

6 14251.822 26.297 9.216 8.196 7.204

7 18151.474 34.775 9.747 8.182 7.325

8 19091.917 38.990 9.525 8.260 7.278

Table 5. WikiText2 perplexity of Qwen1.5-MoE under different quan-
tization bitwidth settings. Both MxMoE and QuaRot employ RTN
weight quantization.

Setting w4a4 w5a5 w6a6 w7a7 w8a8

QuaRot (Uni) 36.385 7.998 6.990 6.852 6.814

MxMoE (Mix) - 7.160 - - -

We conduct in-depth analysis of MxMoE’s W5A5 mech-
anism and its accuracy advantages. As shown in Tab. 4,
reducing activation bitwidth from 5 to 4 bits causes sig-
nificant model quality degradation, demonstrating critical
quantization sensitivity around 4-bit activation precision.
This can be attribute to the massive outlier observed in the
input activation of Down proj (Sun et al., 2024), where
heavy-tailed activation distributions require higher preci-
sion preservation. MxMoE dynamically identifies these
quantization-sensitive components (whose bitwidth re-
duction causes substantial model quality degradation) and
allocates elevated bitwidth accordingly. The heteroge-
neous bitwidth allocation strategy for Qwen1.5-MoE is
visualized in Tab. 7.

To further validate mixed-precision benefits, we com-
pare against QuaRot (Ashkboos et al., 2024) in Tab. 5.
While uniform bitwidth scaling shows similar perplex-
ity improvement trends in QuaRot, practical deployment
remains constrained by the capacity of model hardware,
on which 5-bits operation is not supported. In contrast,
MxMoE achieves better accuracy while maintaining hard-
ware compatibility through mixed-precision allocation
that leverages existing low-bitwidth arithmetic units.

A.2. The Necessity of Automated Kernel-Generation

MxMoE mitigates the combinatorial explosion of mixed-precision configurations by automating kernel generation 4.3. To
illustrate the effectiveness of this approach, we compare our strategy with two alternative solutions:

• Developing a universal kernel to handle all precision combinations: This approach would compromise kernel per-
formance. We provide a breakdown demonstrating the limitations of this method relative to micro-kernel specialization
in MxMoE. Specifically, the kernel for W4A4-per-channel could theoretically share the same software pipeline with
W4A4-group128, but enforcing universality significantly degrades performance. As shown in Tab. 6, we test different
kernels under the shape [8192, 8192, 8192], and the specialized kernel always outperform unified kernels. The reason
is that unifying the two pipelines requires introducing runtime condition checks, which hinder loop unrolling in the
MAC-loop. Moreover, to support group-size=128, the per-channel kernel’s tile-size selection is constrained, making
configurations such as tile k = 256 infeasible.

Table 6. Performance comparison of different W4A4 quantization kernels on GPU TOPS

Kernel Type W4A4 per-channel TOPS W4A4 group128 TOPS

W4A4 per-channel (Specialized) 1070.5303 N/A
W4A4 group128 (Specialized) N/A 667.3349
Unified Kernel 929.1997 412.0268

• Developing separate kernels for each configuration: While handcrafted kernels could match performance, they
require substantial engineering effort. If a given hardware platform supports five quantization candidates (e.g., w2a6,
w4a16, w8a8, w4a4, w4a4 with group-size 128), implementing individual kernels for all possible configurations
would require 5! = 120 kernels. In contrast, our micro-kernel specialization approach requires implementing only
5 configurable micro-kernels, which are automatically combined by the kernel generator to form optimized fused
operators.

12

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

Table 7: W5A5 mixed-precision scheme allocated by MxMoE. Qwen1.5-MoE, layer 5.

Expert Gate Up Down

w-act w gsize a gsize w-act w gsize a gsize w-act w gsize a gsize

0 4-4 128 128 4-4 128 128 4-4 128 128
1 4-4 128 128 4-4 128 128 8-8 -1 -1
2 4-4 128 128 4-4 128 128 8-8 -1 -1
3 4-4 128 128 4-4 128 128 8-8 -1 -1
4 4-4 -1 -1 4-4 -1 -1 4-4 128 128
5 4-4 128 128 4-4 128 128 4-4 128 128
6 4-4 128 128 4-4 128 128 8-8 -1 -1
7 4-4 -1 -1 4-4 -1 -1 4-4 128 128
8 4-4 128 128 4-4 128 128 8-8 -1 -1
9 4-4 128 128 4-4 128 128 8-8 -1 -1

10 4-4 128 128 4-4 128 128 8-8 -1 -1
11 4-4 128 128 4-4 128 128 8-8 -1 -1
12 4-4 128 128 4-4 128 128 8-8 -1 -1
13 4-4 128 128 4-4 128 128 4-4 128 128
14 4-4 -1 -1 4-4 -1 -1 4-4 128 128
15 4-4 128 128 4-4 128 128 8-8 -1 -1
16 4-4 128 128 4-4 128 128 8-8 -1 -1
17 4-4 128 128 4-4 128 128 8-8 -1 -1
18 4-4 128 128 4-4 128 128 8-8 -1 -1
19 4-4 128 128 4-4 128 128 8-8 -1 -1
20 4-4 128 128 4-4 128 128 4-4 128 128
21 4-4 128 128 4-4 128 128 8-8 -1 -1
22 8-8 -1 -1 8-8 -1 -1 8-8 -1 -1
23 4-4 128 128 4-4 128 128 4-4 128 128
24 4-4 128 128 4-4 128 128 8-8 -1 -1
25 4-4 128 128 4-4 128 128 4-4 128 128
26 4-4 128 128 4-4 128 128 8-8 -1 -1
27 4-4 128 128 4-4 128 128 4-4 128 128
28 4-4 128 128 4-4 128 128 8-8 -1 -1
29 4-4 128 128 4-4 128 128 4-4 128 128
30 4-4 128 128 4-4 128 128 4-4 128 128
31 4-4 128 128 4-4 128 128 8-8 -1 -1
32 4-4 128 128 4-4 128 128 4-4 128 128
33 4-4 128 128 4-4 128 128 4-4 128 128
34 4-4 128 128 4-4 128 128 8-8 -1 -1
35 4-4 128 128 4-4 128 128 8-8 -1 -1
36 4-4 128 128 4-4 128 128 8-8 -1 -1
37 4-4 128 128 4-4 128 128 8-8 -1 -1
38 4-4 128 128 4-4 128 128 8-8 -1 -1
39 4-4 128 128 4-4 128 128 4-4 128 128
40 4-4 128 128 4-4 128 128 4-4 128 128
41 4-4 128 128 4-4 128 128 8-8 -1 -1
42 4-4 128 128 4-4 128 128 8-8 -1 -1
43 4-4 128 128 4-4 128 128 8-8 -1 -1
44 4-4 -1 -1 4-4 -1 -1 4-4 128 128
45 4-4 128 128 4-4 128 128 8-8 -1 -1
46 4-4 128 128 4-4 128 128 8-8 -1 -1
47 4-4 128 128 4-4 128 128 4-4 128 128
48 4-4 128 128 4-4 128 128 8-8 -1 -1

13

MxMoE: Mixed-precision Quantization for MoE with Accuracy and Performance Co-Design

Table 7: MxMoE W5A5 scheme (continued)

Expert Gate Up Down

w-act w gsize a gsize w-act w gsize a gsize w-act w gsize a gsize

49 4-4 128 128 4-4 128 128 8-8 -1 -1
50 4-4 128 128 4-4 128 128 4-4 128 128
51 4-4 128 128 4-4 128 128 4-4 128 128
52 4-4 128 128 4-4 128 128 8-8 -1 -1
53 4-4 128 128 4-4 128 128 4-4 128 128
54 4-4 -1 -1 4-4 -1 -1 4-4 128 128
55 4-4 -1 -1 4-4 -1 -1 4-4 128 128
56 4-4 -1 -1 4-4 -1 -1 4-4 128 128
57 4-4 128 128 4-4 128 128 4-4 128 128
58 4-4 -1 -1 4-4 -1 -1 4-4 128 128
59 4-4 128 128 4-4 128 128 8-8 -1 -1
60 4-4 -1 -1 4-4 -1 -1 8-8 -1 -1

14

