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Abstract

In this paper, we consider the related problems of multicalibration — a multigroup
fairness notion and omniprediction — a simultaneous loss minimization paradigm,
both in the distributional and online settings. The recent work of Garg et al. (2024)
raised the open problem of whether it is possible to efficiently achieve Õ(

√
T )

ℓ2-multicalibration error against bounded linear functions. In this paper, we answer
this question in a strongly affirmative sense. We propose an efficient algorithm
that achieves Õ(T

1
3 ) ℓ2-swap multicalibration error (both in high probability and

expectation). On propagating this bound onward, we obtain significantly improved
rates for ℓ1-swap multicalibration and swap omniprediction for a loss class of con-
vex Lipschitz functions. In particular, we show that our algorithm achieves Õ(T

2
3 )

ℓ1-swap multicalibration and swap omniprediction errors, thereby improving upon
the previous best-known bound of Õ(T

7
8 ). As a consequence of our improved

online results, we further obtain several improved sample complexity rates in the
distributional setting. In particular, we establish a Õ(ε−3) sample complexity of
efficiently learning an ε-swap omnipredictor for the class of convex and Lipschitz
functions, Õ(ε−2.5) sample complexity of efficiently learning an ε-swap agnostic
learner for the squared loss, and Õ(ε−5), Õ(ε−2.5) sample complexities of learn-
ing ℓ1, ℓ2-swap multicalibrated predictors against linear functions, all of which
significantly improve on the previous best-known bounds.

1 Introduction

Recent years have witnessed surprising connections between multicalibration — a multigroup fairness
perspective (Hébert-Johnson et al., 2018) and omniprediction — a simultaneous loss minimization
paradigm, first introduced by Gopalan et al. (2022a). In this paper, we consider multicalibration and
omniprediction in both the distributional (offline) and online settings. We begin by introducing these
two notions, starting with some notation. Let the instance space be X ⊂ Rd, label set be Y = {0, 1},
D be an unknown distribution over X ×Y , ℓ : [0, 1]×Y → R be a loss function, L be a class of loss
functions, F be a collection of hypotheses over X , and p : X → [0, 1] be a predictor. Multicalibration
(for Boolean functions, e.g., Boolean circuits, decision trees F ⊂ {0, 1}X ) was introduced by
Hébert-Johnson et al. (2018) as a mechanism to incentivize fair predictions. For Boolean functions,
multicalibration can be interpreted as calibration (the property that the predictions of p are correct
conditional on themselves, i.e., v = E[y|p(x) = v] for all v ∈ Range(p)), which is additionally
conditioned on set membership. In its most general form, for an arbitrary bounded hypothesis class
F ⊂ RX , multicalibration translates to the understanding that the hypotheses in F do not have any
correlation with the residual error y−p(x) when conditioned on the level sets of p. On the other hand,
omnipredictors are sufficient statistics that simultaneously encode loss-minimizing predictions for a

*Author ordering is alphabetical.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



broad class of loss functions L. Notably, omniprediction generalizes loss minimization for a fixed
loss function (agnostic learning (Haussler, 1992)) to simultaneous loss minimization. Since different
losses expect different “types” of optimal predictions (e.g., for the squared loss ℓ(p, y) = (p− y)2,
the optimal predictor p that minimizes the expected risk E[ℓ(p(x), y)] is the Bayes optimal predictor
E[y|x], where as for the ℓ1-loss ℓ(p, y) = |p− y| the optimal predictor is I[E[y|x] ≥ 0.5]), such a
simultaneous guarantee is made possible by a “post-processing” or “type-checking” of the predictions
(a univariate data free minimization problem) via a loss specific function kℓ, i.e., for each ℓ ∈ L,
kℓ ◦ p incurs expected loss that is comparable to the best hypothesis in F .

Even though multicalibration is not stated in the context of loss minimization, the first construction
of an efficient omnipredictor for the class of convex and Lipschitz functions Lcvx in Gopalan et al.
(2022a) was achieved via multicalibration, thereby representing a surprising connection between
the above notions. However, multicalibration is not necessary for omniprediction (Gopalan et al.,
2022a), thereby raising an immediate question related to the characterization of omniprediction in
terms of a sufficient and necessary condition. Motivated by the role of swap regret in online learning
and to explore the interplay between multicalibration and omniprediction, Gopalan et al. (2023b)
introduced the concepts of swap multicalibration, swap omniprediction, and an accompanying notion
swap agnostic learning, and also established a computational equivalence between the above notions.
Informally, each of the above notions is a stronger version of its non swap variant, and requires a
particular swap-like guarantee (specific to the considered notion) to hold at the scale of the level sets
of the predictor, e.g., for swap agnostic learning, the predictor p is required to have a loss that is
comparable to the best hypothesis in F not just overall but also when conditioned on the level sets of
p.

Despite the qualitative progress in understanding the interplay between swap omniprediction and
swap multicalibration in both the distributional (Gopalan et al., 2023b) and online settings (Garg et al.,
2024), a quantitative statistical treatment for the above measures has a huge scope of improvement
even for the quintessential setting when the hypothesis class comprises of bounded linear functions
F lin

1 . In particular, the existing bounds for swap omniprediction and ℓ2-swap multicalibration in the
online setting as derived by Garg et al. (2024) are much worse than the corresponding bounds for
online omniprediction (Okoroafor et al., 2025) and ℓ2-calibration (Luo et al., 2025; Fishelson et al.,
2025; Foster and Hart, 2023; Foster and Vohra, 1998) respectively. Even more, the sample complexity
of learning an efficient swap omnipredictor for the class of convex Lipschitz functions Lcvx with error
at most ε is ≈ ε−10 (Gopalan et al., 2023b), which is prohibitively large. Along the lines of the above
concern, Garg et al. (2024) devised an efficient algorithm with Õ(T

3
4 ) ℓ2-swap multicalibration

error after T rounds of interaction between a forecaster and an adversary, and raised the problem
of whether it is possible to efficiently achieve Õ(

√
T ) ℓ2-multicalibration error against F lin

1 . In this
paper, we answer this question in a strongly affirmative sense by proposing an efficient algorithm
that achieves Õ(T

1
3 ) ℓ2-swap multicalibration error against F lin

1 . On propagating the above bound
onward, we obtain a significantly improved rate for swap omniprediction for Lcvx. Subsequently,
using our improved rates in the online setting, we construct efficient randomized predictors for swap
omniprediction and swap agnostic learning in the distributional setting and derive explicit sample
complexity rates, which significantly improve upon the previous best-known bounds.

Contributions and Overview of Results. Throughout the paper, we consider predictors p such
that Range(p) ⊆ Z , where Z = {0, 1

N , . . . , N−1
N , 1} is a finite discretization of [0, 1] and N is a

parameter to be specified later. Similarly, in the online setting, we consider forecasters that make
predictions that lie in Z . Our contributions are as follows.

• In Section 2, we propose an efficient algorithm that achieves Õ(T
1
3 d

2
3 ) ℓ2-swap multicalibration

error (both in high probability and expectation) against the class of d-dimensional linear functions
F lin

1 . In contrast to our result, Garg et al. (2024) achieved a Õ(T
3
4 d) bound by reducing ℓ2-swap

multicalibration to the problem of minimizing contextual swap regret — an extension of swap
agnostic learning to the online setting. Towards achieving this improved rate, we proceed in the
following manner:

1. We introduce the notions of pseudo swap multicalibration and pseudo contextual swap regret
, where the swap multicalibration error (swap regret respectively) is measured via the the
conditional distributions P1, . . . ,PT rather than the true realizations p1, . . . , pT . Subsequently,
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in Section 2.2, in a similar spirit to Garg et al. (2024), we establish a reduction from pseudo
swap multicalibration to pseudo contextual swap regret.

2. By not taking into account the randomness in the predictions, the pseudo variants are often
easier to optimize. Indeed, in Section 2.3, we propose a deterministic algorithm that achieves
Õ(T

1
3 d

2
3 ) pseudo contextual swap regret. In contrast, for contextual swap regret, Garg et al.

(2024) established a Õ(T
3
4 d) bound by using the reduction from swap regret to external regret

as proposed by Ito (2020). To achieve the desired bound for pseudo contextual swap regret, we
use the Blum-Mansour (BM) reduction (Blum and Mansour, 2007) instead. On a high level,
the key to the improvement from T

3
4 (contextual swap regret) to T

1
3 (pseudo contextual swap

regret) is the following: Garg et al. (2024) derived a Õ(T/N +N
√
T ) bound on the contextual

swap regret, where the Õ(1/N) term is accounted due to a rounding operation (additively
accounted for T rounds) and the Õ(N

√
T ) term is due to a concentration argument, which is

inevitable since the reduction by Ito (2020) is randomized. However, by using the BM reduction
and an improved rounding procedure due to Fishelson et al. (2025), we propose a deterministic
algorithm that achieves Õ(T/N2 +N) bound on the pseudo contextual swap regret, where the
Õ(1/N2) term is due to the rounding operation and the O(N) term is because each of the N

external regret algorithms in the BM reduction can be instantiated to guarantee Õ(1) external
regret against bounded linear functions. The desired result follows by choosing N = Θ̃(T

1
3 ).

3. Using the reduction from pseudo swap multicalibration to pseudo contextual swap regret,
we obtain a Õ(T

1
3 d

2
3 ) bound for the former. Noticeably, since the swap multicalibration

error is possibly random and our algorithm for minimizing pseudo swap multicalibration is
deterministic, we derive a concentration bound in going from pseudo swap multicalibration
to swap multicalibration. By performing a martingale analysis using Freedman’s inequality
(Lemma 6 in Appendix B), we show that this only accounts for a Õ(N) deviation term, which
does not change the final rate.

• In Section C in the appendix, we explore several consequences of our improved rate for ℓ2-swap
multicalibration. Particularly, in Section C.1, we show that our algorithm from Section 2.3 achieves
Õ(T

2
3 d

1
3 ) swap omniprediction error for Lcvx against Faff

res , where Faff
res is a class of appropriately

scaled and shifted linear functions. This significantly improves upon the Õ(T
7
8 d

1
2 ) rate of Garg

et al. (2024). In Section C.2, we show that the same algorithm (with a different choice of the
discretization parameter N ) achieves Õ(T

3
5 d

2
5 ) contextual swap regret, which improves upon

the Õ(T
3
4 d) bound of Garg et al. (2024). We summarize a comparison of our results to the ones

derived by Garg et al. (2024) in Table 1.

contextual swap
regret (A)

ℓ2-swap
multicalibration (B)

ℓ1-swap
multicalibration (C)

swap
omniprediction (D)

pseudo contextual
swap regret (E)

ℓ2-pseudo swap
multicalibration (F)

Figure 1: Path A → B → C → D represents the sequence of reductions followed by Garg et al. (2024),
whereas path E → F → B → C → D represents our road-map. To derive an improved guarantee for
B, we establish: (i) a Õ(T

1
3 ) bound for E; (ii) a reduction from E to F; and (c) a concentration bound

from F to B. The improved guarantees for C and D follow as a consequence of the improvement in B.
The improved guarantee for A follows due to E and a concentration bound from E to A.

We remark that although relevant ideas for the above steps have appeared in the literature, our
paper successfully unifies them in a novel framework to achieve state-of-the-art bounds for swap
multicalibration and swap omniprediction. Refer to Figure 1 for a summary of our framework. For a
detailed comparison with prior work, refer to the section on related work.

As a consequence of our improvements in the online setting, we establish several improved sample
complexity rates in the distributional setting. Towards achieving so, we perform an online-to-
batch conversion (Cesa-Bianchi et al., 2004) using our online algorithm in Section 2.3 to obtain a
randomized predictor p that mixes uniformly over the T predictors output by the online algorithm.
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Table 1: Comparison of our rates with the previous best-known bounds. For simplicity, we only
tabulate the leading dependence on ε, T . The first 4 rows correspond to regret/error bounds (as a
function of T ) in the online setting, whereas the last 4 rows correspond to sample complexity bounds
(as a function of ε) in the distributional setting.

ONLINE (REGRET/ERROR) AND DISTRIBUTIONAL (SAMPLE COMPLEXITY) BOUNDS

Quantity Previous bound Our bound

Contextual swap regret Õ(T
3
4 ) (Garg et al., 2024) Õ(T

3
5 ) (Theorem 3)

ℓ2-swap multicalibration Õ(T
3
4 ) (Garg et al., 2024) Õ(T

1
3 ) (Theorem 1)

ℓ1-swap multicalibration Õ(T
7
8 ) (Garg et al., 2024) Õ(T

2
3 ) (Corollary 1)

Swap omniprediction Õ(T
7
8 ) (Garg et al., 2024) Õ(T

2
3 ) (Theorem 2)

Swap agnostic error Õ(ε−5) (Globus-Harris et al.,
2023)

Õ(ε−2.5) (Theorem 5)

ℓ2-swap multicalibration Õ(ε−5) (Globus-Harris et al.,
2023)

Õ(ε−2.5) (Theorem 6)

ℓ1-swap multicalibration Õ(ε−10) (Hébert-Johnson
et al., 2018; Globus-Harris

et al., 2023)

Õ(ε−5) (Theorem 6)

Swap omniprediction Õ(ε−10) (Hébert-Johnson
et al., 2018; Globus-Harris

et al., 2023)

Õ(ε−3) (Theorem 4)

• In Section D.1 in the appendix, we show that ≳ ε−3 samples are sufficient for p to be a swap om-
nipredictor for Lcvx against Faff

res with error at most ε. To prove this, we obtain a tight concentration
bound that relates the swap omniprediction errors in the distributional and online settings. Our
arguments in deriving the concentration bound are motivated by a recent work by Okoroafor et al.
(2025), who proposed a similar online-to-batch conversion for omniprediction. However, compared
to their result, an online-to-batch conversion for swap omniprediction poses several other technical
nuances. In particular, unlike Okoroafor et al. (2025), we cannot merely use Azuma-Hoeffding’s
inequality or related concentration inequalities that guarantee concentration to a

√
n factor (n is the

number of random variables). By performing a careful martingale analysis using Freedman’s in-
equality on a geometric partition of the interval [0, 1], we finally establish the desired concentration
bound.

• In Section D.2, we specialize to the squared loss and show that ≳ ε−2.5 samples are sufficient for p
to achieve swap agnostic error ε. Notably, since the squared loss is convex and Lipschitz, the result
of Section D.1 already gives a Õ(ε−3) sample complexity. However, specifically for the squared
loss, we derive a concentration bound that relates the contextual swap regret with the swap agnostic
error. As we show, this bound is tighter than the corresponding deviation for swap omniprediction.
Combining this with an improved Õ(T

3
5 ) bound for contextual swap regret compared to swap

omniprediction (Õ(T
2
3 )), we obtain the improved sample complexity. Finally, in Section D.3, by

using a characterization of ℓ2-swap multicalibration in terms of swap agnostic learning (Globus-
Harris et al., 2023; Gopalan et al., 2023b), we establish a Õ(ε−2.5) sample complexity for ℓ2-swap
multicalibration, and thus Õ(ε−5) for ℓ1-swap multicalibration against F lin

1 . We summarize our
results and the previous best-known bounds in Table 1. For discussion regarding the previously
best-known bounds, refer to the section on additional related work (Appendix A).

1.1 Preliminaries

For simplicity, we give formal definitions of several notions considered in the paper in the online
setting, and defer definitions for the distributional setting to Appendix D.

Online (Swap) Multicalibration. Following Garg et al. (2024), we model online (swap) multicali-
bration as a sequential decision making problem over binary outcomes that lasts for T time steps.
At each time t ∈ [T ]: (a) the adversary presents a context xt ∈ X ; (b) the forecaster randomly
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predicts pt ∼ Pt, where Pt ∈ ∆Z represents the conditional distribution of pt; and (c) the adversary
reveals the true label yt ∈ Y . For simplicity in the analysis, throughout the paper we assume that
the adversary is oblivious, i.e., it decides the sequence (x1, y1), . . . , (xT , yT ) at time t = 0 with
complete knowledge about the forecaster’s algorithm, although our results readily generalize to an
adaptive adversary. For each p ∈ Z , letting ρp,f :=

∑T
t=1 I[pt=p]f(xt)(yt−p)∑T

t=1 I[pt=p]
be the empirical average

of the correlation of f with the residual sequence {yt − pt}Tt=1 (conditioned on the rounds when the
prediction made is pt = p), the ℓq-swap multicalibration error incurred by the forecaster is defined as

SMCalF,q := sup
{fp∈F}p∈Z

∑
p∈Z

(
T∑

t=1

I[pt = p]

)∣∣ρp,fp ∣∣q =
∑
p∈Z

(
T∑

t=1

I[pt = p]

)
sup
f∈F

|ρp,f |q . (1)

We also introduce a new notion — pseudo swap multicalibration, where the swap multicalibration error
is measured via the conditional distributions P1, . . . ,PT rather than the true realizations p1, . . . , pT .
Particularly, letting ρ̃p,f :=

∑T
t=1 Pt(p)f(xt)(yt−p)∑T

t=1 Pt(p)
, we define the ℓq-pseudo swap multicalibration

error incurred by the forecaster as

PSMCalF,q := sup
{fp∈F}p∈Z

∑
p∈Z

(
T∑

t=1

Pt(p)

)∣∣ρ̃p,fp ∣∣q =
∑
p∈Z

(
T∑

t=1

Pt(p)

)
sup
f∈F

|ρ̃p,f |q . (2)

As we shall see, by not taking into account the randomness in the predictions, pseudo (swap)
multicalibration is often easier to optimize. Note that, (pseudo) multicalibration ((P)MCalF,q) is a
special case of (pseudo) swap multicalibration where the comparator profile is fp = f for all p ∈ Z:

MCalF,q := sup
f∈F

∑
p∈Z

(
T∑

t=1

I[pt = p]

)
|ρp,f |q , PMCalF,q := sup

f∈F

∑
p∈Z

(
T∑

t=1

Pt(p)

)
|ρ̃p,f |q , (3)

and calibration (Calq) is a further restriction of multicalibration to F = {1}, where 1 denotes the
constant function that always outputs 1. In this paper, we shall be primarily concerned with the
ℓ1, ℓ2-(pseudo) (swap) multicalibration errors, which are related as PSMCalF,1 ≤

√
T · PSMCalF,2,

PMCalF,1 ≤
√
T · PMCalF,2, SMCalF,1 ≤

√
T · SMCalF,2, MCalF,1 ≤

√
T ·MCalF,2. The

proof (skipped for brevity) follows trivially via the Cauchy-Schwartz inequality.

Online (Swap) Omniprediction. Omnipredictors are sufficient statistics that simultaneously encode
loss-minimizing predictions for a broad class of loss functions L. Since different losses expect
different “types” of optimal predictions, the output of an omnipredictor p has to be “post-processed”
or “type-checked” via a loss specific function kℓ : [0, 1] → [0, 1] to approximately minimize ℓ relative
to the hypotheses in F . The post-processing function kℓ is chosen to be a best-response function,
i.e., kℓ(q) := argminp∈[0,1] Ey∼Ber(q)[ℓ(p, y)] denotes the prediction that minimizes the expected
loss for y ∼ Ber(q). Online omniprediction follows a similar learning protocol as that of online
multicalibration described above, however, we equip our protocol with learners (parametrized by loss
functions) who utilize the forecaster’s predictions to choose actions. In particular, after the forecaster
predicts pt, each ℓ-learner (ℓ ∈ L) chooses action kℓ(pt) and incurs loss ℓ(kℓ(pt), yt). The swap
omniprediction error against a loss profile {ℓp}p∈Z , comparator profile {fp}p∈Z is defined as

SOmni ({ℓp}p∈Z , {fp}p∈Z) :=

T∑
t=1

ℓpt
(kℓpt (pt), yt)− ℓpt

(fpt
(xt), yt). (4)

The swap omniprediction error incurred by the forecaster is then defined as a supremum over
all loss, comparator profiles, i.e., SOmniL,F = sup{ℓp∈L,fp∈F}p∈Z

SOmni ({ℓp}p∈Z , {fp}p∈Z).
Omniprediction is a special case of swap omniprediction where the loss, comparator profiles are fixed
and independent of p.

In the distributional setting, a computational equivalence between swap multicalibration and swap
omniprediction was established in Gopalan et al. (2023b) via an intermediate notion — swap agnostic
learning, which was extended to the online setting by Garg et al. (2024) as contextual swap regret.
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Contextual Swap Regret. Throughout the paper, we consider contextual swap regret for the
squared loss. Contextual swap regret is a special case of online swap omniprediction when L = {ℓ}
and ℓ(p, y) = (p−y)2, so that kℓ(p) = p. Similar to pseudo swap multicalibration, we also introduce
a new notion — pseudo contextual swap regret:

PSRegF := sup
{fp∈F}p∈Z

T∑
t=1

Ept∼Pt

[
(pt − yt)

2 − (fpt(xt)− yt)
2
]
. (5)

Other Notation. For any m ∈ N, let [m] := {1, 2, . . . ,m} denote the index set. We use bold
lowercase letters to represent vectors and bold uppercase letters for matrices. The indicator function
is denoted by I[·], which evaluates to 1 if the condition inside the braces is true, and 0 otherwise.
For any k ∈ N, we define ∆k as the (k − 1)-dimensional probability simplex: ∆k := {x ∈
Rk;xi ≥ 0 for all i ∈ [k],

∑k
i=1 xi = 1}. More generally, for a set Ω, let ∆Ω denote the set of

all probability distributions over Ω. A function f : W → R is said to be α-exp-concave over
a convex set W if the function exp(−αf(w)) is concave on W . The following notation is used
extensively throughout the paper: given a hypothesis class F and β > 0, we define the subset
Fβ :=

{
f ∈ F ; f2(x) ≤ β for all x ∈ X

}
. Finally, we use the notations Ω̃(.), Õ(.) to hide lower-

order logarithmic terms.

A note on the organization. Due to the numerous concepts considered in this paper and the limited
space available, we focus our detailed discussion on our improved bound for ℓ2-swap multicalibration
and the path E → F → B in Figure 1, deferring the discussion of other results to the appendix.
Readers are encouraged to keep the broader context presented in Figure 1 in mind and to note that our
improved sample complexity bounds in the offline setting arise from an online-to-batch conversion.

1.2 Comparison with Related Work

We discuss comparison with the most relevant work, deferring additional discussions to Appendix A.

Calibration. For ℓ2-calibration (Cal2), Foster and Hart (2023); Luo et al. (2025) showed that
there exists an efficient algorithm that achieves Cal2 = Õ(T

1
3 ). The result of Luo et al. (2025)

builds on a recent work by Fishelson et al. (2025), who showed that it is possible to achieve Õ(T
1
3 )

ℓ2-pseudo calibration (PCal2) by minimizing pseudo (non-contextual) swap regret of the squared
loss. Building on the works of Luo et al. (2025); Fishelson et al. (2025), we observe that it is possible
to achieve SMCalF lin

1 ,2 = Õ(T
1
3 ). In particular, our introduction of pseudo swap multicalibration

and pseudo contextual swap regret is reminiscent of pseudo swap regret by Fishelson et al. (2025).
Furthermore, our Freedman-based martingale analysis in going from ℓ2-pseudo swap multicalibration
to ℓ2-swap multicalibration is largely motivated by a similar analysis by Luo et al. (2025) in going
from ℓ2-pseudo calibration to ℓ2-calibration. Arguably, our result shows that ℓ2-swap multicalibration
and ℓ2-calibration share the same upper bounds, despite the former being a stronger notion.

Omniprediction. Very recently, Okoroafor et al. (2025) have shown that it is possible to achieve
oracle-efficient omniprediction, given access to an offline ERM oracle, with Õ(ε−2) sample complex-
ity (matching the lower bound for the minimization of a fixed loss function) for the class of bounded
variation loss functions LBV against an arbitrary hypothesis class F with bounded statistical com-
plexity. Notably, the class LBV is quite broad and includes all convex functions, Lipschitz functions,
proper losses, etc. At a high level, Okoroafor et al. (2025) obtain Õ(

√
T ) online omniprediction error

by identifying proper calibration and multiaccuracy as sufficient conditions for omniprediction and
proposing an algorithm based on the celebrated Blackwell approachability theorem (Blackwell, 1956;
Abernethy et al., 2011) that simultaneously guarantees Õ(

√
T ) proper calibration and multiaccuracy

errors. The result for (offline) omniprediction then follows from an online-to-batch conversion along
with other technical subtleties to make the algorithm efficient (with respect to the offline ERM oracle).
Next, we highlight our comparisons with Okoroafor et al. (2025)’s result and techniques. While
Okoroafor et al. (2025) analyze omniprediction in a more general setting (for the class LBV against
an arbitrary F), we study the harder notion of swap omniprediction but in a specialized setting (for
Lcvx ⊂ LBV, against Faff

res ). Finally, as mentioned in the introduction, although our online-to-batch
conversion in Section D.1 follows in a similar spirit to Okoroafor et al. (2025), it is substantially
different due to a more involved martingale analysis via Freedman’s inequality.
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2 Achieving Õ(T
1
3 ) ℓ2-Swap Multicalibration

In this section, we propose an efficient algorithm to minimize the ℓ2-swap multicalibration error. As
per Figure 1, we shall reduce ℓ2-swap multicalibration to ℓ2-pseudo swap multicalibration, followed
by a reduction to pseudo contextual swap regret. Finally, we shall propose an efficient algorithm to
minimize the pseudo contextual swap regret.

2.1 From swap multicalibration to pseudo swap multicalibration

Lemma 1. Let F ⊂ [−1, 1]X be a finite hypothesis class. For any algorithm ASMCalF such that for
each t ∈ [T ] the conditional distribution Pt is deterministic, with probability at least 1 − δ over

ASMCalF ’s predictions, we have SMCalF,2 ≤ 384(N + 1) log

(
6(N+1)|F|

δ

)
+ 6 · PSMCalF,2.

The proof of Lemma 1 is deferred to Appendix B.1 and is motivated by a recent result due to Luo et al.
(2025) who derive a high probability bound (via Freedman’s inequality) that relates the ℓ2-calibration
error (Cal2) with the ℓ2-pseudo calibration error (PCal2). Particularly, our proof is an adaptation of
the analysis provided by Luo et al. (2025) to the contextual setting. Note that the assumption that
the conditional distribution Pt is deterministic is because the algorithm we propose for minimizing
pseudo contextual swap regret is deterministic, therefore the only randomness lies in the sampling
pt ∼ Pt. In a way, our proposed algorithm in Section 2.3 correctly aligns with the assumption.
However, we remark that this assumption can be relaxed to account for the randomness in Pt.

Next, we instantiate our result for the class of linear functions with bounded norm, defined over the set
X = {x ∈ Bd

2;x1 = 1
2}. The requirement that each x ∈ X has a constant first coordinate (equal to

1/2) is without any loss of generality. More generally, we only require that each x ∈ X has a constant
i-th coordinate (equal to Γ for some Γ ∈ (0, 1)) to ensure that the class F lin = {fθ(x) = ⟨θ, x⟩ ; θ ∈
Rd} is closed under affine transformations — a property that shall be required later. Although not
explicitly mentioned in Garg et al. (2024), we realize that they also invoke this requirement. By
definition, F lin

1 = {f ∈ F lin; |f(x)| ≤ 1 for all x ∈ X} and the set of all θ’s characterizing F lin
1

satisfies Bd
2 ⊂ {θ ∈ Rd; |⟨θ, x⟩| ≤ 1 for all x ∈ X} ⊂ 2 · Bd

2. Since F lin
1 is infinite, the result of

Lemma 1 does not immediately apply for the choice F = F lin
1 . Instead, to bound SMCalF lin

1 ,2, we
form a finite sized cover Cε of F lin

1 , bound SMCalF lin
1 ,2 in terms of SMCalCε,2 , and use the result of

Lemma 1 to bound SMCalCε,2
in terms of PSMCalCε,2. Recall that for a function class F , a function

class G is an ε-cover if for each f ∈ F there exists a g ∈ G such that |f(x)− g(x)| ≤ ε for all
x ∈ X . For each f ∈ F , we refer to the corresponding function g ∈ G that realizes the condition as a
representative. We use the following standard result (refer to (Luo, 2024, Proposition 2)) to bound
|Cε| in the proof of Lemma 2, whose proof is deferred to Appendix B.2.

Proposition 1. There exists a cover Cε ⊆ F lin
1 of F lin

1 with |Cε| = O
(
1
ε

)d
.

Lemma 2. For the class F lin
1 and any ε > 0, with probability at least 1− δ, we have SMCalF lin

1 ,2 =

O
(
N log N

δ +Nd log 1
ε + PSMCalF lin

1 ,2 + ε2T
)
.

2.2 From pseudo swap multicalibration to pseudo contextual swap regret

In this section, we show that the ℓ2-pseudo swap multicalibration error is bounded by the pseudo
contextual swap regret. Notably, our result is an adaptation of a similar result proved by Garg et al.
(2024) for contextual swap regret (see also Globus-Harris et al. (2023); Gopalan et al. (2023b) for
a similar characterization of swap multicalibration in terms of swap agnostic learning) to pseudo
contextual swap regret. Our result holds for any arbitrary hypothesis class F satisfying the following
mild assumption:

Assumption 1. F is closed under affine transformations, i.e., for each f ∈ F , the function g(x) =
af(x) + b ∈ F for all a, b ∈ R.

We remark that the above is quite standard and has been explicitly assumed in Garg et al.
(2024); Globus-Harris et al. (2023), and is implicit in Gopalan et al. (2023b). Clearly, F lin sat-
isfies Assumption 1. This is because, for a f ∈ F that is determined by θ ∈ Rd, we have
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a ⟨θ, x⟩ + b = ⟨a · θ + 2b · e1, x⟩ ∈ F lin. Before proving the main implication, we prove the
following converse result.
Lemma 3. Assume that there exists a p ∈ Z, f ∈ F1 such that ρ̃p,f ≥ α for some α > 0. Then,

there exists a f ′ ∈ F4 such that
∑T

t=1 Pt(p)((p−yt)
2−(f ′(xt)−yt)

2)∑T
t=1 Pt(p)

≥ α2.

The proof of Lemma 3 can be found in Appendix B.3 and is similar to (Garg et al., 2024, Theorem
3.2). In particular, we consider the function f ′(x) = p + ηf(x), where η = min

(
1, α

µ

)
, µ =∑T

t=1 Pt(p)(f(xt))
2∑T

t=1 Pt(p)
. Under Assumption 1, f ′ ∈ F . Furthermore, since f ∈ F1, we have f ′ ∈ F4. It

then follows from direct computation that
∑T

t=1 Pt(p)((p−yt)
2−(f ′(xt)−yt)

2)∑T
t=1 Pt(p)

≥ 2ηα− η2µ. Finally,

we analyze the cases α ≥ µ and α < µ and derive a common lower bound 2ηα− η2µ ≥ α2, thereby
finishing the proof. Equipped with Lemma 3, we prove the main result of this section.
Lemma 4. Assume that there exists α > 0 such that PSRegF4

≤ α. Then, PSMCalF1,2 ≤ α.

The proof of Lemma 4 can be found in Appendix B.4 and follows by the method of contradiction,
using the result of Lemma 3. Particularly, assuming that PSMCalF1,2 > α, we conclude that there
exists a comparator profile {fp}p∈Z that realizes

∑
p∈Z αp > α, where αp =

∑T
t=1 Pt(p)(ρ̃p,fp)

2.

By definition of αp, there exists a function f⋆
p (x) ∈ {fp(x),−fp(x)} such that ρ̃p,f⋆

p
=
√

αp∑T
t=1 Pt(p)

for all p ∈ Z . By Lemma 3, for each p ∈ Z , there exists a f ′
p ∈ F4 that satisfies

∑T
t=1 Pt(p)((p−

yt)
2 − (f ′

p(xt)− yt)
2) ≥ αp. Summing over all p ∈ Z we obtain a contradiction to the assumption

that PSRegF4
≤ α.

Combining the result of Lemma 2 and 4, we observe that to bound SMCalF lin
1

, we only require a
bound on PSRegF lin

4 ,2. In the next section, we propose an efficient algorithm to minimize PSRegF lin
4

.

2.3 Bound on the pseudo contextual swap regret

Now, we give an algorithm to minimize the pseudo contextual swap regret of the squared loss
ℓ(p, y) = (p− y)2 against the hypothesis class F lin

4 . Recall that for our choice of X , the set of θ’s
that determine F lin

4 satisfies 2 · Bd
2 ⊂ {θ ∈ Rd; |⟨θ, x⟩| ≤ 2 for all x ∈ X} ⊂ 4 · Bd

2. We consider
the more general setting when F is arbitrary and then instantiate our result for F lin

4 . Our general
algorithm (Algorithm 3) is based on the well-known Blum-Mansour (BM) reduction (Blum and
Mansour, 2007).

Before proceeding further, we first recall the BM reduction (Algorithm 3 in Appendix B.5). Let
Z be enumerated as Z = {z0, . . . , zN}, where zi = i/N for all i ∈ {0, . . . , N}. The reduction
maintains N + 1 external regret algorithms A0, . . . ,AN . At each time t, let qt,i ∈ ∆N+1 denote the
probability distribution over Z produced by Ai. Let Qt = [qt,0, . . . , qt,N ] be the matrix formed by
concatenating qt,0, . . . , qt,N as columns. Upon receiving the context xt, we compute the stationary
distribution of Qt, i.e., a distribution pt ∈ ∆N+1 satisfying Qtpt = pt. With pt being our final
distribution of predictions, i.e., Pt(zi) = pt,i, we sample pt ∼ Pt and observe the outcome yt.
Thereafter, we feed the scaled loss function pt,iℓ(., yt) to Ai. Let ℓsct,i = pt,iℓt ∈ RN+1 be a scaled
loss vector, where ℓt(j) = ℓ(zj , yt). It immediately follows from Proposition 2 (Appendix B.5) that
PSRegF ≤

∑N
i=0 Regi(F),where Regi(F) := supf∈F

∑T
t=1

〈
qt,i, ℓ

sc
t,i

〉
− pt,i(f(xt) − yt)

2, i.e.,
the pseudo swap regret is bounded by the sum of the (scaled) external regrets of the N +1 algorithms.
It remains to design the i-th external regret algorithm Ai that minimizes Regi(F). We emphasize
that Ai is required to predict a distribution qt,i over Z and is subsequently fed a scaled loss function
pt,iℓ(., yt) at each time t. To implement Ai, we assume the following oracle ALG that solves a
(scaled) external regret minimization problem for the squared loss (which will be later instantiated by
a concrete algorithm for the linear class).
Assumption 2. Let ALG be an algorithm for minimizing the (scaled) external regret against F in the
following learning protocol: at every time t ∈ [T ], (a) an adversary selects context xt ∈ X , a scaling
parameter αt ∈ [0, 1], and the true label yt; (b) the adversary reveals xt; (c) ALG predicts wt ∈ [0, 1],
observes αt, yt, and incurs the scaled loss αtℓ(wt, yt). We assume that ALG achieves the following

external regret guarantee: E
[
supf∈F

∑T
t=1 αt(wt − yt)

2 − αt(f(xt)− yt)
2
]
≤ r(T,F), where
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r(T,F) is a non-negative function that captures the regret bound of ALG, and the expectation is
taken over the joint randomness in the adversary and the algorithm.

To instantiate Ai (Algorithm 1), we propose using ALGi (an instance of ALG for the i-th external
regret algorithm) along with the randomized rounding procedure of Fishelson et al. (2025). The round-
ing procedure is required because at each time t, ALGi outputs wt,i ∈ [0, 1], however, Ai is required
to predict a distribution qt,i ∈ ∆N+1 over Z . Towards this end, Fishelson et al. (2025) proposed the
randomized rounding scheme summarized in Algorithm 2. In Proposition 3 (Appendix B.6), we show
that the change in the expected loss due to rounding, i.e., the quantity

∑N
j=0 qjℓ(zj , y)− ℓ(p, y) is at

most 1
N2 .

Algorithm 1 The i-th external regret algorithm (Ai)

1: for t = 1, . . . , T,
2: Set wt,i ∈ [0, 1] as the output of ALGi at time t (where ALGi satisfies Assumption 2);
3: Predict qt,i = RRound(wt,i) (Algorithm 2);
4: Receive the scaled loss function ft,i(w) = pt,iℓ(w, yt) and feed it to ALGi.

Algorithm 2 Randomized rounding (RRound(p))
Input: p ∈ [0, 1], Output: Probability distribution q ∈ ∆N+1;
Scheme: Let pi, pi+1 for some i ∈ {0, . . . , N − 1} be two neighboring points in Z such that
pi ≤ p < pi+1; output q ∈ ∆N+1, where qi =

pi+1−p
pi+1−pi

, qi+1 = p−pi

pi+1−pi
, and qj = 0 otherwise.

Combining everything, we derive the regret guarantee Regi(F) of Ai. It follows from Proposition 3
that at any time t, the distribution qt,i = RRound(wt,i) satisfies ⟨qt,i, ℓt⟩ ≤ ℓ(wt,i, yt) +

1
N2 .

Multiplying with pt,i and summing over all t, we obtain

Regi(F) ≤ sup
f∈F

(
T∑

t=1

pt,i(wt,i − yt)
2 − pt,i(f(xt)− yt)

2

)
+

1

N2

T∑
t=1

pt,i ≤ ri(T,F) +
1

N2

T∑
t=1

pt,i,

where ri(T,F) denotes the external regret bound of ALGi (Assumption 2). It then follows from
Proposition 2 that

PSRegF ≤
N∑
i=0

Regi(F) ≤
N∑
i=0

ri(T,F) +
1

N2

N∑
i=0

T∑
t=1

pt,i =

N∑
i=0

ri(T,F) +
T

N2
.

When F = F lin
4 , we can instantiate each ALGi with the Online Newton Step algorithm (ONS) (Hazan

et al., 2007) corresponding to the scaled loss ϕt,i(θ) := pt,i(⟨θ, xt⟩ − yt)
2, which is 1

50 -exp-concave
and 10-Lipschitz over 4 · Bd

2 (Proposition 4 in Appendix B.7). We propose to employ ONS over
the set 4 · Bd

2 since the set of all θ’s characterizing F lin
4 is a subset of 4 · Bd

2. ONSi (Algorithm 4 in
Appendix B.5) represents an instance of ONS for ALGi. On updating θt,i via ONSi, ALGi (Algorithm
5) simply predicts wt,i = Proj[0,1] (⟨θt,i, xt⟩), where Proj[0,1] denotes the projection to [0, 1], i.e.,
Proj[0,1](x) := argminy∈[0,1] |x− y|.

The following lemma (due to Hazan et al. (2007)) bounds the regret of ONSi.
Lemma 5. The regret of ONSi can be bounded as supθ∈4·Bd

2
ϕt,i(θt,i)− ϕt,i(θ) = O(d log T ).

The regret of ALGi can then be bounded as supθ∈4·Bd
2

∑T
t=1 pt,i(wt,i − yt)

2 − pt,i (⟨θ, xt⟩ − yt)
2 ≤

supθ∈4·Bd
2

∑T
t=1 ϕt,i(θt,i) − ϕt,i(θ) = O(d log T ), where the first inequality follows since

(Proj(⟨θt,i, xt⟩)− yt)
2 ≤ (⟨θt,i, xt⟩ − yt)

2. The above bound implies that ri(T,F lin
4 ) = O(d log T )

and PSRegF lin
4

≤ O
(
Nd log T + T

N2

)
. Combining the result of Lemma 2 and Lemma 4 with the

bound on PSRegF lin
4

, we obtain the following theorem.

Theorem 1. There exists an efficient algorithm that achieves the following bound: SMCalF lin
1 ,2 =

O(T
1
3 d

2
3 (log T )

2
3 + ( T

d log T )
1
3 log 1

δ ) with probability ≥ 1 − δ. Furthermore, E
[
SMCalF lin

1 ,2

]
=

O(T
1
3 d

2
3 (log T )

2
3 ), where the expectation is taken over the internal randomness of the algorithm.
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Theorem 1 answers the open problem raised by Garg et al. (2024). Compared to our result, Garg et al.

(2024) showed that SMCalF lin
1 ,2 = Õ

(
dT

3
4

√
log 1

δ

)
with probability at least 1− δ. An immediate

corollary of Theorem 1 is an improved Õ(T
2
3 ) bound on SMCalF lin

1 ,1 (refer Corollary 1 in Appendix
B.8).

3 Conclusion and Future Directions

In this paper, we obtained state-of-the-art regret/error bounds (in the online setting) and sample
complexity bounds (in the distributional setting) for swap multicalibration, swap omniprediction,
and swap agnostic learning. Crucially, our bound for swap multicalibration is derived in the context
of linear functions, and that for swap omniprediction is obtained specifically for convex Lipschitz
functions against a hypothesis class that comprises linear functions. A natural question is whether
it is possible to extend our framework (Figure 1) to arbitrary hypothesis, loss classes and obtain
oracle-efficient algorithms (similar to Garg et al. (2024); Okoroafor et al. (2025)). Moreover, recall
that we obtained Õ(T

1
3 ) and Õ(T

3
5 ) bounds for pseudo contextual swap regret and contextual swap

regret, respectively, which is in contrast to the non-contextual setting, where both quantities enjoy the
favorable Õ(T

1
3 ) rate (Foster and Hart, 2023; Luo et al., 2025; Fishelson et al., 2025). The Õ(T

3
5 )

bound for contextual swap regret is a limitation of our analysis in Section C.2; we suspect this can be
improved by a more sophisticated analysis which can also improve the sample complexity of swap
agnostic learning as a by product. This improvement shall manifest in further improvements in the
sample complexity of swap multicalibration as per the discussion in Section D.3.
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A Additional Related Work and Notations

Downstream decision making. The seminal work of Foster and Vohra (1998) proposed the first
algorithm for online calibration that achieved E[Cal1] = Õ(T

2
3 ). For ℓ1-calibration (Cal1), a

lower bound of Ω(
√
T ) was folklore, and recent breakthroughs by Qiao and Valiant (2021); Dagan

et al. (2024) have made progress towards closing the gap between the lower and upper bounds. In
particular, Dagan et al. (2024) proved that for any online algorithm, there exists an adversary such
that E[Cal1] = Ω(T 0.54389), and also proved the existence of an algorithm (a non-constructive proof)
that achieves E[Cal1] = O(T

2
3−ε), where ε > 0. Understanding the limitations of ℓ1-calibration, i.e.,

it is impossible to achieve
√
T ℓ1-calibration, has led to the introduction of several weaker notions

of calibration, e.g., continuous calibration (Foster and Hart, 2021), decision calibration (Zhao et al.,
2021; Noarov et al., 2023; Tang et al., 2025), U-calibration (Kleinberg et al., 2023; Luo et al., 2024),
distance to calibration (Błasiok et al., 2023; Qiao and Zheng, 2024; Arunachaleswaran et al., 2025),
maximum swap regret (Roth and Shi, 2024; Hu and Wu, 2024), subsampled smooth calibration error
(Haghtalab et al., 2024), etc. The above measures are still meaningful for downstream tasks and can
be achieved at more favorable rates. On the contrary, the work by Luo et al. (2025) introduced the
notion of KL-calibration, which is arguably a stronger measure for studying upper bounds than ℓ2-
calibration and showed that KL-calibration simultaneously bounds swap regret for several important
subclasses of proper losses while being achievable at Õ(T

1
3 ) rate. A recent work by Collina et al.

(2025) (see also Collina et al. (2024)) considered the problem of online collaborative prediction,
where over a sequence of T days, two parties, Alice and Bob, each with their context (the context of
Alice is unknown to Bob and vice-versa), engage in a communication protocol to solve a squared
error regression problem defined over the joint context space. Using the bound for contextual swap
regret as derived by Garg et al. (2024), Collina et al. (2025) propose an online collaboration protocol
that achieves Õ(T

55
56 ) external regret against the class of bounded linear functions. Not surprisingly,

this bound can be improved using our algorithm in Section 2.3 instead.

(Swap) Multicalibration. Since its inception, starting with the work of Hébert-Johnson et al.
(2018), multicalibration has found surprising connections with several domains, e.g., computational
complexity (Casacuberta et al., 2024), algorithmic fairness (Hébert-Johnson et al., 2018; Obermeyer
et al., 2019; Devic et al., 2024; Gopalan et al., 2022b), learning theory (Gopalan et al., 2022a, 2023a;
Gollakota et al., 2023; Globus-Harris et al., 2023), conformal prediction (Bastani et al., 2022), online
learning (Gupta et al., 2022; Jung et al., 2021; Haghtalab et al., 2023), cryptography (Dwork et al.,
2023), etc. However, the literature on multicalibration has differed in the concrete definition, thereby
leading to some confusion. In this paper, we primarily adopt the definition given by Globus-Harris
et al. (2023); Gopalan et al. (2023b) in the distributional setting and its extension by Garg et al. (2024)
to the online setting. The previously best-known sample complexity bounds as mentioned in Table 1
are with respect to these definitions.

For ℓ∞-multicalibration, Haghtalab et al. (2023) derived a Õ(ε−2) sample complexity when random-
ized predictors are allowed, and a Õ(ε−4) sample complexity for deterministic predictors. Notably,
since ℓ1, ℓ∞-multicalibration errors are related as ℓ1 ≤ |Z| · ℓ∞, their result implies a Õ(ε−2)
sample complexity for ℓ1-multicalibration (the bound for ℓ∞-multicalibration has a logarithmic
dependence on |Z|, therefore |Z| can be chosen to be O(1)). However, Haghtalab et al. (2023)
use a bucketed definition of multicalibration which is different from that considered in this paper,
where we enforce our predictor to predict among |Z| possible values. For swap-multicalibration, the
multicalibration algorithms of Hébert-Johnson et al. (2018); Gopalan et al. (2022a) were shown to be
swap-multicalibrated in Gopalan et al. (2023b), thereby establishing a Õ(ε−10) sample complexity
for ℓ1-swap multicalibration. For ℓ2-swap multicalibration, Globus-Harris et al. (2023) proposed an
algorithm that achieved ℓ2-multicalibration error at most ε given ≳ ε−5 samples. However, we realize
that their algorithm is in fact swap multicalibrated, thereby establishing a Õ(ε−5) sample complexity
for ℓ2-swap multicalibration. Since ℓ1, ℓ2-swap multicalibration errors are related as ℓ1 ≤

√
ℓ2,

their result also implies a Õ(ε−10) sample complexity for ℓ1-swap multicalibration matching that of
Gopalan et al. (2023b), albeit with a remarkably simpler algorithm. Since ε ℓ1-swap multicalibration
error implies O(ε) swap omniprediction error for Lcvx (Gopalan et al., 2023b), the above discussion
implies a Õ(ε−10) sample complexity for swap omniprediction for Lcvx. As mentioned, although
the multicalibration algorithm of Haghtalab et al. (2023) requires fewer samples, their considered

15



definition of multicalibration is different and it is not clear whether they achieve the stronger swap
multicalibration guarantee, therefore, we do not portray a comparison to their results in Table 1.

Omniprediction. For the class of convex and Lipschitz functions, Gopalan et al. (2022a) proposed
the first construction of an efficient omnipredictor via ℓ1-multicalibration. However, as shown by
Gopalan et al. (2022a), multicalibration is not necessary for omniprediction. Several follow-up works
(Gopalan et al., 2023a; Okoroafor et al., 2025) have investigated weaker notions of multicalibration
that suffice for omniprediction. Particularly, Gopalan et al. (2023a) identified calibrated multiaccuracy
to imply omniprediction for more general classes of loss functions (beyond convexity) and proposed
an oracle-efficient algorithm (given access to an offline weak agnostic learning oracle) that required
≳ ε−10 samples. Subsequent work by Hu et al. (2024) proposed an efficient construction of
omnipredictors for single index models, requiring ≳ ε−4 samples. Very recently, Okoroafor et al.
(2025) have shown that it is possible to achieve oracle-efficient omniprediction, given access to an
offline ERM oracle with Õ(ε−2) sample complexity (matching the lower bound for the minimization
of a fixed loss function) for the class of bounded variation loss functions LBV against an arbitrary
hypothesis class F with bounded statistical complexity, thereby settling the sample complexity of
omniprediction.

In the context of swap omniprediction, a recent work by Lu et al. (2025) proposed a notion of decision
swap regret for high-dimensional predictions in the regression setting, i.e., Y = [0, 1]. However,
compared to swap omniprediction, the loss function is not indexed by the forecaster’s prediction, and
notably, the techniques in our paper are considerably different than those proposed by Lu et al. (2025)
who impose a relaxation of calibration called decision calibration (Zhao et al., 2021; Noarov et al.,
2023; Tang et al., 2025) to achieve low decision swap regret.

Additional Notations. For a set I, its complement is denoted by Ī, representing all elements not
in I . We denote conditional probability and expectation given the history up to time t− 1 (inclusive)
by Pt and Et, respectively. A loss ℓ : [0, 1] × {0, 1} → R is called proper if Ey∼Ber(p)[ℓ(p, y)] ≤
Ey∼Ber(p)[ℓ(p

′, y)] for all p, p′ ∈ [0, 1], e.g., the squared loss ℓ(p, y) = (p− y)2, log loss ℓ(p, y) =
−y log p− (1− y) log(1− p), etc.

B Deferred Proofs and Discussion in Section 2

B.1 Proof of Lemma 1

Lemma 6 (Freedman’s Inequality). (Beygelzimer et al., 2011, Theorem 1) Let X1, . . . , Xn be a
martingale difference sequence where |Xi| ≤ B for all i = 1, . . . , n, and B is a fixed constant.
Define V :=

∑n
i=1 Ei[X

2
i ]. Then, for any fixed µ ∈

[
0, 1

B

]
, δ ∈ [0, 1], with probability at least 1− δ,

we have ∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≤ µV +
log 2

δ

µ
.

Proof of Lemma 1. Fix a p ∈ Z, f ∈ F . We first bound |ρp,f − ρ̃p,f |. To achieve so, we consider
the martingale difference sequences {Xt}, {Yt}, {Zt}, where
Xt := ytf(xt)(Pt(p)− I[pt = p]), Yt := f(xt)(Pt(p)− I[pt = p]), Zt := Pt(p)− I[pt = p].

Clearly, |Zt| ≤ 1 for all t ∈ [T ]. Furthermore, since f ∈ F ⊂ [−1, 1]X , we have |Xt| ≤ 1, |Yt| ≤ 1
for all t ∈ [T ]. Fix a µp ∈ [0, 1]. Applying Lemma 6 to the sequences X,Y, Z and taking a union
bound (over X,Y, Z), we obtain that with probability at least 1− δ (simultaneously over X,Y, Z),∣∣∣∣∣

T∑
t=1

ytf(xt)(Pt(p)− I[pt = p])

∣∣∣∣∣ ≤ µpVX +
log 6

δ

µp
, (6)∣∣∣∣∣

T∑
t=1

f(xt)(Pt(p)− I[pt = p])

∣∣∣∣∣ ≤ µpVY +
log 6

δ

µp
, (7)∣∣∣∣∣

T∑
t=1

Pt(p)− I[pt = p]

∣∣∣∣∣ ≤ µpVZ +
log 6

δ

µp
, (8)
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where VX , VY , VZ are given by

VX =

T∑
t=1

Et

[
X2

t

]
=

T∑
t=1

yt(f(xt))
2Pt(p)(1− Pt(p)) ≤

T∑
t=1

Pt(p),

VY =

T∑
t=1

Et

[
Y 2
t

]
=

T∑
t=1

(f(xt))
2Pt(p)(1− Pt(p)) ≤

T∑
t=1

Pt(p),

VZ =

T∑
t=1

Et

[
Z2
t

]
=

T∑
t=1

Pt(p)(1− Pt(p)) ≤
T∑

t=1

Pt(p).

To bound |ρp,f − ρ̃p,f |, we first upper bound ρ̃p,f − ρp,f as per the following steps:

ρ̃p,f − ρp,f =∑T
t=1 Pt(p)f(xt)yt∑T

t=1 Pt(p)
−
∑T

t=1 I[pt = p]f(xt)yt∑T
t=1 I[pt = p]

+

p

(∑T
t=1 I[pt = p]f(xt)∑T

t=1 I[pt = p]
−
∑T

t=1 Pt(p)f(xt)∑T
t=1 Pt(p)

)

≤
µp

∑T
t=1 Pt(p) +

1
µp

log 6
δ +

∑T
t=1 I[pt = p]f(xt)yt∑T

t=1 Pt(p)
−
∑T

t=1 I[pt = p]f(xt)yt∑T
t=1 I[pt = p]

+

p

(∑T
t=1 I[pt = p]f(xt)∑T

t=1 I[pt = p]
+

µp

∑T
t=1 Pt(p) +

1
µp

log 6
δ −

∑T
t=1 I[pt = p]f(xt)∑T

t=1 Pt(p)

)

= µp +
log 6

δ

µp

∑T
t=1 Pt(p)

+

∑T
t=1 I[pt = p]f(xt)yt∑T

t=1 I[pt = p] ·
∑T

t=1 Pt(p)

(
T∑

t=1

I[pt = p]− Pt(p)

)
+

p

(
µp +

log 6
δ

µp

∑T
t=1 Pt(p)

+

∑T
t=1 I[pt = p]f(xt)∑T

t=1 I[pt = p] ·
∑T

t=1 Pt(p)

(
T∑

t=1

Pt(p)− I[pt = p]

))

≤ µp +
log 6

δ

µp

∑T
t=1 Pt(p)

+

∣∣∣∣∣
∑T

t=1 I[pt = p]f(xt)yt∑T
t=1 I[pt = p] ·

∑T
t=1 Pt(p)

∣∣∣∣∣
(
µp

T∑
t=1

Pt(p) +
1

µp
log

6

δ

)
+

p

(
µp +

log 6
δ

µp

∑T
t=1 Pt(p)

+

∣∣∣∣∣
∑T

t=1 I[pt = p]f(xt)∑T
t=1 I[pt = p] ·

∑T
t=1 Pt(p)

∣∣∣∣∣
(
µp

T∑
t=1

Pt(p) +
1

µp
log

6

δ

))

≤ 4µp +
4 log 6

δ

µp

∑T
t=1 Pt(p)

,

where the first inequality follows from (6), (7); the second inequality follows from (8); the final
inequality follows since f ∈ F .

Proceeding in a similar manner, we can upper bound ρp,f − ρ̃p,f . We have,

ρp,f − ρ̃p,f

=

∑T
t=1 I[pt = p]f(xt)yt∑T

t=1 I[pt = p]
−
∑T

t=1 Pt(p)f(xt)yt∑T
t=1 Pt(p)

+

p

(∑T
t=1 Pt(p)f(xt)∑T

t=1 Pt(p)
−
∑T

t=1 I[pt = p]f(xt)∑T
t=1 I[pt = p]

)

≤
∑T

t=1 I[pt = p]f(xt)yt∑T
t=1 I[pt = p]

+
µp

∑T
t=1 Pt(p) +

1
µp

log 6
δ −

∑T
t=1 I[pt = p]f(xt)yt∑T

t=1 Pt(p)
+

p

(
µp

∑T
t=1 Pt(p) +

1
µp

log 6
δ +

∑T
t=1 I[pt = p]f(xt)∑T

t=1 Pt(p)
−
∑T

t=1 I[pt = p]f(xt)∑T
t=1 I[pt = p]

)
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= µp +
log 6

δ

µp

∑T
t=1 Pt(p)

+

∑T
t=1 I[pt = p]f(xt)yt∑T

t=1 I[pt = p] ·
∑T

t=1 Pt(p)

(
T∑

t=1

Pt(p)− I[pt = p]

)
+

p

(
µp +

log 6
δ

µp

∑T
t=1 Pt(p)

+

∑T
t=1 I[pt = p]f(xt)∑T

t=1 I[pt = p] ·
∑T

t=1 Pt(p)

(
T∑

t=1

I[pt = p]− Pt(p)

))

≤ µp +
log 6

δ

µp

∑T
t=1 Pt(p)

+

∣∣∣∣∣
∑T

t=1 I[pt = p]f(xt)yt∑T
t=1 I[pt = p] ·

∑T
t=1 Pt(p)

∣∣∣∣∣
(
µp

T∑
t=1

Pt(p) +
1

µp
log

6

δ

)
+

p

(
µp +

log 6
δ

µp

∑T
t=1 Pt(p)

+

∣∣∣∣∣
∑T

t=1 I[pt = p]f(xt)∑T
t=1 I[pt = p] ·

∑T
t=1 Pt(p)

∣∣∣∣∣
(
µp

T∑
t=1

Pt(p) +
1

µp
log

6

δ

))

≤ 4µp +
4 log 6

δ

µp

∑T
t=1 Pt(p)

.

Combining both the bounds obtained above, we have shown that |ρp,f − ρ̃p,f | ≤ 4µp+
4 log 6

δ

µp
∑T

t=1 Pt(p)
.

Taking a union bound over all p ∈ Z, f ∈ F , with probability at least 1− δ, we have (simultaneously
for all p ∈ Z, f ∈ F)

|ρp,f − ρ̃p,f | ≤ 4µp +
4 log 6(N+1)|F|

δ

µp

∑T
t=1 Pt(p)

,

∣∣∣∣∣
T∑

t=1

Pt(p)− I[pt = p]

∣∣∣∣∣ ≤ µp

T∑
t=1

Pt(p) +
log 6(N+1)|F|

δ

µp
.

(9)

Consider the function g(µ) := µ+ a
µ , where a ≥ 0 is a fixed constant. Clearly, minµ∈[0,1] g(µ) =

2
√
a when a ≤ 1, and 1 + a otherwise. Minimizing the bound in (9) with respect to µp, we obtain

|ρp,f − ρ̃p,f | ≤ 8

√√√√ log 6(N+1)|F|
δ∑T

t=1 Pt(p)
if log

6(N + 1) |F|
δ

≤
T∑

t=1

Pt(p).

Moreover, since f ∈ F , by definition we have |ρp,f | ≤ 1, |ρ̃p,f | ≤ 1 and thus |ρp,f − ρ̃p,f | ≤ 2.
However, when

∑T
t=1 Pt(p) is quite small (e.g., → 0), the bound on |ρp,f − ρ̃p,f | obtained above is

much worse than the trivial bound |ρp,f − ρ̃p,f | ≤ 2. Therefore, we define the set

I :=

{
p ∈ Z s.t. log

6(N + 1) |F|
δ

≤
T∑

t=1

Pt(p)

}
and bound |ρp,f − ρ̃p,f | as

|ρp,f − ρ̃p,f | ≤

8

√
log

6(N+1)|F|
δ∑T

t=1 Pt(p)
if p ∈ I,

2 otherwise.
(10)

Similarly, by minimizing (9) with respect to µp, we obtain the following bound:∣∣∣∣∣
T∑

t=1

Pt(p)− I[pt = p]

∣∣∣∣∣ ≤
{
2
√∑T

t=1 Pt(p) log
6(N+1)|F|

δ if p ∈ I,∑T
t=1 Pt(p) + log 6(N+1)|F|

δ otherwise.
(11)

Our next goal is to bound SMCalF,2 in terms of PSMCalF,2. By definition,

SMCalF,2 = sup
{fp∈F}p∈Z

∑
p∈Z

(
T∑

t=1

I[pt = p]

)
(ρp,fp)

2 =
∑
p∈Z

(
T∑

t=1

I[pt = p]

)
sup
f∈F

ρ2p,f ,

PSMCalF,2 = sup
{fp∈F}p∈Z

∑
p∈Z

(
T∑

t=1

Pt(p)

)
ρ̃2p,fp =

∑
p∈Z

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f .
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Therefore,

SMCalF,2 ≤ 2
∑
p∈Z

(
T∑

t=1

I[pt = p]

)(
sup
f∈F

(ρp,f − ρ̃p,f )
2 + sup

f∈F
ρ̃2p,f

)
,

where the inequality follows by the sub-additivity of the supremum function and since (u+ v)2 ≤
2u2 + 2v2. Equipped with (10) and (11), it is easy to express SMCalF,2 in terms of PSMCalF,2. To
achieve so, we define two terms TERM1, TERM2 as

TERM1 :=
∑
p∈I

(
T∑

t=1

I[pt = p]

)(
sup
f∈F

(ρp,f − ρ̃p,f )
2 + sup

f∈F
ρ̃2p,f

)
,

TERM2 :=
∑
p∈Ī

(
T∑

t=1

I[pt = p]

)(
sup
f∈F

(ρp,f − ρ̃p,f )
2 + sup

f∈F
ρ̃2p,f

)
and bound TERM1, TERM2 separately. We begin by bounding TERM1 as

TERM1 ≤
∑
p∈I

 T∑
t=1

Pt(p) + 2

√√√√( T∑
t=1

Pt(p)

)
log

6(N + 1) |F|
δ

(sup
f∈F

(ρp,f − ρ̃p,f )
2 + sup

f∈F
ρ̃2p,f

)

≤
∑
p∈I

 T∑
t=1

Pt(p) + 2

√√√√( T∑
t=1

Pt(p)

)
log

6(N + 1) |F|
δ

(64 log 6(N+1)|F|
δ∑T

t=1 Pt(p)
+ sup

f∈F
ρ̃2p,f

)

≤ 3
∑
p∈I

(
T∑

t=1

Pt(p)

)(
64 log 6(N+1)|F|

δ∑T
t=1 Pt(p)

+ sup
f∈F

ρ̃2p,f

)

= 192 |I| log 6(N + 1) |F|
δ

+ 3
∑
p∈I

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f ,

where the first inequality follows from (11); the second inequality follows from (10); the third
inequality follows since log 6(N+1)|F|

δ ≤
∑T

t=1 Pt(p) as p ∈ I. Next, we bound TERM2 as

TERM2 ≤
∑
p∈Ī

(
2

T∑
t=1

Pt(p) + log
6(N + 1) |F|

δ

)(
sup
f∈F

(ρp,f − ρ̃p,f )
2 + sup

f∈F
ρ̃2p,f

)

≤
∑
p∈Ī

(
2

T∑
t=1

Pt(p) + log
6(N + 1) |F|

δ

)(
4 + sup

f∈F
ρ̃2p,f

)

≤ 13
∣∣Ī∣∣ log 6(N + 1) |F|

δ
+ 2

∑
p∈Ī

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f ,

where the first inequality follows from (11); the second inequality follows from (10); the final inequal-
ity follows from the definition of Ī and since |ρ̃p,f | ≤ 1. Combining the bounds on TERM1, TERM2

to SMCalF,2 ≤ 2(TERM1 + TERM2), we obtain

SMCalF,2 ≤ 384 |I| log 6(N + 1) |F|
δ

+ 6
∑
p∈I

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f+

26
∣∣Ī∣∣ log 6(N + 1) |F|

δ
+ 4

∑
p∈Ī

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f

≤ 384(N + 1) log
6(N + 1) |F|

δ
+ 6

∑
p∈Z

(
T∑

t=1

Pt(p)

)
sup
f∈F

ρ̃2p,f

= 384(N + 1) log
6(N + 1) |F|

δ
+ 6 · PSMCalF,2.

This completes the proof.
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B.2 Proof of Lemma 2

Proof. To bound SMCalF lin
1 ,2 in terms of SMCalCε,2 , we realize that for each f ∈ F lin

1 , letting fε ∈ Cε
be the representative of f , we have

|ρp,f − ρp,fε | =

∣∣∣∣∣
∑T

t=1 I[pt = p](f(xt)− fε(xt))(yt − p)∑T
t=1 I[pt = p]

∣∣∣∣∣ ≤ ε.

Therefore, supf∈F lin
1
ρ2p,f ≤ 2 supf∈Cε

ρ2p,f + 2ε2 and

SMCalF lin
1 ,2 =

∑
p∈Z

(
T∑

t=1

I[pt = p]

)
sup

f∈F lin
1

ρ2p,f ≤ 2
∑
p∈Z

(
T∑

t=1

I[pt = p]

)
sup
f∈Cε

ρ2p,f + 2ε2T

= 2SMCalCε,2 + 2ε2T.

Using the result of Lemma 1 to bound SMCalCε,2, we obtain

SMCalF lin
1 ,2 ≤ 768(N + 1) log

6(N + 1) |Cε|
δ

+ 12PSMCalF lin
1 ,2 + 2ε2T,

where we have also used the inequality PSMCalCε,2 ≤ PSMCalF lin
1 ,2 since Cε ⊆ F lin

1 . Using
Proposition 1 to bound |Cε| finishes the proof.

B.3 Proof of Lemma 3

Proof. Consider the function f ′(x) := p+ ηf(x), where

η := min

1,
α∑T

t=1 Pt(p)(f(xt))2∑T
t=1 Pt(p)

 .

Under Assumption 1, f ′ ∈ F . Furthermore, since f ∈ F1, we have (f ′(x))2 ≤ 2p2 +2η2(f(x))2 ≤
4, therefore, f ′ ∈ F4. For convinience, we define ∆ :=

∑T
t=1 Pt(p)

(
(p− yt)

2 − (f ′(xt)− yt)
2
)
.

By direct computation, we obtain

∆ =

T∑
t=1

Pt(p)
(
(p− yt)

2 − (p+ ηf(xt)− yt)
2
)
=

T∑
t=1

Pt(p)
(
−η2(f(xt))

2 + 2ηf(xt) · (yt − p)
)
.

Therefore, the desired quantity can be lower bounded as

∆∑T
t=1 Pt(p)

= 2η · ρ̃p,f − η2 ·
∑T

t=1 Pt(p)(f(xt))
2∑T

t=1 Pt(p)
≥ 2ηα− η2

∑T
t=1 Pt(p)(f(xt))

2∑T
t=1 Pt(p)

= 2ηα− η2µ,

where µ :=
∑T

t=1 Pt(p)(f(xt))
2∑T

t=1 Pt(p)
. Next, we consider two cases depending on whether or not 1 realizes

the minimum in the expression defining η. If α ≥ µ, η = min(1, α
µ ) = 1. Therefore, 2ηα− η2µ =

2α − µ ≥ α ≥ α2, where the last inequality follows since ρ̃p,f ≤ 1 as f ∈ F1, and ρ̃p,f ≥ α by
assumption, thus α ≤ 1. Otherwise, if α < µ, we have η = α

µ and 2ηα − η2µ = α2

µ ≥ α2 since
µ ≤ 1 as f ∈ F1. Combining both cases, we have shown that ∆∑T

t=1 Pt(p)
≥ α2, which completes the

proof.

B.4 Proof of Lemma 4

Proof. We shall prove the desired result by contradiction. Assume that PSMCalF1,2 > α. Therefore,
there exists a comparator profile {fp ∈ F1}p∈Z such that

∑
p∈Z

(
T∑

t=1

Pt(p)

)(
ρ̃p,fp

)2
> α. (12)
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For each p ∈ Z , define αp :=
(∑T

t=1 Pt(p)
)
ρ̃2p,fp . Thus, there exists a function f⋆

p (x) which is

either fp(x) or −fp(x) such that ρ̃p,f⋆
p
=
√

αp∑T
t=1 Pt(p)

. Clearly, f⋆
p ∈ F1. It follows from Lemma 3

that for each p ∈ P , there exists a f ′
p ∈ F4 such that

T∑
t=1

Pt(p)
(
(p− yt)

2 − (f ′
p(xt)− yt)

2
)
≥ αp.

Summing over p ∈ Z , we obtain that the comparator profile {f ′
p ∈ F4}p∈Z realizes

∑
p∈Z

T∑
t=1

Pt(p)
(
(p− yt)

2 − (f ′
p(xt)− yt)

2
)
≥
∑
p∈Z

αp > α,

where the last inequality follows from (12). This is a contradiction to the assumption that PSRegF4
≤

α. This completes the proof.

B.5 Deferred algorithms

Algorithm 3 Generic BM algorithmic template

Initialize: Ai for i ∈ {0, . . . , N} and set q1,i =
[

1
N+1 , . . . ,

1
N+1

]
;

1: for t = 1, . . . , T,
2: Receive context xt;
3: Set Qt = [qt,0, . . . , qt,N ];
4: Compute the stationary distribution of Qt, i.e., pt ∈ ∆N+1 that satisfies Qtpt = pt;
5: Output conditional distribution Pt, where Pt(zi) = pt(i) and observe yt;
6: for i = 0, . . . , N
7: Feed the scaled loss function ϕt,i(w) = pt,iℓ(w, yt) to Ai (Algorithm 1) and obtain qt+1,i.

Algorithm 4 Online Newton Step (ONSi) with scaled losses

1: Set β = 1
640 , ω = 1

4β2 , and initialize θ1,i ∈ 4 · Bd
2 arbitrarily;

2: for t = 2, . . . , T,
3: Update θt,i as

θt,i = Π
At−1,i

4·Bd
2

(
θt−1,i −

1

β
A−1

t−1,i∇t−1,i

)
,

where ∇τ,i = ∇ϕτ,i(θτ,i) = 2pτ,i (⟨θτ,i, xτ ⟩ − yτ ) , At−1,i =
∑t−1

τ=1 ∇τ,i∇⊺
τ,i + ωId, and

Π
At−1,i

4·Bd
2

is the projection operator with respect to the norm induced by At−1,i, i.e.,

Π
At−1,i

4·Bd
2

(θ) = argmin
θ̃∈4·Bd

2

(θ − θ̃)⊺At−1,i(θ − θ̃).

Algorithm 5 ALGi

1: for t = 1, . . . , T,
2: Obtain the output θt,i of ONSi and predict wt,i = Proj[0,1](⟨θt,i, xt⟩).

Proposition 2. For Algorithm 3, we have PSRegF ≤
∑N

i=0 Regi(F).

Proof. For each i ∈ {0, . . . , N}, fix a fi ∈ F . By definition of Regi(F), we have

T∑
t=1

pt,i

 N∑
j=0

qt,i,j(zj − yt)
2

−
T∑

t=1

pt,i(fi(xt)− yt)
2 ≤ Regi(F).
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Summing the equation above for all i ∈ {0, . . . , N}, we obtain
T∑

t=1

N∑
i=0

N∑
j=0

pt,iqt,i,j(zj − yt)
2 −

T∑
t=1

N∑
i=0

pt,i(fi(xt)− yt)
2 ≤

N∑
i=0

Regi(F). (13)

Simplifying the first term on the left-hand side of the equation above, we have
T∑

t=1

N∑
i=0

N∑
j=0

pt,iqt,i,j(zj − yt)
2 =

T∑
t=1

N∑
i=0

pt,i ⟨qt,i, ℓt⟩ =
T∑

t=1

p⊺
tQ

⊺
t ℓt =

T∑
t=1

p⊺
t ℓt,

where the last equality follows since pt is chosen such that Qtpt = pt. Therefore, (13) simplifies to
T∑

t=1

N∑
i=0

pt,i
(
(zi − yt)

2 − (fi(xt)− yt)
2
)
≤

N∑
i=0

Regi(F).

Taking the supremum over all fi’s completes the proof.

B.6 Expected loss of randomized rounding

Proposition 3. Let p ∈ [0, 1] and p−, p+ ∈ Z be neighbouring points in Z such that p− ≤ p < p+.
Let q be the random variable that takes value p− with probability p+−p

p+−p− and p+ with probability
p−p−

p+−p− . Then, for all y ∈ {0, 1}, we have E[ℓ(q, y)]− ℓ(p, y) ≤ 1
N2 .

Proof. Let ∆ := Eq[(q − y)2]. Substituting pi =
i
N , pi+1 = i+1

N and by direct computation, we
obtain

∆ =
i+1
N − p

1
N

(
i

N
− y

)2

+
p− i

N
1
N

(
i+ 1

N
− y

)2

=
i
N − p

1
N

(
i

N
− y

)2

+

(
i

N
− y

)2

+
p− i

N
1
N

(
i

N
− y

)2

+
p− i

N
1
N

· 1

N2
+ 2

(
p− i

N

)(
i

N
− y

)
=

(
i

N
− y

)2

+
1

N

(
p− i

N

)
+ 2

(
p− i

N

)(
i

N
− y

)
=

(
i

N
− p

)2

+ (p− y)2 + 2

(
i

N
− p

)
(p− y) +

1

N

(
p− i

N

)
+ 2

(
p− i

N

)(
i

N
− y

)
=

(
i

N
− p

)2

+ (p− y)2 +
1

N

(
p− i

N

)
− 2

(
p− i

N

)2

= (p− y)2 +
1

N

(
p− i

N

)
−
(
p− i

N

)2

≤ (p− y)2 +
1

N2
,

where the inequality follows by dropping the negative term, and since p < i+1
N . This completes the

proof.

B.7 Exp-concavity parameter of the scaled loss

Proposition 4. Let x ∈ Bd
2, y ∈ {0, 1}. The function ϕ : 4·Bd

2 → R defined as ϕ(θ) := α(⟨θ, x⟩−y)2

for some α ∈ [0, 1] is 1
50 -exp-concave and 10-Lipschitz.

Proof. For a γ > 0, let g(θ) := exp (−γϕ(θ)). The first derivative of g is given by

∇g(θ) = −2γα(⟨θ, x⟩ − y) exp
(
−γα(⟨θ, x⟩ − y)2

)
x.

Differentiating with respect to θ again, we obtain

∇2g(θ) = −2γα exp
(
−γα(⟨θ, x⟩ − y)2

)
·
(
1− 2γα(⟨θ, x⟩ − y)2

)
· xx⊺.
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Choosing γ = 1
50 , the expression above simplifies to

∇2g(θ) = − α

25
exp

(
− α

50
(⟨θ, x⟩ − y)2

)
·
(
1− α

25
(⟨θ, x⟩ − y)2

)
· xx⊺ ⪯ 0,

where the inequality is because (⟨θ, x⟩ − y)2 ≤ 25 since |⟨θ, x⟩| ≤ ∥θ∥ ∥x∥ ≤ 4 by the Cauchy-
Schwartz inequality, therefore |⟨θ, x⟩ − y| ≤ 5; this implies that α

25 (⟨θ, x⟩ − y)2 ≤ 1. Hence,
the function exp

(
− 1

50ϕ(θ)
)

is concave, thus ϕ is 1
50 -exp-concave by definition. To bound the

Lipschitzness parameter, we note that since ∇ϕ(θ) = 2α(⟨θ, x⟩ − y)x, we have ∥∇ϕ(θ)∥ =
2α |⟨θ, x⟩ − y| · ∥x∥ ≤ 10. Therefore, ϕ is 10-Lipschitz. This completes the proof.

B.8 Proof of Theorem 1

Proof. We have,

SMCalF lin
1 ,2 = O

(
N log

N

δ
+Nd log

1

ε
+Nd log T +

T

N2
+ ε2T

)
= O

(
N log

N

δ
+Nd log T +

T

N2

)
= O

(
T

1
3 d

2
3 (log T )

2
3 +

(
T

d log T

) 1
3

log
1

δ

)
, (14)

where the first equality follows from combining the result of Lemma 2 and Lemma 4 with the bound

PSRegF lin
4
= O

(
Nd log T +

T

N2

)
;

the second equality follows by substituting ε = 1√
T

; the final equality follows by substituting

N =
(

T
d log T

) 1
3

. To bound E
[
SMCalF lin

1 ,2

]
, we let E denote the event in (14). Then,

E
[
SMCalF lin

1 ,2

]
= E

[
SMCalF lin

1 ,2|E
]
· P(E) + E

[
SMCalF lin

1 ,2|Ē
]
· P(Ē)

= O

(
T

1
3 d

2
3 (log T )

2
3 +

(
T

d log T

) 1
3

log
1

δ
+ δT

)
= O

(
T

1
3 d

2
3 (log T )

2
3

)
,

where the second equality follows by bounding E[SMCalF lin
1 ,2|E ] as per (14), P(E) ≤ 1, P(Ē) ≤ δ,

and E[SMCalF lin
1 ,2|Ē ] ≤ T by definition; the second equality follows by choosing δ = 1/T . This

completes the proof.

Corollary 1. There exists an efficient algorithm that achieves

SMCalF lin
1 ,1 = O

(
T

2
3 d

1
3 (log T )

1
3 + T

2
3 (d log T )−

1
6

√
log

1

δ

)
with probability at least 1 − δ. Furthermore, E

[
SMCalF lin

1 ,1

]
= O

(
T

2
3 d

1
3 (log T )

1
3

)
, where the

expectation is taken over the internal randomness of the algorithm.

Proof. The high probability bound follows since SMCalF lin
1 ,1 ≤

√
T · SMCalF lin

1 ,2. The in-

expectation bound is because E
[
SMCalF lin

1 ,1

]
≤
√
T · E

[
SMCalF lin

1 ,2

]
by applying Jensen’s in-

equality. This completes the proof.

C Bound on Swap Omniprediction and Contextual Swap regret

In this section, we derive substantially improved rates for (a) swap omniprediction for the class of
bounded convex Lipschitz loss functions, and (b) contextual swap regret.
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C.1 Bound on swap omniprediction

Let Lcvx denote the class of bounded (in [−1, 1]) convex 1-Lipschitz loss functions, i.e., Lcvx com-
prises of functions that are convex in p for a fixed y ∈ {0, 1}, ℓ(p, y) ∈ [−1, 1], and |∂ℓ(p, y)| ≤ 1 for
all p ∈ [0, 1], y ∈ {0, 1}, where the subgradient is taken with respect to p. We first state a result that
bounds the (swap) omniprediction error in terms of the (swap) multicalibration error. The following
result holds for any hypothesis class F ; subsequently, we instantiate our result for an appropriate
choice of F .
Lemma 7. (Garg et al., 2024, Theorem 4.1) Let F ⊂ [0, 1]X be an arbitrary hypothesis class. We
have SOmniLcvx,F ≤ 6 · SMCalF,1,OmniLcvx,F ≤ 6 ·MCalF,1.

Note that Lemma 7 does not immediately apply to the choice F = F lin
1 since the hypotheses in

F lin
1 can take negative values. To align with Lemma 7, we consider the hypothesis class Faff ={
fθ(x) =

1+⟨θ,x⟩
2 ; θ ∈ Rd

}
and its restriction Faff

res =
{
fθ(x) =

1+⟨θ,x⟩
2 ; ∥θ∥ ≤ 1

}
instead. Faff

satisfies Assumption 1 since

afθ(x) + b =
1

2

(
a+

aθ1
2

+ 2b+ a ⟨x2:d, θ2:d⟩
)

=
1

2
(1 + ⟨θ′, x⟩) ,

where θ′ ∈ Rd is such that θ′1 = 2a+ aθ1 +4b− 2 and θ′i = aθi for all 2 ≤ i ≤ d. For this choice of

Faff , Faff
1 is determined by the set Ω of all θ’s that satisfy

∣∣∣ 1+⟨θ,x⟩
2

∣∣∣ ≤ 1 for all x ∈ X , where recall

that X = {x ∈ Bd
2;x1 = 1

2}. Clearly, Faff
res ⊆ Faff

1 by the Cauchy-Schwartz inequality. Furthermore,
it is easy to verify that α1 ·Bd

2 ⊂ Ω ⊂ α2 ·Bd
2, where α1, α2 = Θ(1). Therefore, the entire analysis in

Section 2 can be extended (with only a multiplicative change in the constants, which does not affect
the final rate) to bound SMCalFaff

1 ,1, and thus SMCalFaff
res ,1

, since Faff
res ⊆ Faff

1 . Since Faff
res ⊂ [0, 1]X ,

we can finally use Lemma 7 to bound SOmniLcvx,Faff
res

. We skip the exact derivations for the sake of
brevity; however remark that the above discussion was implicitly skipped by Garg et al. (2024), who
used the result of Lemma 7 to bound SOmniLcvx,F lin

1
.

Using Corollary 1 to bound SMCalFaff
res ,1

in Lemma 7, we obtain the following theorem.
Theorem 2. There exists an efficient algorithm that achieves

SOmniLcvx,Faff
res

= O

(
T

2
3 d

1
3 (log T )

1
3 + T

2
3 (d log T )−

1
6

√
log

1

δ

)

with probability at least 1− δ. Furthermore, E
[
SOmniLcvx,Faff

res

]
= O

(
T

2
3 d

1
3 (log T )

1
3

)
, where the

expectation is taken over the internal randomness of the algorithm.

Theorem 2 significantly improves upon the Õ
(
T

7
8 (d2 log 1

δ )
1
4

)
high probability bound of Garg et al.

(2024).

C.2 Bound on the contextual swap regret

In this section, we derive an improved high probability bound on SRegF lin
4

. Similar to Lemma 1, we
first obtain a high probability bound that relates SRegF and PSRegF for a finite hypothesis class.
Lemma 8. Let F ⊂ [−1, 1]X be a finite hypothesis class. For any algorithm ASRegF such that for
each t ∈ [T ] the conditional distribution Pt is deterministic, with probability at least 1 − δ over
ASRegF ’s predictions p1, . . . , pT , we have

SRegF ≤ PSRegF + 8

√
(N + 1)T log

2(N + 1) |F|
δ

+ 8(N + 1) log
2(N + 1) |F|

δ
.

Proof. The proof follows by an application of Freedman’s inequality, similar to Lemma 1. Fix a
f ∈ F , p ∈ Z and define the martingale difference sequence {Xt}Tt=1 as

Xt := (I[pt = p]− Pt(p)) ·
(
(p− yt)

2 − (f(xt)− yt)
2
)
.
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Since f ∈ [−1, 1], |Xt| ≤ 4 for all t ∈ [T ]. Fix a µp ∈
[
0, 1

4

]
. Applying Lemma 6, we obtain∣∣∣∣∣

T∑
t=1

(I[pt = p]− Pt(p)) ·
(
(p− yt)

2 − (f(xt)− yt)
2
)∣∣∣∣∣ ≤ 16µp

T∑
t=1

Pt(p) +
1

µp
log

2

δ
,

where the inequality is because the total conditional variance can be bounded as
T∑

t=1

Et

[
X2

t

]
=

T∑
t=1

Et

[
(I[pt = p]− Pt(p))

2
]
·
(
(p− yt)

2 − (f(xt)− yt)
2
)2

≤ 16

T∑
t=1

Pt(p)(1− Pt(p)),

and we drop the negative term. Taking a union bound over all p ∈ Z, f ∈ F , we obtain that with
probability at least 1− δ (simultaneously over all p ∈ Z, f ∈ F),∣∣∣∣∣

T∑
t=1

(I[pt = p]− Pt(p)) ·
(
(p− yt)

2 − (f(xt)− yt)
2
)∣∣∣∣∣ ≤ 16µp

T∑
t=1

Pt(p) +
1

µp
log

2(N + 1) |F|
δ

.

Next, we minimize the bound above with respect to µp. If p ∈ Z is such that
∑T

t=1 Pt(p) ≥

log 2(N+1)|F|
δ , the optimal choice of µp is 1

4

√
log

2(N+1)
δ∑T

t=1 Pt(p)
; otherwise, the optimal µp is 1

4 . Therefore,

we define the set

I :=

{
p ∈ Z s.t

T∑
t=1

Pt(p) ≥ log
2(N + 1) |F|

δ

}
and bound the deviation as∣∣∣∣∣

T∑
t=1

(I[pt = p]− Pt(p)) ·
(
(p− yt)

2 − (f(xt)− yt)
2
)∣∣∣∣∣ ≤8

√(∑T
t=1 Pt(p)

)
log 2(N+1)|F|

δ if p ∈ I,

4
(∑T

t=1 Pt(p) + log 2(N+1)|F|
δ

)
otherwise.

(15)

Equipped with (15), we can bound SRegF in the following manner:

SRegF =

sup
{fp∈F}p∈Z

∑
p∈Z

T∑
t=1

I[pt = p]
(
(p− yt)

2 − (fp(xt)− yt)
2
)

=
∑
p∈Z

sup
f∈F

T∑
t=1

I[pt = p]
(
(p− yt)

2 − (f(xt)− yt)
2
)

≤
∑
p∈Z

sup
f∈F

T∑
t=1

(I[pt = p]− Pt(p)) ·
(
(p− yt)

2 − (f(xt)− yt)
2
)
+ PSRegF

≤ 8
∑
p∈I

√√√√( T∑
t=1

Pt(p)

)
log

2(N + 1) |F|
δ

+ 4
∑
p∈Ī

(
T∑

t=1

Pt(p) + log
2(N + 1) |F|

δ

)
+ PSRegF

≤ 8
∑
p∈I

√√√√( T∑
t=1

Pt(p)

)
log

2(N + 1) |F|
δ

+ 8
∣∣Ī∣∣ log 2(N + 1) |F|

δ
+ PSRegF

≤ 8

√√√√√|I|

∑
p∈I

T∑
t=1

Pt(p)

 log
2(N + 1) |F|

δ
+ 8

∣∣Ī∣∣ log 2(N + 1) |F|
δ

+ PSRegF
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≤ 8

√
(N + 1)T log

2(N + 1) |F|
δ

+ 8(N + 1) log
2(N + 1) |F|

δ
+ PSRegF ,

where the first inequality follows from the sub-additivity of the supremum function, and by a similar
reasoning as the first two equalities above, we have

PSRegF =
∑
p∈Z

sup
f∈F

T∑
t=1

Pt(p)
(
(p− yt)

2 − (f(xt)− yt)
2
)
;

the second inequality follows from (15); the third inequality follows since log 2(N+1)|F|
δ >∑T

t=1 Pt(p) for all p ∈ Ī; the fourth inequality follows from the Cauchy-Schwartz inequality.
This completes the proof.

Equipped with Lemma 8 and by a covering number-based argument, we bound SRegF lin
4

in the
following theorem.
Theorem 3. There exists an efficient algorithm that achieves

SRegF lin
4
= O

(
T

3
5 (d log T )

2
5 + T

3
5 (d log T )−

1
10

√
log

1

δ

)

with probability at least 1− δ. Furthermore, E
[
SRegF lin

4

]
= O

(
T

3
5 (d log T )

2
5

)
, where the expec-

tation is taken over the internal randomness in the algorithm.

Proof. First, we bound SRegF lin
4

in terms of SRegSε
, where Sε ⊆ F lin

4 is an ε-cover of F lin
4 . Let

f ∈ F lin
4 and fε ∈ Sε be its representative. Then, for any t ∈ [T ], we have

(fε(xt)− yt)
2 − (f(xt)− yt)

2 = (fε(xt)− f(xt))(fε(xt) + f(xt)− 2yt) ≤ 6ε.

Therefore, SRegF lin
4

can be bounded in terms of SRegSε
as

SRegF lin
4
=
∑
p∈Z

sup
f∈F lin

4

T∑
t=1

I[pt = p]
(
(p− yt)

2 − (f(xt)− yt)
2
)
≤ SRegSε

+ 6εT.

Since |Sε| is finite (Proposition 1), using Lemma 8 to bound SRegSε
, we obtain

SRegF lin
4
≤ PSRegSε

+ 8

√
(N + 1)T log

2(N + 1) |Sε|
δ

+ 8(N + 1) log
2(N + 1) |Sε|

δ
+ 6εT

= O

(
PSRegF lin

4
+

√
NT log

N |Sε|
δ

+N log
N |Sε|

δ
+ εT

)

= O

(
T

N2
+Nd log T +

√
NT log

N

δ
+
√
NdT log T

)

= O

(
T

3
5 (d log T )

2
5 + T

3
5 (d log T )−

1
10

√
log

1

δ

)
with probability at least 1 − δ. The first equality above follows since PSRegSε

≤ PSRegF lin
4

; the
second equality follows by substituting ε = 1

T and bounding |Sε| as per Proposition 1, dropping
the lower order terms, and since PSRegF lin

4
= O

(
T
N2 +Nd log T

)
; the final equality follows by

substituting N =
(

T
d log T

) 1
5

. The in-expectation bound follows by repeating the exact same steps to

bound E
[
SMCalF lin

1 ,2

]
in the proof of Theorem 1. This completes the proof.

For SRegF lin
4

, Garg et al. (2024) proposed an algorithm that achieves SRegF lin
4
= Õ

(
dT

3
4

√
log 1

δ

)
.

Clearly, our result in Theorem 3 is strictly better, with an improved dependence in both d, T .

26



Remark 1. Note that in Theorem 1 we set N =
(

T
d log T

) 1
3

, which is different from the choice of N

in Theorem 3. Substituting the former value yields a leading dependence of Õ(T
2
3 ) in the bound on

SRegF lin
4

. Therefore, even if not the best achievable bound on SRegF lin
4

, the algorithm guaranteed by
Theorem 1 achieves an improved dependence on T compared to Garg et al. (2024)’s result.

D From Online to Distributional

In this section, using our improved guarantees for contextual swap regret (Theorem 3), swap multical-
ibration (Theorem 1), and swap omniprediction (Theorem 2), we establish significantly improved
sample complexity bounds for the corresponding distributional quantities. For swap omniprediction
and swap agnostic learning, we shall perform an online-to-batch reduction using the corresponding
online algorithm that achieves the improved guarantee. The sample complexity bound for swap
multicalibration shall follow from that of swap agnostic learning. Before proceeding to the details,
we first give formal definitions of the above notions in the distributional setting.

Distributional (Swap) Multicalibration. For a bounded hypothesis class F , the predictor
p is perfectly multicalibrated if supf∈F E[f(x) · (y − v) | p(x) = v] = 0 for each v ∈
Range(p). Since perfect multicalibration is both information theoretically and computation-
ally infeasible, the above requirement is quantified via the objective of minimizing the mul-
ticalibration error, where the predictor p has ℓq-multicalibration error (q ≥ 1) at most ε if
DMCalF,q := supf∈F Ev [|ED [f(x) · (y − v)|p(x) = v]|q] satisfies DMCalF,q ≤ ε. Motivated
by the role of swap regret in online learning and to explore the interplay between multicali-
bration and omniprediction, (Gopalan et al., 2023b) introduced the notion of swap multicali-
bration, where the predictor p has ℓq-swap multicalibration error at most ε if DSMCalF,q :=
Ev

[
supf∈F |ED [f(x) · (y − v) | p(x) = v]|q

]
≤ ε. Since DMCalF,q ≤ DSMCalF,q, a swap-

mutlicalibrated predictor is also multicalibrated.

Distributional (Swap) Omniprediction. A predictor p such that DOmniL,F :=
supℓ∈L supf∈F E[ℓ(kℓ(p(x)), y) − ℓ(f(x), y)] ≤ ε is referred to as a (ε,L,F)-omnipredictor. In
a similar spirit to swap multicalibration, Gopalan et al. (2023b) introduced the notion of swap
omniprediction, where the predictor is required to outperform the best hypothesis in F not just
marginally but also when conditioned on the level sets of the predictor, even when the losses are
indexed by the predictions themselves. In particular, the predictor p has swap omniprediction error at
most ε if

DSOmniL,F := sup
{ℓv∈L,fv∈F}v∈Z

Ev∼Dp [E [ℓv(kℓv (v), y)− ℓv(fv(x), y)|p(x) = v]] ≤ ε. (16)

Notably, omniprediction corresponds to a special case of swap omniprediction when the loss,
comparator profiles are fixed and independent of p ∈ Z . Therefore, we have the trivial relation
DOmniL,F ≤ DSOmniL,F .

Swap Agnostic Learning. Swap agnostic learning is a special case of swap omniprediction when
L = {ℓ} and ℓ = (p− y)2, so that kℓ(p) = p. We define the swap agnostic error as

SAErrF := sup
{fv∈F}v∈Z

E
[
(p(x)− y)2 − (fp(x)(x)− y)2

]
. (17)

D.1 Sample complexity of swap omniprediction

We first derive the sample complexity of learning a (ε,Lcvx,Faff
res )-swap omnipredictor. As already

mentioned, we perform an online-to-batch reduction using our online algorithm in Theorem 2, which
we refer to as Aswap for brevity. The reduction proceeds in the following manner: given T samples
(x1, y1), . . . , (xT , yT ) sampled i.i.d from D, we feed the samples to Aswap to obtain predictors
p1, . . . , pT , where pt : X → Z for each t ∈ [T ]. Subsequently, we sample a predictor p from the
uniform distribution π over p1, . . . , pT . To obtain the number of samples T sufficient to drive the
swap omniprediction error to be at most ε, we shall derive a concentration bound (tailored to the
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choice of F = Faff
res ,L = Lcvx) that relates the distributional version of the swap omniprediction

error with its online analogue, i.e., we bound the deviation ∆ defined to be the supremum of

sup
{(ℓv,fv)∈L×F}v∈Z

∣∣∣E(x,y)∼D, p∼π

[
ℓp(x)(kℓp(x)

(p(x)), y)− ℓp(x)(fp(x)(x), y)
]

− 1

T

T∑
t=1

[
ℓpt(xt)(kℓpt(xt)

(pt(xt)), yt)− ℓpt(xt)(fpt(xt)(xt), yt)
] ∣∣∣.

Since π is the uniform mixture over p1, . . . , pT , we have

E(x,y)∼D,p∼π

[
ℓp(x)(kℓp(x)

(p(x)), y)− ℓp(x)(fp(x)(x), y)
]
=

1

T

T∑
t=1

E(x,y)∼D

[
ℓpt(x)(kℓpt(x)

(pt(x)), y)− ℓpt(x)(fpt(x)(x), y)
]
.

Using the Triangle inequality and sub-additivity of the supremum function, we obtain ∆ ≤ 1
T (T1 +

T2), where T1, T2 are defined as

T1 := sup
{ℓv∈L}v∈Z

∣∣∣∣∣
T∑

t=1

ℓpt(xt)(kℓpt(xt)
(pt(xt), yt)−

T∑
t=1

E(x,y)∼D

[
ℓpt(x)(kℓpt(x)

(pt(x)), y)
]∣∣∣∣∣ ,

T2 := sup
{(ℓv,fv)∈L×F}v∈Z

∣∣∣∣∣
T∑

t=1

ℓpt(xt)(fpt(xt)(xt), yt)−
T∑

t=1

E(x,y)∼D
[
ℓpt(x)(fpt(x)(x), y)

]∣∣∣∣∣ .
In the next two lemmas, we bound T1, T2.

Lemma 9. For a δ ≤ 1
T , with probability at least 1− δ, we have T1 = O

(
T
N +

√
NT log N

δ

)
.

Proof. We begin by upper bounding T1 as

T1 =

sup
{ℓv∈L}v∈Z

∣∣∣∣∣∑
v∈Z

T∑
t=1

I[pt(xt) = v] · ℓv(kℓv (v), yt)− P(pt(x) = v) · E [ℓv(kℓv (v), y)|pt(x) = v]

∣∣∣∣∣
≤
∑
v∈Z

sup
ℓ∈L

∣∣∣∣∣
T∑

t=1

I[pt(xt) = v] · ℓ(kℓ(v), yt)− P(pt(x) = v) · E [ℓ(kℓ(v), y)|pt(x) = v]

∣∣∣∣∣
≤
∑
v∈Z

sup
ℓ∈Lproper

∣∣∣∣∣
T∑

t=1

I[pt(xt) = v] · ℓ(v, yt)− P(pt(x) = v) · E [ℓ(v, y)|pt(x) = v]

∣∣∣∣∣ , (18)

where the second inequality follows since the loss ℓ̃(p, y) defined as ℓ̃(p, y) = ℓ(kℓ(p), y) is proper;
we replace the supℓ̃∈Lproper with supℓ∈Lproper . It follows from (Kleinberg et al., 2023, Theorem 8) that
there exists a basis for proper losses in terms of V-shaped losses ℓv(p, y) = (v− y) · sign(p− v), i.e.,

ℓ(p, y) =

∫ 1

0

µℓ(v) · ℓv(p, y)dv,

where µℓ : [0, 1] → R≥0 and
∫ 1

0
µℓ(v)dv ≤ 2. To avoid overloading the usage of v for both ℓv(p, y)

and v ∈ Z , we replace the v in (18) with p for all the subsequent steps. Furthermore, as shown in
(Okoroafor et al., 2025, Lemma 6.4), for each V-shaped loss ℓv, setting v′ = 1

N ⌈Nv⌉ ∈ Z ensures
the following bound for all p ∈ Z, y ∈ {0, 1}:

|ℓv(p, y)− ℓv′(p, y)| = |(v − y) · sign(p− v)− (v′ − y) · sign(p− v′)|

= |(v − v′) · sign(p− v)| ≤ 1

N
, (19)
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where the second equality is because for all p ∈ Z , we have sign(p− v) = sign(p− v′). Using this
to bound T1 further, we obtain

T1 ≤∑
p∈Z

sup
ℓ∈Lproper

∣∣∣∣∣
T∑

t=1

I[pt(xt) = p]

∫ 1

0

µℓ(v) · ℓv(p, yt)dv − P(pt(x) = p)

∫ 1

0

µℓ(v) · E[ℓv(p, y)|pt(x) = p]dv

∣∣∣∣∣
=
∑
p∈Z

sup
ℓ∈Lproper

∣∣∣∣∣
∫ 1

0

µℓ(v)

(
T∑

t=1

I[pt(xt) = p] · ℓv(p, yt)− P(pt(x) = p) · E[ℓv(p, y)|pt(x) = p]

)
dv

∣∣∣∣∣
≤
∑
p∈Z

sup
ℓ∈Lproper

∫ 1

0

µℓ(v)

∣∣∣∣∣
T∑

t=1

I[pt(xt) = p] · ℓv(p, yt)− P(pt(x) = p) · E[ℓv(p, y)|pt(x) = p]

∣∣∣∣∣ dv.
In the next step, we bound the term inside the absolute value. It follows from (19) and the Triangle
inequality that the term can be bounded by

1

N

T∑
t=1

I[pt(xt) = p] +
1

N

T∑
t=1

P(pt(x) = p)+∣∣∣∣∣
T∑

t=1

I[pt(xt) = p] · ℓv′(p, yt)− P(pt(x) = p) · E[ℓv′(p, y)|pt(x) = p]

∣∣∣∣∣ .
Fix a v′ ∈ Z, p ∈ Z . Observe that the sequence X1, . . . , XT defined as

Xt := I[pt(xt) = p] · ℓv′(p, yt)− P(pt(x) = p) · E[ℓv′(p, y)|pt(x) = p]

is a martingale difference sequence with |Xt| ≤ 2 for all t ∈ [T ]. Furthermore, the cumulative
conditional variance can be bounded by

T∑
t=1

Et

[
X2

t

]
≤

T∑
t=1

P(pt(x) = p) · (E [ℓv′(p, y)|pt(x)])2 ≤
T∑

t=1

P(pt(x) = p).

Fix a µ ∈ [0, 1
2 ]. By Lemma 6, we have∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣ ≤ µ

T∑
t=1

P(pt(x) = p) +
1

µ
log

2

δ
.

Since
∑T

t=1 P(pt(x) = p) is a random variable, the optimal µ = 1
2 min

(
1,

√
log 2

δ∑T
t=1 P(pt(x)=p)

)
is

also random. Therefore, we cannot merely substitute the optimal µ (similar to our proofs in Lemmas

1 and 8). However, note that the optimal choice of µ ∈
[
1
2

√
log 2

δ

T , 1
2

]
. For the subsequent steps,

for simplicity in the analysis we assume that there exists a n ∈ Z≥0 such that
√

log 2
δ

T = 1
2n , and

partition the interval I =

[
1
2

√
log 2

δ

T , 1
2

]
as I = In ∪ · · · ∪ I1 ∪ I0, where Ik =

[
1

2k+1 ,
1
2k

)
for all

k ∈ [n] and I0 =
{

1
2

}
. Each interval corresponds to a condition on

∑T
t=1 P(pt(x) = p) for which

the optimal µ lies within that interval. In particular, for each k ∈ [n], the interval Ik shall correspond
to the condition that

1

2k
≤

√√√√ log 2(n+1)
δ∑T

t=1 P(pt(x) = p)
<

1

2k−1
≡ 4k−1 log

2(n+ 1)

δ
<

T∑
t=1

P(pt(x) = p) ≤ 4k log
2(n+ 1)

δ
.

(20)

However, I0 shall represent the condition that 0 ≤
∑T

t=1 P(pt(x) = p) ≤ log 2(n+1)
δ . For each

interval Ik, we associate a parameter µk = 1
2k+1 . Applying Lemma 6 and taking a union bound over
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all k ∈ {0, . . . , n}, we obtain∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≤ µk

T∑
t=1

P(pt(x) = p) +
1

µk
log

2(n+ 1)

δ

with probability at least 1− δ (simultaneously for all k). Next, we prove an uniform upper bound on∣∣∣∑T
t=1 Xt

∣∣∣ by analyzing the bound for each interval. Towards this end, let k ∈ [n] be such that (20)
holds. Then,∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣ ≤ 1

2k+1

T∑
t=1

P(pt(x) = p) + 2k+1 log
2(n+ 1)

δ
≤ 9

2

√√√√( T∑
t=1

P(pt(x) = p)

)
log

2(n+ 1)

δ
,

where the second inequality follows from (20). Note that the choice of µk = 1
2k+1 is not necessarily

optimal, however, since the optimal µ ∈
[

1
2k+1 ,

1
2k

)
for Ik, the bound on

∣∣∣∑T
t=1 Xt

∣∣∣ obtained above
is only worse than the optimal by a constant factor. Similarly, for k = 0, we have∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣ ≤ 1

2

T∑
t=1

P(pt(x) = p) + 2 log
2(n+ 1)

δ
≤ 5

2
log

2(n+ 1)

δ
.

Combining both bounds, we have shown that∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ ≤ 9

2

√√√√( T∑
t=1

P(pt(x) = p)

)
log

2(n+ 1)

δ
+

5

2
log

2(n+ 1)

δ

= O


√√√√( T∑

t=1

P(pt(x) = p)

)
log

1

δ
+ log

1

δ

 ,

where the second equality follows since n = O (log T ) and log n+1
δ = O(log 1

δ ) since δ ≤ 1
T .

Taking a union bound over all v′ ∈ Z, p ∈ Z , and substituting back to the bound on T1, we obtain
T1 ≤

2
∑
p∈Z

1

N

T∑
t=1

I[pt(xt) = p] +
1

N

T∑
t=1

P(pt(x) = p) +O


√√√√ T∑

t=1

P(pt(x) = p) log
N

δ
+ log

N

δ


= O

 T

N
+

√√√√N
∑
p∈Z

T∑
t=1

P(pt(x) = p) log
N

δ
+N log

N

δ

 = O

(
T

N
+

√
NT log

N

δ

)
,

where the first equality follows from the Cauchy-Schwartz inequality. This completes the proof.

For T2, we specifically tailor our analysis to the case L = Lcvx and F = Faff
res . Since Lcvx is infinite,

we cannot merely apply Freedman’s inequality and take a union bound over all ℓ ∈ L. Furthermore,
Lcvx does not have a finite-sized cover with respect to the ℓ∞ metric (Guntuboyina and Sen, 2012),
thereby rendering our covering number-based arguments futile. However, a recent result (Lemma
10) due to Gopalan et al. (2024) gives a tight (up to logarithmic terms) bound on the approximate
rank of convex functions. Therefore, to obtain a high probability bound for T2, we shall express the
supremum over ℓ ∈ Lcvx in terms of a supremum over the elements of the basis and subsequently
apply Freedman’s inequality to bound the latter quantity.

We first define a notion of approximate basis, following Gopalan et al. (2023b); Okoroafor et al.
(2025).
Definition 1 (Okoroafor et al. (2025)). Let Γ be a set and F ⊆ [−1, 1]Γ. A set G ⊂ [−1, 1]Γ is an
ε > 0 approximate basis for F with sparsity s and coefficient norm λ, if for every h ∈ F , there exists
a finite subset {g1, . . . , gs} ⊆ G and coefficients c1, . . . , cs ∈ [−1, 1] satisfying∣∣∣∣∣h(x)−

s∑
i=1

cigi(x)

∣∣∣∣∣ ≤ ε for all x ∈ Γ and
s∑

i=1

|ci| ≤ λ.
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In the special case when G itself has s elements, we say G is a finite ε-basis for F of size s with
coefficient norm λ.

Lemma 10 (Gopalan et al. (2024)). For all ε > 0, Lcvx admits a finite ε-basis of size O
(

log
4
3 ( 1

ε )

ε
2
3

)
with coefficient norm 2.

In the following result, we bound T2 when F is finite. Subsequently, we bound T2 for Faff
res by a

covering number-based argument.
Lemma 11. Let F ⊂ [−1, 1]X be a finite hypothesis class. For a δ ≤ 1

T , with probability at least

1− δ, we have T2 = O
(

T
N +

√
NT log N |F|

δ

)
.

Proof. Observe that ℓ(p, y) can be written as ℓ(p, y) = (1− y) · ℓ(p, 0) + y · ℓ(p, 1). We begin by
bounding T2 as

T2 =

sup
{(ℓv,fv)∈Lcvx×F}v∈Z

∣∣∣∣∣∣
∑
p∈Z

T∑
t=1

I[pt(xt) = v] · ℓv(fv(xt), yt)− P(pt(x) = v) · E[ℓv(fv(x), y)|pt(x) = v]

∣∣∣∣∣∣
≤
∑
p∈Z

sup
(ℓ,f)∈Lcvx×F

∣∣∣∣∣
T∑

t=1

I[pt(xt) = v] · ℓ(f(xt), yt)− P(pt(x) = v) · E[ℓ(f(x), y)|pt(x) = v]

∣∣∣∣∣
≤
∑
p∈Z

sup
(ℓ,f)∈Lcvx×F

∣∣∣∣∣
T∑

t=1

(1− yt) · I[pt(xt) = v] · ℓ(f(xt), 0)− P(pt(x) = v) · E [(1− y) · ℓ(f(x), 0)|pt(x) = v]

∣∣∣∣∣
+
∑
p∈Z

sup
(ℓ,f)∈Lcvx×F

∣∣∣∣∣
T∑

t=1

yt · I[pt(xt) = v] · ℓ(f(xt), 1)− P(pt(x) = v) · E [y · ℓ(f(x), 1)|pt(x) = v]

∣∣∣∣∣ .
The two terms above can be bounded in an exactly similar manner. For the sake of brevity, we
only provide details for bounding the second term. We begin by bounding the absolute value
accompanying the second term. Since the function ℓ(p, 1) is convex in p, it admits a finite ε-
basis G with coefficient norm 2 (Lemma 10), i.e., there exist functions g1, . . . , g|G| such that for
each ℓ ∈ Lcvx there exist constants c1(ℓ), . . . , c|G|(ℓ) ∈ [−1, 1] satisfying

∑|G|
i=1 |ci(ℓ)| ≤ 2 and∣∣∣ℓ(p, 1)−∑|G|

i=1 ci(ℓ)gi(p)
∣∣∣ ≤ ε for all p ∈ [0, 1]. Bounding ℓ(f(xt), 1) in terms of its basis

representation and applying the Triangle inequality, we obtain the following upper bound on the
absolute value accompanying the second term∣∣∣∣∣∣

T∑
t=1

yt · I[pt(xt) = v] ·

 |G|∑
i=1

ci(ℓ)gi(f(xt))

− P(pt(x) = v) ·

 |G|∑
i=1

E [y · ci(ℓ)gi(f(x))|pt(x) = v]

∣∣∣∣∣∣
+ ε

T∑
t=1

yt · I[pt(xt) = v] + ε

T∑
t=1

P(pt(x) = v)

which can be further bounded by |G|∑
i=1

|ci(ℓ)|

 sup
g∈G

∣∣∣∣∣
T∑

t=1

yt · I[pt(xt) = v] · g(f(xt))− P(pt(x) = v) · E [y · g(f(x))|pt(x) = v]

∣∣∣∣∣+
ε

T∑
t=1

yt · I[pt(xt) = v] + ε

T∑
t=1

P(pt(x) = v).

Therefore, the following expression upper bounds the second term:

O

(∑
v∈Z

sup
g∈G,f∈F

∣∣∣∣∣
T∑

t=1

yt · I[pt(xt) = v] · g(f(xt))− P(pt(x) = v) · E [y · g(f(x))|pt(x) = v]

∣∣∣∣∣+ εT

)
.
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Fix a g ∈ G, f ∈ F , v ∈ Z and define the martingale difference sequence X1, . . . , XT , where
Xt := yt · I[pt(xt) = v] · g(f(xt))− P(pt(x) = v) · E [y · g(f(x))|pt(x) = v] .

Repeating a similar analysis as in the proof of Lemma 9, we obtain,∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ = O


√√√√( T∑

t=1

P(pt(x) = v)

)
log

1

δ
+ log

1

δ

 .

Taking a union bound over all g ∈ G, f ∈ F , v ∈ Z , we obtain that with probability at least 1− δ,∣∣∣∣∣
T∑

t=1

yt · I[pt(xt) = v] · g(f(xt))− P(pt(x) = v) · E [y · g(f(x))|pt(x) = v]

∣∣∣∣∣ =
O


√√√√( T∑

t=1

P(pt(x) = v)

)
log

N |F| |G|
δ

+ log
N |F| |G|

δ

 .

Combining everything, we have shown that the second term can be bounded by

O

∑
p∈Z

√√√√( T∑
t=1

P(pt(x) = v)

)
log

N |F| |G|
δ

+N log
N |F| |G|

δ
+ εT

 =

O

(
T

N
+

√
NT log

N |F|
δ

)
on choosing ε = 1

N , bounding |G| as per Lemma 10, and using the Cauchy-Schwartz inequality.
Repeating the steps above, we obtain the same bound for the first term. Adding both the bounds
yields the desired result.

Using the result of Lemma 11 and by a covering number-based argument, we bound T2 for F = Faff
res

in the following lemma.
Lemma 12. When F = Faff

res , for a δ ≤ 1
T , with probability at least 1 − δ, we have T2 =

O
(

T
N +

√
dNT log N

δ

)
.

Proof. Let Cε be an ε-cover for Faff
res . For a f ∈ Faff

res , let fε be the representative of f . By the
1-Lipschitzness of ℓ, we have

|ℓ(f(x), y)− ℓ(fε(x), y)| ≤ |f(x)− fε(x)| ≤ ε.

Therefore, T2 can be bounded as
T2

≤
∑
p∈Z

sup
(ℓ,f)∈Lcvx×F

∣∣∣∣∣
T∑

t=1

I[pt(xt) = v] · ℓ(f(xt), yt)− P(pt(x) = v) · E[ℓ(f(x), y)|pt(x) = v]

∣∣∣∣∣
≤
∑
p∈Z

sup
(ℓ,f)∈Lcvx×Cε

∣∣∣∣∣
T∑

t=1

I[pt(xt) = v] · ℓ(f(xt), yt)− P(pt(x) = v) · E[ℓ(f(x), y)|pt(x) = v]

∣∣∣∣∣+ 2εT

= O

(
T

N
+

√
NT log

N |Cε|
δ

+ εT

)
= O

(
T

N
+

√
dNT log

N

δ

)
on choosing ε = 1

N and bounding |Cε| as per Proposition 1. This completes the proof.

Combining the result of Lemmas 9 and 12, we have the following high probability bound on
∆ — the deviation between the distributional and online swap omniprediction errors: ∆ =

O
(

1
N +

√
dN
T log N

δ

)
. Combining this with a bound on the online swap omniprediction error

(Theorem 2), we obtain the following theorem, which bounds the swap omniprediction error of the
predictor learned via the online-to-batch reduction.
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Theorem 4. With probability at least 1−δ, the randomized predictor p learned via the online-to-batch
reduction satisfies

SOmniLcvx,Faff
res

= Õ

((
d

T

) 1
3

+

(
d

T

) 1
3
√
log

1

δ

)
.

Consequently, Ω̃(dε−3) samples are sufficient for p to achieve a swap omniprediction error at most ε.

Proof. The swap omniprediction error of the predictor can be bounded as

∆+
SMCalF lin

1 ,1

T
≤ ∆+

√
SMCalF lin

1 ,2

T
= O

(
1

N
+

√
Nd

T
log

N

δ

)
.

Setting N = (Td )
1
3 , we obtain the desired result.

D.2 Sample complexity of swap agnostic learning

For the squared loss, the result of the previous section already gives a Õ(dε−3) sample complexity
for swap agnostic learning. However, in this section, we improve the bound to Õ(dε−2.5). Similar
to Section D.1, we perform an online-to-batch reduction using our online algorithm in Theorem 3,
which we refer to as Aswap−ag for brevity. Given T instances (x1, y1), . . . , (xT , yT ) that are sampled
i.i.d from D, we feed the instances to Aswap−ag to obtain predictors p1, . . . , pT . Subsequently, the
predictor p is sampled from the uniform distribution π over p1, . . . , pT .

To derive the improved sample complexity rate, we show an improved O
(

1
N2 +

√
dN
T log N

δ

)
bound on the deviation between the swap agnostic error and the contextual swap regret. Notably,

our bound on the deviation is stronger than the O
(

1
N +

√
dN
T log N

δ

)
bound obtained in Section

D.1. Comparing the two bounds, in the latter, we incur a 1
N term due to an approximation of proper

losses in terms of V-shaped losses ℓv(p, y) = (v − y) · sign(p− v), and subsequently, we replace the
supremum over v ∈ [0, 1] with v′ ∈ Z , which incurs an additive 1

N error. However, for the squared
loss, this step is no longer needed since we can directly apply Freedman’s inequality. This enables
us to get an improved 1

N2 dependence. Finally, on combining this with the Õ(T
3
5 ) bound on the

contextual swap regret (which is better than the Õ(T
2
3 ) bound on the online swap omniprediction

error), we obtain the improvement from ε−3 to ε−2.5, thereby saving a ε−0.5 factor. To formalize the
above discussion, we define the deviation as

∆ := sup
{fv∈F}v∈Z

∣∣∣∣∣E(x,y)∼D,p∼π

[
(p(x)− y)2 − (fp(x)(x)− y)2

]
−

1

T

T∑
t=1

(
(pt(xt)− yt)

2 − (fpt(xt)(xt)− yt)
2
) ∣∣∣∣∣.

Since p is sampled from π, we have

E(x,y)∼D,p∼π

[
(p(x)− y)2 − (fp(x)(x)− y)2

]
=

1

T

T∑
t=1

E(x,y)∼D
[
(pt(x)− y)2 − (fpt(x)(x)− y)2

]
.

The expectation on the right hand side of the equation above can be rewritten as
∑

v∈Z P(pt(x) =
v) · E

[
(v − y)2 − (fv(x)− y)2|pt(x) = v

]
. Therefore,

∆ · T = sup
{fv∈F}v∈Z

∣∣∣∣∣∑
v∈Z

(
T∑

t=1

P(pt(x) = v) · E[(v − y)2 − (fv(x)− y)2|pt(x) = v]−

I[pt(xt) = v] · ((v − yt)
2 − (fv(xt)− yt)

2)

)∣∣∣∣∣
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≤
∑
v∈Z

sup
f∈F

∣∣∣∣∣
T∑

t=1

P(pt(x) = v) · E
[
(v − y)2 − (f(x)− y)2|pt(x) = v

]
−

I[pt(xt) = v] · ((v − yt)
2 − (f(xt)− yt)

2)

∣∣∣∣∣, (21)

where the inequality follows by Triangle inequality and sub-additivity of the supremum function.
In the next lemma, we bound ∆ when F is finite. Subsequently, we bound ∆ for F = F lin

4 by a
covering-number based argument.
Lemma 13. Let F ⊂ [−1, 1]X be a finite hypothesis class. For a δ ≤ 1

T , with probability at least

1− δ, we have ∆ = O
(√

N
T log N |F|

δ

)
.

Proof. Fix a v ∈ Z, f ∈ F , and consider the sequence X1, . . . , XT , where Xt is defined as

Xt := P(pt(x) = v) · E
[
(v − y)2 − (f(x)− y)2|pt(x) = v

]
−

I[pt(xt) = v] ·
(
(v − yt)

2 − (f(xt)− yt)
2
)
.

Observe that the above sequence is a martingale difference sequence. Furthermore, since f ∈ [−1, 1],
we have |Xt| ≤ 8 for all t ∈ [T ]. Applying Lemma 6, we obtain

∣∣∣∑T
t=1 Xt

∣∣∣ ≤ µVX + 1
µ log 2

δ with

probability at least 1− δ, where µ ∈ [0, 1
8 ] is fixed and the cumulative conditional variance VX can

be bounded as

VX ≤
T∑

t=1

P(pt(x) = v) ·
(
E
[
(v − y)2 − (f(x)− y)2|pt(x) = v

])2 ≤ 16

T∑
t=1

P(pt(x) = v).

Repeating a similar analysis as in the proof of Lemma 9, we obtain∣∣∣∣∣
T∑

t=1

Xt

∣∣∣∣∣ = O


√√√√( T∑

t=1

P(pt(x) = v)

)
log

1

δ
+ log

1

δ

 .

Taking a union bound over all v ∈ Z, f ∈ F , we obtain that with probability at least 1− δ

sup
f∈F

∣∣∣∣∣
T∑

t=1

P(pt(x) = v) · E
[
(v − y)2 − (f(x)− y)2|pt(x) = v

]
−

I[pt(xt) = v] ·
(
(v − yt)

2 − (f(xt)− yt)
2
) ∣∣∣∣∣ =

O


√√√√( T∑

t=1

P(pt(x) = v)

)
log

N |F|
δ

+ log
N |F|
δ

 (22)

holds simultaneously for all v ∈ Z . Therefore, we can finally upper bound ∆ as

∆ = O

 1

T

√√√√N

(
T∑

t=1

∑
v∈Z

P(pt(x) = v)

)
log

N |F|
δ

+
N

T
log

N |F|
δ

 = O

(√
N

T
log

N |F|
δ

)
,

where the first equality follows from (22) and the Cauchy-Schwartz inequality, while the second
equality follows by dropping the lower order term. This completes the proof.

Using the result of Lemma 13 and by a covering number-based argument, we bound T2 for F = F lin
4

in the following lemma.
Lemma 14. When F = F lin

4 , for a δ ≤ 1
T , with probability at least 1 − δ, we have ∆ =

O
(

1
N2 +

√
dN
T log N

δ

)
.
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Proof. Let ℓ be the squared loss and Cε be an ε-cover for F lin
4 . Observe that the squared loss is

6-Lipschitz in p for p ∈ [−1, 1]. For a f ∈ F , letting fε be the representative of f , we have
|ℓ(f(x), y)− ℓ(fε(x), y)| ≤ 6 |f(x)− fε(x)| ≤ 6ε for all x ∈ X , y ∈ {0, 1}. It then follows from
(21) that

∆ ≤ 1

T

∑
v∈Z

sup
f∈F

∣∣∣∣∣
T∑

t=1

P(pt(x) = v) · E [ℓ(v, y)− ℓ(f(x), y)|pt(x) = v]−

I[pt(x) = v] · (ℓ(v, yt)− ℓ(f(xt), yt))

∣∣∣∣∣
≤ 1

T

∑
v∈Z

sup
f∈Cε

∣∣∣∣∣
T∑

t=1

P(pt(x) = v) · E [ℓ(v, y)− ℓ(f(x), y)|pt(x) = v]−

I[pt(x) = v] · (ℓ(v, yt)− ℓ(f(xt), yt))

∣∣∣∣∣
+

6ε

T

T∑
t=1

∑
v∈Z

P(pt(x) = v) +
6ε

T

T∑
t=1

∑
v∈Z

I[pt(x) = v]

= O

(
ε+

√
N

T
log

N |Cε|
δ

)
= O

(
1

N2
+

√
dN

T
log

N

δ

)
,

where the second inequality follows by bounding ℓ(f(x), y) in terms of ℓ(fε(x), y); the first equality
follows from Lemma 13, while the final equality follows by choosing ε = 1

N2 and bounding |Cε| as
per Proposition 1. This completes the proof.

Combining the result of Lemma 14 with the bound on SRegF lin
4

(Theorem 3), we bound the expected
swap agnostic error incurred by p.

Theorem 5. With probability at least 1−δ, the randomized predictor p learned via the online-to-batch
reduction satisfies

SAErrF lin
4
= Õ

((
d

T

) 2
5

+

(
d

T

) 2
5
√

log
1

δ

)
.

Consequently, Ω̃(dε−2.5) samples are sufficient for p to be achieve a swap agnostic error at most ε.

Proof. The expected swap agnostic error incurred by p can be bounded by

∆+
SRegF lin

4

T
= O

(
1

N2
+

√
dN

T
log

N

δ

)
= Õ

((
d

T

) 2
5

+

(
d

T

) 2
5
√
log

1

δ

)
,

on choosing N =
(
T
d

) 1
5 . Note that in the first equality above, we have used the bound

SRegF lin
4
=

(
T

N2
+Nd log T +

√
dNT log

N

δ

)
which follows from Theorem 3. This completes the proof.

D.3 Sample complexity of swap multicalibration

In this section, we establish Õ(ε−5), Õ(ε−2.5) sample complexities for learning ℓ1, ℓ2-swap multical-
ibrated predictors respectively. We first establish the sample complexity of ℓ2-swap multicalibration
by using a characterization of swap multicalibration in terms of swap agnostic learning. Subsequently,
we utilize the sample complexity result derived from the previous section.
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Lemma 15. (Globus-Harris et al., 2023, Theorem 3.2) Fix a predictor p and assume that there exists
a v ∈ Range(p), f ∈ F1 such that E[f(x)(y− v)|p(x) = v] ≥ α, for some α > 0. Then, there exists
f ′ ∈ F4 such that

E
[
(p(x)− y)2 − (f ′(x)− y)2|p(x) = v

]
≥ α2.

The above result was concurrently obtained by Globus-Harris et al. (2023) and Gopalan et al. (2023b),
and subsequently extended to the online setting by Garg et al. (2024) (see also Lemma 3). Using
Lemma 15, we establish the following result that relates the ℓ2-swap multicalibration error and the
swap agnostic error.
Lemma 16. Fix a distribution π over predictors, and assume that there exists α > 0 such that

sup
{fv∈F4}v∈Z

E(x,y)∼D,p∼π

[
(p(x)− y)2 − (fp(x)(x)− y)2

]
≤ α.

Then,

sup
{fv∈F1}v∈Z

Ep∼πEv

[
E [fv(x) · (y − v)|p(x) = v]

2
]
≤ α.

Proof. The proof follows a similar approach to that of Lemma 4. Assume on the contrary that

sup
{fv∈F1}v∈Z

Ep∼πEv

[
E [fv(x) · (y − v)|p(x) = v]

2
]
> α.

Then, there exists a comparator profile {fv ∈ F1}v∈Z such that

Ep∼π

[∑
v∈Z

P(p(x) = v) · E[fv(x)(y − v)|p(x) = v]2

]
> α.

For simplicity, define αv := P(p(x) = v) ·E[fv(x)(y− v)|p(x) = v]2. Then, for all v ∈ Z , we have

|E[fv(x)(y − v)|p(x) = v]| =
√

αv

P(p(x) = v)
.

Clearly, there exists a function f⋆
v which is either fv or −fv such that E[f⋆

v (x)(y − v)|p(x) = v] =√
αv

P(p(x)=v) . Furthermore, f⋆
v ∈ F1 since F satisfies Assumption 1. As per Lemma 15, for each

v ∈ Z there exists a f ′
v ∈ F4 such that

P(p(x) = v) · E[(p(x)− y)2 − (f ′
v(x)− y)2|p(x) = v] ≥ αv

for all v ∈ Z . Summing over v ∈ Z , we obtain EvE
[
(p(x)− y)2 − (f ′

v(x)− y)2|p(x) = v
]
≥∑

v∈Z αv . Taking expectation over p ∼ π, we obtain

Ep∼π

[
EvE

[
(p(x)− y)2 − (f ′

v(x)− y)2|p(x) = v
]]

≥ Ep∼π

[∑
v∈Z

αv

]
> α

which contradicts the assumption
sup

{fv∈F4}v∈Z

E(x,y)∼D,p∼π

[
(p(x)− y)2 − (fp(x)(x)− y)2

]
≤ α.

This completes the proof.

Since ≳ ε−2.5 samples are sufficient to achieve a swap agnostic error at most ε (as per Theorem 5),
we obtain a Õ(ε−2.5) sample complexity of learning a ℓ2-swap multicalibrated predictor with error
at most ε. Therefore, we have the main result of this section.
Theorem 6. With probability at least 1− δ, the randomized predictor p (Section D.2) learned via the
online-to-batch reduction satisfies

DSMCalF lin
1 ,2 = Õ

((
d

T

) 2
5

+

(
d

T

) 2
5
√
log

1

δ

)
,

DSMCalF lin
1 ,1 = Õ

((
d

T

) 1
5

+

(
d

T

) 1
5
(
log

1

δ

) 1
4

)
.

Consequently, Ω̃(dε−2.5), Ω̃(dε−5) samples are sufficient to achieve ℓ2, ℓ1-swap multicalibration
errors at most ε, respectively.
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is a theory work and does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research abides in every respect with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is a theory work and does not have any immediate societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is a theory work and doesn’t poses any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper is a theory work and does not use any existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper is a theory work and does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper is a theory work and does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper is a theory work and does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The paper is a theory work and the core method development in this research
does not involve LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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