
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODULE-AWARE PARAMETER-EFFICIENT MACHINE
UNLEARNING ON TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer has become fundamental to a vast series of pre-trained large models
that have achieved remarkable success across diverse applications. Machine un-
learning, which focuses on efficiently removing specific data influences to comply
with privacy regulations, shows promise in restricting updates to influence-critical
parameters. However, existing parameter-efficient unlearning methods are largely
devised in a module-oblivious manner, which tends to inaccurately identify these
parameters and leads to inferior unlearning performance for Transformers. In this
paper, we propose MAPE-Unlearn, a module-aware parameter-efficient machine
unlearning approach that uses a learnable pair of masks to pinpoint influence-
critical parameters in the heads and filters of Transformers. The learning objective
of these masks is derived by desiderata of unlearning and optimized through an
efficient algorithm featured by a greedy search with a warm start. Extensive experi-
ments on various Transformer models and datasets demonstrate the effectiveness
and robustness of MAPE-Unlearn for unlearning.

1 INTRODUCTION

Transformer architecture (Vaswani et al. (2017)) has achieved superior performance in the field of
natural language processing. Its models, e.g., BERT (Devlin et al. (2018)) and GPT (Achiam et al.
(2023)), show impressive performance in a wide range of downstream tasks (Wei et al. (2021); Hao
et al. (2019)). In light of privacy regulations, such as General Data Protection Regulation (GDPR)
(Hoofnagle et al. (2019)), users are granted the right to request the removal of specific training
data from models. To fulfill this requirement, machine unlearning have been extensively researched
(Bourtoule et al. (2021); Yao et al. (2023)). However, applying these techniques to Transformers,
which commonly involves a large number of parameters, poses a significant challenge in balancing
effective unlearning with maintaining model fidelity (Liu et al. (2024c)).

Recent researches propose parameter-efficient unlearning techniques (Liu et al. (2024a); Pochinkov &
Schoots (2024); Schoepf et al. (2024)), which identify the influence-critical parameters to govern the
unlearning process. These methods assess the importance of parameters through different strategies,
allowing selective updates to reduce computational overhead and improve unlearning efficiency.
However, applying parameter-efficient unlearning to address the dilemma of the unlearning tasks in
Transformers faces two major limitations. First, previous evaluation methods rely on heuristic or
empirical strategies to identify parameters. For Transformer models with an immense number of
parameters, identifying those specifically relevant to unlearning becomes inefficient. Additionally,
existing methods (Pochinkov & Schoots (2024); Liu et al. (2023b); Shi et al. (2023)) assess importance
of parameters by comparing performance (e.g., gradients or activations) on forget dataset and retain
dataset may result in fine-grained selection process. Thus, previous unlearning methods overlook the
intricate interactions between modules in Transformers. Transformers utilize parallel attention heads
and hierarchical filters to perform computation and inference (Vaswani et al. (2017)). Consequently,
attempting to identify critical parameters at a fine-grained level is often inaccurate, as this approach
fails to capture the broader contextual relationships inherent in Transformers.

In this paper, we propose a Module-aware Parameter-Efficient Unlearning (MAPE-Unlearn)
approach that targets influence-critical parameters at the module-level for Transformers. Specifically,
MAPE-Unlearn formulates the unlearning objective through a pair of learnable masks applied
to heads and filters. The derivation of this formulation ensures the effective removal of influences
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and guides the identification of key modules. These masks are further refined by considering intra-
layer interactions, and a warm-start greedy search algorithm is employed to efficiently optimize
the process. Equipped with these module-aware masks, we integrate MAPE-Unlearn into various
unlearning methods (e.g., second-order unlearning and gradient ascent). Additionally, we demonstrate
that module-aware masks offer advantages in successive unlearning settings (Hu et al. (2024b);
Liu et al. (2023a)) and against relearning attacks (Hu et al. (2024a); Łucki et al. (2024); Lynch
et al. (2024)). While second-order unlearning introduces approximation errors, sparse updates
using module-aware masks effectively limit these errors within selected modules, thus preserving
overall performance in successive unlearning scenarios. Furthermore, by isolating parameter update
regions, MAPE-Unlearn enhance robustness against relearning attacks. Our key contributions are
summarized as follows:

• We introduce a new paradigm for identifying influence-critical parameters in Transformers,
MAPE-Unlearn, which operates at the module-level. Our approach theoretically derives impor-
tance functions for selecting key modules using a pair of learnable masks. These module-aware
masks can be seamlessly integrated into existing unlearning methods.

• We integrate MAPE-Unlearn into various unlearning methods and analyze the gains with module-
aware masks. Extensive experiments on diverse tasks using different models demonstrate that the
proposed method offers a superior trade-off between efficacy and fidelity.

• We evaluate the robustness of MAPE-Unlearn under complex unlearning settings and existing
attacks. Empirical studies show that MAPE-Unlearn can handle a greater number of removal
requests and is more resistant to relearning attacks compared to standard methods.

2 RELATED WORK

Transformer Unlearning. The concept of machine unlearning was first introduced by (Cao &
Yang (2015)). Initially applied to simple model, machine unlearning has since been extended to
Transformers (Jang et al. (2022); Eldan & Russinovich (2023); Yao et al. (2023; 2024); Chen et al.
(2024); Jia et al. (2024); Gu et al. (2024)). (Jang et al. (2022)) proposed inverting the training
objective on forgetting sequences and utilize straightforward gradient ascent (GA). As gradient
ascent significantly degrades performance, (Liu et al. (2022); Yao et al. (2024)) introduced gradient
difference (GD), which refines the objective function by employing gradient descent on in-distribution
data to enhance robustness. Inspired by direct preference optimization (DPO) (Rafailov et al. (2024)),
negative preference optimization (NPO) (Zhang et al. (2024a)) interprets the forget data as negative
examples in preference alignment to deviate from the original model. Subsequently, (Jia et al.
(2024)) provided a comprehensive overview of unlearning objectives and developed a second-order
optimization unlearning approach. (Gu et al. (2024)) further investigated the effectiveness of second-
order updates on Transformers. However, these methods primarily focus on updating all parameters,
which is computationally expensive. In our work, we study the parameter-efficient methods to achieve
effective unlearning on Transformers.

Parameter-efficient Unlearning. Parameter-efficient unlearning methods focus on identifying
influence-critical parameters and updating only those to accelerate the unlearning process. Several
strategies (Ma et al. (2022); Pochinkov & Schoots (2024); Shi et al. (2023); Liu et al. (2023b);
Wu & Harandi (2024); Foster et al. (2024); Schoepf et al. (2024)) have been proposed to assess the
importance of the parameters. Although these approaches may be applicable to Transformers, they are
largely heuristic or empirical, which can lead to less reliable outcomes for unlearning tasks. Recently,
(Liu et al. (2024a)) highlighted that unlearning can be effective when performed on a pruned model
with a theoretical foundation. However, pruning focuses primarily on identifying parameters critical
to maintain model performance, which does not align with the unlearning desiderata. Additionally,
the focus on parameter ignores the complex intra-layer interactions within Transformers, which
results in inaccurate identification of the parameters. Therefore, we specifically target modules within
Transformers and derive an efficient strategy to identify influence-critical parameters.

3 PRELIMINARY

Machine unlearning is concerned with eradicating the influence of designated data instances from
a trained model. Let D = {xi}Mi=1 denote a training dataset containing M data points, where each
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xi denotes an individual data point. Given an initial model θ∗ which was pre-trained on D, the
objective of unlearning is to effectively remove sensitive or compliance-related data points while
maintaining overall performance. Specifically, the dataset D is partitioned into two disjoint subsets:
forget dataset Df and retain dataset Dr, i.e., D = Df ∪Dr and Df ∩Dr = ∅. The forget dataset Df

consists of the data points we aim to remove from the model, while the retain dataset Dr includes the
data points that should remain and may undergo further optimization. Given a loss function ℓ for the
targeted task, the ultimate objective of unlearning can be framed as learning an optimal model:

θ = argmin
θ

L(θ;Dr) = argmin
θ

∑
x∈Dr

ℓ(θ;x), (1)

where L(θ;Dr) represents the total loss on the dataset Dr with θ. We formalize this unlearning
objective as Minimizing the Loss on the Retain dataset (MLR). The most straightforward solution
to the optimization problem is retraining the model from scratch. However, retraining is often
computationally expensive and time-consuming. As a efficient alternative, the Second-Order (SO)
unlearning update method (Guo et al. (2020); Golatkar et al. (2020); Izzo et al. (2021); Warnecke
et al. (2021); Liu et al. (2024b)) derives a generalized closed-form parameter modification directly
from the original model based on MLR:

θ ≈ θ∗ +H−1
θ∗

∑
x∈Df

∇θℓ(θ
∗;x), (2)

where H−1
θ∗ represents the inverse of the Hessian matrix ∇2

θL(θ∗;Dr) evaluated at θ∗ using the
retain dataset Dr. This approach builds upon the influence function (Koh & Liang (2017)), which
provides a bounded approximation error to facilitate effective unlearning (Guo et al. (2020)). The
implementation details of the second-order update are provided in Appendix A.1.

Following the generic formulation of unlearning, a new research direction has emerged. These
optimization methods focus on fine-tuning the model with predefined objectives (Jia et al. (2024); Liu
et al. (2024c)). Gradient Ascent (GA) (Jang et al. (2022)) performs reverse optimization on the loss
over Df , while Negative Preference Optimization (NPO) (Zhang et al. (2024a)) targets maximizing
the discrepancy between the original model and the unlearned model on Df . Despite differences in
their optimization strategies, these methods share a common unlearning objective: Maximizing the
Loss on the Forget dataset (MLF). This unlearning objective can be formalized as follows:

argmax
θ

L(θ;Df). (3)

4 MODULE-AWARE MACHINE UNLEARNING

Inspired by the lottery hypothesis (Frankle & Carbin (2018)), recent research suggests that localizing
functional regions within neural networks enhance their effectiveness for specific tasks (Zhang et al.
(2024b)). However, for large models with high-dimensional parameter spaces, precisely identifying
important parameters at a highly granular level is both inefficient and challenging. To this end,
we propose MAPE-Unlearn, which introduces dual masks to locate influence-critical parameters
within modules , tailored to different unlearning objectives as outlined in Section 4.1. Specifically,
the multi-head attention mechanisms and feed-forward networks in LLMs serve as modules. Our
method focuses on these modules (i.e., heads and filters). By selectively targeting these modules,
MAPE-Unlearn is seamlessly integrated into various unlearning methods in Section 4.2.

4.1 MODULE-AWARE PARAMETER LOCALIZATION

While parameter-efficient methods involve identifying critical parameters, this process can be refor-
mulated as the identification of an optimal binary mask. In this context, a mask value of 1 indicates
that the corresponding parameter should be updated, whereas a value of 0 indicates it should remain
frozen. Given that the number of modules is much smaller than the number of parameters (e.g.,
37K vs. 110M in case of BERT-base), MAPE-Unlearn adopts a coarse-grained method to pinpoint
influence-critical parameters in heads and filters. Thus, we formulate unlearning objective MLR (1)
with a learnable pair of masks for the heads and filters as a constrained optimization problem (the
parameter localization for MLF is similar; see Appendix B.1). To streamline the problem, we provide
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Figure 1: Illustration of our method applied to obtain important heads. Starting with the original
model, key heads are identified highlighted in light blue. The different colored dashed lines (e.g.,
red, blue, green) represent the connections between heads and their correlated parameters. Last, we
update the active parameters within heads highlighted in blue to represent unlearning process.

a general expression for the heads and filters by introducing the mask variables:

m∗ = argmin
m

L(m; θ∗,Dr) s.t.
∥m∥0
n

< 1− S, (4)

where m is a binary vector representing the mask for heads/filters, and mi corresponds to the i-th
element. θ∗ represents the original model, n is the number of modules, and S denotes the sparsity
(e.g., 90%) which determines the proportion of frozen modules. Since our focus is solely on the
mask variables, we treat the parameters θ∗ as fixed constants throughout. As a result, the total loss
L(θ∗;Dr) can be mapped to L(m; θ∗,Dr).

Since such constraint involves the L0 norm of the mask m, which is non-differentiable, we approxi-
mate the optimization by assuming L is differentiable with respect to m. This allows us to apply a
second-order Taylor series to L(m; θ∗,Dr) around the mask variables 1:

L(m; θ∗,Dr) ≈ L(1; θ∗,Dr)−(1−m)T∇mL(1; θ∗,Dr)+
1

2
(1−m)T∇2

mL(1; θ∗,Dr)(1−m). (5)

As the original model θ∗ is assumed to have converged to a local minimum of ∇mL(1; θ∗,D), we
can take ∇mL(1; θ∗,D) = 0 (LeCun et al. (1989)). Incorporating this assumption, we simplify
gradient term in the Taylor series approximation. Specifically, ∇mL(1; θ∗,Dr) = ∇mL(1; θ∗,D)−∑

x∈Df
∇mℓ(1; θ

∗, x) = −
∑

x∈Df
∇mℓ(1; θ

∗, x). As L(1; θ∗,Dr) is constant, we can reformulate
the unlearning objective in terms of the mask variables:

m∗ ≈ argmin
m

(1− m)T
∑
x∈Df

∇mℓ(1; θ
∗, x) +

1

2
(1− m)T∇2

mL(1; θ∗,Dr)(1− m). (6)

Thus, the optimization problem depends on the two factors: the gradient with respect to the forget
dataset Df (i.e.,

∑
x∈Df

∇mℓ(1; θ
∗, x)) and the Hessian matrix with respect to the retain dataset Dr

(i.e., ∇2
mL(1; θ∗,Dr)). These components collectively reflect the effectiveness of influence removal

(Guo et al. (2020)). Since forming the Hessian matrix directly is computationally prohibitive, we
approximate it using the empirical diagonal Fisher Information Matrix (FIM) of the mask variables
(details provided in Appendix A.1). This leads to a simplified form of optimization objective:

m∗ ≈ argmin
m

(1− m)T
∑
x∈Df

∇mℓ(1; θ
∗, x) +

1

2
(1− m)2Î(1; θ∗,Dr), (7)

where Î(1; θ∗,Dr) represents the diagonal FIM evaluate at θ∗ using Dr. Given that the mask variable
can only take binary values (0 or 1), we transform the optimization problem into a discrete mask
selection problem over modules:

m∗ ≈ argmin
m

∑
i

[
(1− mi)

[ ∑
x∈Df

∇mℓ(1; θ
∗, x)

]
i
+

1

2
(1− mi)

2
[
Î(1; θ∗,Dr)

]
i

]
. (8)

Therefore, we propose importance scores to identify influence-critical modules. Each module can
be assessed based on the sum of its corresponding gradient and half of the diagonal FIM element.
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Modules with higher scores will be prioritized for selection. Additionally, to better understand the
influence of off-diagonal elements on mask selection for each layer, we replace the diagonal FIM with
the block diagonal FIM, where each block is associated with a layer. Thus, Equation (7) decomposes
into layer-wise optimization problems:

m∗
l ≈ argmin

ml

(1− ml)
[ ∑
x∈Df

∇mℓ(1; θ
∗, x)

]
l
+

1

2
(1− ml)

2
[
Î(1; θ∗,Dr)

]
l
, (9)

where l represents the layer being optimized, and ml denotes the mask variable in the l-th layer. This
optimization problem can be efficiently solved using a greedy search with warm start (Kwon et al.
(2022)), i.e., by initializing the mask variable ml based on Equation (8). In this process, we iteratively
swap each unselected module having the highest importance score with a selected one in the current
mask to further optimize Equation (9), yielding an approximate solution after one round of swapping.
Consequently, the rearranged mask variables capture the impact of intra-layer interactions, enabling
precise localization of the parameters within the model’s modules. Additionally, our approach can
be integrated with other methods for identifying influence-critical parameters, offering enhanced
flexibility. Detailed information can be found in Appendix B.2.

4.2 APPLICATIONS OF MAPE-UNLEARN

By identifying influence-critical parameters within modules, MAPE-Unlearn facilitates efficient
integration with widely adopted unlearning methods. Below, we examine the benefits of module-
aware machine unlearning across various unlearning approaches.

Module-Aware Second-Order Updates. Following the insights of MAPE-Unlearn, we formalize
Module-aware Parameter-Efficient Second-Order unlearning (MAPE-SO) by introducing sparse mask
variables linked to the outputs of modules:

θ ≈ θ∗ + m ◦
[
H−1

θ∗

∑
x∈Df

∇θℓ(θ
∗;x)

]
, (10)

where m are module-aware mask variables derived from the MLR objective (1), and ◦ denotes the
Hadamard product. In practice, the computation of the Hessian matrix and gradients is restricted
to the parameters associated with a module-aware mask value of 1. Notably, Equation (2) can be
interpreted by setting all mask variables to 1.

We now provide an intuitive analysis of the benefits of MAPE-SO. First, by incorporating sparsity
through module-aware masks, MAPE-SO significantly reduces the number of parameters required
for the expensive computation of the Hessian matrix. This leads to lower computational complex-
ity, making the method more scalable and efficient when applied to large-scale models. Second,
MAPE-SO offers a more tightly bounded approximation error compared to standard method. The
approximation error is reduced by a factor that is directly proportional to the sparsity introduced by
the mask variables. This ensures that the unlearning process remains highly accurate while avoiding
unnecessary parameter updates. Furthermore, by restricting the influence-critical parameters within
the modules, MAPE-SO provides fine-grained control over the error bounds.

Table 1: Accuracy results of standard SO under
varying removal requests on the MNLI dataset us-
ing the BERT-base model.

Requests 1 4 8 10

Test Acc. 84.34% 83.86% 83.60% 83.46%
Remain Acc. 94.33% 94.18% 94.05% 93.86%

We also consider successive unlearning, a prac-
tical scenario in which data owners request the
removal of data from the model at intervals (e.g.,
in machine learning as a service (MLaaS) (Hu
et al. (2024b))). For each unlearning request,
the model progressively applies unlearning algo-
rithms, building on the state from the previous
unlearning cycle (Guo et al. (2020); Gu et al.
(2024)). However, since SO inherently diverges from the Taylor series approximation, small errors
arise during each approximation. These errors accumulate with successive updates, causing the model
to diverge from its original state. As a result, with an increasing number of unlearning requests, the
gap between the original and updated models widens, leading to a gradual decline in performance.

Once the number of requests exceeds a certain threshold, retraining the model from scratch becomes
necessary to restore performance (detailed in Table 1). Fortunately, MAPE-SO mitigates this issue
by allowing a greater number of removal requests before retraining becomes essential (as shown in
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Figure 3). This improvement stems from selectively adjusting only the modules directly related to
the removed data. By confining cumulative errors to a subset of parameters, MAPE-SO reduces the
overall impact on model performance. Consequently, the model remains robust even after multiple
unlearning operations, delaying the need for costly retraining. Additionally, we explore an alternative
successive unlearning scenario, as described in (Liu et al. (2023a)), detailed in Appendix A.2.

Module-Aware Fine-Tuning Based Unlearning. Mainstream unlearning methods based on fine-
tuning typically aim to increase the loss on the forget data, motivating the use of the MLF objective
(3) to identify key parameters and optimize the unlearning process. Building on this, these methods
can be reformulated using MAPE-Unlearn (e.g., MAPE-GA and MAPE-NPO).

In our approach, we use module-aware masks to implement unlearning via sparse updates, targeting
key parameters that align with the unlearning objective to fulfill the desired outcomes. This method is
inspired by pruning strategies (Liu et al. (2024a); Pochinkov & Schoots (2024)), where the model is
adjusted iteratively using sparse updates instead of directly removing parameters, thereby preserving
overall model performance. Since unlearning typically involves a performance trade-off, freezing
non-critical parameters can better maintain model performance compared to updating all parameters.

However, recent work has demonstrated that machine unlearning can be trivially compromised by
relearning attacks (Hu et al. (2024a); Łucki et al. (2024); Doshi & Stickland (2024)). These attacks
use unrelated or orthogonal data to recover previously unlearned knowledge with just a few fine-tuning
steps. Notably, parameter-efficient tuning methods, such as LoRA (Hu et al. (2021)), are particularly
susceptible to these attacks compared to full parameter fine-tuning (Hu et al. (2024a)). We hypothesize
that this vulnerability stems from the introduced parameters, which may encode residual information
from the forget data during the unlearning process. In contrast, MAPE-Unlearn employs sparse
update with module-aware masks, which restricts the unlearning scope and disrupts the pathways
for knowledge recovery. Furthermore, by keeping most parameters frozen, the model retains its
ability to handle normal data, thereby increasing the difficulty of selecting effective data for attacks.
Consequently, MAPE-Unlearn demonstrates enhanced robustness against relearning attacks.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Models and Datasets. Our empirical analysis is conducted on three well-established unlearning tasks.
1) Traditional Task. We consider three GLUE benchmarks (MNLI, QQP, SST-2) (Wang et al. (2018))
for the classification task and two SQuAD benchmarks (SQuAD v1.1 and SQuAD v2.0) (Rajpurkar
(2016)) for the question-answering task. For each benchmark, we randomly select 128 samples as the
forget dataset Df , while all orthogonal samples serves as the retain dataset Dr. These benchmark are
evaluated on two pretrained models: BERT-base (Devlin et al. (2018)) and RoBERTa-large (Liu et al.
(2019)). 2) Task of Fictitious Unlearning (TOFU). The unlearning scenarios of TOFU (Maini et al.
(2024)) are categorized into three types: Forget01, Forget05, and Forget10, corresponding to 1%,
5%, and 10% of the training dataset, respectively. We use the LLama2-7b-chat model (Touvron et al.
(2023)) provided by the TOFU benchmark to evaluate three scenarios. 3) Hazardous Knowledge
Removal Task. This task is evaluated using the WMDP benchmark (Li et al. (2024)), which measures
hazardous capabilities across three domains (biology, cybersecurity, and chemistry). We unlearn the
bio-attack corpus and cyber-attack corpus using the Zephyr-7B-beta model (Tunstall et al. (2023)).
More details are deferred to Appendix D.1.

Unlearning methods. We demonstrate the effectiveness of MAPE-Unlearn by comparing it with
several unlearning baselines: Gradient Ascent (GA) (Jang et al. (2022)), Gradient Difference (GD)
(Liu et al. (2022)), Negative Preference Optimization (NPO) (Zhang et al. (2024a)). We also consider
Direct Preference Optimization (DPO) (Rafailov et al. (2024)), which uses a reject-based answer ‘I
don’t know’ on alignment loss on the TOFU task. In our approach, these methods identify important
parameters with MLF as the unlearning objective. For traditional tasks, Second-Order (SO) serves
as a baseline, while the unlearning objective MLR is used to identify important parameters in our
method. We consider saliency-based unlearning with a large learning rate (SURE) (Zhang et al.
(2024c)) as baseline, which also operates at the module-level and directly uses the gradient norm of
the forget dataset. Sparsity-Aware Unlearning (SA) (Liu et al. (2024a)) is another method for sparse
unlearning, which fine-tunes the retain dataset with a sparsity penalty (γ = 5e − 5). Meanwhile,
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Retraining from scratch (RT) serves as the gold standard for traditional and TOFU tasks, where the
model is fine-tuned on the retain dataset. Detailed hyperparameters are provided in Appendix D.2.

Evaluation metrics. We evaluate the unlearning performance based on two key aspects: unlearning
efficacy and model fidelity. For the Traditional Tasks, the evaluation metrics differ depending
on the specific tasks. Accuracy is used for the classification task, while F1 scores are reported
for question-answering task. Unlearning accuracy (or F1 score) directly reflects the effectiveness
of the unlearning algorithm. We also consider membership inference attacks (MIA) to assess the
vulnerability of the model to attacks, which helps evaluate unlearning efficacy. In practice, we use a
confidence-based MIA predictor to gauge the likelihood of a successful attack (Liu et al. (2024a);
Song et al. (2019)). Model fidelity is measured by evaluating both retain accuracy and test accuracy,
which assess the preservation of model performance and its generalization ability after unlearning.
For the TOFU task, we use normalized probability, ROUGE scores, and truth ratio (TR) (Maini et al.
(2024)) on the forget dataset to preliminarily assess unlearning efficacy, where TR represents the
preference probability between incorrect and correct answers. These metrics on retain, real authors
and world facts datasets are used to evaluate model fidelity, which are then aggregated to represent
model utility (MU). Furthermore, unlearning efficacy can be further measured by forget quality
(FQ), which quantifies the performance difference between unlearned model and retrained model.
Specifically, FQ and MU represent comprehensive considerations of unlearning efficacy and fidelity,
respectively. For the Hazardous Knowledge Removal Task, we use accuracy on WMDP-Bio and
WMDP-Cyber datasets to measure unlearning efficacy, while zero-shot accuracy on the MMLU
dataset (Hendrycks et al. (2020)) is used to measure model fidelity.

5.2 RESULTS ON TRADITIONAL TASKS

We present the experimental results on traditional tasks using the SQuAD v2.0 dataset as a case study.
Detailed results for additional datasets are provided in Appendix D.4. In what follows, we compare
different unlearning methods and conduct an in-depth analysis of our approach.
Table 2: Overall results of unlearning performance using different unlearning methods under two
fine-tuned models on SQuAD v2.0.

BERT RoBERTa

Method Efficacy Fidelity Method Efficacy Fidelity
Unlearn F1. MIA Retain F1. ↑ Test F1. ↑ Unlearn F1. MIA Retain F1. ↑ Test F1. ↑

RT 73.77 0.6484 98.72 75.77 RT 87.03 0.7734 98.42 86.58
SA 79.16 0.6797 96.03 72.65 SA 84.05 0.7343 93.21 80.82

SO 78.03 0.6797 93.66 73.33 SO 87.70 0.7188 94.68 85.22
SURE-SO 78.09 0.7109 92.62 71.69 SURE-SO 87.34 0.7344 94.72 85.45
MAPE-SO 77.40 0.6563 93.90 73.57 MAPE-SO 87.34 0.7188 94.76 85.50

GA 76.37 0.7500 86.61 72.24 GA 88.58 0.7734 94.87 85.54
SURE-GA 75.33 0.7109 88.93 74.61 SURE-GA 88.39 0.7343 94.72 85.44
MAPE-GA 75.33 0.7031 89.68 74.81 MAPE-GA 88.39 0.7343 94.87 85.55

GD 78.77 0.7109 94.36 74.25 GD 88.82 0.7891 94.86 85.56
SURE-GD 78.10 0.6953 94.45 76.28 SURE-GD 88.56 0.7813 94.78 85.72
MAPE-GD 74.56 0.6875 94.60 76.59 MAPE-GD 88.56 0.7500 94.91 85.80

NPO 77.71 0.7266 93.96 76.17 NPO 87.88 0.7500 94.78 85.42
SURE-NPO 75.59 0.6953 93.10 76.43 SURE-NPO 87.10 0.7500 94.82 85.79
MAPE-NPO 74.81 0.6719 93.12 76.50 MAPE-NPO 87.10 0.7344 94.88 85.95
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Figure 2: F1 scores of unlearning methods on
BERT-base at different sparsity levels.

Module-Aware sparse unlearning is effective.
Table 2 compares the unlearning performance
of various methods across two models. Our
experiments demonstrate that 90% sparsity suf-
fices for effective unlearning; thus, we focus on
this regime for baseline comparisons. While
the sparse weight-based method (SA) achieves
strong unlearning efficacy, it significantly com-
promises model fidelity. However, its perfor-
mance on primary tasks lags behind mainstream
methods (SO, GA, GD, and NPO). In contrast,
MAPE-Unlearn consistently outperforms counterparts in unlearning efficacy, evidenced by higher
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Figure 3: Results on BERT-base under different unlearning scenarios with varying removal requests.
‘Successive’ refers to successive unlearning scenarios, while ‘batch’ refers to batch unlearning
scenarios. The numbers following each unlearning scenario indicate the corresponding sparsity.

F1 scores and lower MIA success rates on the forget set. Moreover, MAPE-Unlearn maintains
strong model fidelity, achieving utility performance competitive with baselines. Notably, gradient-
based updates on the forget dataset alone (SURE-based methods) also enable effective module-aware
unlearning. Among these, MAPE-GD and MAPE-NPO achieve an optimal trade-off between unlearn-
ing efficacy and fidelity preservation. These results demonstrate that module-aware sparse updates
offer an effective approach to machine unlearning.

A sparsity of 90% is sufficient for effective unlearning. We explore the effectiveness of various
sparsity strategies in facilitating unlearning. Figure 2 shows the relationship between test score and
sparsity, while maintaining comparable unlearning efficacy. Unlearning methods based on fine-tuning
show a continuous improvement in utility as sparsity increases. However, when sparsity surpasses
90%, SO experiences a sharp decline in test scores with optimal utility observed at a sparsity level
of 70%. Additionally, we also delve into the functional regions responsible for unlearning within
models, but find no single network layer that stands out as particularly crucial for unlearning. This
suggests that the effectiveness of unlearning may be task-specific, resisting any fixed modular or
parametric approach. Overall, our findings highlight that a 90% sparsity strategy offers a sufficient
balance between efficacy and fidelity.

Successive unlearning benefits from MAPE-SO. We further explore the potential of module-aware
masks in successive unlearning scenarios on SO, as depicted in Figure 3. Our results show that
sparse updates with module-aware offer significant benefits over full parameters updates. When all
parameters are updated, model fidelity is overly impacted. However, applying sparse updates with
90% sparsity preserves high utility, even after 10 removal requests. This suggests that module-aware
masks can support a higher volume of removal requests before retraining becomes necessary. These
results highlight the potential of module-aware masks to enhance the robustness of unlearning.

5.3 RESULTS ON TOFU TASK

We provide the experimental results for the TOFU task, using Forget05 as a representative example.
Additional results for other types are available in Appendix D.5. The subsequent analysis focuses
specifically on unlearning methods based on fine-tuning. In Table 3, we showcase the unlearning
performance of MAPE-Unlearn and its baselines for the TOFU task. As observed, SA is not an
effective unlearning method for this task. In contrast, the incorporation of MAPE-Unlearn consis-
tently enhances across most unlearning method categories (with the exception of GA). We attribute
this improvement to the relatively small amount of unlearning required. Our method shows excep-
tional performance on Forget10 (see Table 9). Furthermore, we observe that PO-based methods (i.e.,
DPO and NPO) are particularly effective, delivering high forget quality and model utility.

MAPE-Unlearn is resistant to relearning attacks. We further evaluate the robustness of
MAPE-Unlearn against relearning attacks by randomly selecting 20% of the dataset samples
as the relearning dataset. Since forget quality is obtained through the Kolmogorov-Smirnov test,
achieving higher values is highly sensitive to the hyperparameters, especially for GA and GD. Thus,
we experimented with various hyperparameters to achieve the reasonable forget quality. Figure 4
illustrates the trend of forget quality as the number of relearning epochs increases. Our method
withstand a longer attack duration on GA and GD. For DPO, full-parameter updates can effectively
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Table 3: Performance overview of various unlearning methods on Forget05 unlearning settings for
TOFU under LLama2-7b-chat model.

Method
Efficacy Fidelity

Forget Set FQ ↑ Real Authors World Facts Retain Set MU ↑
Rouge Prob. TR Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑

RT 0.39 0.15 0.67 1.0 0.96 0.42 0.55 0.90 0.40 0.53 0.98 0.99 0.46 0.62
SA 0.97 0.99 0.51 3.43e-16 0.94 0.45 0.58 0.87 0.42 0.55 0.98 0.99 0.48 0.62

GA 0.36 0.06 0.56 1.39e-6 0.84 0.29 0.39 0.87 0.35 0.48 0.41 0.18 0.49 0.38
SURE-GA 0.36 0.01 0.55 7.54e-5 0.80 0.32 0.44 0.88 0.36 0.50 0.42 0.08 0.49 0.30
MAPE-GA 0.36 0.04 0.56 1.83e-5 0.84 0.26 0.37 0.88 0.36 0.48 0.41 0.19 0.49 0.38

GD 0.39 0.11 0.52 2.43e-10 0.85 0.37 0.51 0.87 0.38 0.52 0.52 0.61 0.48 0.52
SURE-GD 0.37 0.02 0.52 4.61e-10 0.81 0.39 0.53 0.86 0.37 0.53 0.52 0.30 0.50 0.48
MAPE-GD 0.37 0.08 0.52 1.87e-9 0.86 0.36 0.51 0.89 0.39 0.54 0.52 0.46 0.50 0.52

DPO 0.20 0.14 0.72 0.27 0.60 0.34 0.44 0.73 0.37 0.50 0.37 0.47 0.37 0.44
SURE-DPO 0.25 0.05 0.68 0.39 0.43 0.35 0.46 0.70 0.38 0.54 0.41 0.47 0.40 0.44
MAPE-DPO 0.26 0.06 0.68 0.47 0.63 0.43 0.55 0.76 0.43 0.58 0.42 0.47 0.39 0.50

NPO 0.28 0.05 0.75 1.43e-3 0.89 0.42 0.55 0.82 0.41 0.55 0.43 0.33 0.34 0.47
SURE-NPO 0.29 0.04 0.72 0.02 0.90 0.39 0.52 0.86 0.41 0.54 0.43 0.41 0.39 0.49
MAPE-NPO 0.30 0.08 0.72 0.27 0.94 0.38 0.50 0.89 0.41 0.51 0.48 0.42 0.39 0.49
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Figure 4: Forget quality for different unlearning methods with varying relearning epochs on
TOFU Forget05. The dashed line represents full parameter updates, while the solid line repre-
sents MAPE-Unlearn with 90% sparsity.

defend against the relearning attack. Although our method experiences an initial decline, it ultimately
achieves a high FQ. This can be attributed to the fact that, during the relearning process, the model re-
learns the correct examples (rather than ‘I don’t know’). In the case of NPO, our method successfully
defends against the relearning attack, while full-parameter updates fail to do so. Overall, our method
demonstrates superior robustness compared to full-parameter updates.

5.4 RESULTS ON HAZARDOUS KNOWLEDGE REMOVAL TASK

We present the unlearning performance in the hazardous knowledge removal task on WMDP. Given
that retraining large language models to obtain a harmless model is impractical, we use the ‘Original’
model as a benchmark to assess both unlearning efficacy and model fidelity. As detailed in Appendix
D.6, MAPE-Unlearn demonstrates strong competitiveness compared to the baselines, indicating its
effectiveness in hazardous knowledge removal. These results are consistent with those observed in the
other two tasks. This suggests that identifying harmful knowledge directly within the parameters can
also serve as an effective approach for enabling unlearning. Overall, these findings further reinforce
the potential of MAPE-Unlearn to address the challenge of removing hazardous knowledge.

6 CONCLUSION

In this work, we propose Module-Aware Parameter-Efficient unlearning (MAPE-Unlearn) for
Transformers. MAPE-Unlearn develops an optimal masking strategy to identify influence-critical
parameters within modules. By selectively targeting these key parameters, MAPE-Unlearn can
be integrated into various unlearning methods to demonstrate its effectiveness. We further examine
the advantages of our approach across second-order unlearning and fine-tuning-based unlearning.
Extensive experiments conducted on various models and tasks show that our method with 90%
sparsity outperforms existing approaches. Additionally, empirical studies on successive unlearning
scenarios and relearning attacks highlight the robustness of our method.
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A ADDITIONAL DETAILS OF SECOND-ORDER UNLEARNING UPDATE

A.1 SIMPLIFIED SECOND-ORDER UNLEARNING UPDATE

Second-order unlearning involves the inverse Hessian computation, which is highly sensitive to
parameters. Given the large number of parameters in large-scale models, this unlearning method
cannot be applied directly. A common practice to approximate it is to use empirical FIM (Peste
et al. (2021); Liu et al. (2024a); Gu et al. (2024)). Additionally, studies (Amari et al. (2019)) have
shown that the off-diagonal elements of the FIM tend to be much smaller than the diagonal elements,
usually by a factor 1√

n
, where n represents the dimension of the FIM. This insight highlights the

effectiveness of using a diagonal approximation, particularly in large models with vast parameter
counts (Hwang (2024)). As a result, we further adopt the empirical diagonal FIM Î to approximate
the Hessian matrix:

Î(θ;D) =
1

|D|
∑
x∈D

∇ℓ(θ;x)2. (11)

The storage of the diagonal FIM requires only O(d) space, and the inverse operation takes only O(d)
time, where d denotes the number of model parameters. This makes second-order unlearning method
straightforward and efficient to implement.

A.2 ANOTHER SUCCESSIVE UNLEARNING SCENARIO

(Liu et al. (2023a)) introduced a successive unlearning scenario leveraging second-order updates,
requiring the retention of data information (e.g., gradients and FIM) for efficient unlearning on the
original model. Unlike previous methods, this approach directly employs a Taylor expansion around
the original model parameters. Specifically, at the t-th unlearning request, MAPE-SO update at
timestamp t can be expressed as follows:

mt ◦


[
|Dt−1

r | · Î(θ∗;Dt−1
r )− Î(θ∗;xt)

|Dt−1
r − 1|

]−1
 ∑
x∈Dt−1

f

∇θℓ(θ
∗;x) +∇θℓ(θ

∗;xt)

 , (12)

where Dt−1
f represents the data points that have already been removed at timestamp t − 1, Dt−1

r
denotes the retain dataset at timestamp t− 1. In practice, rather than storing these data points directly,
we retain the gradients or FIM associated with the data in memory. With each new unlearning request,
these data information are updated accordingly. Furthermore, considering the proportion of the
forget dataset is negligible, the mask selection process can be accelerated. As a result, in the mask
selection Equation (8), the term

∑
x∈Df

∇mℓ(1;x) can be omitted, and the term Î(1;Dr) can be
approximated by Î(1;D), resulting in the following simplification:

m∗ ≈ argmin
m

∑
i

(1− mi)
2Î(1;D)i, (13)

This simplification allows the mask to be pre-computed in the pre-unlearning phase, improving
efficiency. However, it does not fully account for the influence of the data slated for deletion. To
address this, mask variables are refined using Equation (9) for more targeted adjustment. In this
setting, unlearning is achieved via a single-step second-order update on the original model. The
effectiveness of module-aware masks lies in the ability of MAPE-Unlearn to handle general second-
order unlearning, offering tighter approximation error bounds for more precise and efficient data
removal.

13
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B EXTENSIONS TO OUR METHOD

B.1 IDENTIFY KEY MODULES WITH THE OBJECTIVE OF MAXIMIZING THE LOSS ON THE
FORGET DATASET

The task of identifying key modules under the objective of maximizing the loss on the forget dataset
shares conceptual similarities with identifying key modules under the objective of minimizing the
loss on the retained dataset. By exploiting this similarity, we can efficiently adopt a comparable
approach to locate influence-critical parameters. To this end, we introduce a learnable pair of binary
masks, denoted as m, applied to the heads and filters in Transformers. The mask variable m specifies
which parameters are updated during the optimization process. The resulting optimization problem
can be formulated as:

m∗ = argmax
m

L(m; θ∗,Df) s.t.
∥m∥0
n

< 1− S, (14)

where |m| is the number of mask variables, θ∗ represents the original model, and S denotes the
sparsity constraint. We then approximate it using the second-order Taylor series around the mask
variables 1:

L(m; θ∗,Df) ≈ L(1; θ∗,Df)−(1−m)T∇mL(1; θ∗,Df)+
1

2
(1−m)T∇2

mL(1; θ∗,Df)(1−m). (15)

To further streamline the computation, we use the diagonal Fisher Information Matrix (FIM) to
approximate the Hessian matrix, which simplifies the second-order term. Omitting constant terms,
the optimization objective becomes:

m∗ ≈ argmax
m

(1− m)T
∑
x∈Dr

∇mℓ(1; θ
∗, x) +

1

2
(1− m)2Î(1; θ∗,Df). (16)

Since the mask can only take binary values (0 or 1), we derive the importance evaluation function as:

m∗ ≈ argmax
m

∑
i

[
(1− mi)

[ ∑
x∈Dr

∇mℓ(1; θ
∗, x)

]
i
+

1

2
(1− mi)

2
[
Î(1; θ∗,Df)

]
i

]
. (17)

To further refine the optimization process, we employ the block diagonal FIM, which provides a more
localized approximation for each layer in the model. The layer-wise optimization can be expressed
as:

m∗
l ≈ argmax

ml

(1− ml)
[ ∑
x∈Dr

∇mℓ(1; θ
∗, x)

]
l
+

1

2
(1− ml)

2
[
Î(1; θ∗,Df)

]
l
. (18)

where l represents the layer being optimized. By leveraging the identified key modules, we can
facilitate the unlearning process (e.g. GA, NPO) more effectively.

B.2 IDENTIFY INFLUENCE-CRITICAL PARAMETERS IN MODULES

Figure 5: Overall results of unlearning performance are
presented using MAPE-SO on BERT-base, both with
and without the neuron selection mechanism. For clarity,
MAPE-SO denotes MAPE-SO applied to modules at
90% sparsity, while MAPE-SO(90%) indicates MAPE-
SO applied to both modules and parameters, each with
90% sparsity.

Datasets Method Efficacy Fidelity
Unlearn Scores ↓ MIA ↓ Remain Scores ↑ Test Acc. ↑

MNLI MAPE-SO 85.94% 0.7969 94.15% 84.62%
MAPE-SO(90%) 85.94% 0.7969 94.12% 84.61%

QQP MAPE-SO 92.19% 0.9062 98.03% 90.72%
SU(90%) 92.19% 0.8828 97.67% 90.46%

SST-2 MAPE-SO 94.53% 0.8984 98.93% 93.35%
MAPE-SO(90%) 94.53% 0.9141 98.92% 93.35%

SQuAD v1.1 MAPE-SO 85.74% 0.5781 94.25% 87.60%
MAPE-SO(90%) 86.16% 0.5859 93.98% 87.19%

SQuAD v2.0 MAPE-SO 77.40% 0.6563 93.90% 73.57%
MAPE-SO(90%) 77.40% 0.6563 93.75% 73.73%

In our approach, the mask is applied to spe-
cific heads and filters, resulting in a rela-
tively coarse granularity for unlearning. To
achieve a more refined and precise method,
we further examine the importance of in-
dividual parameters within these selected
heads and filters. Our hypothesis is that
focusing on individual parameters can help
identify finer-grained regions critical for
effective unlearning. To implement this,
we utilize Wanda (Sun et al. (2023)) as our
selection mechanism. Wanda analyzes the
forget dataset, which serves as input for the
selection process, and assigns importance
scores to each neuron, with higher scores
indicating greater relevance to the unlearn-
ing task. Based on these scores, we apply a
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90% sparsity to MAPE-SO, retaining only
the most critical parameters for unlearning.
This targeted approach aims to enhance the precision of unlearning by focusing on MAPEcific
neurons within the model. Detailed results of this mechanism are provided in Table 5.

However, our experimental results reveal that incorporating the parameter selection mechanism does
not improve unlearning performance in MAPE-SO. We hypothesize that this outcome is due to the
inherent complexity of balancing unlearning precision with model utility. While selecting individual
parameters based on their Wanda scores offers a more targeted and theoretically precise unlearning
process, this fine-grained approach may unintentionally compromise the model’s overall adaptability
and robustness.

C UNLEARNING ALGORITHM DETAILS

Gradient Ascent (GA). The approach aims to achieve unlearning by maximizing the loss on the
forget dataset, thereby causing the predictions to deviate from the original data. Specifically, given a
loss function ℓ and the forget dataset Df , the goal can be expressed as follows:

LGA = −E(x,y)∈Df
[ℓ(y|x; θ)].

Gradient Difference (GD). Maximizing the loss on the forget dataset in GA significantly degrade
model performance. To address this, the method introduces an additional loss term on the retain
dataset to maintain model performance. Specifically, given the loss function ℓ, forgot datasetDf , and
retain dataset Dr, the objective can be defined as follows:

LGD = −E(x,y)∈Df
[ℓ(y|x; θ)] + E(x,y)∈Dr

[ℓ(y|x; θ)].

Negative Preference Optimization (NPO). Both GD and GA methods aim to maximize the loss on
the forget dataset, which can lead to catastrophic collapse. To overcome this, the method reframes
the unlearning problem as a preference optimization problem, ensuring that the predictions of the
unlearned model deviate significantly from the original model’s predictions. Specifically, given the
forgot dataset Df , the objective can be defined as follows:

LNPO = − 2

β
E(x,y)∈Df

[log σ(−β log
πθ(y|x)
πref(y|x)

)],

where σ(t) = 1/(1+e−t) is the sigmoid function, β is the inverse temperature, and πref is a reference
model.

Direct Preference Optimization (DPO). This method reparametrizes the reward function in human
feedback reinforcement learning (RLHF) and directly learns the policy from preference data. To
achieve unlearning, we replace the original responses with ‘I don’t know’ as the new response.
Specifically, we create a dataset Didk that includes ‘I don’t know’, with the objective defined as
follows:

LDPO = − 1

β
E(x,y,yidk)∈Didk [log σ(β log

πθ(yidk|x)
πref(yidk|x)

− β log
πθ(y|x)
πref(y|x)

)].

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 CONFIGURATIONS

For the traditional tasks, we randomly select the forget and retain datasets using seeds 16 or 42. We
fine-tune the models on these datasets using the AdamW optimizer. The learning rates are chosen
from 1 × 10−5, 2 × 10−5, 3 × 10−5, 5 × 10−5. The BERT-base model is fine-tuned for 5 epochs,
while the RoBERTa-large model is fine-tuned for 10 epochs. For the TOFU task, we directly use
the fine-tuned version of the LLama2-7b-chat model, as provided in the TOFU benchmark. In
addition, the TOFU benchmark is divided into three distinct unlearning scenarios, corresponding
to small, medium, and large batch unlearning. For the WMDP task, the goal is to mitigate harmful
knowledge in existing models. To achieve this, we use the original Zephyr-7B-beta model without
further fine-tuning. This task focuses on unlearning hazardous knowledge related to biology and
cybersecurity. All experiments are conducted on two NVIDIA RTX A6000 GPUs.
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D.2 HYPERPARAMETERS

• Traditional Tasks. The unlearning rates for SO are selected through a grid search within the range
[1× 10−8, 1× 10−7]. For MAPE-SO with 90% sparsity, the unlearning rates are chosen via grid
search in the range [8×10−8, 8×10−7]. All methods with fine-tuning are conducted over 3 epochs.
The learning rates for these methods are grid-searched between [1× 10−5, 5× 10−5], while the
learning rates module-aware unlearning are grid-searched between [1× 10−4, 5× 10−4].

• TOFU Tasks. For all experiments, the batch size is set to 16. In the unlearning experiments,
5 epochs are adopted, while 10 epochs are employed in the relearning experiments. For full
unlearning, the learning rate for GA and GD is determined through grid search within the range
[2 × 10−6, 2 × 10−5], while for NPO and DPO, the learning rate is searched within the range
[1× 10−5, 2× 10−4]. For module-aware unlearning with 90% sparsity, the learning rate for GA
and GD is searched within the range [1× 10−5, 1× 10−4], and for NPO and DPO, the learning
rate is searched within the range [5 × 10−5, 3 × 10−4]. The learning rate during the relearning
process is set to 1× 10−5.

• WMDP Tasks. For all experiments, we limit the unlearning process to 150 steps, using a batch size
of 4. For GA unlearning, we use a learning rate of 1.5× 10−7 for full unlearning and 6× 10−7 for
module-aware unlearning with 90% sparsity. For GD unlearning, we use a learning rate 1.5× 10−7

for full unlearning and 5 × 10−7 for module-aware unlearning with 90% sparsity. For NPO
unlearning, we use a learning rate of 6× 10−6 for full unlearning and 2× 10−5 for module-aware
unlearning with 90% sparsity.

Table 4: Overall results of unlearning perfor-
mance using different unlearning methods under
two fine-tuned models on MNLI dataset.

Model Method Efficacy Fidelity
Unlearn Acc. MIA Retain Acc. ↑ Test Acc. ↑

BERT

RT 85.16% 0.7500 97.95% 84.78%
SA 89.84% 0.8437 92.77% 82.05%

SO 85.94% 0.8047 94.07% 84.60%
SURE-SO 85.94% 0.7969 94.11% 84.60%
MAPE-SO 85.94% 0.7969 94.15% 84.62%

GA 86.72% 0.7500 93.30% 84.61%
SURE-GA 86.72% 0.7891 93.11% 84.55%
MAPE-GA 85.94% 0.7969 93.65% 84.68%

GD 87.50% 0.8125 93.65% 84.52%
SURE-GD 87.50% 0.7969 93.76% 84.63%
MAPE-GD 87.50% 0.7969 94.00% 84.65%

NPO 86.72% 0.8047 94.16% 84.47%
SURE-NPO 87.50% 0.7969 93.67% 84.56%
MAPE-NPO 85.94% 0.7969 93.91% 84.71%

RoBERTa

RT 90.26% 0.8125 98.79% 90.02%
SA 92.97% 0.8906 96.86% 87.08%

SO 92.97% 0.8906 94.32% 88.99%
SURE-SO 92.19% 0.9141 95.69% 89.45%
MAPE-SO 92.19% 0.8906 95.75% 89.52%

GA 92.19% 0.8672 95.95% 89.55%
SURE-GA 92.19% 0.8359 95.64% 89.52%
MAPE-GA 92.19% 0.8359 96.19% 89.58%

GD 93.75% 0.8906 95.98% 89.38%
SURE-GD 92.97% 0.8828 96.09% 89.34%
MAPE-GD 92.97% 0.8906 96.27% 89.57%

NPO 91.41% 0.8906 96.09% 89.84%
SURE-NPO 91.41% 0.8828 95.87% 89.45%
MAPE-NPO 91.41% 0.8750 96.23% 89.96%

Table 5: Overall results of unlearning perfor-
mance using different unlearning methods under
two fine-tuned models on QQP dataset.

Model Method Efficacy Fidelity
Unlearn Acc. MIA Retain Acc. ↑ Test Acc. ↑

BERT

RT 92.97% 0.8750 98.48% 91.38%
SA 92.19% 0.8906 92.52% 88.52%

SO 92.97% 0.9063 97.69% 90.65%
SURE-SO 92.19% 0.9063 97.98% 84.60%
MAPE-SO 92.19% 0.8906 98.03% 90.72%

GA 93.75% 0.9141 98.55% 91.14%
SURE-GA 93.75% 0.8984 96.84% 89.83%
MAPE-GA 93.75% 0.8984 97.17% 90.15%

GD 94.53% 0.9141 98.60% 91.15%
SURE-GD 94.53% 0.9063 98.54% 91.11%
MAPE-GD 94.53% 0.8984 98.54% 91.12%

NPO 92.97% 0.8906 98.55% 91.00%
SURE-NPO 92.97% 0.8906 98.52% 91.08%
MAPE-NPO 91.41% 0.8906 98.52% 91.10%

RoBERTa

RT 91.41% 0.8594 99.17% 92.19%
SA 93.75% 0.8750 98.69% 91.48%

SO 92.97% 0.8750 98.93% 91.56%
SURE-SO 92.97% 0.8750 97.91% 91.01%
MAPE-SO 92.97% 0.8750 98.86% 91.46%

GA 92.97% 0.9219 98.85% 91.68%
SURE-GA 92.97% 0.9219 98.70% 91.47%
MAPE-GA 92.19% 0.9219 98.89% 91.84%

GD 92.19% 0.9219 99.19% 91.55%
SURE-GD 92.19% 0.8906 98.92% 91.38%
MAPE-GD 92.19% 0.8828 99.45% 91.62%

NPO 92.19% 0.9219 99.14% 91.50%
SURE-NPO 92.19% 0.9063 98.87% 91.26%
MAPE-NPO 92.19% 0.9063 99.26% 91.63%

D.3 EXAMINING UNLEARNING STRATEGY VARY SPARSITY

(Pochinkov & Schoots (2024)) argued that pruning filters are more effective than pruning heads. To
further investigate this claim, we conducted a comparative analysis of three selective parameter update
strategies: heads-only, filters-only, and heads&filters in Figure 6. All experiments were designed to
provide comparable unlearning guarantees varying sparsity. The heads-only strategy consistently
underperformed compared to the other strategies, highlighting its limited effectiveness. In contrast,
the filters-only strategy not only maintained stability but also delivered consistently strong unlearning
performance for SO. For fine-tuning-based unlearning methods, the heads-only strategy was found
to be more effective at higher sparsity (70% to 90%), while the filters-only strategy demonstrated
superior performance at lower sparsity (0% to 50%).
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Figure 6: F1 scores for various sparsity applied to BERT-base after three kinds of unlearning strategies
with different unlearning methods.

D.4 ADDITIONAL EXPERIMENTAL RESULTS ON TRADITIONAL TASKS

We compare our approach to other unlearning methods across three classification tasks (MNLI, QQP,
and SST-2) and one question-answering task (SQuAD v1.1), using two models (details provided in
Table 4 to Table 7). The evaluation metrics differ by task: F1 scores are reported for the question-
answering task, while accuracy is used for the classification tasks.

Table 6: Overall results of unlearning perfor-
mance using different unlearning methods under
two fine-tuned models on SST-2 dataset.

Model Method Efficacy Fidelity
Unlearn Acc. MIA Retain Acc. ↑ Test Acc. ↑

BERT

RT 93.75% 0.9297 99.06% 93.00%
SA 95.31% 0.9062 98.82% 89.79%

SO 94.53% 0.9141 98.96% 92.89%
SURE-SO 94.53% 0.8984 98.24% 93.12%
MAPE-SO 94.53% 0.8984 98.93% 93.35%

GA 94.53% 0.8125 96.96% 91.78%
SURE-GA 94.53% 0.7969 96.92% 91.40%
MAPE-GA 94.53% 0.8047 96.96% 91.51%

GD 95.31% 0.8359 97.13% 92.55%
SURE-GD 95.31% 0.8672 96.93% 91.97%
MAPE-GD 95.31% 0.8672 97.16% 92.66%

NPO 93.75% 0.8594 96.95% 91.40%
SURE-NPO 93.75% 0.8672 96.66% 90.60%
MAPE-NPO 93.75% 0.8672 96.75% 90.94%

RoBERTa

RT 94.53% 0.9063 99.64% 96.10%
SA 94.53% 0.9219 98.84% 95.07%

SO 94.53% 0.9297 99.14% 94.15%
SURE-SO 94.53% 0.9375 98.94% 94.20%
MAPE-SO 94.53% 0.8984 99.45% 94.55%

GA 93.75% 0.9375 98.69% 95.07%
SURE-GA 93.75% 0.9219 98.92% 95.30%
MAPE-GA 93.75% 0.9219 98.96% 95.36%

GD 93.75% 0.9297 98.95% 95.41%
SURE-GD 93.75% 0.8516 98.87% 95.26%
MAPE-GD 93.75% 0.8516 99.00% 95.47%

NPO 93.75% 0.8672 99.09% 95.20%
SURE-NPO 93.75% 0.8516 98.67% 95.06%
MAPE-NPO 93.75% 0.8516 99.09% 95.27%

Table 7: Overall results of unlearning perfor-
mance using different unlearning methods under
two fine-tuned models on SQuAD v1.1 dataset.

Model Method Efficacy Fidelity
Unlearn F1. MIA Retain F1. ↑ Test F1. ↑

BERT

RT 87.62 0.5938 95.23 88.18
SA 89.75 0.7031 91.94 86.85

SO 86.26 0.5625 94.33 87.74
SURE-SO 86.52 0.6016 94.08 87.31
MAPE-SO 86.74 0.5781 94.25 87.60

GA 88.35 0.6953 95.09 88.08
SURE-GA 88.26 0.6875 95.10 87.95
MAPE-GA 87.83 0.6875 95.10 88.09

GD 89.17 0.6797 95.10 88.18
SURE-GD 89.04 0.6797 95.11 88.07
MAPE-GD 88.65 0.6797 95.14 88.18

NPO 88.78 0.6953 95.06 88.17
SURE-NPO 88.26 0.6797 95.03 88.05
MAPE-NPO 87.87 0.6719 95.10 88.20

RoBERTa

RT 90.41 0.6484 97.92 92.50
SA 91.05 0.6875 95.16 89.36

SO 90.71 0.5000 94.93 90.95
SURE-SO 90.44 0.5859 95.14 91.03
MAPE-SO 90.81 0.5234 95.51 91.06

GA 91.46 0.6953 96.16 91.01
SURE-GA 92.32 0.6953 96.00 90.78
MAPE-GA 90.94 0.6953 96.20 91.01

GD 91.47 0.6953 96.58 91.22
SURE-GD 91.76 0.6953 95.95 90.80
MAPE-GD 91.35 0.6719 96.69 91.43

NPO 91.62 0.6797 95.98 90.64
SURE-NPO 91.29 0.6797 95.94 89.90
MAPE-NPO 91.12 0.6641 96.17 90.82

D.5 ADDITIONAL EXPERIMENTAL RESULTS ON TOFU TASK

Tables 8 and 9 present additional results for the Forget01 and Forget10 unlearning scenarios in the
TOFU task, respectively. We observe that our method performs less effectively when the number
of forget samples is small, under-performing compared to full-parameter updates. However, as the
number of forget samples increases, our method outperforms others, achieving an optimal balance
between forget quality and model utility.
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Table 8: Performance overview of various unlearning methods on Forget01 unlearning settings.

Method
Efficacy Fidelity

Forget Set FQ ↑ Real Authors World Facts Retain Set MU ↑
Rouge Prob. TR Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑

RT 0.39 0.18 0.69 1.0 0.93 0.45 0.58 0.88 0.41 0.54 0.99 0.99 0.47 0.62
SA 0.95 0.99 0.53 1.88e-4 0.93 0.45 0.58 0.87 0.42 0.56 0.98 0.99 0.48 0.62

GA 0.49 0.23 0.54 1.27e-3 0.92 0.42 0.55 0.89 0.41 0.54 0.92 0.95 0.49 0.60
SURE-GA 0.48 0.17 0.55 3.02e-3 0.93 0.42 0.55 0.87 0.41 0.54 0.92 0.88 0.49 0.30
MAPE-GA 0.46 0.22 0.56 3.02e-3 0.94 0.43 0.56 0.86 0.42 0.55 0.94 0.97 0.49 0.61

GD 0.48 0.30 0.53 1.27e-3 0.92 0.42 0.55 0.87 0.40 0.54 0.92 0.97 0.49 0.60
SURE-GD 0.48 0.24 0.54 1.27e-3 0.92 0.42 0.55 0.88 0.41 0.54 0.91 0.94 0.49 0.60
MAPE-GD 0.47 0.28 0.55 3.02e-3 0.92 0.43 0.56 0.86 0.41 0.55 0.92 0.98 0.49 0.61

DPO 0.47 0.85 0.60 6.76e-3 0.94 0.49 0.63 0.87 0.46 0.57 0.89 0.96 0.46 0.63
SURE-DPO 0.48 0.87 0.58 3.02e-3 0.94 0.48 0.62 0.87 0.45 0.57 0.88 0.96 0.46 0.63
MAPE-DPO 0.44 0.85 0.59 3.02e-3 0.94 0.48 0.63 0.87 0.45 0.57 0.88 0.96 0.47 0.63

NPO 0.45 0.14 0.59 6.76e-3 0.94 0.41 0.54 0.87 0.40 0.53 0.90 0.85 0.49 0.59
SURE-NPO 0.45 0.07 0.64 0.27 0.93 0.41 0.53 0.87 0.40 0.52 0.89 0.85 0.49 0.59
MAPE-NPO 0.44 0.07 0.64 0.27 0.93 0.42 0.55 0.89 0.41 0.54 0.91 0.85 0.49 0.60

Table 9: Performance overview of various unlearning methods on Forget10 unlearning settings.

Method
Efficacy Fidelity

Forget Set FQ ↑ Real Authors World Facts Retain Set MU ↑
Rouge Prob. TR Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑ Rouge ↑ Prob. ↑ TR ↑

RT 0.41 0.15 0.67 1.0 0.93 0.43 0.57 0.90 0.41 0.54 0.98 0.99 0.47 0.61
SA 0.98 0.99 0.50 1.69e-15 0.92 0.44 0.58 0.86 0.41 0.55 0.98 0.99 0.49 0.62

GA 0.42 0.04 0.54 7.28e-9 0.87 0.37 0.51 0.87 0.37 0.51 0.44 0.09 0.46 0.33
SURE-GA 0.42 0.03 0.51 9.25e-11 0.82 0.38 0.53 0.86 0.39 0.54 0.45 0.07 0.46 0.30
MAPE-GA 0.42 0.20 0.53 8.78e-12 0.89 0.39 0.53 0.84 0.40 0.53 0.48 0.46 0.46 0.51

GD 0.41 0.15 0.49 5.56e-14 0.83 0.40 0.56 0.87 0.38 0.52 0.49 0.55 0.48 0.52
SURE-GD 0.41 0.20 0.49 3.92e-13 0.85 0.41 0.55 0.86 0.38 0.51 0.55 0.67 0.50 0.54
MAPE-GD 0.40 0.17 0.50 3.92e-13 0.86 0.42 0.57 0.86 0.39 0.52 0.51 0.59 0.50 0.54

DPO 0.25 0.26 0.68 0.02 0.58 0.43 0.55 0.79 0.43 0.55 0.45 0.62 0.42 0.51
SURE-DPO 0.27 0.19 0.64 9.06e-4 0.69 0.46 0.59 0.75 0.42 0.54 0.57 0.79 0.45 0.56
MAPE-DPO 0.28 0.20 0.64 3.11e-3 0.81 0.39 0.49 0.85 0.41 0.52 0.55 0.77 0.45 0.54

NPO 0.27 0.11 0.72 3.36e-2 0.72 0.46 0.62 0.86 0.45 0.59 0.35 0.29 0.36 0.47
SURE-NPO 0.25 0.07 0.68 0.45 0.73 0.46 0.60 0.86 0.45 0.57 0.44 0.60 0.43 0.54
MAPE-NPO 0.25 0.06 0.66 0.90 0.69 0.45 0.57 0.84 0.45 0.59 0.45 0.61 0.44 0.54
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D.6 ADDITIONAL EXPERIMENTAL RESULTS ON HAZARDOUS KNOWLEDGE REMOVAL TASK

Figure 7: Performance comparison of unlearning
methods on WMDP under Zephyr-7B-beta.

Method Efficacy Fidelity
AccBio. ↓ AccCyber. ↓ Avg. ↓ MMLU ↑

Original 0.6465 0.4449 0.5457 0.5845

GA 0.2679 0.3301 0.2990 0.4083
SURE-GA 0.2569 0.3296 0.2933 0.4030
MAPE-GA 0.2726 0.3191 0.2959 0.4145

GD 0.3370 0.3709 0.3540 0.4529
SURE-GD 0.3346 0.3749 0.3548 0.4603
MAPE-GD 0.3236 0.3629 0.3433 0.4557

NPO 0.4540 0.4051 0.4396 0.4903
SURE-NPO 0.4588 0.3905 0.4247 0.4900
MAPE-NPO 0.4454 0.3900 0.4177 0.4930
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