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ABSTRACT

As federated learning gains increasing importance in real-world applications due
to its capacity for decentralized data training, addressing fairness concerns across
demographic groups becomes critically important. However, most existing ma-
chine learning algorithms for ensuring fairness are designed for centralized data
environments and generally require large-sample and distributional assumptions,
underscoring the urgent need for fairness techniques adapted for decentralized
systems with finite-sample and distribution-free guarantees. To address this issue,
this paper introduces FedFaiREE, a post-processing algorithm developed specifi-
cally for distribution-free fair learning in decentralized setting with small samples.
Our approach accounts for unique challenges in decentralized environments, such
as client heterogeneity, communication costs, and small sample sizes frequently
encountered in practical applications. We provide rigorous theoretical guarantees
for both fairness and accuracy, and our experimental results further provide robust
empirical validation of these theoretical claims.

1 INTRODUCTION

Federated learning is a machine learning technique that harnesses data from multiple clients to
enhance performance. Notably, it accomplishes this without the need to centralize all the data on
a single server (McMahan et al., 2017). With the growing integration of Federated Learning in
practical applications, fairness is gaining prominence, especially in domains like healthcare (Joshi
et al., 2022; Antunes et al., 2022) and smartphone technology (Li et al., 2020; Yang et al., 2021).
However, applying existing fairness methods directly can be challenging, primarily because many
of these methods were originally designed within a centralized framework. This can lead to poor
performances or high communication costs when implementing them in real-world scenarios.

To tackle the fairness challenges in the context of federated learning, recent research has introduced
several techniques, including FairFed (Ezzeldin et al., 2023), FedFB (Zeng et al., 2021), FCFL
(Cui et al., 2021), and AgnosticFair (Du et al., 2021). These methods aim to enhance fairness by
implementing debiasing at the local client level and fine-tuning aggregation weights on the server.
However, despite their promise, these approaches face certain challenges. Firstly, as highlighted
by Hamman & Dutta (2023), achieving global fairness by solely ensuring local fairness can prove
elusive. In other words, ensuring fairness for all clients individually may not necessarily result in
overall fairness across the federated system. Secondly, many existing methods assume an ideal sce-
nario of infinite samples or struggle to guarantee fairness constraints in a distribution-free manner.
This limitation is in contrast to real-world applications. For example, when developing decision
models across multiple hospitals or medical institutions, stringent privacy regulations and data ac-
cess limitations often mean that only limited data can be utilized.

To address these concerns, drawing inspiration from FaiREE (Li et al., 2022), a post-processing
method designed for achieving fairness in finite-sample and distribution-free scenarios, this paper
introduces FedFaiREE. The core concept behind FedFaiREE involves distributed utilization of or-
der statistics to conform to fairness constraints and selection of the classifier with the best accuracy
(among classifiers that meet the constraints). Specifically, unlike FaiREE, which is restricted to
handling i.i.d. centralized data, FedFaiREE is designed to address the challenges presented by de-
centralized settings. These challenges encompass data decentralization, which incurs limitations
such as communication costs associated with updating local data. Additionally, there’s the issue of
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client heterogeneity. Even though we assume that all training data has been centralized, FaiREE
may still encounter bias due to variations among different clients. Finally, client correlation may
also violate the assumption of FaiREE. In the context of training decision models across multiple
hospitals, it’s common for a patient to visit several hospitals, which can influence the assumption of
data independence.

Figure 1: The distribution of DEOO re-
sults for FedAvg, both with and with-
out FedFaiREE, comparing to FairFed
(Ezzeldin et al., 2023), was examined
using the Adult dataset (Dua et al.,
2017). See Section 6 for details.

Our primary contribution is three-fold: first, we intro-
duce FedFaiREE, a simple yet highly effective approach
to ensuring fairness constraints in scenarios with limited
samples and distribution-free conditions; second, we pro-
vide theoretical guarantees that our method can achieve
nearly optimal fairness when the input prediction func-
tion is suitable; third, empirically, as demonstrated in Fig-
ure 1, we applied existing methods like FairFed (Ezzeldin
et al., 2023) and FedAvg (McMahan et al., 2017) with
and without FedFaiREE to the Adult dataset (Dua et al.,
2017). We found that while existing algorithms are un-
able to effectively control fairness in real-world applica-
tions due to the small sample size in each client, our ex-
periments demonstrate FedFaiREE shows promising per-
formance and can adhere to specific fairness constraints.

1.1 ADDITIONAL RELATED WORK

Existing fairness methodologies in federated Learning predominantly address two key aspects of
fairness: fairness among clients and fairness among groups. The former aspect aims to ensure
that the global model’s performance across individual clients is equitable in terms of equality or
contribution (Li et al., 2021; Lyu et al., 2020; Yu et al., 2020; Huang et al., 2020). In contrast, our
primary focus in this paper revolves around the latter facet — fairness among groups (Dwork et al.,
2012), also referred to as group fairness, where the objective is to ensure equitable treatment across
different sensitive labels, such as race and gender.

Existing Group Fairness Techniques. Conventional approaches can be approximately divided into
three categories (Caton & Haas, 2020): pre-processing methods that directly perform debiasing on
input data (Zemel et al., 2013; Johndrow & Lum, 2019); in-processing methods that incorporate
fairness metrics into model training as part of the objective function (Goh et al., 2016; Cho et al.,
2020); post-processing methods that adjust model outputs to enhance fairness (Li et al., 2022; Zeng
et al., 2022; Fish et al., 2016).

Group Fairness Approaches in Federated Learning. In recent years, there has been a growing
amount of work focusing on group fairness in the context of Federated Learning (Ezzeldin et al.,
2023; Cui et al., 2021; Zeng et al., 2021; Du et al., 2021; Rodrı́guez-Gálvez et al., 2021; Chu et al.,
2021; Liang et al., 2020; Hu et al., 2022; Papadaki et al., 2022). Most of these studies aim to
either introduce fairness principles into the local updates, adapt conventional fairness methods, or
perform reweighting during aggregation, or a combination of these strategies. Specifically, Du et al.
(2021) proposed AgnosticFair, a framework that utilizes kernel reweighing functions to adjust items
in local objective functions, including both loss terms and fairness constraints. Hu et al. (2022)
proposed PFFL, which introduces a fairness term into the local objective function and updates the
dual parameter λ affecting the fairness term as the iterations progress. Zeng et al. (2021) introduced
FedFB, a method that adapts Fair Batch, a centralized technique designed to improve fairness among
groups by reweighting loss terms for different subgroups, for the FL setting. Ezzeldin et al. (2023)
proposed FairFed, an approach that adjusts aggregate weights by considering the disparities between
local fairness metrics and the global fairness metric in each training round.

2 PRELIMINARIES

In this paper, we address the problem of predicting a binary label, denoted as Y , using a set of
features, specifically divided into two categories: X and A. Here, X ∈ X represents non-sensitive
features, while A ∈ A = {0, 1} corresponds to sensitive features. A data point includes (x, y, a),
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which correspond to (X,Y,A). For simplicity, we first introduce the concept of Score-based classi-
fier (Li et al., 2022).

Definition 2.1. (Score-based classifier) A score-based classifier is an indication function Ŷ =
ϕ(x, a) = 1{f(x, a) > c} for a measurable score function f : X × {0, 1} → [0, 1] and a con-
stant threshold c > 0.

To assess the fairness of classifier, we introduce two widely-used fairness metrics, Equality of Op-
portunity and Equalized Odds, which have been extensively utilized in the fairness literature.
Definition 2.2. (Equality of Opportunity (Hardt et al., 2016)) A classifier satisfies Equality of Op-
portunity if it satisfies the same true positive rate among protected groups: PX|A=1,Y=1(Ŷ = 1) =

PX|A=0,Y=1(Ŷ = 1).

Equality of Opportunity focuses on ensuring an equal opportunity to be predicted as true positive
across different groups. However, in practice, achieving strict Equality of Opportunity often is too
hard. Therefore, we often introduce a tolerance parameter denoted as α in Equality of Opportunity,
as discussed in prior works (Zeng et al., 2022; Li et al., 2022). To be specific, given a classifier ϕ,
the α difference tolerance in Equality of Opportunity can be defined as:

|DEOO| ≤ α, (1)

where DEOO = PX|A=1,Y=1(Ŷ = 1)− PX|A=0,Y=1(Ŷ = 1).

Notation. To further simplify formulation in the article, we provide notations as follow: pa signifies
the probability of the sensitive attribute A = a, i.e., P (A = a). pY,a represents the probability of
label Y = 1 given the sensitive attribute A = a, i.e., P (Y = 1 | A = a), and qY,a is defined as
1 − pY,a. D and Di represent the datasets for all clients and client i, respectively, where i belongs
to the set 1, 2, . . . , S. n denotes the size of dataset D. T represents the ordered scores of elements
in dataset D. Dy,a

i is used to denote the subset of dataset Di where Y = y and A = a. Similar
notations apply to T y,a and ny,a. [S] denotes the set of integers from 1 to S. ∆S represents the set
of S-dimensional vectors v = (v1, v2, . . . , vS) satisfying the conditions vi ≥ 0 and

∑S
i=1 vi = 1.

3 ENABLING FAIR FEDERATED LEARNING

In this section, we introduce FedFaiREE , a Federated Learning, Fair, distribution-fREE algorithm.
FedFaiREE has the capability to ensure fairness in scenarios involving finite samples, distribution-
free cases and heterogeneity among clients. To incorporate heterogeneity among clients into our
model, we make the following assumption.
Assumption 3.1. The training data points within the client i are drawn independently and identi-
cally (i.i.d) from distribution Pi, while the test data points are sampled from a global distribution
that represents a mixture of P1, · · · , PS with weight {πi}i∈[S] ∈ ∆S . More specifically, we assume
that (

Xi
k, Y

i
k

)
∼ Pi, (X test, Y test) ∼ Pmix =

∑S
i=1 πiPi

This implies that each client i has its own distribution Pi, and test data points are randomly sampled
from client i with a probability of πi.

3.1 PROBLEM FORMULATION AND FEDFAIREE OVERVIEW

Suppose we have S clients and a pre-trained score-based classifier ϕ0(x, a) = 1{f(x, a) > c}, each
with their own local data Di = D0,0

i ∪ D0,1
i ∪ D1,0

i ∪ D1,1
i . Here, i ∈ [S] represents each client,

and Dy,a
i = {xy,a

i,1 , x
y,a
i,2 , · · · , x

y,a
i,ny,a} is a subset of data points in Di, where Y = y ∈ {0, 1} and

A = a ∈ {0, 1} denote the label and sensitive attribute, respectively. Our objective is to determine
approximate thresholds λ0 and λ1 for A = 0 and A = 1 to construct the corresponding classifier
ϕ(x, a) = 1{f(x, a) > λa} that yields the optimal misclassification performance while adhering to
specific fairness constraints.

To achieve this, inspired by FaiREE (Li et al., 2022), we primarily leverage the rank of scores in the
training set, capitalizing on certain properties of order statistics. Figure 2 provides an overview of
our algorithm, which mainly comprises three key components:
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Figure 2: Overview of FedFaiREE. With S clients and a pre-trained model in consideration, each
ball in the image symbolizes a score in the training set. The color of the balls represents different
sensitive labels, while the gray edges depict local ranks of threshold pairs (each global classifier’s
threshold pair corresponds to S local ranks). Notably, the red edge signifies the chosen global
classifier with thresholds t0, t1 for sensitive labels A = 0 and A = 1, respectively.

Step 1: Update local scores. For each local client s, we apply the given scorer f to obtain scores
ty,ai,j = f(xy,a

i,j ). Subsequently, we sort score set T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
} in the order of

non-decreasing . To minimize communication costs, we update a sketch of T y,a
i .

Step 2: Construct the candidate set with distributed quantile algorithm. Incorporating spe-
cific fairness constraints and accounting for client heterogeneity, we utilize the updated sketches to
construct a candidate set comprising rank pairs (k1,0,k1,1). This construction involves both order
statistics and distributed quantile algorithms. Here, k1,a represents the S local ranks as defined in
Section 3.2. Each pair represents a classifier with λa chosen as the estimated global k1,a-th value in
the sorted global score set T 1,a,i.e., t̂1,a(k1,a), where k1,a is the corresponding global rank of k1,a.

Step 3: Select the best threshold in the central model. To select the optimal rank pair from among
multiple classifiers, we choose the rank pair that minimizes the estimated misclassification error, all
while accounting for client heterogeneity. Consequently, the resulting classifier can be represented
as ϕ̂(x, a) = 1{f(x, a) > t̂1,a(k1,a)}.

In the subsequent section, we illustrate our approach using Equality of Opportunity as our targeted
group fairness constraint, providing a detailed description of our algorithm. Additionally, it’s im-
portant to emphasize that, like FaiREE, FedFaiREE is adaptable to various fairness notions, with the
added capability of accommodating even more diverse situations. We would discuss more fairness
concepts like Equalized Odds and label shift scenario in Sections 5.

3.2 ESTABLISHING CANDIDATE SET WITH DISTRIBUTED QUANTILE ALGORITHM

To select rank pairs that satisfy fairness constraints, we leverage the properties of order statistics.
Specifically, we consider that k1,a represents the rank in the sorted T 1,a. However, unlike FaiREE,
we need to consider heterogeneity among clients, and further define k1,ai to represent the correspond-
ing rank of t1,a(k1,a) in the sorted T 1,a

i , where i ∈ [S] and k1,ai satisfies t1,a
i,(k1,a

i )
≤ t1,a(k1,a) < t1,a

i,(k1,a
i +1)

.
Using this approach, we make an observation in controlling fairness.
Proposition 3.1. Under Assumption 3.1, for a ∈ {0, 1}, consider k1,a ∈ {1, . . . , n1,a}, the corre-
sponding k1,ai for i ∈ [S] and the score-based classifier ϕ(x, a) = 1{f(x, a) > t1,a(k1,a)}. Define

hy,a(u,v) = P

(
S∑

i=1

πy,a
i Q (ui, n

y,a
i + 1− ui)−

S∑
i=1

πy,1−a
i Q

(
vi, n

y,1−a
i + 1− vi

)
≥ α

)
.

Then we have:

P(|DEOO(ϕ)| > α) ≤ h1,0(k
1,0 + 1,k1,1) + h1,1(k

1,1 + 1,k1,0) (2)
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Where k1,a = (k1,a1 , · · · , k1,aS ), π1,a
i = P(sampling x from client i | sampling x with label Y =

1 and A = a), and Q(α, β) are independent random variables and Q(α, β) ∼ Beta(α, β).

This proposition enables us to select classifiers that satisfy fairness constraints with arbitrary finite
sample and no distributional assumption. Moreover, Q(α, β) can be efficiently estimated by Monte
Carlo simulations in applications. Specifically, we approximated Q(α, β) by conducting random
sampling 1000 times in our experiment, yielding a highly satisfactory approximation.

Due to the need of computing local ranks to make use of Proposition 3.1, it is important to consider
the tradeoff between accuracy and communication cost in real applications. In particular, we can
adopt distributed quantile algorithms to reduce communication costs while controlling errors in
calculating local ranks. Therefore, we present an alternative formulation of Proposition 3.1 to allow
errors in the local rank calculation. To begin with, we introduce the concept of approximate quantiles
and ranks (Luo et al., 2016; Lu et al., 2023).
Definition 3.2. (ε-approximate β-quantile and rank of a given set) For an error ε ∈ (0, 1), the
ε-approximate β-quantile of a given set is any element with rank between (β − ε)N and (β + ε)N ,
where N is the total number of elements in set. Further, the ε-approximate rank of a element in a
given set is any rank between (β − ε)N and (β + ε)N where βN represents the real rank.

Under Definition 3.2, if the rank estimation method produces ε-approximate ranks, it is possible to
correspondingly modify Proposition 3.1.
Proposition 3.2. Under Assumption 3.1, for a ∈ {0, 1}, consider k1,a ∈ {1, . . . , n1,a}, the
corresponding k̂1,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
ϕ(x, a) = 1{f(x, a) > t1,a(k1,a)} . Define

hy,a(u,v) = P

(
S∑

i=1

πy,a
i Q (ui, n

y,a
i + 1− ui)−

S∑
i=1

πy,1−a
i Q

(
vi, n

y,1−a
i + 1− vi

)
≥ α

)
.

Then we have:

P(|DEOO(ϕ)| > α) ≤ h1,0(M
1,0,m1,1) + h1,1(M

1,1,m1,0), (3)

where π1,a
i is defined in Proposition 3.1, M1,a = (M1,a

1 , · · · ,M1,a
S ), m1,a = (m1,a

1 , · · · ,m1,a
S ),

M1,a
i = max

(
⌈k̂1,ai + εn1,a

i ⌉, n1,a
i + 1

)
, m1,a

i = min
(
⌈k̂1,ai − εn1,a

i ⌉, 0
)
, and Q(α, β) are in-

dependent random variables and Q(α, β) ∼ Beta(α, β). Especially, we define Q(0, β) = 0 and
Q(α, 0) = 1 for α, β ̸= 0.

In practical distributed settings, calculating the exact local rank in Proposition 3.2 is generally hard
due to communication constraints. By adopting approximate ε and related parameters in distributed
quantile algorithm, we strike a balance between accuracy and communication cost, enabling the
effective implementation of our algorithm in distributed environments.

In our experiments, we implemented the Q-digest (Shrivastava et al., 2004), a tree-based sketch-
ing distributed quantile algorithm commonly used for efficiently approximating quantiles and ranks
computation with rigorous theory controlling the error. Due to the inherent characteristics of the
Q-digest algorithm, it only yields approximate quantiles and ranks that tend to be greater than their
true values. However, considering the adaptability of other distributed quantile algorithms and aim-
ing to reduce the absolute value of ε, we take into account both upward and downward estimation
deviations as described in Definition 3.2.

Based on Proposition 3.2, we can construct the candidate set K as

K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}, (4)

where k1,a = (k̂1,a1 , · · · , k̂1,aS ), and L(k1,0,k1,1) represents the right-hand side of Inequality 3.

3.3 SELECTION FOR THE OPTIMAL THRESHOLD

In this subsection, we elaborate our method for selecting the optimal threshold. For a given pair(
k1,0, k1,1

)
from the candidate set, we exploit the properties of order statistics to compute estimated

misclassification error and then select the pair minimizing the estimated error.
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Algorithm 1 FedFaiREE for DEOO

Input: Train dataset Di = D0,0
i ∪ D0,1

i ∪ D1,0
i ∪ D1,1

i ; pre-trained classifier ϕ0 with function f; fairness
constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a

(k1,a)
}

Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a

i,n
y,a
i

}
Sort T y,a

i and calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}
Select optimal (k0,k1) by minimizing Equation 5 using estimated values p̂ia, p̂iY,a and q̂iY,a

To facilitate this, we need to compute the approximate ranks of t1,0(k1,0) and t1,1(k1,1) in the sorted

sets T 0,0
i and T 0,1

i , where i ∈ [S], respectively. Specifically, we determine k0,ai such that t0,a
i,(k0,a

i )
≤

t1,a(k1,a) < t0,a
i,(k0,a

i +1)
for a ∈ {0, 1}. To simplify, in following sections, we assume the corresponding

k̂1,ai for i ∈ [S] are ε-approximate ranks and the estimated quantiles presented by distributed quantile
algorithm are ε-approximate quantiles. Then, we commence by presenting our observation on the
estimation of misclassification error through the following proposition.
Proposition 3.3. Under Assumption 3.1, the misclassification error can be estimated by

P̂
(
ϕ̂(x, a) ̸= Y

)
=

S∑
i=1

πi

[ k̂1,0
i + 0.5

n1,0
i + 1

pi0p
i
Y,0 +

k̂1,1
i + 0.5

n1,1
i + 1

pi1p
i
Y,1 +

n0,0
i + 0.5− k̂0,0

i

n0,0
i + 1

pi0q
i
Y,0

+
n0,1
i + 0.5− k̂0,1

i

n0,1
i + 1

pi1q
i
Y,1

] (5)

Further, the discrepancy between empirical error and true error is upper bounded by the following:∣∣∣P(ϕ̂(x, a) ̸= Y
)
− P̂

(
ϕ̂(x, a) ̸= Y

)∣∣∣ ≤ θ, (6)

where θ =
∑S

i=1 πi

[
e0,0i pi0q

i
Y,0 + e0,1i pi0p

i
Y,0 + e1,0i pi1q

i
Y,1 + e1,1i pi1p

i
Y,1

]
, ey,ai =

2⌊εny,a
i ⌋+1

2(ny,a
i +1)

Proposition 3.3 provides a method for estimating the overall misclassification error using data from
the training set with Equation 5. However, we may not have exact knowledge of the probabilities

pia and piY,a. In such cases, we can use the estimated values p̂ia =
n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

, p̂iY,a =

n1,a
i

n0,a
i +n1,a

i

, q̂iY,a = 1 − p̂iY,ato calculate the empirical error. We will further present a theorem to
show that we can achieve a desirable accuracy using the estimated values in Section 4.

At the end of this section, we provide a concise summary of our algorithm in Algorithm 1. It’s worth
noting that while in our experiment, we assume that πi is proportional to ni, we may not know the
exact values of πi in real applications. To enhance the robustness of our approach in such real-world
scenarios, one can consider introducing a hypothesis space denoted as H(π) to model the range of
π and incorporate maxπ∈H(π) into equations 4 and 5.

4 THEORETICAL GUARANTEES

In this section, we provide the accuracy analysis for FedFaiREE. To mitigate situations where there
might be extreme initial pre-trained classifier, we introduce the following assumption.
Assumption 4.1. The distribution of f(x, a) exhibits the following property. When conducting N
independent samplings to form a sample set, let q0 be the β-quantile of the sample set. There exist
function δ : N → R, constant γ > 0, such that limN→∞ δ(N) = 0 and with a probability of at least
1− δ(N), for any q considered as an ε-approximate β-quantile of the sample set, it satisfies that , q
lies within the γε-neighborhood of q0.
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In simpler terms, with Assumption 1, we can avoid significant deviations between our approximated
quantile and the actual quantile in certain extreme cases. Moreover, in the following theorem, we
establish a theoretical basis for the accuracy of FedFaiREE. To facilitate accurate comparisons,
we introduce the notion of the ”fair Bayes-optimal classifier”, a concept developed by Zeng et al.
(2022) meaning Bayes-optimal fair classification under specific ”level of disparity”. The precise
definition of the fair Bayes-optimal classifier under DEOO can be found in Lemma A.2. To be
concise, we denotes the standard Bayes-optimal classifier without fairness constraint as ϕ∗(x, a) =
1{f∗(x, a) > 1/2}, where f∗ ∈ argminf [P(Y ̸= 1{f(x, a) > 1/2})].

Theorem 4.2. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DEOO(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 8ϵ2 + 20ϵ+ 2θ (7)

with probability 1− 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2)−

∑1
a=0

∏S
i=1

(
1− F 1,a

i(−)(2ϵ)
)n1,a

i − δ,where
δ = δ1,0(n1,0) + δ1,1(n1,1), θ is defined in Proposition 3.3 and the definition of F(+) and F(−) are
shown in Lemma A.4

This theorem provides assurance that our method can achieve almost the optimal misclassification
error with DEOO constraints, provided that the input classifier is chosen appropriately i.e. is close
enough to the Bayes-optimal one. This theorem underscores the effectiveness of our approach in
minimizing errors when ensuring fairness in a distribution-free and finite-sample manner.

5 APPLICATIONS IN DIFFERENT SCENARIOS

5.1 LABEL SHIFT IN TEST SET

In this section, we explore the application of our algorithm in various scenarios. First, we assume
the presence of a label shift in the test set, a situation that frequently encountered in real-world
applications (Plassier et al., 2023; Tian et al., 2023). To do so, we first need to revise Assumption
3.1 to adapt extension settings. Specifically, we introduce the following assumption.
Assumption 5.1. The training data points on client i are i.i.d drawn from the distribution Pi, and
we further assume the global distribution P is mixture of P1, · · · , PS with weight {πi}i∈[S] ∈ ∆S ,
while the test data points are sampled from another distribution Pi, heterogeneity between P and
which induced due to label shift, that is, we assume that(

Xi
k, Y

i
k

)
∼ Pi, Pmix =

S∑
i=1

πiPi = P (X,A|Y ) ∗ Pmix(Y ),(
X test, Y test) ∼ Pi = P (X,A|Y ) ∗ Pi(Y )

(8)

We note that FedFaiREE can be adapted to Assumption 5.1 by modifying the target function for the
optimal rank selection from Equation 5 to the following equation:

P̂
(
ϕ̂(x, a) ̸= Y

)
=

S∑
i=1

πi

[ k̂1,0
i + 0.5

n1,0
i + 1

pi0p
i
Y,0w

1,0 +
k̂1,1
i + 0.5

n1,1
i + 1

pi1p
i
Y,1w

1,1

+
n0,0
i + 0.5− k̂0,0

i

n0,0
i + 1

pi0q
i
Y,0w

0,0 +
n0,1
i + 0.5− k̂0,1

i

n0,1
i + 1

pi1q
i
Y,1w

0,1], (9)

where wy,a =
pS+1
a pS+1

Y,a

papY,a
. In Appendix A.4, we provide a detailed proposition to ensure the accuracy

of our estimations and present a concise algorithm. Furthermore, to account for label shift scenarios,
we offer a theorem guarantee as a revised version of 4.2 at the end of this subsection.
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Theorem 5.2. Under Assumption 4.1 and 5.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DEOO(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 2θ′ +O(ϵ) (10)

with probability 1− 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2)−

∑1
a=0

∏S
i=1

(
1− F 1,a

i(−)(2ϵ)
)n1,a

i − δ, where
the definitions of δ, F(+), F(−) are same with Theorem 4.2, θ′ is defined in Proposition A.1.

In summary, Theorem 5.2 assures that our FedFaiREE algorithm can effectively control fairness and
maintain accuracy in situations where label shift is present in the test data. These guarantees are
essential for deploying fair and accurate machine learning models in practical applications.

5.2 EQUALIZED ODDS

We have also explored the potential extension of our algorithm to fairness indicators beyond DEOO.
Specifically, in this subsection, we will discuss its application to Equalized Odds. Applications on
more fairness notions are presented in Appendix B.
Definition 5.3. (Equalized Odds (Hardt et al., 2016)) A classifier satisfies Equalized Odds if it sat-
isfies the following equality: PX|A=1,Y=1(Ŷ = 1) = PX|A=0,Y=1(Ŷ = 1) and PX|A=1,Y=0(Ŷ =

1) = PX|A=0,Y=0(Ŷ = 1).

Similarly, we can express the fairness constraints under Equalized Odds as |DEO| ⪯ (α1, α2),
which is equivalent to |PX|A=1,Y =1(Ŷ = 1) − PX|A=0,Y =1(Ŷ = 1)| ≤ α1 and |PX|A=1,Y =0(Ŷ =

1)− PX|A=0,Y =0(Ŷ = 1)| ≤ α2. Hence, in order to consider two fairness constraints simultaneously,
we modify Equation 4 as follow.

K = {(k∗,0,k∗,1)|L(k∗,0,k∗,1) = h∗
1,1 + h∗

1,0 + h∗
0,1 + h∗

0,0 < 1− β}, (11)

where k∗,a = (k̂0,a1 , · · · , k̂0,aS , k̂1,a1 , · · · , k̂1,aS ) and h∗
y,a are function of k∗,a defined in Proposition

A.2. Additional details, propositions can be found in Appendix A.5. This equation allows us to
construct a candidate set under DEO fairness constraints, enabling us to apply our algorithm to
achieve Equalized Odds. Furthermore, we provide theoretical guarantees for DEO fairness.

Theorem 5.4. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE with target DEO constraint, we have:

(1) |DEO(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 2θ +O(ϵ) (12)

with probability 1− 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2)−

∑1
a=0

∏S
i=1

(
1− F 1,a

i(−)(2ϵ)
)n1,a

i − δ,where
the definitions of δ, θ, F(+), F(−) are same with Theorem 4.2.

6 EXPERIMENT

In this section, we study the performance of FedFaiREE on real datasets including Adult(Dua
et al., 2017) and Compas(Dieterich et al., 2016). In particular, we employed FedFaiREE on Fe-
dAvg(McMahan et al., 2017), AFL(Mohri et al., 2019), FedFB(Zeng et al., 2021), FairFed(Ezzeldin

8
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Table 1: Results on Adult and Compas dataset. We conducted 100 experimental repetitions for
each model on both datasets and compared the accuracy and fairness indicators of different mod-
els. The FedFaiREE and α columns indicate whether FedFaiREE was used or not and the fairness
constraint. Confidence level β is set to be 95% throughout the experiments. ACC and |DEOO|
represent the averages of accuracy and DEOO (defined in Equation 1). |DEOO|95 represents the
95% quantile of DEOO since we set the confidence level of FedFaiREE to 95% in our experiments.

Adult Compas

Model FedFaiREE α ACC |DEOO| |DEOO|95 α ACC |DEOO| |DEOO|95

FedAvg ✗ / 0.844 0.131 0.178 / 0.662 0.126 0.223
✓ 0.10 0.843 0.038 0.083 0.15 0.659 0.051 0.137

AFL ✗ / 0.848 0.101 0.169 / 0.643 0.097 0.170
✓ 0.10 0.848 0.034 0.081 0.15 0.641 0.051 0.108

FedFB ✗ / 0.850 0.057 0.117 / 0.642 0.107 0.174
✓ 0.10 0.850 0.036 0.083 0.15 0.641 0.062 0.125

FairFed ✗ / 0.842 0.069 0.118 / 0.648 0.097 0.166
✓ 0.10 0.841 0.037 0.081 0.15 0.645 0.047 0.114

et al., 2023) and training all algorithm using a two layers neural networks. See Appendix C for fur-
ther details of experiments, including hyperparameter range, detailed model information and more.

Dataset. Adult dataset (Dua et al., 2017), which is employed for the prediction task that determine
whether an individual’s income exceeds $50,000, comprises 45,222 samples, featuring various at-
tributes including age, education, and more. The sensitive feature in our analysis is gender. Compas
dataset (Dieterich et al., 2016), whose task is to predict whether a person will conduct crime in the
future, comprises 7214 samples. The sensitive feature is gender.

Data Processing. To replicate the decentralized conditions and account for heterogeneity across
clients, we adopted the approach introduced by Ezzeldin et al. (2023). Specifically, we initiated the
process by randomly sampling proportions for various sensitive attributes within each client, using
the Dirichlet distribution. Subsequently, we partitioned the dataset into client-specific subsets based
on these proportions. Within each of these subsets, we performed an 80-20 split, allocating 80%
of the data as the local client training set and reserving the remaining 20% for the test set. For the
numerical experiments, we repeated this procedure 100 times on both Adult and Compas datasets.

Result and Analysis. Table 1 presents the results obtained from experiments conducted on both the
Adult and Compas datasets. These results showcase that FedFaiREE achieved desirable performance
across both datasets. The column labeled FedFaiREE indicates whether FedFaiREE was used and
the columns labeled α specify the fairness constraint. Our findings demonstrate that FedFaiREE,
with its unique, distribution-free approach to fairness constraints under finite-sample, consistently
outperforms the original models in controlling DEOO while maintaining relatively high accuracy. It
is worth noting that FedFaiREE achieves significant performance improvements even when applied
to FedAvg, the most fundamental model. This indicates the wide applicability and potential of
FedFaiREE across various settings. Notably, FedFaiREE was employed with a confidence level of
β = 0.95 throughout the experiments, and it successfully controlled the 95th percentile of DEOO,
showcasing its robustness.

7 CONCLUSION

In this paper, we introduce FedFaiREE, a novel, distribution-free approach aimed at guaranteeing
fairness constraints under the federated learning setting. The unique strength of FedFaiREE lies in
its ability to address real-world concerns of federated learning, such as client heterogeneity, small
samples and communication costs. We showcase the adaptability of FedFaiREE by demonstrating
its applicability to a wide range of group fairness notions and various scenarios such as label shifts.
Our experiments provide further validation for its practical value. For future works, there are several
promising directions. First, extending FedFaiREE to tasks that go beyond binary label prediction
could open up new avenues for practical applications. Additionally, exploring more efficient dis-
tributed quantile algorithms for rank and quantile calculations within the FedFaiREE framework
could further improve its scalability and performance.

9
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REPRODUCIBILITY STATEMENT

The code and dataset for our work can be found in the supplemental materials. To ensure repro-
ducibility, we would like to note that we set random seeds in the range of 0 to 99 for our experiments
on Compas dataset. Given that our splitting method allows for potential heterogeneity and varying
dataset sizes, which might result in empty datasets, performing ”split failed” in our code, we used
random seeds in the range of 0 to 111 for the adult dataset when the parameter for the Dirichlet
distribution was set to 1. For specific hyperparameter selections, please refer to Table 2.
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A PROOFS

A.1 PROOF FOR PROPOSITION 3.1 AND 3.2

We first introduce following lemma
Lemma A.1. If ty,ai is variable with continuous density function, we have

F y,a
i

(
ty,a
i,(ky,a

i )

)
∼ Beta (ky,ai , ny,a

i − ky,ai + 1)

.

Proof of Lemma A.1. F y,a
i represents the continuous cumulative distribution functions of ty,ai ,

and thus we have F y,a
i (ty,ai ) ∼ U(0, 1). Furthermore, as F y,a

i

(
ty,a
i,(ky,a

i )

)
denotes the ky,ai -

th order statistic of ny,a
i i.i.d samples from U(0, 1), we can conclude that F y,a

(
ty,a
i,(ky,a

i )

)
∼

Beta (ky,ai , ny,a − ky,ai + 1)

Back to proof of the Proposition 3.1, the classifier is

Proof of Proposition 3.1.

ϕ =

 1

{
f(x, 0) > t1,0(k1,0)

}
, a = 0

1

{
f(x, 1) > t1,1(k1,1)

}
, a = 1

we have:

P(|DEOO(ϕ)| > α) = P
(∣∣∣F 1,1

(
t1,1(k1,1)

)
− F 1,0

(
t1,0(k1,0)

)∣∣∣ > α
)

= P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
> α

)

+ P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
< −α

)
≜ A+B

So we only need to calculate A and B and It is easy to prove that we only need to consider the
continuous density function case..

A = P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
> α

)

≤ P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1
i,(k1,1

i +1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0
i,(k1,0

i )

)
> α

)
Considering lemma A.1 and similar result for B, we complete the proof.

For the proof of Proposition 3.2, we can adjust the estimation of A by introducing the error generated
in rank calculation. Specifically, we show that

Sketch proof of Proposition 3.2.

A = P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
> α

)

≤ P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1
i,(k1,1

i +⌊εn1,1
i ⌋)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0
i,(k1,0

i −⌊εn1,0
i ⌋)

)
> α

)
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A.2 PROOF FOR PROPOSITION 3.3

Proof for Proposition 3.3. Note the classifier is

ϕ =

 1

{
f(x, 0) > t̂1,0(k1,0)

}
, a = 0

1

{
f(x, 1) > t̂1,1(k1,1)

}
, a = 1

So we can calculate the mis-classification error:

P(Y ̸= Ŷ ) = P(Y = 1, Ŷ = 0) + P(Y = 0, Ŷ = 1)

= P(Y = 1, Ŷ = 0, A = 0) + P(Y = 1, Ŷ = 0, A = 1)

+ P(Y = 0, Ŷ = 1, A = 0) + P(Y = 0, Ŷ = 1, A = 1)

=

S∑
i=1

πi

[
Pi(Y = 1, Ŷ = 0, A = 0) + Pi(Y = 1, Ŷ = 0, A = 1)+

Pi(Y = 0, Ŷ = 1, A = 0) + Pi(Y = 0, Ŷ = 1, A = 1)
]

(13)

For ecah specific i, we have

Pi(Y = 1, Ŷ = 0, A = 0) = Pi(Ŷ = 1 | Y = 0, A = 0)Pi(Y = 0, A = 0)

= E
[
Pi

(
f(x, 0) ≤ t̂1,0(k1,0) | Y = 1, A = 0

)
| t̂1,0(k1,0)

]
pi0p

i
Y,0

≤ E
[
Pi

(
f(x, 0) ≤ t1,0

i,(k̂1,0
i +⌊εn1,0

i ⌋+1)
| Y = 1, A = 0

)
| t1,0

i,
(
k̂1,0
i +⌊εn1,0

i ⌋+1
)]pi0piY,0

= E
[
F 1,0
i

(
t1,0
i,(k̂1,0

i +⌊εn1,0
i ⌋+1)

)
| t1,0

i,(k̂1,0
i +⌊εn1,0

i ⌋+1)

]
pi0p

i
Y,0

=
k̂1,0i + ⌊εn1,0

i ⌋+ 1

n1,0
i + 1

pi0p
i
Y,0

By the similar reasoning, we point out that

Pi(Y = 1, Ŷ = 0, A = 0) ≥ k̂1,0i − ⌊εn1,0
i ⌋

n1,0
i + 1

pi0p
i
Y,0

and thus we have∣∣∣∣∣Pi(Y = 1, Ŷ = 0, A = 0)− k̂1,0i + 0.5

n1,0
i + 1

pi0p
i
Y,0

∣∣∣∣∣ ≤ ⌊εn1,0
i ⌋+ 0.5

n1,0
i + 1

pi0p
i
Y,0 (14)

Moreover, we have
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Pi(Y = 0, Ŷ = 1, A = 0) = Pi(Ŷ = 1 | Y = 0, A = 0)Pi(Y = 0, A = 0)

= E
[
Pi

(
f(x, 0) ≥ t̂1,0(k1,0) | Y = 1, A = 0

)
| t̂1,0(k1,0)

]
pi0(1− piY,0)

≥ E
[
Pi

(
f(x, 0) ≥ t0,0

i,(k̂0,0
i +⌊εn0,0

i ⌋+1)
| Y = 1, A = 0

)
| t0,0

i,(k̂0,0
i +⌊εn0,0

i ⌋+1)

]
pi0(1− piY,0)

= E
[
1− F 0,0

i

(
t0,0
i,(k̂0,0

i +⌊εn0,0
i ⌋+1)

)
| t0,0

i,(k̂0,0
i +⌊εn0,0

i ⌋+1)

]
pi0(1− piY,0)

=
n0,0
i − k̂0,0i − ⌊εn0,0

i ⌋
n0,0
i + 1

pi0(1− piY,0)

Similar, we have

Pi(Y = 0, Ŷ = 1, A = 0) ≤ n0,0
i − k̂0,0i + ⌊εn0,0

i ⌋+ 1

n0,0
i + 1

pi0(1− piY,0),

and combining these two result, we get∣∣∣∣∣Pi(Y = 0, Ŷ = 1, A = 0)− n0,0
i − k̂0,0i + 0.5

n0,0
i + 1

pi0(1− piY,0)

∣∣∣∣∣ ≤ ⌊εn0,0
i ⌋+ 0.5

n0,0
i + 1

pi0(1− piY,0) (15)

Following similar process of inequality 14 and 15, we can also show that∣∣∣∣∣Pi(Y = 1, Ŷ = 0, A = 1)− k̂1,1i + 0.5⌋
n1,1
i + 1

pi1p
i
Y,1

∣∣∣∣∣ ≤ ⌊εn1,1
i ⌋+ 0.5

n1,1
i + 1

pi1p
i
Y,1 (16)∣∣∣∣∣Pi(Y = 0, Ŷ = 1, A = 1)− n0,1

i − k̂0,1i + 0.5

n0,1
i + 1

pi1(1− piY,1)

∣∣∣∣∣ ≤ ⌊εn0,1
i ⌋+ 0.5

n0,1
i + 1

pi1(1− piY,1) (17)

Combining Inequality 14-17 into Equation 13, we complete our proof.

A.3 PROOF FOR THEOREM 4.2

To begin with, the Fair Bayes-optimal Classifiers under Equality of Opportunity is defined by fol-
lowing lemma, wherein ηa(x) := P(Y = 1 | A = a,X = x) stands for the proportion of group
Y = 1 conditioned on A and X .
Lemma A.2 (Theorem E.4 in (Zeng et al., 2022)). Let E⋆ = DEOO(f⋆). For any α > 0, all fair
Bayes-optimal classifiers f⋆

E,α under the fairness constraint |DEOO(f)| ≤ α are given as follows:
- When |E⋆| ≤ α, f⋆

E,α = f⋆

- When |E⋆| > α, suppose PX|A=1,Y=1

(
η1(X) =

p1pY,1

2(p1pY,1−t⋆E,α)

)
= 0, then for all x ∈ X and

a ∈ A,

f⋆
E,α(x, a) = I

(
ηa(x) >

papY,a
2papY,a + (1− 2a)t⋆E,α

)
where t⋆E,α is defined as

t⋆E,α = sup
{
t :PY |A=1,Y=1

(
η1(X) >

p1pY,1
2p1pY,1 − t

)
> PY |A=0,Y=1

(
η0(X) >

p0pY,0
2p0pY,0 + t

)
+

E⋆

|E⋆|
α
}
.

Lemma A.3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables. Assume
that Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we have

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ e

− 2t2∑n
i=1(Mi−mi)

2
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Then, we introduce several lemma to prove Theorem 4.2.

Lemma A.4. For a distribution F with a continuous density function, suppose q(x) denotes the
quantile of x under F , then for x > y, we have F(−)(x− y) ≤ q(x)− q(y) ≤ F(+)(x− y), where
F(−)(x) and F(+)(x) are two monotonically increasing functions, F(−)(ϵ) > 0, F(+)(ϵ) > 0 for
any ϵ > 0 and lim

ϵ→0
F(−)(ϵ) = lim

ϵ→0
F(+)(ϵ) = 0.

Proof of Lemma A.4. Since the domain of q(x) is a closed set and q(x) is continuous, we know that
q(x) is uniformly continuous. Thus we can easily find F(+) to satisfy the RHS. For F(−), we simply
define F(−)(t) = inf

x
{q(x+ t)− q(t)}. Since q(x+ t)− q(t) > 0 for t > 0 and the domain of x is

a closed set, we have F(−)(ϵ) > 0 for ϵ > 0 and lim
ϵ→0

F(−)(ϵ) = 0. Now we complete the proof.

Proof for theorem 4.2. In fact, (1) of the theorem is a direct application of Proposition 3.2, so we
only need to prove (2). In partcular, the main idea of our proof is to find a bridge between fair Bayes
optimal classifier and our output classifier.

To begin with, we show that there exist a classifier in our set which is quite similar with fair
Bayes optimal classifier. Suppose the fair Bayes optimal classifier has the form ϕ∗

α′(x, a) =

I {f∗(x, a) > λ∗
a} and our output classifier is of the form ϕ̂(x, a) = 1 {f(x, a) > λa}.

For any ϵ > 0, by Lemma A.4, we know that above than a positive probability F 1,a
i,(−)(2ϵ),

t1,ai would fall in the interval [λ∗
a − ϵ, λ∗

a + ϵ] for each client i. Therefore, by the defini-

tion of ε-approximate quantile, we have at most with probability
∏S

i=1

(
1− F 1,0

i,(−)(2ϵ)
)n1,0

i

+∏S
i=1

(
1− F 1,1

i,(−)(2ϵ)
)n1,1

i

, there exists a ∈ {0, 1} such that all t1,ai,(k) fall out of [λ∗
a − ϵ, λ∗

a + ϵ].

Thus, with probability 1 −
∏S

i=1

(
1− F 1,0

i(−)(2ϵ)
)n1,0

i −
∏S

i=1

(
1− F 1,1

i(−)(2ϵ)
)n1,1

i

, for a ∈
{0, 1}, there would exist i such that there exists at least one t1,ai in [λ∗

a − ϵ, λ∗
a + ϵ]. So with

1−
∏S

i=1

(
1− F 1,0

i(−)(2ϵ)
)n1,0

i −
∏S

i=1

(
1− F 1,1

i(−)(2ϵ)
)n1,1

i − δ(n1,0)− δ(n1,1), there exist a clas-

sifier ϕ0(x, a) = 1

{
f(x, a) > t̂1,a∗

}
such that t̂1,a∗ ∈ [λ∗

a − ϵ− γε, λ∗
a + ϵ+ γε]. We also denote

ϕ∗
0(x, a) = 1

{
f∗(x, a) > t1,a∗

}
. Given the threshold is quite close, we further prove that the accu-

racy is quite close with a high probability. Actually, we have

|P (ϕ0(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y )|

≤ |P (ϕ0(x, a) ̸= Y )− P (ϕ∗
0(x, a) ̸= Y )|+ |P (ϕ∗

0(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y )|

≤P
(
t1,a∗ − ϵ0 ≤ f∗(x, a) ≤ t1,a∗ + ϵ0

)
+ P

(
min

{
t1,a∗ , λ∗

a

}
≤ f∗(x, a) ≤ max

{
t1,a∗ , λ∗

a

})
≤F ∗

(+) (2ϵ0) + F ∗
(+)

(
max

{
t1,a∗ , λ∗

a

}
−min

{
t1,a∗ , λ∗

a

})
≤F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε)

(18)

with probability 1−
∏S

i=1

(
1− F 1,0

i,(−)(2ϵ)
)n1,0

i −
∏S

i=1

(
1− F 1,1

i,(−)(2ϵ)
)n1,1

i − δ(n1,0)− δ(n1,1).

Further we point out that

16
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||DEOO(ϕ0) | − |DEOO(ϕ∗
α′) ||

≤ ||DEOO(ϕ0) | − |DEOO(ϕ∗
0) |+ |DEOO (ϕ∗

0) | − |DEOO(ϕ∗
α′) ||

=
∣∣|P (f > t1,0∗ | Y = 1, A = 0

)
− P

(
f > t1,1∗ | Y = 1, A = 1

)
|

− |P
(
f∗ > t1,0∗ | Y = 1, A = 0

)
− P

(
f∗ > t1,1∗ | Y = 1, A = 1

)
|
∣∣

+
∣∣|P (f∗ > t1,0∗ | Y = 1, A = 0

)
− P

(
f∗ > t1,1∗ | Y = 1, A = 1

)
|

− |P (f∗ > λ∗
0 | Y = 1, A = 0)− P (f∗ > λ∗

1 | Y = 1, A = 1) |
∣∣

≤
∣∣P (f > t1,0∗ | Y = 1, A = 0

)
− P

(
f∗ > t1,0∗ | Y = 1, A = 0

) ∣∣
+
∣∣P (f > t1,1∗ | Y = 1, A = 1

)
− P

(
f∗ > t1,1∗ | Y = 1, A = 1

) ∣∣
+
∣∣|P (f∗ > t1,0∗ | Y = 1, A = 0

)
− P

(
f∗ > t1,1∗ | Y = 1, A = 1

)
|

− |P (f∗ > λ∗
0 | Y = 1, A = 0)− P (f∗ > λ∗

1 | Y = 1, A = 1) |
∣∣

≤ P
(
t1,0∗ − ϵ0 ≤ f∗(x, a) ≤ t1,0∗ + ϵ0

)
+ P

(
t1,1∗ − ϵ0 ≤ f∗(x, a) ≤ t1,1∗ + ϵ0

)
+ | P

(
f∗ > t1,0∗ | Y = 1, A = 0

)
− P

(
f∗ > t1,1∗ | Y = 1, A = 1

)
− P (f∗ > λ∗

0 | Y = 1, A = 0) + P (f∗ > λ∗
1 | Y = 1, A = 1) |

≤ 2F ∗
(+) (2ϵ0) + P

(
min

{
t1,a∗ , λ∗

a

}
≤ f∗(x, a) ≤ max

{
t1,a∗ , λ∗

a

})
≤ 2F ∗

(+) (2ϵ0) + F ∗
(+)

(
max

{
t1,a∗ , λ∗

a

}
−min

{
t1,a∗ , λ∗

a

})
≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε)

Thus, we know that

|DEOO(ϕ0)| ≤ |DEOO (ϕ∗
α′) |+ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε)

= α′ + 2F ∗
(+) (2ϵ0) + 2F ∗

(+)(ϵ+ γε)

If F ∗
(+)(ϵ + γε) ≤ α−α′

2 − F ∗
(+) (2ϵ0), then there will exist at least one feasible classifier in the

candidate set.

On the other hand, we could prove that the output classifier is quite similar with ϕ0 we mentioned
above.

By Proposition 3.3, for any ϕ ∈ K, we have

∣∣∣∣∣P (ϕ(x, a) ̸= Y )−
S∑

i=1

πi

[ k̂1,0i + 0.5

n1,0
i + 1

pi0p
i
Y,0 +

k̂1,1i + 0.5

n1,1
i + 1

pi1p
i
Y,1

+
n0,0
i + 0.5− k̂0,0i

n0,0
i + 1

pi0
(
1− piY,0

)
+

n0,1
i + 0.5− k̂0,1i

n0,1
i + 1

pi1
(
1− piY,1

) ]∣∣∣∣∣ ≤ θ

(19)

Therefore, we only need to check the influence induced by using p̂ia and p̂iY,a, instead of pi0 and piY,0.
In detail, we point out this influence can be estimated by Hoeffding’s inequality as follow:

Since p̂ia =
n1,a
i +n0,a

i

ni
and p̂iY,a =

n1,a
i

n0,a
i +n1,a

i

, we have n1,a
i +n0,a

i

ni
=

∑ni
j=1 1{Za

j =1}
n and n1,a

i

n0,a
i +n1,a

i

=

∑n
0,a
i

+n
1,a
i

j=1 1{ZY,a
j =1}

n0,a
i +n1,a

i

, where Za
j ∼ B

(
1, pia

)
and ZY,a

j ∼ B
(
1, piY,a

)
.

Thus, from Hoeffding’s inequality, we have

P

∣∣p̂ia − pia
∣∣ ≥

√
n0,a
i

ni
ϵ

 ≤ 2e−2n0,a
i ϵ2

For the same reason, we have we have

17
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P

∣∣p̂iY,a − piY,a
∣∣ ≥

√
n0,a
i

ni
ϵ

 ≤ 2e−2n0,a
i ϵ2

So, we have with probability 1− 4
∑S

i=1 e
−2n0,a

i ϵ2


∣∣p̂ia − pia

∣∣ ≤
√

n0,a
i

ni
ϵ

∣∣p̂iY,a − piY,a
∣∣ ≤

√
n0,a
i

n∗,a
i

ϵ

,

where n∗,a
i = (n0,a

i + n1,a
i ).

Thus, with probability 1− 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2)

∣∣∣P(ϕ̂i(x, a) ̸= Y
)
− P̂

(
ϕ̂i(x, a) ̸= Y

)∣∣∣
≤

∣∣∣∣∣
S∑

i=1

πi
[ k̂1,0i + 0.5

n1,0
i + 1

pi0p
i
Y,0 +

k̂1,1i + 0.5

n1,1
i + 1

pi1p
i
Y,1 +

n0,0
i + 0.5− k̂0,0i

n0,0
i + 1

pi0
(
1− piY,0

)
+

n0,1
i + 0.5− k̂0,1i

n0,1
i + 1

pi1
(
1− piY,1

) ]
−

S∑
i=1

πi
[ k̂1,0i + 0.5

n1,0
i + 1

p̂i0p̂
i
Y,0 +

k̂1,1i + 0.5

n1,1
i + 1

p̂i1p̂
i
Y,1

+
n0,0
i + 0.5− k̂0,0i

n0,0
i + 1

p̂i0
(
1− p̂iY,0

)
+

n0,1
i + 0.5− k̂0,1i

n0,1
i + 1

p̂i1
(
1− p̂iY,1

) ]∣∣∣∣∣
+

S∑
i=1

πi

[
e0,0i pi0

(
1− piY,0

)
+ e0,1i pi0p

i
Y,0 + e1,0i pi1

(
1− piY,1

)
+ e1,1i pi1p

i
Y,1

]
= |

S∑
i=1

πi(Ai − Âi)|+
S∑

i=1

πi

[
e0,0i pi0

(
1− piY,0

)
+ e0,1i pi0p

i
Y,0 + e1,0i pi1

(
1− piY,1

)
+ e1,1i pi1p

i
Y,1

]
(20)

For Ai − Âi, we have

18
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Ai − Âi ≤ϵ

[√
n0,0
i

n∗,0
i

k̂1,0i + 0.5

n1,0 + 1

(
pi0 + piY,0

)
+

√
n0,1
i

n∗,1
i

k̂1,1i + 0.5

n1,1 + 1

(
pi1 + piY,1

)]

+ ϵ2

(
n0,0
i

n∗,0
i

k̂1,0i + 0.5

n1,0 + 1
+

n0,1
i

n∗,1
i

k̂1,1i + 0.5

n1,1 + 1

)

+
n0,0 + 0.5− k̂0,0i

n0,0 + 1

√
n0,0
i

n∗,0
i

ϵ

[√
n0,0
i

n∗,0
i

ϵ+ pi0 + piY,0 + 1

]

+
n0,1 + 0.5− k̂0,1i

n0,1 + 1

√
n0,1
i

n∗,1
i

ϵ

[√
n0,1
i

n∗,1
i

ϵ+ pi1 + piY,1 + 1

]

≤ϵ

[√
n0,0
i

n∗,0
i

(
pi0 + piY,0

)
+

√
n0,1
i

n∗,1
i

(
pi1 + piY,1

)]
+ ϵ2

(
n0,0
i

n∗,0
i

+
n0,1
i

n∗,1
i

)

+

√
n0,0
i

n∗,0
i

ϵ

[√
n0,0
i

n∗,0
i

ϵ+ pi0 + piY,0 + 1

]

+

√
n0,1
i

n∗,1
i

ϵ

[√
n0,1
i

n∗,1
i

ϵ+ pi1 + piY,1 + 1

]
≤4ϵ+ 2ϵ2 + 2ϵ2 + 6ϵ

=4ϵ2 + 10ϵ

(21)

Combining Inequality 18-21, we complete the proof.

A.4 DETAILED THEORY FOR LABEL SHIFT CASE

Proposition A.1. Under Assumption 5.1, the misclassification error can be estimated by

P̂
(
ϕ̂(x, a) ̸= Y

)
=

S∑
i=1

πi

[ k̂1,0i + 0.5

n1,0
i + 1

pi0p
i
Y,0w

1,0 +
k̂1,1i + 0.5

n1,1
i + 1

pi1p
i
Y,1w

1,1

+
n0,0
i + 0.5− k̂0,0i

n0,0
i + 1

pi0q
i
Y,0w

0,0 +
n0,1
i + 0.5− k̂0,1i

n0,1
i + 1

pi1q
i
Y,1w

0,1
]
,

(22)

where wy,a =
pS+1
a pS+1

Y,a

papY,a
. Further, discrepancy between empirical error and true error is limited by

following inequality: ∣∣∣P(ϕ̂(x, a) ̸= Y
)
− P̂

(
ϕ̂(x, a) ̸= Y

)∣∣∣ ≤ θ′ (23)

where ey,ai =
2⌊εny,a

i ⌋+1

2(ny,a
i +1)

and θ′ =
∑S

i=1 πi

[
e0,0i pi0q

i
Y,0w

0,0 + e0,1i w0,1pi0p
i
Y,0 + e1,0i w1,0pi1q

i
Y,1

+e1,1i w1,1pi1p
i
Y,1

]
.

Proof for Proposition A.1. Note the classifier is

ϕ =

 1

{
f(x, 0) > t̂1,0(k1,0)

}
, a = 0

1

{
f(x, 1) > t̂1,1(k1,1)

}
, a = 1

So we can calculate the mis-classification error in PS+1. Denoted PS+1 the probability measure
under the PS+1 distribution, we have:
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Algorithm 2 FedFaiREE for label shift case

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fainess constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}
Select optimal (k0,k1) by minimizing equation 9 using estimated values p̂ia =

n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

and p̂iY,a =
n1,a
i

n0,a
i +n1,a

i

PS+1(Y ̸= Ŷ ) = PS+1(Y = 1, Ŷ = 0) + PS+1(Y = 0, Ŷ = 1)

= PS+1(Y = 1, Ŷ = 0, A = 0) + PS+1(Y = 1, Ŷ = 0, A = 1)

+ PS+1(Y = 0, Ŷ = 1, A = 0) + PS+1(Y = 0, Ŷ = 1, A = 1)

= P(Y = 1, Ŷ = 0, A = 0 | (X,Y,A) ∼ PS+1) + P(Y = 1, Ŷ = 0, A = 1 | (X,Y,A) ∼ PS+1)

+ P(Y = 0, Ŷ = 1, A = 0 | (X,Y,A) ∼ PS+1) + P(Y = 0, Ŷ = 1, A = 1 | (X,Y,A) ∼ PS+1)

= P(Ŷ = 0 | Y = 1, A = 0)pS+1
0 pS+1

Y,0 + P(Ŷ = 0 | Y = 1, A = 1)pS+1
1 pS+1

Y,1

+ P(Ŷ = 1 | Y = 0, A = 0)pS+1
0 (1− pS+1

Y,0 ) + P(Ŷ = 1 | Y = 0, A = 1)pS+1
1 (1− pS+1

Y,1 )

=

S∑
i=1

π1,0
i Pi(Ŷ = 0 | Y = 1, A = 0)pS+1

0 pS+1
Y,0 +

S∑
i=1

π1,1
i P(Ŷ = 0 | Y = 1, A = 1)pS+1

1 pS+1
Y,1

+

S∑
i=1

π0,0
i P(Ŷ = 1 | Y = 0, A = 0)pS+1

0 (1− pS+1
Y,0 )

+
S∑

i=1

π0,1
i P(Ŷ = 1 | Y = 0, A = 1)pS+1

1 (1− pS+1
Y,1 )

=

S∑
i=1

πi

[
w0,0Pi(Y = 1, Ŷ = 0, A = 0) + w0,1Pi(Y = 1, Ŷ = 0, A = 1)+

w1,0Pi(Y = 0, Ŷ = 1, A = 0) + w1,1Pi(Y = 0, Ŷ = 1, A = 1)
]

(24)

Then, since estimating Pi(Y = 0, Ŷ = y,A = a) shares similarities with the approach outlined
in Proposition 3.3. This similarity in the estimation process allows us to successfully complete our
proof.

Given proof for Proposition A.1, proof for Theorem 5.2 is similar to Proof for Theorem 4.2

A.5 DETAILED THEORY FOR DEO

Proposition A.2. Under Assumption 3.1, for a ∈ {0, 1}, consider k1,a ∈ {1, . . . , n1,a}, the
corresponding k̂1,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
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ϕ(x, a) = 1{f(x, a) > t1,a(k1,a)} . Define

hy,a(u,v) = P

(
S∑

i=1

πy,a
i Q (ui, n

y,a
i + 1− ui)−

S∑
i=1

πy,1−a
i Q

(
vi, n

y,1−a
i + 1− vi

)
≥ α

)
.

Then we have:
P(|DEO(ϕ)| ⪯ (α, α)) ≥1− h∗

1,1 − h∗
1,0 − h∗

0,1 − h∗
0,0 (25)

where the definitions of My,a
i , my,a

i , πy,a
i , Q(A,B) are similar to Proposition 3.2,h∗

1,1 =
hy,a(M

y,a,my,a)

Proof of Proposition A.2. Note the output classifier is

ϕ =

 1

{
f(x, 0) > t̂1,0(k1,0)

}
, a = 0

1

{
f(x, 1) > t̂1,1(k1,1)

}
, a = 1

we have:

P(|DEO(ϕ)| ⪯ (α, α)) ≥ 1− P
(∣∣∣F 1,1

(
t1,1(k1,1)

)
− F 1,0

(
t1,0(k1,0)

)∣∣∣ > α
)

− P
(∣∣∣F 0,1

(
t1,1(k1,1)

)
− F 0,0

(
t1,0(k1,0)

)∣∣∣ > α
)

= 1− P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
> α

)

− P

(
S∑

i=1

π1,1
i F 1,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π1,0
i F 1,0

i

(
t1,0(k1,0)

)
< −α

)

− P

(
S∑

i=1

π0,1
i F 0,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π0,0
i F 0,0

i

(
t1,0(k1,0)

)
> α

)

− P

(
S∑

i=1

π0,1
i F 0,1

i

(
t1,1(k1,1)

)
−

S∑
i=1

π0,0
i F 0,0

i

(
t1,0(k1,0)

)
< −α

)

The remainder of the proof is similar to the proof for Proposition 3.1

Building upon Proposition A.2, we can further prove Theorem 5.4 using a similar approach as in
Theorem 4.2.

B APPLICATION ON FURTHER NOTIONS

In this section, we delve into the application of FedFaiREE on additional fairness concepts.

B.1 DEFINITION

To begin with, we introduce the definitions of various fairness concepts.

Definition B.1 (Demographic Parity). A classifier satisfies Demographic Parity if its prediction Ŷ
is statistically independent of the sensitive attribute A :

P(Ŷ = 1 | A = 1) = P(Ŷ = 1 | A = 0)

Definition B.2 (Predictive Equality). A classifier satisfies Predictive Equality if it achieves the same
TNR (or FPR) among protected groups:

PX|A=1,Y=0(Ŷ = 1) = PX|A=0,Y=0(Ŷ = 1)
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Algorithm 3 FedFaiREE for DEO

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fairness constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}, where L is defined in Equation 11
Select optimal (k0,k1) by minimizing equation 5 using estimated values p̂ia =

n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

and p̂iY,a =
n1,a
i

n0,a
i +n1,a

i

Definition B.3 (Equalized Accuracy). A classifier satisfies Equalized Accuracy if its mis-
classification error is statistically independent of the sensitive attribute A:

P(Ŷ ̸= Y | A = 1) = P(Ŷ ̸= Y | A = 0)

Similar to DEOO and DEO, we define the following indicators:

DDP = PX|A=1(Ŷ = 1)− PX|A=0(Ŷ = 1) (26)

DPE = PX|A=1,Y=0(Ŷ = 1)− PX|A=0,Y=0(Ŷ = 1) (27)

DEA = P(Ŷ ̸= Y | A = 1)− P(Ŷ ̸= Y | A = 0). (28)

B.2 THEORY AND ALGORITHM

Similar to DEO and DEOO, we To be concise, we denote n∗,a
i as denotes the size of subset of

dataset Di that satisfies A = a. Similar explanations apply to k∗,a.

B.2.1 FEDFAIREE FOR DDP

Proposition B.1. Under Assumption 3.1, for a ∈ {0, 1}, consider k∗,a ∈ {1, . . . , n∗,a}, the
corresponding k̂∗,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
ϕ(x, a) = 1{f(x, a) > t∗,a(k∗,a)} . Define

h∗,a(u,v) = P

(
S∑

i=1

π∗,a
i Q

(
ui, n

∗,a
i + 1− ui

)
−

S∑
i=1

π∗,1−a
i Q

(
vi, n

∗,1−a
i + 1− vi

)
≥ α

)
.

Then we have:

P(|DDP (ϕ)| > α) ≤ h∗,0(M
∗,0,m∗,1) + h∗,1(M

∗,1,m∗,0) (29)

Where π∗,a
i = P(sampling x from client i | sampling x with sensitive attributeA = a), M∗,a

i =

max
(
⌈k̂∗,ai + εn∗,a

i ⌉, n∗,a
i + 1

)
, m∗,a

i = min
(
⌈k̂∗,ai − εn∗,a

i ⌉, 0
)

, and Q(A,B) are indepen-

dent random variables following Beta distribution, Q(A,B) ∼ Beta(A,B). Especially, we define
Q(0, B) = 0 and Q(A, 0) = 1 for A,B ̸= 0.

Theorem B.4. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DDP (ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.
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Algorithm 4 FedFaiREE for DDP

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fairness constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}, where L is defined by the right-hand
side of Inequality 29
Select optimal (k0,k1) by minimizing equation 5 using estimated values p̂ia =

n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

and p̂iY,a =
n1,a
i

n0,a
i +n1,a

i

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 8ϵ2 + 20ϵ+ 2θ (30)

with probability 1 − 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2) −

∏S
i=1

(
1− F 1,0

i(−)(2ϵ)
)n1,0

i −∏S
i=1

(
1− F 1,1

i(−)(2ϵ)
)n1,1

i − δ, where δ = δ1,0(n1,0) + δ1,1(n1,1), θ is defined in Proposi-
tion3.3 and the definition of F(+) and F(−) are shown in Lemma A.4

B.2.2 FEDFAIREE FOR DPE

Proposition B.2. Under Assumption 3.1, for a ∈ {0, 1}, consider k0,a ∈ {1, . . . , n0,a}, the
corresponding k̂0,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
ϕ(x, a) = 1{f(x, a) > t0,a(k0,a)} . Define

hy,a(u,v) = P

(
S∑

i=1

πy,a
i Q (ui, n

y,a
i + 1− ui)−

S∑
i=1

πy,1−a
i Q

(
vi, n

y,1−a
i + 1− vi

)
≥ α

)
.

Then we have:

P(|DPE(ϕ)| > α) ≤ h0,1(M
0,1,m0,0) + h0,0(M

0,0,m0,0) (31)

where M0,a
i = ⌈k̂0,ai + εn0,a

i ⌉, m0,a
i = ⌈k̂0,ai − εn0,a

i ⌉, πy,a
i = P(sampling x from client i |

sampling x with label Y = y and A = a), and Q(A,B) are independent random variables fol-
lowing Beta distribution, Q(A,B) ∼ Beta(A,B).

Theorem B.5. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DPE(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 8ϵ2 + 20ϵ+ 2θ (32)
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Algorithm 5 FedFaiREE for DPE

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fairness constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}, where L is defined by the right-hand
side of Inequality 31
Select optimal (k0,k1) by minimizing equation 5 using estimated values p̂ia =

n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

and p̂iY,a =
n1,a
i

n0,a
i +n1,a

i

with probability 1 − 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2) −

∏S
i=1

(
1− F 1,0

i(−)(2ϵ)
)n1,0

i −∏S
i=1

(
1− F 1,1

i(−)(2ϵ)
)n1,1

i − δ, where δ = δ1,0(n1,0) + δ1,1(n1,1), θ is defined in Proposi-
tion3.3 and the definition of F(+) and F(−) are shown in Lemma A.4

B.2.3 FEDFAIREE FOR DEA

Proposition B.3. Under Assumption 3.1, for a ∈ {0, 1}, consider ky,a ∈ {1, . . . , ny,a}, the
corresponding k̂y,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
ϕ(x, a) = 1{f(x, a) > t1,a(k1,a)} . Define

h∗,a(u
1,u0,v1,v0) =P

(
py,a − py,1−a − py,a

S∑
i=1

π1,a
i Q

(
u1
i , n

1,a
i + 1− u1

i

)
+ (1− py,a)

S∑
i=1

π0,a
i Q

(
u0
i , n

0,a
i + 1− u0

i

)
+ py,1−a

S∑
i=1

π1,1−a
i Q

(
v1i , n

1,1−a
i + 1− v1i

)
− (1− py,1−a)

S∑
i=1

π0,1−a
i Q

(
v0i , n

0,1−a
i + 1− v0i

)
≥ α

)
.

Then we have:

P(|DPE(ϕ)| > α) ≤ h∗,1(m
1,1,M0,1,M1,0,m0,0) + h∗,0(m

1,0,M0,0,M1,1,m0,1) (33)

where M0,a
i = ⌈k̂0,ai + εn0,a

i ⌉, m0,a
i = ⌈k̂0,ai − εn0,a

i ⌉, πy,a
i = P(sampling x from client i |

sampling x with label Y = y and A = a), and Q(A,B) are independent random variables fol-
lowing Beta distribution, Q(A,B) ∼ Beta(A,B).

Theorem B.6. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DEA(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
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Algorithm 6 FedFaiREE for DEA

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fairness constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β}, where L is defined by the right-hand
side of Inequality 33
Select optimal (k0,k1) by minimizing equation 5 using estimated values p̂ia =

n0,a
i +n1,a

i

n0,0
i +n0,1

i +n1,0
i +n1,1

i

and p̂iY,a =
n1,a
i

n0,a
i +n1,a

i

α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 8ϵ2 + 20ϵ+ 2θ (34)

with probability 1 − 4
∑S

i=1(e
−2n0,0

i ϵ2 + e−2n0,1
i ϵ2) −

∏S
i=1

(
1− F 1,0

i(−)(2ϵ)
)n1,0

i −∏S
i=1

(
1− F 1,1

i(−)(2ϵ)
)n1,1

i − δ, where δ = δ1,0(n1,0) + δ1,1(n1,1), θ is defined in Proposi-
tion3.3 and the definition of F(+) and F(−) are shown in Lemma A.4

B.3 CONNECTION WITH FAIRNESS METRICS IN (HU ET AL., 2022) AND (PAPADAKI ET AL.,
2022)

Hu et al. (2022) introduces several group fairness metrics as follow:

Definition B.7. A classifier h satisfies Bounded Group Loss (BGL) at level ζ under distribution D
if for all a ∈ A, we have E[l(h(x), y) | A = a] ≤ ζ.

Definition B.8. A classifier h satisfies Conditional Bounded Group Loss (CBGL) for y ∈ Y at level
ζy under distribution D if for all a ∈ A, we have E[l(h(x), y) | A = a, Y = y] ≤ ζy .

When considering y as a binary variable and the loss function l being the 0-1 loss function, BGL is
equivalent to

P[ŷ ̸= y| | A = a] ≤ ζ,

holding for any a, whereas Demographic Parity refers to

P[ŷ ̸= y| | A = 0] = P[ŷ ̸= y| | A = 1].

In this context, BGL can be understood as a relaxation of Demographic Parity.

Similarly, when considering y as a binary variable and the loss function l being the 0-1 loss function,
CBGL is equivalent to

P[ŷ ̸= y| | A = a, Y = y] ≤ ζy,

holding for any a, whereas Equalized Odds refers to

P[ŷ ̸= y| | A = 0, Y = y] = P[ŷ ̸= y| | A = 1, Y = y].

In this context, CBGL can be understood as a relaxation of Equalized Odds.

According to (Hu et al., 2022), the metric that Papadaki et al. (2022) considers is equivalent to
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Definition B.9. FedMinMax(Papadaki et al., 2022) aims to solve for the following ob-
jective: minh max

λ∈R|A|
+ ,∥λ∥1=1

∑
a∈A λara(h), where ra(h) :=

∑K
k=1 ra,k(h) =∑K

k=1

(
1/ma

∑
ak,i=a l (h (xk,i) , yk,i)

)
, K stands for client number and ma stands for numbers

of points with attribute a.

Similarly, this can be understood as a relaxation of Demographic Parity in the context of considering
y as a binary variable and the loss function l being the 0-1 loss function.

C EXPERIMENT DETAILS

C.1 FURTHER SELECTION IN CANDIDATE SET CONSTRUCTION

To further simplify the candidate set selection, similar to FaiREE(Li et al., 2022), we note that, by
Lemma A.2, if we assume our input classifier f is similar to f∗, we have

ta =
papY,a

2papY,a + (1− 2a)t⋆E,α

, (35)

which means

t⋆E,α =
papY,a − 2papY,ata

(1− 2a)ta
(36)

Therefore, bringing Equation 36 (a = 0) into Equation 35 (a = 1), we have

t0 =
p0pY,0

2p0pY,0 + 2p1pY,1 − p1pY,1/t1
(37)

This inspired us that we could further simplify the construction of candidate set K by replacing
Equation 4 with

K = {(k1,0,k1,1)|L(k1,0,k1,1) < 1− β, k1,0 = µ(k1,1)}, (38)

Where µ(k1) = argmink0

p0pY,0

2p0pY,0+2p1pY,1−p1pY,1/t̂k1

C.2 MODEL DETAILS AND HYPERPARAMETER SELECTION

We employed several existing Federated Learning models in the experiment, and their detailed in-
formation is listed as follows:

1. FedAvg(McMahan et al., 2017): FedAvg is a fundamental Federated Learning model that
serves as the foundational baseline for our experiments. It operates by computing model
updates on each client’s local data and then aggregates these updates on a central server
through averaging. FedAvg doesn’t specifically address fairness concerns but is crucial for
benchmarking purposes.

2. AFL(Mohri et al., 2019): AFL, short for Agnostic federated learning, is a framework that
focuses on improving fairness and robustness within the Federated Learning paradigm.
AFL achieves this by optimizing the centralized model for any target distribution formed
by a mixture of client distributions. It aims to avoid favoring any specific client and instead
performs well on any possible combination of them.

3. FedFB(Zeng et al., 2021): FedFB is a novel framework designed for fairness-aware Fed-
erated Learning. Drawing inspiration from FairBatch, a fairness algorithm for centralized
data, FedFB extends this concept to the Federated Learning setting. It incorporates both
local debiasing and global reweighting for each client within the framework to achieve
fairness objectives.

4. FairFed(Ezzeldin et al., 2023): FairFed is another innovative framework for fairness-aware
Federated Learning. It employs a unique approach to improving fairness by reweighting
clients based on updated local fairness indicators during each epoch. This allows FairFed
to combine multiple local debiasing methods effectively.
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To compare performance in terms of DEOO, we selected FedFB with respect to Equal Opportunity
(EO) as presented in Zeng et al. (2021), and FairFed-FB-EO from FairFed as introduced in Ezzeldin
et al. (2023). These are specific models within the FedFB and FairFed frameworks that are designed
for DEOO.

We also note that there are concerns raised by the fairness community regarding the COMPAS
dataset underscore crucial complexities within algorithmic fairness research(Bao et al., 2021). While
Risk Assessment Instrument (RAI) datasets like COMPAS serve as prevalent benchmarks, their
oversimplification of the intricate dynamics within real-world criminal justice processes poses sig-
nificant challenges. Measurement biases and errors inherent in pretrial RAI datasets limit the direct
translation of fairness claims to actual outcomes within the criminal justice system. Additionally, the
technical focus on these data as a benchmark sometimes ignores the contextual grounding necessary
for working with RAI datasets. Ethical reflection within socio-technical systems further highlights
the necessity of acknowledging and grappling with the limitations and complexities inherent in RAI
datasets.

Additionally, the hyperparameter selection ranges for each model are shown in Table 2.

Table 2: Hyperparameter Selection Ranges

Model Hyperparameter Ranges

General

Learning rate {0.001, 0.005, 0.01}
Global round {5, 10, 20, 30, 40, 50, 80}
Local round {5, 10}
Local batch size {16, 32, 64, 128}
Hidden layer {5, 10, 50}
Optimizer {Adam, Sgd}
Fraction {1}
Parameter for Dirichlet distribution {1} for Adult, {10} for Compas

Number of Clients {100} for Adult, {10} for Compas

Sensitive Group Female

FedFaiREE Confidence level {95%}

Qdigest
Accuracy {1/27} for Adult, {1/210} for Com-

pas

Compression factor {300} for Adult, {150} for Compas

AFL Step size (γ) {0.005, 0.01, 0.05}

FedFB Step size (α) {0.005, 0.01, 0.05}

FairFed
Global step size (β) {0.005, 0.01, 0.05}
Local debiasing step size (α) {0.005, 0.01, 0.05}

We further present a data split sample in Table 3, where random seed was set to be 0.

C.3 MORE DETAILED RESULTS

In this subsection, we present a more detailed analysis of the experimental results from Section 6.
Table 4 and Table 5 respectively illustrate the variances in the results obtained from the Adult dataset
and the Compas dataset.
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Table 3: Heterogeneous data distribution on the sensitive attribute. The client index is sorted by
number of Male.

Minimum ten clients Maximum ten clients

Client id Male Female Client id Male Female

1 6 41 91 738 118
2 6 117 92 863 49
3 6 297 93 880 52
4 13 35 94 956 147
5 20 310 95 961 50
6 22 120 96 1101 35
7 24 234 97 1245 102
8 30 70 98 1250 31
9 32 124 99 1277 180

10 33 26 100 1480 24

Table 4: Results with standard deviation on Adult.

Adult

Model FedFaiREE α ACC |DEOO| |DEOO|95
FedAvg ✗ / 0.844 (0.003) 0.131 (0.030) 0.178

✓ 0.10 0.843 (0.003) 0.038 (0.026) 0.083
AFL ✗ / 0.848 (0.004) 0.101 (0.040) 0.169

✓ 0.10 0.848 (0.004) 0.034 (0.027) 0.081

FedFB ✗ / 0.850 (0.003) 0.057 (0.034) 0.117
✓ 0.10 0.850 (0.003) 0.036 (0.025) 0.083

FairFed ✗ / 0.842 (0.003) 0.069 (0.034) 0.118
✓ 0.10 0.841 (0.003) 0.037 (0.026) 0.081

Table 6 shows the result on adult with parameter for Dirichlet distribution=10. Moreover, we present
an analysis of the impact of parameter variations on the experimental results. We consider two
parameters——the fairness constraint, α, and the confidence coefficient, β, separately. Figure 3 and
4 shows the result on Adult dataset and Compas dataset, respectively.

Table 5: Results with standard deviation on Compas.

Compas

Model FedFaiREE α ACC |DEOO| |DEOO|95
FedAvg ✗ / 0.662 (0.011) 0.126 (0.056) 0.223

✓ 0.15 0.659 (0.010) 0.051 (0.044) 0.137
AFL ✗ / 0.643 (0.012) 0.097 (0.050) 0.170

✓ 0.15 0.641 (0.011) 0.051 (0.033) 0.108
FedFB ✗ / 0.642 (0.011) 0.107 (0.043) 0.174

✓ 0.15 0.641 (0.010) 0.062 (0.040) 0.125
FairFed ✗ / 0.648 (0.012) 0.097 (0.047) 0.166

✓ 0.15 0.645 (0.011) 0.047 (0.036) 0.114
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Table 6: Results on Adult with Parameter for Dirichlet distribution=10.

Adult

Model FedFaiREE α ACC |DEOO| |DEOO|95
FedAvg ✗ / 0.844 (0.004) 0.127 (0.032) 0.184

✓ 0.10 0.843 (0.003) 0.029 (0.027) 0.091
AFL ✗ / 0.848 (0.004) 0.098 (0.037) 0.168

✓ 0.10 0.848 (0.004) 0.033 (0.026) 0.082

FedFB ✗ / 0.845 (0.003) 0.057 (0.034) 0.117
✓ 0.10 0.845 (0.003) 0.036 (0.025) 0.083

FairFed ✗ / 0.839 (0.004) 0.081 (0.033) 0.138
✓ 0.10 0.838 (0.004) 0.027 (0.025) 0.073

(a) (b)

(c) (d)

Figure 3: The changes of accuracy, |DEOO| and |DEOO|95 with respect to α and β on Adult.
The other parameters of the experiment are consistent with those in Table 1.
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(a) (b)

(c) (d)

Figure 4: The changes of accuracy, |DEOO| and |DEOO|95 with respect to α and β on Com-
pas. The other parameters of the experiment are consistent with those in Table 1.

C.4 FURTHER RESULTS ON DEO

In this subsection, we conducted experiments using FedFaiREE for DEO, which is a specific algo-
rithm under the FedFaiREE framework designed for DEO as mentioned in Section 5.2. The results
are presented in Tables 7 and 8. It’s worth noting that FedFaiREE for DEO exhibited favorable per-
formance similar to FedFaiREE for DEOO, showing significant improvements in both DEOO and
DPE indicators while maintaining relatively high accuracy.

C.5 FURTHER EXPERIMENT RESULT ON OTHER DATASET

In this subsection, we use ACSIncome(Ding et al., 2021) to present the performance of FedFaiREE.
ACSIncome dataset is constructed by the American Community Survey (ACS) Public Use Micro-
data Sample (PUMS), whose task is to predict whether a an individual’s income is above $50k with
attributes including age, employment type, education, martial status, etc. The sensitive attribute we
consider is whether white people or not.

The ACSIncome dataset comprises 1,664,500 samples, and we consider each state representing a
separate client (totaling 51 states). To evaluate the performance of our method in scenarios involving
small sample sizes, we conducted random sampling, selecting 0.01 proportion of data from each
state for a total of 100 iterations. Subsequently, we performed an 80-20 split on each selected
subset, creating distinct training and test sets for analysis.
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Table 7: Results of FedFaiREE for DEO on Adult dataset. We conducted 100 experimental
repetitions for each model on both datasets and compared the accuracy and fairness indicators of
different models. The ”FedFaiREE” and ”α” columns indicate whether FedFaiREE was used or not.
”ACC”, ”|DEOO|” and ”|DPE|” represent the averages of accuracy, DEOO (defined in Equation
1) and DPE (defined in Equation 27), respectively. ”|DEOO|95” and ”|DPE|95” represent the
95% quantile of DEOO and DPE since we set the confidence level of FedFaiREE to 95% in our
experiments.

Adult

Model FedFaiREE α ACC |DEOO| |DEOO|95 |DPE| |DPE|95

FedAvg No / 0.844 (0.003) 0.131 (0.030) 0.178 0.088 (0.005) 0.097
Yes 0.10 0.843 (0.003) 0.037 (0.025) 0.082 0.064 (0.007) 0.075

AFL No / 0.848 (0.004) 0.101 (0.040) 0.169 0.095 (0.012) 0.118
Yes 0.10 0.847 (0.004) 0.031 (0.026) 0.079 0.069 (0.011) 0.079

FedFB No / 0.850 (0.003) 0.057 (0.034) 0.117 0.066 (0.007) 0.077
Yes 0.10 0.850 (0.003) 0.036 (0.025) 0.083 0.061 (0.006) 0.070

FairFed No / 0.842 (0.003) 0.069 (0.034) 0.118 0.072 (0.006) 0.083
Yes 0.10 0.841 (0.003) 0.037 (0.026) 0.081 0.063 (0.006) 0.071

Table 8: Results of FedFaiREE for DEO on Compas dataset.

Compas

Model FedFaiREE α ACC |DEOO| |DEOO|95 |DPE| |DPE|95

FedAvg ✗ / 0.662 (0.011) 0.126 (0.056) 0.223 0.083 (0.032) 0.136
✓ 0.15 0.652 (0.036) 0.049 (0.045) 0.137 0.028 (0.024) 0.072

AFL ✗ / 0.643 (0.012) 0.097 (0.050) 0.170 0.089 (0.035) 0.150
✓ 0.15 0.641 (0.011) 0.049 (0.033) 0.108 0.034 (0.025) 0.074

FedFB ✗ / 0.642 (0.011) 0.107 (0.043) 0.174 0.066 (0.028) 0.112
✓ 0.15 0.642 (0.010) 0.062 (0.040) 0.125 0.036 (0.024) 0.081

FairFed ✗ / 0.648 (0.011) 0.097 (0.047) 0.166 0.087 (0.036) 0.148
✓ 0.15 0.642 (0.029) 0.047 (0.036) 0.114 0.037 (0.028) 0.085

Table 9: Results of FedFaiREE on ACSIncome.

ACSIncome

Model FedFaiREE α ACC |DEOO| |DEOO|95
FedAvg ✗ / 0.788 (0.008) 0.108 (0.045) 0.185

✓ 0.1 0.786 (0.008) 0.040 (0.030) 0.089
AFL ✗ / 0.774 (0.009) 0.093 (0.043) 0.158

✓ 0.1 0.771 (0.013) 0.043 (0.031) 0.101
FedFB ✗ / 0.771 (0.008) 0.086 (0.049) 0.172

✓ 0.1 0.770 (0.008) 0.049 (0.039) 0.102
FairFed ✗ / 0.774 (0.009) 0.087 (0.046) 0.160

✓ 0.1 0.772 (0.008) 0.043 (0.035) 0.100
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D EXTENSION TO MULTI-GROUPS AND MULTI-LABELS FAIRNESS

D.1 EXTENSION TO MULTI-GROUPS

Definition D.1. (Equality of Opportunity, Multiple Groups) A classifier satisfies Equality of Oppor-
tunity if it satisfies the same true positive rate among protected groups:

PX|A=0,Y=1(Ŷ = 1) = PX|A=a,Y=1(Ŷ = 1),

where a belongs to a protected class A = {1, · · · , A0}

Similar to DEOO, we define metric for Equality of Opportunity under Multiple Groups as:

DEOOM = max
a

{|PX|A=a,Y=1(Ŷ = 1)− PX|A=0,Y=1(Ŷ = 1)|}

Therefore, inspired by Proposition 3.2, we have
Proposition D.1. Under Assumption 3.1, for a ∈ {0, 1, · · · , A0}, consider k1,a ∈ {1, . . . , n1,a},
the corresponding k̂1,ai for i ∈ [S] which are ε-approximate ranks and the score-based classifier
ϕ(x, a) = 1{f(x, a) > t1,a(k1,a)} . Define

h∗
y,a =P

(
S∑

i=1

πy,a
i Q

(
M1,a

i , ny,a
i + 1−M1,a

i

)
−

S∑
i=1

πy,0
i Q

(
m1,0

i , ny,0
i + 1−m1,0

i

)
≥ α

)

+ P

(
S∑

i=1

πy,0
i Q

(
M1,0

i , ny,0
i + 1−M1,0

i

)
−

S∑
i=1

πy,a
i Q

(
m1,a

i , ny,a
i + 1−m1,a

i

)
≥ α

).
Then we have:

P(|DEOOM(ϕ)| > α) ≤
A0∑
a=1

h∗
1,a (39)

where π1,a
i , π1,0

i are similarly defined as in Proposition 3.2. M1,a
i = max

(
⌈k̂1,ai +εn1,a

i ⌉, n1,a
i +1

)
,

m1,a
i = min

(
⌈k̂1,ai − εn1,a

i ⌉, 0
)
, M1,0

i and m1,0
i are similarly defined. Q(α, β) are independent

random variables and Q(α, β) ∼ Beta(α, β). Especially, we define Q(0, β) = 0 and Q(α, 0) = 1
for α, β ̸= 0.

Proposition D.1 can be regarded as a direct corollary of Proposition 3.2. Moveover, similar to
Proposition 3.3, we have
Proposition D.2. Under Assumption 3.1, the misclassification error can be estimated by

P̂
(
ϕ̂(x, a) ̸= Y

)
=

S∑
i=1

[
πi

A0∑
a=0

( k̂1,a
i + 0.5

n1,a
i + 1

piap
i
Y,a +

n0,a
i + 0.5− k̂0,a

i

n0,a
i + 1

piaq
i
Y,a

)]
(40)

Further, the discrepancy between empirical error and true error is upper bounded by the following:∣∣∣P(ϕ̂(x, a) ̸= Y
)
− P̂

(
ϕ̂(x, a) ̸= Y

)∣∣∣ ≤ θ, (41)

where θ =
∑S

i=1

[
πi

∑A0
a=0

(
e0,ai piaq

i
Y,a + e1,ai pi1q

i
Y,a

)]
, ey,ai =

2⌊εny,a
i ⌋+1

2(ny,a
i +1)

Theorem D.2. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DEOOM(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When
the input classifier f satisfies |f(x, a)− f∗(x, a)| ≤ ϵ0, for any ϵ > 0 such that F ∗

(+)(ϵ + γε) ≤
α−α′

2 − F ∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2F ∗

(+) (2ϵ0) + 2F ∗
(+)(ϵ+ γε) + 2θ +O(ϵ) (42)

with probability 1 − 4
∑A0

a=0

∑S
i=1 e

−2n0,a
i ϵ2 −

∑A0

a=0

∏S
i=1

(
1 − F 1,a

i(−)(2ϵ)
)n1,a

i − δ, where δ =∑A0

a=0 δ
1,a(n1,a), θ is defined in Proposition D.2 and the definition of F(+) and F(−) are shown in

Lemma A.4
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Algorithm 7 FedFaiREE for Multi-Groups

Input: Train dataset Di = D0,0
i ∪D0,1

i ∪D1,0
i ∪D1,1

i ; pre-trained classifier ϕ0 with function f;
fairness constraint parameter α ; Confidence level parameter β; Weights of different clients π
Output: classifier ϕ̂(x, a) = 1{f(x, a) > t1,a(k1,a)}
Client Side:
for i=1,2,..,S do

Score on train data points in Di and get T y,a
i = {ty,ai,1 , t

y,a
i,2 , · · · , t

y,a
i,ny,a

i
}

Sort T y,a
i

Calculate q-digest of T y,a
i on client i

Update digest to server
end for
Server Side:
Construct K by K = {(k1,0,k1,1, · · · ,k1,A0)|L < 1− β}, where L is defined by the right-hand
side of Inequality 39
Select optimal (k1,0,k1,1, · · · ,k1,A0) by minimizing equation 40 using estimated values p̂ia and
p̂iY,a

D.2 EXTENSION TO MULTI-LABELS

Definition D.3. (Equality of Opportunity, Multiple labels(Liu et al., 2023)) A classifier satisfies
Equality of Opportunity if it satisfies :

Ŷ ⊥ A | Y = yadv,

where Y ∈ {0, 1}m and yadv denotes some advantaged label where only favorable outcomes.

Definition D.4. (Multi-label Score-based Classifier) A Multi-label score-based classifier is an
element-wise indication function, where the j-th component of Ŷ satisfies Ŷj = ϕj(x, a) =
1{fj(x, a) > cj} for a measurable score function f : X × {0, 1} → [0, 1] and a constant threshold
cj > 0.

Considering relaxing the aforementioned Equality of Opportunity constraint, we introduce a fairness
indicator as follow:

DEOOMy(ϕ) =
∣∣P[Ŷ = y | A = 0,Y = Yadv]−P[Ŷ = y | A = 1,Y = Yadv]

∣∣,
where y can be considered as either certain advantageous labels or as a collection of advantageous
labels (at this point, ’=’ is replaced by ’∈’).

Additionally, we consider an iterative Q-digest approach. At each client, our process involves con-
structing a Q-digest initially for the first component of the score f(x). Subsequently, at each leaf
node, we include a Q-digest for the second component of score f(x) associated with the leaf node’s
first component. Repeating this procedure iteratively allows us to generate a sketch for the mul-
tidimensional score function f(x). Assuming the parameter is appropriately set to achieve an εj-
approximate quantile and rank for the j-th component, we arrive at the following result.
Proposition D.3. Under Assumption 3.1, for a ∈ {0, 1}, consider qyadv,a =
(qyadv,a

1 , qyadv,a
2 , ..., qyadv,a

m ) ∈ [0, 1]m, nyadv,a
i,(j) is the estimation of |Nyadv,a

i,(j) |, Nyadv,a
i,(j) =

{fj(x) | x belongs to Client i, , Y = yadv, A = a, (fl(x)− tl)y
∗
l ≥ 0, l = 1, · · · , j − 1}| and tyadv

j

is estimation of qj quantile of Nyadv,a
∗,(j) (the union of Nyadv,a

i,(j) ), where estimations with subscript

(j) are ε-approximate ranks and quantiles, k̂yadv,a
i,(j) represent the estimation local rank of tyadv

j in
Nyadv,a

i,(j) , the score-based classifier ϕ(x, a) = 1{f(x, a) > tyadv,a
j }. Define

hyadv,a = P

(
S∑

i=1

π
yadv,a
i

m∏
j=1

gj
(
Q
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u
yadv,a
i,(j) , (1 + (1− 2y∗
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−
S∑

i=1

π
yadv,1−a
i

m∏
j=1

gj
(
Q
(
v
yadv,1−a
i,(j) , (1 + (2y∗

j − 1)εj−1)n
yadv,1−a
i,(j) + 1− v

yadv,1−a
i,(j)

))
≥ α

)
,
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Then we have:
P(|DEOOMy∗(ϕ)| > α) ≤ hyadv,0 + hyadv,1, (43)

where πyadv,a
i is similarly defined as in Proposition 3.1, gj(Q) = (1 − 2y∗j )Q + y∗j ,uyadv,a

i,(j) =

y∗jm
yadv,a
i,(j) +(1−y∗j )M

yadv,a
i,(j) , vyadv,a

i,(j) = y∗jM
yadv,a
i,(j) +(1−y∗j )m

yadv,a
i,(j) , Myadv,a

i,(j) = max
(
⌈k̂yadv,a

i,(j) +

εjn
yadv,a
i,(j) ⌉, nyadv,a

i,(j) + 1
)
, myadv,a

i,(j) = min
(
⌈k̂yadv,a

i,(j) − εjn
yadv,a
i,(j) ⌉, 0

)
, and Q(α, β) are independent

random variables and Q(α, β) ∼ Beta(α, β). Especially, we define Q(0, β) = 0 and Q(α, 0) = 1
for α, β ̸= 0.

Similar to Proposition 3.2, the proposition above can be proved using Lemma A.1 and conditional
probability. It is important to note that y and yadv are not necessarily single labels; they can also
represent a set of labels with constraints on specific components where values are restricted to 0 or
1 (for j where y∗j does not have constraint, tj is set to 0.5, and it is excluded from the construction
of N and calculation of h). And similarly, the selection can be conducted by minimizing empirical
misclassification error.

Considering a high-dimensional extension of Lemma A.4, we have
Lemma D.5. For a distribution F with a continuous density function, suppose q(x) denotes
the probability of X ⪯ x where X is a random variable under F , then for y ⪯ x, we have
F(−)(||x − y||2) ≤ q(x) − q(y) ≤ F(+)(||x − y||2), where F(−)(x) and F(+)(x) are two mono-
tonically increasing functions, F(−)(ϵ) > 0, F(+)(ϵ) > 0 for any ϵ > 0 and lim

ϵ→0
F(−)(ϵ) =

lim
ϵ→0

F(+)(ϵ) = 0.

Therefore, similarly, we have

Theorem D.6. Under Assumption 3.1 and 4.1, given α′ < α. Suppose ϕ̂ is the final output of
FedFaiREE, we have:

(1) |DEOOMy∗(ϕ̂)| < α with probability (1− δ)N , where N is the size of the candidate set.

(2) Suppose the density distribution functions of f∗ under A = a, Y = 1 are continuous. When the
input classifier f satisfies ||f(x, a) − f∗(x, a)||2 ≤ ϵ0, for any ϵ > 0 such that M∗

(+)(ϵ + γε) ≤
α−α′

2m −M∗
(+) (2ϵ0), we have

P(ϕ̂(x, a) ̸= Y )− P (ϕ∗
α′(x, a) ̸= Y ) ≤ 2mM∗
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(+)(ϵ+ γεm) + 2θ +O(ϵ) (44)

with probability 1−(2m+1+2)
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,

M∗
(+) corresponds to the maximum of F(+) associated with f∗

j , and the definition of F(+) and F(−)

are shown in Lemma D.5.

E COMPARISON TO FAIREE(LI ET AL., 2022) AND OTHER RELATED WORKS

Regarding the differences between FedFaiREE and FaiREE, several pivotal distinctions become ev-
ident. Primarily, FedFaiREE demonstrates superior adaptability for practical applications. Notably,
it incorporates mechanisms to handle label shift scenarios, ensuring model robustness within such
distributions, as elucidated in Section 5.1. Furthermore, it’s worth noting that FedFaiREE extends
considerations to encompass multiple sensitive groups and multiple labels, aligning more closely
with practical real-world application scenarios, as discussed in Appendix D.

Another critical difference lies in the setting: FaiREE operates in a centralized environment, as-
suming homogeneous data across all clients. In contrast, FedFaiREE is expressly tailored for de-
centralized settings, acknowledging client heterogeneity and effectively addressing the challenges
stemming from diverse data distributions and sizes across clients. This tailored approach signifi-
cantly enhances its adaptability and robustness across various scenarios.

Lastly, while FaiREE relies on specific centralized quantile estimation methods, FedFaiREE adopts
approximate quantiles. This adaptation not only facilitates adaptation to distributed data but also
fortifies the method’s robustness and adaptability.
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E.1 COMPARISON TO OTHER RELATED WORKS

Differences between FedFaiREE and other fair federated learning methods lie in their approach to
addressing fairness concerns. Many methods, akin to this paper, extend the principles of centralized
machine learning to decentralized settings, such as FedFB(Zeng et al., 2021), FedMinMax(Papadaki
et al., 2022), PFFL(Hu et al., 2022), and others. These methods primarily focus on introducing fair-
ness penalties in the objective functions and incorporate client reweighting schemes and terms (in
objective functions) reweighting schemes that consider global or local fairness. The key divergence
between our approach and these methods is that the latter typically converge and provide fairness
guarantees only in large-sample scenarios, lacking assurances for fairness in small-sample situations,
especially under distribution-free assumptions. Empirical results from Table 1 in this paper demon-
strate that compared to FedFaiREE, methods like FedFB, FairFed are not as effective in controlling
fairness in small-sample scenarios. Furthermore, as these methods are predominantly in-processing
techniques, while FedFaiREE falls under post-processing methods, there is a potential for further in-
tegration to achieve improved fairness guarantees as shown in our experiments. Moreover, another
significant characteristic of FedFaiREE is its capability to adjust the trade-off between fairness and
accuracy according to specific fairness constraints. This control capacity has been demonstrated in
numerous experiments, showcasing an ability that other methods lack.
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