
Under review as submission to TMLR

Deep sprite-based image models: an analysis

Anonymous authors
Paper under double-blind review

Abstract

While foundation models drive steady progress in image segmentation and diffusion algo-
rithms compose always more realistic images, the seemingly simple problem of identifying
recurrent patterns in a collection of images remains very much open. In this paper, we focus
on sprite-based image decomposition models, which have shown some promise for clustering
and image decomposition and are appealing because of their high interpretability. These
models come in different flavors, need to be tailored to specific datasets, and struggle to scale
to images with many objects. We dive into the details of their design, identify their core
components, and perform an extensive analysis on clustering benchmarks. We leverage this
analysis to propose a deep sprite-based image decomposition method that performs on par
with state-of-the-art unsupervised image segmentation methods on the standard CLEVR
benchmark, scales linearly with the number of objects, identifies explicitly object categories,
and fully models images in an easily interpretable way. Our code will be made publicly
available.

(a) Sprite-based approaches.

(b) Image clustering. (c) Unsupervised object discovery.

Figure 1: (a) Sprite-based approaches take a set of images as input and learn jointly a family of sprites and
how to decompose each image into a sequence of transformed sprites. They can be applied to (b) image
clustering and (c) unsupervised object discovery.

1 Introduction

Identifying recurring patterns in an image collection is a task in which humans excel. It is also critical
for many scientific applications, from historical documents to medical image analysis. Although foundation
features or models might be attractive tools for approaching this problem, they come with their black-box
effects and the biases of their training data. Instead, we advocate for methods that can be directly optimized
on the target image collection, offer maximal interpretability, and have limited bias.

1

Under review as submission to TMLR

Figure 2: Overview. We decompose all sprite-based models in four main components: (1) a Sprite Gener-
ation Module () that outputs K sprites S, (2) a Transformation Module () that takes as input an image
I and the sprites S to predict transformed sprites S̄I , (3) a Decision Module () that takes the image I and
transformed sprites S̄I as input and outputs a probability distribution pI for using the sprites, and (4) a
Training Criteria () which consists of a reconstruction loss and potential regularization terms.

In this study, we focus more specifically on sprite-based methods (Visser et al., 2019; Monnier et al., 2020;
2021; Smirnov et al., 2021; Loiseau et al., 2024; Siglidis et al., 2024), which are the main type of object-centric
approaches to unsupervised object discovery that allow joint categorization and localization (Villa-Vásquez
& Pedersoli, 2024) (Fig. 1). Sprite-based methods offer several other attractive advantages. First, they
explicitly model repeated patterns as a finite set of prototypical objects, called sprites. Second, not only do
they provide for each analyzed image a layered decomposition, but they also give direct, explicit access to the
transformation of the sprites in the image, such as position, scale, and color transformations. Third, their
relationship with the standard K-means clustering algorithm (MacQueen, 1967; Bottou & Bengio, 1994) and
transformation invariant methods (Frey & Jojic, 1999; 2001; 2003) is well understood (Monnier et al., 2020).
However, sprite-based methods have not been fully explored. In particular, the impact of architectural
changes and training methodology on their results is poorly understood and different approaches have been
demonstrated on different non-standard datasets. Our goal in this study is to better identify key design
choices for sprite-based methods and analyze their effects.

In more detail, we separate sprite-based architectures into their key components, visualized in Fig. 2: sprite
generation module, transformation module, decision module, and training criteria. For each components, we
identify different design choices proposed in the literature, as well as simpler baselines, detailed in Fig. 3.
We explain how the training criteria correspond to different image composition models and are related to
the exponential cost of some sprite-based image decomposition approaches. We show that one can effectively
study the impact of most design choices for clustering, where the benchmarks are more realistic and diverse
than for image decomposition, where they are mainly synthetic.

Our key insight is that the main challenge of sprite-based approaches lies in jointly learning and selecting
the sprites. K-means-style optimization for sprite selection leads to the discovery of more visually coherent,
precise, and semantically accurate objects, without the need for complex regularization, as regularization is
implicitly enforced through cluster reassignment policies. However, this type of optimization scales exponen-
tially with the number of objects per image. We show that different regularizations can improve approaches
that predict sprite selection, which leads us to propose a new sprite-based approach.

This paper is organized as follows. First, in Section 2, we review the literature on clustering and image
decomposition. Second, in Section 3, we present a unified formalization for sprite-based image decomposition
models. Third, in Section 4, we perform a comparative analysis of the different design choices on clustering
and propose our new approach. Finally, in Section 5, we extend and evaluate our approach for multi-layer
image decomposition.

Contributions. Our contributions are as follows:

• We perform an exhaustive analysis of sprite-based methods and identify their key component.
• We systematically study their impact on clustering benchmarks.
• We propose a novel sprite-based approach that predicts sprite selection and scales linearly with the

number of objects per image.

2

Under review as submission to TMLR

Figure 3: Possible design choices for the main components identified in Fig. 2. Modules can take as
input the input image I, features from the input image f(I), the sprites S, the transformed sprites S̄Im and
the predicted sprite probabilities pI . (a) The Sprite Generation Module () can learn the sprites directly as
learnable parameters (Pixels), generate them from learnable latent variables with a multi-layer perceptron
(MLP) or a UNet architecture. (b) The Transformation Module () parameters can be learned with a
shared or sprite-specific network, and with different curriculum learning strategies. (c) The Decision Module
() can select sprites leading to the minimum reconstruction error (Min-Loss), or predict them using the
sprites’ latent representations (Weight Prediction), or directly a linear projection (Linear Mapping), with
alternative activations. (d) The Composition Model and Training Criteria (), where the main loss can
either be the sum of the reconstruction errors obtained with all the possible sprites selection weighted by
their probability (L0−1) or the reconstruction error with composite sprites (Lcomp). It can also include
regularizations (L{freq, bin, empty}).

2 Related work

2.1 Image Clustering

We focus on image clustering approaches that are most related to our work and classify them into pixel-
based and deep-feature-based clustering. For a broader literature review, we refer the reader to dedicated
surveys (Zhou et al., 2024; Ren et al., 2024; Wei et al., 2024).

3

Under review as submission to TMLR

2.1.1 Pixel-based clustering

Clustering in pixel space is highly challenging since the image content can be associated with different back-
grounds and can undergo spatial and color transformations that completely change its pixel representation.
Traditional clustering methods, such as K-means (MacQueen, 1967), therefore lead to limited results when
applied directly on full images. EM-based transformation-invariant clustering algorithms have been proposed
to gain invariance to user-defined families of transformation (Frey & Jojic, 1999; 2001; 2003). They operate
directly in image space, compare pixel values, and provide prototypical representations of clusters. The
idea of transformation invariance was also adopted in congealing-based image alignment models that learn
transformations using a data-driven approach (Cox et al., 2008; 2009; Huang et al., 2007; Miller et al., 2000;
Annunziata et al., 2019; Learned-Miller, 2006), some with a focus on clustering (Mattar et al., 2012; Liu
et al., 2009). Deep transformation-invariant (DTI) Clustering builds on this idea but optimizes prototypes
and transformations in a deep learning framework Monnier et al. (2020). The sprite-based image models we
study are very related to DTI-Clustering, which can be seen as a single-layer image model, where sprites
correspond to prototypes.

2.1.2 Deep features and clustering

Many recent deep architectures adopt clustering as an objective for representation learning, e.g., Caron
et al. (2018; 2020); Li et al. (2021); Liang et al. (2023), without specifically targeting clustering performance.
More relevant to us are those that specifically target clustering, focusing on various technical tools, such as
CNNs (Yang et al., 2016; Chang et al., 2017), autoencoders (Xie et al., 2016; Mrabah et al., 2019; Dizaji
et al., 2017; Kosiorek et al., 2019; Shaham et al., 2018), mutual information (Hu et al., 2017; Ji et al., 2019),
generative models (Jiang et al., 2016; Mukherjee et al., 2018), or instance discrimination (Niu et al., 2022;
Van Gansbeke et al., 2020). The crucial and common aspect of these deep clustering approaches is relying
on abstract image features. However, relying on deep representations of images and clusters in feature space
makes it very hard to interpret the results, performance, and failures, especially in a visually intuitive way.

2.2 Image Decomposition

Image decomposition is a broad concept and could encompass broad areas of research from image co-
segmentation to layered video representations. In this section, we focus on the approaches that are the
most relevant to our work and are often referred to as unsupervised multi-object segmentation approaches
or deep object-centric image decomposition methods. We only review single-image methods, and do not dive
into the many works that leverage motion, video, or 3D. We follow the taxonomy of Karazija et al. (2021),
differentiating pixel-based, glimpse-based, and sprite-based approaches. Another view of these approaches is
presented in Greff et al. (2020), which differentiates approaches depending on the type of slot they rely on,
namely instance slots, sequential slots, spatial slots, and category slots. For a broader review of unsupervised
object discovery approaches, we refer the reader to Villa-Vásquez & Pedersoli (2024).

Pixel-based methods Pixel-based methods assign each pixel to an image component, typically by per-
forming probabilistic pixel clustering. Early works tackle this clustering problem by developing approaches
based on denoising autoencoders (DAE) (Greff et al., 2015; Vincent et al., 2008), Iterative Amortized Group-
ing (Greff et al., 2016), and Neural Expectation Maximization (Greff et al., 2017). However, these pioneer
methods were limited to simple images with a small number of objects.

More recent models following this pixel-based paradigm include MONet (Burgess et al., 2019), IODINE (Greff
et al., 2019), eMORL (Emami et al., 2021), and GENESIS (Engelcke et al., 2020; 2021), and demonstrate
results on the more challenging synthetic CLEVR dataset of rendered 3D spheres, cubes, and cylinders.
They typically output a segmentation mask for each image component as well as a latent code that enables
generating an appearance image for each component. The ECON (von Kügelgen et al., 2020) method is
built on MONet but is more related to our work because it explicitly models object layers and is designed to
completely model occluded objects. However, it has only been demonstrated on very simple synthetic data.

Moving away from probabilistic scene representation and pixel clustering of these so-called scene-mixture
models, Locatello et al. (2020) proposed a discriminative approach to scene component identification.

4

Under review as submission to TMLR

Table 1: Comparison of sprite-based models. Existing sprite-based methods make very different choices
for several of the four components that we identified, making direct comparison between their performance
difficult. Our exhaustive analysis leads to an informed choice of all the components for clustering (Ours-C)
and image decomposition (Ours-D).

Method Sprite Generation Curriculum Sharing Decision Activation Lrec Lreg Z

StampNet Visser et al. (2019) pixels all sprite-specific linear hard GS Lcomp - decomposition
DTI-Clustering Monnier et al. (2020) pixels one-by-one sprite-specific Min-Loss none Lcomp=0−1 reassignment clustering
DTI-Sprites Monnier et al. (2021) pixels one-by-one sprite-specific Min-Loss softmax Lcomp=0−1 reassignment, Lempty decomposition
MarioNette Smirnov et al. (2021) MLP all shared weight prediction none Lcomp Lbin decomposition
Learnable Earth Parser Loiseau et al. (2024) 3D point clouds one-by-one shared linear softmax L0−1 Lfreq decomposition
Learnable Typewriter Siglidis et al. (2024) MLP all shared weight prediction softmax Lcomp - decomposition
Ours-C MLP one-by-one sprite-specific linear soft GS Lcomp L{freq,bin} clustering
Ours-D MLP one-by-one sprite-specific linear soft GS Lcomp Lempty decomposition

Their slot attention mechanism localizes scene components through an iterative clustering-like attention
mechanism and leads to a latent representation for each slot, which encodes both its mask and appearance.
This approach has been successfully applied to perform object discovery on much more challenging images.
DINOSAUR (Seitzer et al., 2023) first demonstrated results on real-world datasets by applying slot attention
to DINO features (Caron et al., 2021), instead of pixels. It has also been combined with more complex slot
decoders, including auto-regressive (Singh et al., 2022; Kakogeorgiou et al., 2024) and diffusion (Jiang et al.,
2023; Wu et al., 2023; Singh et al., 2025) ones.

Glimpse-based methods Glimpse-based methods first extract regions of the image containing objects and
then predict object models for each region. This idea was introduced by the Attend, Infer, Repeat approach
(AIR) (Eslami et al., 2016), which was the main inspiration for a series of works, such as SQAIR (Kosiorek
et al., 2018), SPAIR (Crawford & Pineau, 2019), or SuPAIR (Stelzner et al., 2019). Similar to early pixel-
based approaches, these works were developed for very simple synthetic datasets. More recent works, such
as SPACE (Lin et al., 2020), GNM (Jiang & Ahn, 2020) and AST (Sauvalle & de La Fortelle, 2023), extend
glimpse-based approaches to CLEVR-like datasets. However, they seem to be out-shone by slot-attention-
based approaches, which brought comparable efficiency to pixel-based approaches.

Sprite-based methods Sprite-based methods learn a set of object prototypes, referred to as sprites,
and how to combine sprites to reconstruct images. These sprites make their image model much more
tangible than pixel and glimpse-based approaches, enabling them to discover object categories, not just
instance segmentation. StampNet (Visser et al., 2019) can be considered as the first deep sprite-based
approach. It learns a latent space to categorize and localize objects, but was only demonstrated on very
simple synthetic datasets. Capsule approaches (Kosiorek et al., 2019; Xiang et al., 2021) are similar in spirit
and have sometimes been categorized as sprite-based methods in Villa-Vásquez & Pedersoli (2024). However,
they learn abstract feature-based representations of object parts, they are typically evaluated on clustering
benchmarks, and to the best of our knowledge, they have not been demonstrated on standard multi-object
datasets. Appealing results on video-game and text images have been demonstrated by MarioNette (Smirnov
et al., 2021), which sees sprite discovery as a self-supervised learning problem, and learns to predict sprite
occurrence and position. DTI-Sprites (Monnier et al., 2021) models sprite shape and color transformation,
enabling it to tackle more complex datasets, including CLEVR data. However, it requires testing many
sprite configurations instead of predicting sprite occurrence, and thus does not scale to a large number of
objects. Focusing on text line analysis, the Learnable Typewriter (Siglidis et al., 2024) combines ideas from
MarioNette and DTI-Sprites for applications in digital humanities. Similar ideas have been applied to model
3D point clouds (Loiseau et al., 2024). Our analysis encompasses all these sprite-based approaches and
clarifies their differences.

3 Sprite-based approaches

In this section, we first present a unified view of sprite-based decomposition methods for clustering and
layered image decomposition, summarized in Figure 2. Then, for each key component that we identify, we

5

Under review as submission to TMLR

detail different design choices that have been introduced in the literature and that we consider in our study,
which are summarized in Figure 3, and are related to the literature in Table 1.

3.1 Unified View and Formalization

Our key insight is that sprite-based approaches rely on four main components that we present first. We then
discuss how these modules can be used for multi-object image decomposition and clustering. The choices
made by different sprite-based approaches in the literature are summarized in Table 1.

3.1.1 Key components

Sprite-based approaches take as input an image I ∈ RW ×H×C , with C = 1 for a grayscale image and C = 3
for an RGB image, and predict a set of layers associated with this image. As visualized in Figure 2, we
identified four key components in sprite-based methods:

• A sprite generation module, G (Section 3.2), which learns K sprites S1, · · · , SK , with for all
k ∈ {1, · · · , K}, Sk ∈ RR×R×C′ , where R is the size of the sprites and C ′ is the number of channels
per sprite. Sprites can be interpreted as prototypical images and can include segmentation, encoded
as a transparency mask. Depending on the approach, C ′ can be 1 (a grayscale image), 2 (a grayscale
image and transparency), 3 (an RGB image), or 4 (an RGB image with a transparency channel).

• A transformation module, T (Section 3.3), which takes as input a target image I and sprites
S1, · · · , SK , and outputs a set of transformed sprites S̄I . Transformation typically includes color
and spatial transformations. The transformed sprites are images of the same size as the input image
I, with an optional transparency channel. Note that this module can predict several transformations
for each sprite, enabling the modeling of images with multiple elements, as we clarify in Section 3.1.2.

• A decision module, P (Section 3.4), which predicts probabilities pI for each of the transformed
sprites to be used in the reconstruction of the input image.

• A reconstruction loss, L (Section 3.5), which evaluates how well the transformed sprites associated
with the predicted probabilities explain the input image, and with which the model is optimized.

These components and the losses correspond to an image formation model, C(S̄, p).

3.1.2 Layered image decomposition

For layered image decomposition, one typically assumes a maximum number of layers L. Each sprite Sk for
k ∈ {1, · · · , K} is then transformed into L sprites S̄I

k,l ∈ RW ×H×C′ for l ∈ {1, · · · , L}, with C ′ = C + 1,
leading to a set of K × L transformed sprites S̄I = (S̄I

1,1, · · · , S̄I
K,L). Sprites are selected according to

pI ∈ [0, 1]K×L. Note that one of the sprites can be used as an empty sprite, i.e., frozen and completely
transparent, to allow modeling a variable number of objects. Background can be modeled using one or
several specific opaque sprites, possibly with particular constraints (e.g., having a uniform color) and be
associated with their own specific transformations. To simplify notation, we do not differentiate background
sprites from the other sprites. In our experiments on layered image decomposition, we always model the
background with a single sprite. The image formation model, C, composites the transformed background
sprite with the sprites from the following layers. To better handle occlusion, we follow DTI-Sprites (Monnier
et al., 2021) and predict a matrix defining the order of the layers.

3.1.3 Clustering

In the case of clustering, the simplest scenario (Monnier et al., 2020) is to consider a single-layer image model
using only completely opaque sprites. In that case, the set of transformed sprites is S̄I = (S̄I

1,1, · · · , S̄I
K,1),

with for all k ∈ {1, · · · , K}, S̄I
k,1 ∈ RW ×H×C the transformed version of sprite Sk. Note that if there are

no transformations, and the L2 loss between the input and the transformed sprite that best approximates it
is optimized, this model boils down to standard K-means (MacQueen, 1967; Bottou & Bengio, 1994).

6

Under review as submission to TMLR

Another approach that typically leads to better results for more complex images (Monnier et al., 2021) is to
explicitly model the background using a background sprite and the different clusters with sprites including
a transparency channel, and thus consider a 2-layer model. The image formation model, C, composites the
transformed background sprite with the other transformed sprites depending on the output pI ∈ [0, 1]K of
the selection module.

Both of these approaches can be seen as specific cases of layered image decomposition and leverage the same
modules, enabling us to start our analysis by focusing on the simpler clustering scenario.

3.2 Sprite Generation Module

The sprites S1, · · · , SK are the visual representation of the recurrent patterns identified by the model in
the target image collection. They are thus common to all input images I, they are themselves modeled as
images – color or grayscale, and associated or not with a transparency mask – and they can be learned with
different strategies.

3.2.1 Learning pixel values

Directly learning the sprite, i.e. setting each sprite’s pixel values as learnable parameters, is the simplest
choice and has been used in Monnier et al. (2020; 2021).

3.2.2 Decoding learned latent variables with a generator network (MLP or U-Net)

Motivated by the possibility of using latent variables to link sprite generation and clustering, Smirnov et al.
(2021) proposes to learn K latent vectors z1, · · · , zK and a generation network G that takes as input those
latent vectors, and outputs the corresponding sprite Sk = G(zk). Note that while generated by a network,
the sprites still do not depend on the input image I, and that once the network is trained, they could be
computed once and for all, without using the generator network. Following Siglidis et al. (2024), we explore
the use of a Multi-Layer Perceptron (MLP) or a U-Net architecture (Ronneberger et al., 2015) (U-Net) as
the generation network.

3.3 Transformation Module

Sprite-based approaches account for variations in the appearance of objects in terms of shape or color by
explicitly modeling them. Given an input image I, they predict one (for clustering) or several (for image
decomposition) transformations for each sprite. The family of transformations that are available and the
way in which they are learned are important hyperparameters, and the optimal choice depends on the target
dataset. Transformations typically include (i) spatial transformations, modeled with Spatial Transformer
Networks (Jaderberg et al., 2015), and (ii) affine color transformation, where parameters are predicted
and applied on the sprite values. They may include more specific transformations, such as morphological
transformations to model stroke width for the MNIST dataset (LeCun et al., 2010). There are several key
design choices in this transformation learning that we explore.

3.3.1 Curriculum Learning

Because transformations could model dramatic changes, curriculum learning is the key to progressively
learning meaningful transformations. We explore various curriculum scheduling strategies. To study them,
we first decided on a fixed order of transformation by increasing complexity, as visualized in Figure 3b:
no transformation, affine color transformation, affine spatial transformation, morphological transformation,
Thin Plate Spline (TPS) transformation, and projective transformation. With all transformations initialized
as the identity function, we then tested different strategies:

• all: optimizing all transformations together from the start,
• id+rest: learning first without any transformation, then optimizing all transformations together,

7

Under review as submission to TMLR

• id+g1+g2: grouping transformations into three groups – (id) no transformation, (g1) affine color
and spatial transformations, (g2) other transformations – and adding each group of transformations
into the optimization one-by-one, and

• one-by-one: adding each of them into the optimization one-by-one.

Note that for each dataset, we only use transformations relevant to the dataset (see Appendix Table 12).

3.3.2 Sprite-Specific vs. Shared Transformations

Another question we explore is the possibility and consequences of sharing the transformations among sprites.
Intuitively, one could expect the sprites to be better aligned if the same transformations are applied to all
sprites, while an architecture that applies specific transformations to all sprites might be more powerful.
Sharing transformations might also be beneficial when modeling a large number of sprites.

3.4 Decision Module

A crucial problem of sprite-based approaches is deciding which transformed sprites to use to reconstruct a
specific image. We consider two types of solutions.

3.4.1 Minimum loss

A simple approach is to choose the sprites that minimize the loss (Bottou & Bengio, 1994; Monnier et al.,
2020). However, this means that (i) during training, only sprites that are selected receive gradients, and thus
some might never be used, which requires specific re-assignment strategies, and (ii) when modeling images
with multiple objects, the number of possible sprite combinations is exponential in the number of objects,
which complicates optimization. Note that this approach can be seen as a deterministic layer predicting
one-hot probability vectors pI , and we refer to it as Min-Loss.

3.4.2 Probability prediction

Another approach is to use a neural network to predict which transformed sprites should be used for a specific
input image I by predicting probability distributions among transformed sprites. While this is much more
in line with common deep learning paradigms, we show experimentally that jointly learning the sprites, their
transformations, and the selection of the best sprites is a challenging optimization problem, which requires
using many regularization functions that make the method more specific and less robust.

The more standard architecture to predict such a probability distribution is a network that takes as input
the target image I and finishes with a linear layer and a softmax, which we refer to as linear mapping.
However, MarioNette (Smirnov et al., 2021) proposes having a network instead predict classification weights
from latent variables, shared with the sprite generation module, which are then compared with the input
image features, before applying a softmax. We refer to this approach as weight prediction.

Finally, because what is ultimately needed is a binary selection of the sprites, we experimented with replacing
the softmax by Gumbel softmax (Jang et al., 2017; Maddison et al., 2017), similar to StampNet (Visser et al.,
2019). However, while StampNet uses Gumbel softmax with binary selection, we use Gumbel softmax with
soft selection, which consistently led to better performances.

3.5 Composition Model and Training Criteria

We decompose the training loss as a reconstruction loss, Lrec, and a regularization loss, Lreg:

L = Lrec + Lreg . (1)

We study two reconstruction losses, which actually correspond to two different composition models C(S̄, p),
as well as different regularization losses.

8

Under review as submission to TMLR

3.5.1 Composition model and reconstruction loss

The composition model, C(S̄I , pI), composites transformed sprites into an image. The first way to see this
model is to consider that it can only select sprites in a binary way, and thus, the loss should be a weighted
sum of reconstruction errors of each sprite selection weighted by their probability (L0-1). The second way
to build composite sprites is by weighting transformed sprites according to predicted probabilities p, then
reconstructing images with composite sprites (Lcomp).

More formally, let us define CL the standard alpha-blending composition of L images (A1, α1), · · · , (AL, αL),
where for l = 1, · · · , L the Al are RGB images and αl their associates transparency channels:

CL ((A1, α1) , · · · , (AL, αL)) =
L∑

l=1

(
αl

L∏
k=l+1

(1 − αk)
)

Al, (2)

where the product is 1 if empty and multiplications are to be understood pixelwise. Let us consider prob-
abilities pI ∈ RK×L and transformed sprites S̄I

k,l ∈ RW ×H×C for all k ∈ {1, · · · , K} and l ∈ {1, · · · , L}.
Then L0-1 is defined by:

L0-1(S̄I , pI) =
∑

(k1,···kL)∈{0,··· ,K}L

(
L∏

l=1
pI

kl,l

)
||I − CL(S̄I

k1,1, · · · , S̄I
kL,L)||22 , (3)

and Lcomp is defined by:

Lcomp(S̄I , pI) = ||I − CL(
K∑

k=1
pI

k,1S̄I
k,1, · · · ,

K∑
k=1

pI
k,LS̄I

k,L)||22 . (4)

As can be seen from the equations, L0-1 requires to compute KL composite images, which is computationally
prohibitive for large numbers of sprites and layers, while Lcomp only requires computing L composed sprites
and a single composite images. However, Lcomp corresponds to an image composition model where different
transformed sprites can be merged, which might lead to undesired optima where objects are represented by
overlapping multiple sprites. Note that in the case where pI is binary, we actually have L0-1 = Lcomp

3.5.2 Regularizations

We consider three regularization losses.

First, Lfreq attempts to prevent some sprites from never being used, by penalizing using a sprite with a
frequency lower than a scalar value ϵ ∈ [0, 1]:

Lfreq =
K∑

k=1

(
min

(
1

|D|
∑

I

L∑
l=1

pI
k,l, ϵ

))
, (5)

where in practice the loss is computed over a batch of images I. Note that DTI-Sprites (Monnier et al.,
2021) has a re-assignment strategy for unused sprites that plays a similar role and has a similar minimum
frequency hyperparameter ϵ.

Second, Lbin encourages one-hot probability vectors pI , and thus attempts to avoid several transformed
sprites being used together to reconstruct an object. Thus, it is particularly meaningful to regularize Lcomp.
Following Smirnov et al. (2021), we define Lbin by:

Lbin = 1
K

K∑
k=1

Beta(2, 2)
(
pI

k

)
, (6)

where the probability density function of the Beta distribution is given by:

f(x; α, β) =
{

xα−1(1−x)β−1

B(α,β) for 0 < x < 1
0 otherwise

9

Under review as submission to TMLR

where α > 0 and β > 0 are the shape parameters, and B(α, β) is the Beta function, defined as:

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1 dt = Γ(α)Γ(β)

Γ(α + β) ,

where, Γ(·) is the Gamma function, which generalizes the factorial function (n − 1)!.

Third, following Monnier et al. (2021), Lempty encourages the model to use as few sprites as possible to
reconstruct an image, and attempts to avoid failure cases like sprites used with a high transparency to better
reconstruct details of the images. It penalizes the use of non-empty sprites, and writing e the index of the
empty sprite can be defined as:

Lempty =
L∑

l=1
(1 − pI

e,l) . (7)

Lreg is defined as a weighted sum of these three regularization losses:

Lreg = λfreqLfreq + λbinLbin + λemptyLempty , (8)

with λfreq, λbin and λempty scalar hyperparameters.

4 Analysis on Clustering

In this section, we analyze single-layer sprite-based approaches on clustering, for which experiments are
faster, and datasets are more diverse than for unsupervised image decomposition, and we leverage this
analysis to define a new approach for sprite-based clustering. Section 4.1 introduces the details of our
experimental setup. Sections 4.2 to 4.4 present comparative analysis of approaches through experiments
on Sprite Generation, Transformation, Decision, and Training Criterion. Finally, Section 4.5 compares our
clustering approach to the state-of-the-art.

4.1 Experimental Setup

4.1.1 Datasets

We conducted experiments on 8 datasets with different characteristics: MNIST (LeCun et al., 2010),
ColoredMNIST (Arjovsky et al., 2019), FashionMNIST (Xiao et al., 2017), AffNIST (Tieleman, 2013),
USPS (Hull, 1994), FRGC (Phillips et al., 2005), SVHN (Netzer et al., 2011) and GTSRB-8 (Stallkamp
et al., 2012) (detailed in the Appendix .1). Digit datasets (LeCun et al., 2010; Arjovsky et al., 2019; Hull,
1994; Netzer et al., 2011) differ in complexity, ranging from grayscale digits to real-world RGB street number
images. The other datasets tackle fashion items (Xiao et al., 2017), faces (Phillips et al., 2005), and traffic
signs (Stallkamp et al., 2012), offering a diversity of challenges.

4.1.2 Training and evaluation

We report the mean accuracy over all samples for clustering using Hungarian matching (Kuhn, 1955) for
cluster-to-class assignments. Details of training setup and hyperparameter searches are provided in the
Supplementary Material. Unless stated otherwise, we report the mean and standard error over 10 runs for
each experiment.

4.1.3 Reference setting

We sequentially evaluate the influence of each of the key component we have identified, starting from the
DTI-Clustering setting (Monnier et al., 2020), which demonstrated competitive results for clustering, and
which is closest to the K-means baseline. Note that our notion of a sprite encompasses the notion of prototype
used in DTI-Clustering. Then, in each section, we define a new reference setting for each of our component,
depending on our experimental analysis.

10

Under review as submission to TMLR

Table 2: Analysis of the sprite generator module for clustering. We reported the performances
of learning sprite through pixel-wise optimization with either random initialization or initialization from a
random sample, and through learning a latent representation with either a MLP or UNet generator network.
We report accuracy (%) and standard error over 10 runs. : one-by-one, sprite-specific transformation, :
Min-Loss, : Lcomp=0−1, reassignment.

Module Init. MNIST ColoredMNIST FashionMNIST AffNIST USPS FRGC SVHN GTSRB-8 Average
Pixel Space

Pixels sample 97.2±0.0 94.5±1.5 58.3±0.6 93.3±2.0 86.3±2.0 40.4±0.8 42.8±2.4 51.4±1.5 70.5
Pixels random 97.2±0.0 95.5±1.3 57.2±0.7 89.5±2.0 84.0±0.5 40.8±0.7 42.2±2.0 51.2±0.6 69.7

Latent Space
MLP random 97.1±0.0 94.3±1.5 58.9±0.7 95.7±1.3 85.5±2.3 40.3±0.4 45.8±1.2 51.1±1.6 71.1
UNet 97.1±0.1 94.8±1.5 57.9±1.3 94.5±1.8 86.6±1.5 33.7±1.8 45.8±2.4 50.3±1.0 70.1

4.2 Sprite Generation Module

Figure 4: Training loss for different sprite generation
modules. We show the average loss over 10 runs for 3 datasets.
For all datasets, learning sprites through a generator network
converges faster. Better seen in the digital version.

As detailed in Section 3.2 and Figure 3a,
we compare directly learning pixel values
and learning sprites through a generator
network. When learning pixel values, we
compare initializing the sprites randomly
or from a random sample, similar to the
original DTI-Clustering (Monnier et al.,
2020). When learning sprites in latent
space, we compare using a two-layer MLP
and a UNet. For the MLP, we learn a
latent representation of size 128 and use
a hidden layer with 128 units. For UNet,
we used a latent representation with the
same dimension as the sample sprite and
the architecture of Siglidis et al. (2024).

Our results, reported in Table 2, show
that the best performing approach de-
pends on the dataset. Learning sprites with an MLP leads to slightly better results on average. Moreover,
an analysis of the training loss curves shown in Fig. 4 shows that learning sprites through generator networks
leads to clearly faster convergence. We thus adopt learning sprites through an MLP for the rest of
our analysis.

4.3 Transformation Module

As explained in Section 3.3, we explore different constraints on the deformation module, namely different
curriculum and weight-learning strategies.

4.3.1 Curriculum learning

In Table 3, we report results using various curriculum strategies to learn the transformations presented
in Section 3.3. They show that curriculum is critical for good performance. A 2-step-only curriculum, which
can be interpreted as a K-means initialization followed by a full unfreeze of the network, is not sufficient, while
splitting transformations into two groups already leads to good results. One-by-one curriculum performs
best, and we thus continue using one-by-one curriculum for the rest of our analysis.

4.3.2 Shared transformations

Sharing transformations among sprites would intuitively put them in the same “reference frame” which would
be beneficial for qualitative analysis. We visualize this effect in Fig. 5 on the ColoredMNIST and AffNIST

11

Under review as submission to TMLR

Table 3: Effect of curriculum learning on the transformation module. We explore different
curriculum strategies. We report accuracy (%) and standard deviation over 10 runs. : MLP, : sprite-
specific transformation, : Min-Loss, : Lcomp=0−1, reassignment.

Curriculum strategy
Dataset all id+rest id+g1+g2 one-by-one
MNIST 88.1±2.6 95.8±1.1 95.8±0.9 97.1±0.0
ColoredMNIST 82.8±2.7 83.9±2.4 94.2±1.8 94.3±1.5
FashionMNIST 56.0±1.2 58.7±1.8 57.8±0.9 58.9±0.7
AffNIST 83.1±4.0 81.7±3.0 95.8±1.4 95.7±1.3
USPS 81.3±2.1 86.0±1.8 83.2±1.2 85.5±2.3
FRGC 34.9±0.9 34.5±0.5 39.1±0.5 40.3±0.4
SVHN 32.6±2.2 33.3±0.4 45.8±1.2 45.8±1.2
GTSRB-8 49.3±1.5 51.3±1.8 51.1±1.6 51.1±1.6
Average 63.5 65.7 70.4 71.1

Table 4: Effect of sharing transformations among sprites in the transformation module. We re-
port accuracy (%) and standard deviation over 10 runs. : MLP, : one-by-one, : Min-Loss, : Lcomp=0−1,
reassignment.

Dataset Shared transfo. Sprite-specific transfo.
MNIST 91.9±2.2 97.1±0.0
ColoredMNIST 92.6±2.0 94.3±1.5
FashionMNIST 57.0±0.4 58.9±0.7
AffNIST 86.4±2.8 95.7±1.3
USPS 84.4±2.3 85.5±2.3
FRGC 41.1±0.6 40.3±0.4
SVHN 34.3±0.1 45.8±1.2
GTSRB-8 49.2±1.2 51.1±1.6
Average 67.1 71.1

(a) ColoredMNIST (b) AffNIST

Figure 5: Qualitative effect of sharing transformations among sprites in the transformation
module. We compare on (a) ColoredMNIST (Arjovsky et al., 2019) and (b) AffNIST (Tieleman, 2013) the
sprites learned with sprite-specific transformations (top rows) with the ones learned with shared transfor-
mations (bottom rows). Sharing the transformations among sprites encourages them to be more uniform,
e.g., have similar (a) colors and (b) spatial location. : MLP, : one-by-one, : Min-Loss, : Lcomp=0−1,
reassignment.

datasets. When transformations are not shared, sprites have non-uniformed colors and positions, while they
are much more consistent when transformations are shared. Although this qualitative property would be
desirable, we found in the quantitative results reported in Table 4 that sharing transformations significant
deteriorates quantitative performances. We thus keep sprite-specific transformations for each sprite
in the rest of the analysis.

12

Under review as submission to TMLR

4.4 Decision Module and Training Criteria

Training criteria and decision modules are closely related. Thus, we first analyze jointly decision module
and training criteria, then study the impact of regularizations.

4.4.1 Reconstruction loss and decision

Table 5: Results of different decision modules () and training criteria (). We experimented
with the training criteria and decision modules, along with Gumbel softmax. We report accuracy (%) and
standard deviation over 10 runs. We train all models and the baseline (second row) until convergence, which
might mean a different number of iterations for different models. : MLP, : one-by-one, sprite-specific
transformation.

Lrec pk MNIST ColoredMNIST FashionMNIST AffNIST USPS FRGC SVHN GTSRB-8 Average

Lcomp = L0−1
Min-Loss 92.4±1.6 71.0±2.1 58.3±0.6 89.2±2.2 82.1±1.7 30.2±0.7 47.1±1.8 47.1±1.1 64.7

w/ reassignment 96.5±0.5 92.0±2.0 59.6±0.7 97.3±0.0 88.4±2.9 41.1±0.6 43.3±2.7 49.3±1.3 70.9

L0−1
weight prediction 86.6±1.2 42.0±3.2 55.3±0.9 66.6±4.1 79.9±1.4 11.2±0.6 33.1±0.9 51.7±0.2 53.3
linear mapping 88.8±1.5 33.0±4.9 54.7±1.1 55.5±1.7 73.7±3.1 17.9±0.7 31.1±1.3 51.6±0.4 50.8

Lcomp

weight prediction 72.4±0.9 50.5±3.6 35.1±1.3 72.7±2.2 54.3±2.1 40.2±0.9 19.7±0.3 38.2±1.0 47.9
w/ Gumbel softmax 93.2±1.6 47.7±4.5 60.6±0.4 75.8±1.4 82.1±0.2 38.7±0.8 34.7±0.7 50.3±0.1 60.4

linear mapping 72.1±1.4 47.5±1.6 36.3±1.1 66.9±0.9 54.3±2.0 40.4±1.1 19.9±0.5 38.5±0.1 47.0
w/ Gumbel softmax 96.5±0.1 53.2±4.3 60.7±0.8 75.4±2.3 82.2±0.4 39.5±1.3 33.9±0.5 50.0±0.2 61.4

In Table 5, we compare the reconstruction losses we introduced – namely L0−1 defined in Eq. (3) and Lcomp
defined in Eq. (4) – alongside the different decision modules. Min-Loss selection, for which both losses are
the same, using a cluster re-assignment strategy (Monnier et al., 2020) (Table 5 row 2) shows overall better
performance than training the network to predict the sprite selection. This higher performance is largely
due to the implicit regularization given by the empty cluster reassignment strategy proposed in (Monnier
et al., 2020) (Table 5 rows 1 and 2).

Qualitatively, the main failure case of Lcomp is to compose a layer from several sprites, as can be seen
in Fig. 6a for MNIST, where a 9 digit is reconstructed using a circle and a loop, and in Fig. 6b for FRGC,
where different sprites are combined to model lighting effects. As optimizing reconstruction by composition
is not the targeted behavior for clustering, we experimented with replacing softmax activation with Gumbel
softmax for this Lcomp, both with linear mapping and weight prediction (Table 5 rows 6 and 8). This resulted
in a significant improvement in performances of more than 10% on average. While performances remains
lower than with Min-Loss selection with reassignment by almost 10%, this led to the best results with
a predicted sprite selection, almost on par with Min-Loss selection without re-assignment regularization.
Learning sprite selection is appealing as it does not require to test all selection possibilities, as in Min-
Loss selection, which will be prohibitively costly when using multiple layers. Because we obtained slightly
better performances with linear mapping than classification weight prediction, and because it is conceptually
simpler, we use linear mapping for the rest of the paper, and explore if its performances could be
further improved using additional regularization losses.

4.4.2 Regularization losses

We report in Table 6 the results obtained with using Lfreq (Eq. (5)) and Lbin. Note that Lbin is designed to
overcome the composition issue associated to Lcomp, we do not test it with L0-1, and Lempty does not make
sense for clustering, where no empty sprite is used. We selected the regularization loss weights through a
grid search for each dataset to optimize performance.

Using Lfreq (Eq. (5)) as a regularization significantly increases performance. Both when using L0−1 and Lcomp
losses coupled with Gumbel softmax, this leads to results on par with Min-Loss selection with reassignment
(Table 6). This again validates our claim that the superior performance of Min-Loss selection is largely due
to the implicit regularization of the reassignment strategy.

13

Under review as submission to TMLR

(a) MNIST LeCun et al. (2010) (b) FRGC Phillips et al. (2005)

Figure 6: Qualitative results with different training criteria. Compared with weighting the recon-
struction loss for each sprite (L0−1, top rows), weighting transformed sprites and composing to reconstruct
(Lcomp, bottom rows) results in (a) sprites representing parts of the objects instead of the object itself and (b)
sprites focusing on the distinct characteristics of a subject and using composition to model shading effects.

Table 6: Effect of regularization. Experiments on regularization losses with two training criteria and
Gumbel softmax. We report accuracy (%) and standard deviation over 10 runs. : MLP, : one-by-one,
sprite-specific transformation, : linear mapping.

Lrec Lfreq Lbin MNIST ColoredMNIST FashionMNIST AffNIST USPS FRGC SVHN GTSRB-8 Average

L0−1
- - 88.8±1.5 33.0±4.9 54.7±1.1 55.5±1.7 73.7±3.1 17.9±0.7 31.1±1.3 51.6±0.4 50.8
✓ - 98.2±0.0 93.1±2.1 57.6±1.5 97.1±0.1 82.8±0.1 41.1±0.6 38.0±2.0 57.5±0.2 70.7

Lcomp

w/ softmax
- - 72.1±1.4 47.5±1.6 36.3±1.1 66.9±0.9 54.3±2.0 40.4±1.1 19.9±0.5 38.5±0.1 47.0
✓ - 78.5±1.6 48.4±3.1 40.6±1.1 75.5±0.0 54.3±2.0 42.6±1.1 23.4±0.9 38.8±0.3 50.3
✓ ✓ 95.3±0.5 81.7±3.5 62.0±1.5 83.1±0.0 63.1±2.2 42.6±1.1 34.4±0.5 54.5±2.1 64.6
w/ gumbel softmax
- - 96.5±0.1 53.2±4.3 60.7±0.8 75.4±2.3 82.2±0.4 39.5±1.3 33.9±0.5 50.0±0.2 61.4
✓ - 96.7±0.0 95.9±0.1 60.7±0.8 94.1±1.9 82.2±0.4 44.8±0.8 35.3±0.4 53.2±1.2 70.4
✓ ✓ 96.7±0.0 96.0±0.1 60.7±0.8 94.1±1.9 85.3±1.1 44.8±0.8 37.6±0.3 53.2±1.2 71.1

To improve results obtained with Lcomp we evaluated using Lbin (Eq. (6)) to encourage binary selection,
similar to Smirnov et al. (2021). Lbin significantly improves the results with normal softmax while remaining
worse than the best approaches, and provides a small improvement when using Gumbel softmax which
already encourages binary selection. We thus propose using Lcomp with Gumbel softmax, and Lfreq
and Lbin regularizations.

4.5 Comparison with State-of-the-art

Given the analysis of the previous sections, we use the following design choices, summarized in Table 1, for
clustering: using an MLP-based sprite generation module, with sprite-specific transformations, learned one-
by-one in a curriculum fashion, a linear decision module with Gumbel softmax, a composite reconstruction
loss, and frequency and binning regularization. We compare the performance of this setting with a single
opaque layer (Ours-C 1 layer) to a variety of competing clustering methods in Table 7. For SVHN and
GTSRB-8, we also report our approach using a background model (Ours-C 2 layers). Note that most
approaches rely on learning and clustering features, which limit the results’ interpretability, and that many
leverage specific data-augmentation or representations, such as Gabor filters, which are strong priors and
simplify the task. Our results are competitive with state-of-the-art, while predicting cluster selection, and
learning an explicit cluster prototype and image-specific transformation. While it often performs slightly
worse than DTI-Clustering, our setting does not rely on comparing each possible reconstruction to the
target to assign clusters, but instead directly learns and predicts cluster selection. Thus, as shown in the
next session, our approach can be directly extended into an efficient multi-layered image decomposition
model.

14

Under review as submission to TMLR

Table 7: Comparisons on clustering. We compare our results with methods that cluster over features as
well as pixels. We report accuracy (%) and standard deviation for our method over 10 runs.

Method # runs MNIST ColoredMNIST FashionMNIST AffNIST USPS FRGC SVHN GTSRB-8
Clustering on learned features
JULE Yang et al. (2016) 3 96.4 - 56.3 - 95.0 46.1 - -
DEPICT Dizaji et al. (2017) 5 96.5 - 39.2 - 96.4 47.0 - -
DSCDAN Yang et al. (2019) 10 97.8 - 66.2 - 86.9 - - -
+ with data augmentation and/or ad-hoc data representation
SpectralNet Shaham et al. (2018) 5 97.1 - - - - - - -
IMSAT Hu et al. (2017) 12 (5) 98.4 (10.6) - (18.2) - - 57.3 26.9
ADC Haeusser et al. (2019) 20 98.7 - - - - 43.7 38.6 -
SCAE Kosiorek et al. (2019) 5 98.7 - - - - - 55.3 -
IIC Ji et al. (2019) 5 98.4 10.6 - 57.6 - - - -
SCAN Van Gansbeke et al. (2020) 5 - - - - - - 54.2 90.4
Clustering on pixels
K-means 10 54.8 - 54.1 - 65.3 22.7 12.2 -
DTI-Clustering Monnier et al. (2020) 10 97.3 96.8 61.2 95.5 86.4 39.6 44.5 -
Ours-C 1 layer 10 96.7±0.0 96.0±0.1 60.7±0.8 94.1±1.9 85.3±1.1 44.8±0.8 37.6±0.3 53.2±1.2
+ multi-layer
DTI-Sprites Monnier et al. (2021) 10 - - - - - - 63.1 89.9
Ours-C 2 layers 10 - - - - - - 52.4±0.5 80.9±1.8

5 Analysis for Multi-layer Image Decomposition

In this section, we explore how our analysis of sprite-based image models for clustering can be leveraged for
multi-layer image decomposition. In the following, we first summarize our experimental setting, including
datasets and metrics, and then discuss our results.

5.1 Experimental Setup

5.1.1 Datasets

We present results on the Tetrominoes (Greff et al., 2019) – images of 3 non-overlapping colored 2D blocks
sampled among 19 unique ones, on black background –, the Multi-dSprites (Kabra et al., 2019) – images
of up to 5 possibly overlapping colored 2D objects of different sizes sampled among 3 unique ones, on gray
background –, and the CLEVR6 and CLEVR (Johnson et al., 2017) datasets - images of respectively up
to 6 and 10 possibly overlapping colored 3D objects of different sizes sampled among 6 unique ones, on a
simple background. More details are given in Appendix .1. Note that all of these datasets are synthetic and
relatively simple, but they are the main ones used in the literature for our task.

5.1.2 Training details

Details of the transformations that we use for the foreground and background are given in the Appendix Ta-
ble 12. Details of training setup and hyperparameters are provided in the Appendix Table 11.

5.1.3 Metrics

For our analysis in Table 8, we reported two class-aware metrics, mean accuracy (mAcc) and average mean
Intersection-over-Union (avg-mIoU). We use Hungarian matching to align predicted and ground-truth classes.
Mean accuracy measures the proportion of correctly-predicted pixels in classification. The average mean IoU
computes the IoU – a segmentation accuracy metric – class-wise and averages it across all classes, including
background, to reflect class awareness.

To give results comparable with the metrics most frequently reported in the literature, we also report
in Table 9 instance mean IoU (mIoU) and the Adjusted Rand Index computed only for the foreground (ARI-
FG). Instance mean IoU measures the segmentation accuracy of predicted instances without considering the
class of the prediction, but takes the background into account. ARI-FG evaluates how well pixels’ instance

15

Under review as submission to TMLR

Table 8: Results for multi-object semantic discovery. () Sprite generation, () decision and activation
function, () training criterion and regularization. Mean accuracy (mAcc) and average mean IoU (avg-mIoU)
over classes, with standard error over 3 runs. (†): longer training, except Monnier et al. (2021) on CLEVR
(in italic) obtained with the training schedule in the paper.

Method Tetrominoes Multi-dSprites CLEVR6 CLEVR
mAcc avg-mIoU mAcc avg-mIoU mAcc avg-mIoU mAcc avg-mIoU

DTI-Sprites Monnier et al. (2021)† Pixels Min-Loss S L0−1=comp Lempty 99.5±0.2 99.2±0.3 91.3±0.9 84.0±1.4 79.3±2.7 64.2±3.1 69.8±5.0 55.7±4.3

Ours-D MLP linear
mapping GS Lcomp

- 74.3±1.4 64.4±1.9 65.6±0.1 54.4±0.1 66.8±0.4 49.6±0.8 59.3±7.4 43.0±5.6
τ 92.7±3.9 89.2±5.5 65.2 53.8 56.3 39.6 55.3 42.1
+ Lfreq 93.9±0.4 89.9±0.5 - - - - - -
Lempty - - 65.9±0.5 54.7±0.4 74.7±1.4 57.8±1.5 70.61±0.1 55.3±0.1
+ Lfreq - - 66.0±1.0 54.7±0.9 72.2±1.2 54.8±1.3 70.5±1.2 53.9±0.5
+ Lbin - - 65.4 54.2 65.0 46.5 68.0 53.1

assignments align with the ground truth while ignoring the background. These two metrics are adopted
by the literature because most existing methods focus solely on predicting instance segmentation without
providing the corresponding class labels. For the few approaches that additionally provide class predictions,
we also report mean accuracy (mAcc) and mean IoU averaged over classes (avg-mIoU).

5.2 Results

5.2.1 Regularizations

In Table 8, we analyze the impact of different regularizations on the performance of our approach and
compare it to DTI-Sprites (Monnier et al., 2021). Indeed, the regularization needs are different from the
ones in clustering. In particular, Lbin, which we adopted for clustering, prevents multiple sprites from the
same layer from being combined to reconstruct different parts of the same object, but it does not prevent
the same effect with sprites from different layers. Thus, in addition to Lbin and Lfreq, we experimented
with Lempty (Eq. (7)) which favors the use of an empty sprite, i.e. a sprite with a completely transparent
alpha mask. Because we observed early-stage high-confidence class predictions during training, which is
likely detrimental to learning, we also explored the impact of learning the Gumbel softmax temperature
parameter, τ , which could mitigate this effect.

For Tetrominoes, where the number of objects is constant and equal to the number of layers, Lempty and
Lbin make little sense, and we only explore learning the Gumbel softmax temperature τ and Lfreq, while we
explore all regularizations for the other datasets.

Learning the Gumbel softmax temperature τ gives a huge boost to the results on Tetrominoes. One of
the three runs actually matches the almost perfect performance of DTI-Sprites, emphasizing the additional
complexity of learning the class prediction. Adding Lfreq to learning τ further improves the average on
Tetrominoes, but they remain below the almost perfect results of DTI-Sprites, without any run matching it.
In contrast, for Multi-dSprites, CLEVR6, and CLEVR, learning τ leads to the worst results.

For Multi-dSprites, CLEVR6, and CLEVR, we thus discarded learning τ and instead experimented with
Lempty, trying to better estimate the number of objects, which is the main challenge for our approach without
regularization on CLEVR6 and CLEVR. On Multi-dSprites (Greff et al., 2019), which includes 3 distinct
objects (square, ellipsoid, and heart), our method is still clearly outperformed by DTI-Sprites (Monnier et al.,
2021), due to the fact that our model fails to discover a distinct representation of the heart shape, instead
reconstructing it as a composition of two rotated ellipsoids. On CLEVR6 and CLEVR, our performance with
Lempty is on par with DTI-Sprites, and the results are qualitatively similar. Further adding Lfreq does not
significantly change these results, and adding Lbin degrades them. The main difference between our approach
and DTI-Sprites on this more challenging CLEVR dataset is the higher scalability of our approach, which
we discuss in the next section.

16

Under review as submission to TMLR

Table 9: Comparisons for instance segmentation with standard deviation over 3 runs. Sources for †
(excluding Monnier et al. (2021)): Karazija et al. (2021) and Sauvalle & de La Fortelle (2023).

Method class-aware CLEVR
mIoU† ARI-FG† mAcc avg-mIoU

MONet Burgess et al. (2019) 30.7±14.9 54.5±11.4 - -
IODINE Greff et al. (2019) 45.1±17.9 93.8±0.8 - -
SPAIR Crawford & Pineau (2019) 66.0±4.0 77.1±1.9 - -
GNM Jiang & Ahn (2020) 59.9±3.7 65.1±4.2 - -
Slot Attention Locatello et al. (2020) 36.6±24.8 95.9±2.4 - -
eMORL Emami et al. (2021) 50.2±22.6 93.3±3.2 - -
Genesis-V2 Engelcke et al. (2021) 9.5±0.6 57.9±20.4 - -
MarioNette Smirnov et al. (2021) ✓ 72.1±0.6 56.8±0.4 16.1±0.2 7.3±0.4
AST-Seg-B3-CT Sauvalle & de La Fortelle (2023) 90.3±0.2 98.3±0.1 20.8±1.2 12.1±0.2
DTI-Sprites Monnier et al. (2021) ✓ 54.5±1.2 93.2±2.0 69.8±4.5 55.7±6.0
Ours-D ✓ 53.8±0.3 95.1±0.5 70.61±0.2 55.3±0.2

5.2.2 Complexity

The major advantage of our model with respect to DTI-Sprites is that it learns to predict which
sprite to select for which layer, rather than iteratively trying many sprite selections and com-
binations, which results in a significant improvement in time complexity, as shown in Fig. 7.

2 4 6 8 10 12 14 16
Objects

0
1
2
3
4
5
6
7

Ti
m

e
pe

r i
te

ra
tio

n
(s

) DTI-Sprites
Ours

Figure 7: Complexity. The time per iteration of our approach
scales linearly with the number of object layers, while that of the
only other method with comparable results, DTI-Sprites (Mon-
nier et al., 2021), scales exponentially.

The time complexity of our model scales
linearly with the maximum number of ob-
jects in a scene, while the DTI-Sprites
scales exponentially. Note that due
to this exponential time complexity, we
trained DTI-Sprites in Table 8 and Ta-
ble 9 with the training schedule in the
original paper, i.e. 351,900 iterations,
while we could train our model until con-
vergence, for 703,800 iterations, in less
time.

5.2.3 Comparisons

In 9, we compare our results with
the state-of-the-art on the CLEVR
dataset. AST-Seg-B3-CT (Sauvalle &
de La Fortelle, 2023) clearly dominates
in terms of mIoU and ARI-FG, but our
results are on par with most baselines for these metrics, which focus on instances and do not consider the class
prediction. We thus also compared class aware metrics for methods from which can be extracted. For Mari-
oNette (Smirnov et al., 2021), we match learned sprites in the dictionary to classes in a many-to-one manner
with Hungarian matching. Because it is the best-performing instance segmentation method, we also applied
K-means with K = 6 to the object features (zwhat) of AST-Seg-B3-CT (Sauvalle & de La Fortelle, 2023) and
clustered them, leading to a class-aware adaptation of this method. The only method that achieves similar
results to ours for class-aware metrics is DTI-Sprites (Monnier et al., 2021), while the other two baselines
lag far behind. This emphasizes another advantage of our approach.

5.2.4 Qualitative results

Qualitative examples of our decomposition with a large number of objects from CLEVR (Johnson et al.,
2017) are presented in Fig. 8. They showcase that our model is able to recover both accurate instances and
semantic segmentation with a large number of objects.

17

Under review as submission to TMLR

Figure 8: Qualitative results for multi-object discovery on CLEVR (Johnson et al., 2017). The
three left columns show the sprites’ appearances (Frg.), masks, and combination (Sprite), including the
empty sprite, and the background. The other columns show for four different examples, the input image,
its reconstruction, semantic segmentation (Sem. Seg.), instance segmentation (Ins. Seg.), background (Bkg.
Layer), and the different transformed sprites (Object Layers).

6 Conclusion

In this work, we introduced a unified formalization for sprite-based models, specifying their relationships
and unifying approaches to clustering and object decomposition. This analysis clarifies the design space
of methods in the literature, enables its exploration on the clustering task, which is less computationally
intensive and uses more diverse, realistic datasets, and yields an approach that learns to predict sprite
selection while avoiding exponential complexity in the number of objects in a scene, yet maintaining strong
performance.

References
Roberto Annunziata, Christos Sagonas, and Jacques Calì. Jointly aligning millions of images with deep

penalised reconstruction congealing. Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Léon Bottou and Yoshua Bengio. Convergence properties of the K-means algorithms. In Advances in Neural
Information Processing Systems, 1994.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MoNet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the IEEE/CVF European Conference on Computer Vision,
2018.

18

Under review as submission to TMLR

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsuper-
vised learning of visual features by contrasting cluster assignments. In Advances in Neural Information
Processing Systems, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adaptive image
clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017.

M. Cox, S. Sridharan, S. Lucey, and J. Cohn. Least-squares congealing for large numbers of images. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2009.

Mark Cox, Sridha Sridharan, Simon Lucey, and Jeffrey Cohn. Least squares congealing for unsupervised
alignment of images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2008.

Eric Crawford and Joelle Pineau. Spatial invariant unsupervised object detection with convolutional neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong (Tom) Cai, and Heng Huang. Deep
clustering via joint convolutional autoencoder embedding and relative entropy minimization. Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2017.

Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient iterative amortized inference for
learning symmetric and disentangled multi-object representations. In Proceedings of the International
Conference on Machine Learning, 2021.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative scene
inference and sampling with object-centric latent representations. In Proceedings of the International
Conference on Learning Representations, 2020.

Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. GENESIS-v2: Inferring unordered object repre-
sentations without iterative refinement. Advances in Neural Information Processing Systems, 2021.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, and
Geoffrey E. Hinton. Attend, Infer, Repeat: Fast scene understanding with generative models. In Advances
in Neural Information Processing Systems, 2016.

B.J. Frey and N. Jojic. Estimating mixture models of images and inferring spatial transformations using the
EM algorithm. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1999.

B.J. Frey and N. Jojic. Transformation-invariant clustering using the EM algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2003.

Brendan J Frey and Nebojsa Jojic. Fast, large-scale transformation-invariant clustering. In Advances in
Neural Information Processing Systems. MIT Press, 2001.

Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via reconstruction clustering.
arXiv preprint arXiv:1511.06418, 2015.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Harri Valpola, and Jürgen Schmidhuber.
Tagger: Deep unsupervised perceptual grouping. In Advances in Neural Information Processing Systems,
2016.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Proceedings of the International Conference on Learning Representations, 2017.

19

Under review as submission to TMLR

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran, Loic
Matthey, Matthew M. Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In Proceedings of the International Conference on Machine Learning, 2019.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial neural
networks. arXiv preprint arXiv:2012.05208, 2020.

Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, and Daniel Cremers. Associative Deep
Clustering: Training a classification network with no labels. In Thomas Brox, Andrés Bruhn, and Mario
Fritz (eds.), Pattern Recognition, 2019.

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama. Learning discrete
representations via information maximizing self-augmented training. In Proceedings of the International
Conference on Machine Learning, 2017.

Gary B. Huang, Vidit Jain, and Erik Learned-Miller. Unsupervised joint alignment of complex images. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2007.

J.J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1994.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances in
Neural Information Processing Systems, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. In
Proceedings of the International Conference on Learning Representations, 2017.

Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised image
classification and segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

Jindong Jiang and Sungjin Ahn. Generative neurosymbolic machines. Advances in Neural Information
Processing Systems, 2020.

Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. arXiv preprint
arXiv:2303.10834, 2023.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational Deep Embedding:
An unsupervised and generative approach to clustering. In International Joint Conference on Artificial
Intelligence, 2016.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Malcolm Reynolds, and
Alexander Lerchner. Multi-object datasets. https://github.com/deepmind/multi-object-datasets/, 2019.

Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. SPOT: Self-training
with patch-order permutation for object-centric learning with autoregressive transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Laurynas Karazija, Iro Laina, and Christian Rupprecht. ClevrTex: A texture-rich benchmark for unsuper-
vised multi-object segmentation. In Advances in Neural Information Processing Systems Datasets and
Benchmarks Track, 2021.

Adam R. Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential Attend, Infer, Repeat:
Generative modelling of moving objects. In Advances in Neural Information Processing Systems, 2018.

20

Under review as submission to TMLR

Adam R. Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E. Hinton. Stacked capsule autoencoders. In
Advances in Neural Information Processing Systems, 2019.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 1955.

E.G. Learned-Miller. Data driven image models through continuous joint alignment. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2006.

Yann LeCun, Corinna Cortes, Chris Burges, et al. MNIST handwritten digit database, 2010.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of unsupervised
representations. In Proceedings of the International Conference on Learning Representations, 2021.

James Chenhao Liang, Yiming Cui, Qifan Wang, Tong Geng, Wenguan Wang, and Dongfang Liu. Cluster-
Former: Clustering as a universal visual learner. In Advances in Neural Information Processing Systems,
2023.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang,
and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial attention and
decomposition. In International Conference on Learning Representations, 2020.

Xiaoming Liu, Yan Tong, and Frederick W. Wheeler. Simultaneous alignment and clustering for an image
ensemble. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2009.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In Advances
in Neural Information Processing Systems, 2020.

Romain Loiseau, Elliot Vincent, Mathieu Aubry, and Loic Landrieu. Learnable Earth Parser: Discovering
3d prototypes in aerial scans. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

James MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Uni-
versity of California press, 1967.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A continuous relaxation
of discrete random variables. In Proceedings of the International Conference on Learning Representations,
2017.

Marwan A. Mattar, Allen R. Hanson, and Erik G. Learned-Miller. Unsupervised joint alignment and clus-
tering using bayesian nonparametrics. In Conference on Uncertainty in Artificial Intelligence, 2012.

E.G. Miller, N.E. Matsakis, and P.A. Viola. Learning from one example through shared densities on trans-
forms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2000.

Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep transformation-invariant clustering. In Advances
in Neural Information Processing Systems, 2020.

Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu Aubry. Unsupervised layered image decomposition
into object prototypes. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

Nairouz Mrabah, Mohamed Bouguessa, and Riadh Ksantini. Adversarial Deep Embedded Clustering: On
a better trade-off between feature randomness and feature drift. IEEE Transactions on Knowledge and
Data Engineering, 2019.

Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. ClusterGAN: Latent space clus-
tering in generative adversarial networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

21

Under review as submission to TMLR

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. Advances in Neural Information Processing Systems
Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

Chuang Niu, Hongming Shan, and Ge Wang. SPICE: Semantic pseudo-labeling for image clustering. IEEE
Transactions on Image Processing, 2022.

P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, Jin Chang, K. Hoffman, J. Marques, Jaesik Min, and
W. Worek. Overview of the face recognition grand challenge. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2005.

Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, and Lifang He.
Deep Clustering: A comprehensive survey. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 234–241. Springer, 2015.

Bruno Sauvalle and Arnaud de La Fortelle. Unsupervised multi-object segmentation using attention and
soft-argmax. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2023.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann Simon-
Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco Locatello. Bridging
the gap to real-world object-centric learning. In Proceedings of the International Conference on Learning
Representations, 2023.

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. SpectralNet: Spec-
tral clustering using deep neural networks. In Proceedings of the International Conference on Learning
Representations, 2018.

Ioannis Siglidis, Nicolas Gonthier, Julien Gaubil, Tom Monnier, and Mathieu Aubry. The Learnable Type-
writer: A generative approach to text analysis. In Proceedings of the International Conference on
Document Analysis and Recognition, 2024.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E learns to compose. In Proceedings of the
International Conference on Learning Representations, 2022.

Krishnakant Singh, Simone Schaub-Meyer, and Stefan Roth. GLASS: Guided latent slot diffusion for
object-centric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2025.

Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor Guizilini, Alexei Efros, and Justin M Solomon.
MarioNette: Self-supervised sprite learning. Advances in Neural Information Processing Systems, 2021.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition. Neural Networks, 2012.

Karl Stelzner, Robert Peharz, and Kristian Kersting. Faster attend-infer-repeat with tractable probabilistic
models. In Proceedings of the International Conference on Machine Learning, 2019.

Tijmen Tieleman. affNIST — cs.toronto.edu. https://www.cs.toronto.edu/~tijmen/affNIST/, 2013.
[Accessed 04-11-2025].

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc Van Gool.
SCAN: Learning to classify images without labels. In Proceedings of the IEEE/CVF European Conference
on Computer Vision, 2020.

22

https://www.cs.toronto.edu/~tijmen/affNIST/

Under review as submission to TMLR

José-Fabian Villa-Vásquez and Marco Pedersoli. Unsupervised object discovery: A comprehensive survey
and unified taxonomy. arXiv preprint arXiv:2411.00868, 2024.

Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the International Conference on Machine
Learning, 2008.

Joost Visser, Alessandro Corbetta, Vlado Menkovski, and Federico Toschi. StampNet: Unsupervised multi-
class object discovery. In Proceedings of the IEEE International Conference on Image Processing, 2019.

J. von Kügelgen, I. Ustyuzhaninov, P. Gehler, M. Bethge, and B. Schölkopf. Towards causal generative scene
models via competition of experts. In International Conference on Learning Representations Workshop
on Causal Learning for Decision Making, 2020.

Xiuxi Wei, Zhihui Zhang, Huajuan Huang, and Yongquan Zhou. An overview on deep clustering.
Neurocomputing, 2024.

Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. SlotDiffusion: Object-centric gener-
ative modeling with diffusion models. Advances in Neural Information Processing Systems, 2023.

Canqun Xiang, Zhennan Wang, Wenbin Zou, and Chen Xu. DPR-CAE: capsule autoencoder with dynamic
part representation for image parsing. arXiv preprint arXiv:2104.14735, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. In
Proceedings of the International Conference on Machine Learning, 2016.

Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations and image
clusters. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016.

Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, and Wei Liu. Deep spectral clustering using dual autoen-
coder network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu, Jia Wu, Xin Wang, Wenwu
Zhu, and Martin Ester. A Comprehensive Survey on Deep Clustering: Taxonomy, challenges, and future
directions. ACM Computing Surveys, 2024.

23

Under review as submission to TMLR

.1 Dataset Descriptions

MNIST (LeCun et al., 2010) MNIST is a widely used dataset of handwritten grayscale digits, containing
60,000 training images and 10,000 testing images.

ColoredMNIST (Arjovsky et al., 2019) Colored MNIST is built from the MNIST dataset by randomly
adding color to the foreground and background, resulting in a collection of 70,000 images. Each digit image
is transformed into a 3-channel representation, offering a more complex dataset.

FashionMNIST (Xiao et al., 2017) FashionMNIST is designed as an alternative to MNIST, consisting
of 60,000 fashion item images for training and 10,000 for testing. These images are grayscale and categorized
into 10 classes.

AffNIST (Tieleman, 2013) Derived from MNIST, the AffNIST dataset enriches the original dataset by
applying affine transformations to its digits. We employ the test split of 10,000 images to assess algorithm
robustness against various transformations.

USPS (Hull, 1994) The United States Postal Service (USPS) dataset includes handwritten grayscale
digit images of envelopes, containing 7,291 training samples and 2,007 testing samples.

FRGC (Phillips et al., 2005) The Face Recognition Grand Challenge (FRGC) dataset is a collection of
face images in RGB space, which contains over 50,000 images of various individuals captured under different
poses, expressions, and lighting conditions.

SVHN (Netzer et al., 2011) The Street View House Numbers (SVHN) dataset includes more than
600,000 RGB images of house numbers captured from Google Street View. It is intended for digit recognition
tasks and offers more challenging variations in terms of font styles, sizes, and cluttered backgrounds compared
to MNIST.

GTSRB-8 (Stallkamp et al., 2012) The German Traffic Sign Recognition Benchmark (GTSRB) dataset
subset (GTSRB-8) focuses on eight common traffic sign classes and contains more than 25,000 images for
training and testing.

Tetrominoes (Greff et al., 2019) Tetrominoes contains around 60,000 images with size 35x35 featuring
3 Tetris-like shapes with different color and position from 19 unique shapes. Each image has a black
background, and shapes do not occlude each other.

Multi-dSprites (Kabra et al., 2019) Multi-dSprites contains around 60,000 images with multiple oval,
heart, or square-shaped objects with a uniform background. Each object has different scale, color, and
position, and the maximum number of objects in an image is 5.

CLEVR (Johnson et al., 2017) CLEVR dataset contains 6 unique objects with varying scale, color,
and position on a uniform background. Although released for visual reasoning tasks, it is commonly used in
object discovery. We reported results in 2 versions of CLEVR: CLEVR6 and CLEVR where the maximum
numbers of objects in an image are 6 and 10, respectively. CLEVR6 contains around 35,000 and CLEVR
contains around 100,000 images.

.2 Training Details

We adopt the training setup of Monnier et al. (2020) for clustering and Monnier et al. (2021) for multi-object
semantic discovery as our baseline. Hyperparameters are provided in Tables 10 and 11. For Table 8, we
report the mean and standard error of 3 runs. Due to its computational complexity, we adopt the training
schedule reported for CLEVR6 in Monnier et al. (2021) to CLEVR for DTI-Sprites (italic in Table 8). To
be comparable with the literature (Karazija et al., 2021), we reported the mean and standard deviation of
3 runs for Table 9. Results for DTI-Sprites and our variation are reported over the whole dataset.

24

Under review as submission to TMLR

Table 10: Training setup and hyperparameters for clustering.

Dataset MNIST ColoredMNIST FashionMNIST AffNIST USPS FRGC SVHN GTSRB-8
Model & Data
sprites 10 10 10 10 10 20 10 8
sprite tr. id, aff, mor, tps id, color, aff, tps id, color, aff, tps id, aff, mor, tps id, color, aff, tps id, color, aff, tps id, color, proj id, color, proj
sprite tr. curr. 10, 30, 40 10, 30, 60 10, 30, 50 10, 40, 50 120, 240, 400 100, 400, 800 16, 144 160, 1440
Training
batch size 128 128 128 128 128 128 128 128
learning rate 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3
weight decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
lr. step 70 90 70 74 500 1300 240 2400
epochs 80 100 80 90 640 1400 264 2640
λfreq 0.01 0.1 0 0.01 0 0.01 0.01 0.1
λbin 0 0.001 0 0 0.01 0 0.001 0

Table 11: Training setup and hyperparameters for multi-object decomposition.

Dataset Tetrominoes Multi-dSprites CLEVR6 CLEVR
Model & Data

sprites 19 3 6 6
bkg 0 1 1 1
objects 3 5 6 10
channels 3 3 3 3
frg., bkg., mask curr. 600, 0, 1 0, 0, 20 0, 0, 80 0, 0, 80
sprite/layer init. cons, cons, gauss. cons, cons, gauss. cons, mean, gauss. cons, mean, gauss.
init. values 0.9, 0.9, 0. 0.9, 0.5, 0. 0.9, 0., 0. 0.9, 0., 0.
gauss. std. 5 7 10 10
sprite tr. id id, scale+rot. id, proj. id, proj.
bkg. tr. - color color color
layer tr. color, scale+affine color, scale+affine color, scale+affine color, scale+affine
sprite tr. curr. - 40 300 300
sprite size 24, 24 28, 28 40, 40 40, 40
image size 35, 35 35, 35 128, 128 128, 128
occlusion - ✓ ✓ ✓
Training

avg. pool 1, 1 1, 1 1, 1 1, 1
batch size 32 32 32 32
learning rate 1e-4 1e-4 1e-4 1e-4
lr. step 1000, 1200 500, 1000 500,800 500, 800
epochs 1220 1020 900 900
λfreq 1e-3 0 0 0
λbin 1e-4 0 0 0
λempty - 1e-4 1e-3 1e-2

25

Under review as submission to TMLR

.2.1 Transformation Module

We follow the transformation setup and order in Table 12 according to Monnier et al. (2020; 2021). Table 12
demonstrates three levels of transformations, applied to the sprites, the background and the layers.

Table 12: Transformation setups of datasets. Transformations are selected and ordered depending on
the characteristics of each dataset. Transformations for background and layers are highlighted.

Dataset id. color affine morpho. tps proj. scale+rot. scale+affine
MNIST 1 2 3 4
ColoredMNIST 1 2 3 4
FashionMNIST 1 2 3 4
affNIST 1 2 3 4
USPS 1 2 3 4
FRGC 1 2 3 4
SVHN 1 2 3
GTSRB-8 1 2 3
Tetrominoes 1/1 1 2
Multi-dSprites 1 1/1 2 2
CLEVR(6) 1 1/1 2

26

	Introduction
	Related work
	Image Clustering
	Pixel-based clustering
	Deep features and clustering

	Image Decomposition

	Sprite-based approaches
	Unified View and Formalization
	Key components
	Layered image decomposition
	Clustering

	Sprite Generation
	Learning pixel values
	Decoding learned latent variables with a generator network (MLP or U-Net)

	Transformation
	Curriculum Learning
	Sprite-Specific vs. Shared Transformations

	Decision
	Minimum loss
	Probability prediction

	Composition Model and Training Criteria
	Composition model and reconstruction loss
	Regularizations

	Analysis on Clustering
	Experimental Setup
	Datasets
	Training and evaluation
	Reference setting

	Sprite Generation
	Transformation
	Curriculum learning
	Shared transformations

	Decision and Training Criteria
	Reconstruction loss and decision
	Regularization losses

	Comparison with State-of-the-art

	Analysis for Multi-layer Image Decomposition
	Experimental Setup
	Datasets
	Training details
	Metrics

	Results
	Regularizations
	Complexity
	Comparisons
	Qualitative results

	Conclusion
	Dataset Descriptions
	Training Details
	Transformation Module

