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Abstract

Compared to sequential learning models, graph-001
based neural networks exhibit excellent abil-002
ity in capturing global information and have003
been used for semi-supervised learning tasks,004
including citation network analysis or text clas-005
sification. Most Graph Convolutional Net-006
works are designed with the single-dimensional007
edge feature and failed to utilise the rich008
edge information about graphs. In this009
paper, we introduce the ME-GCN (Multi-010
dimensional Edge-enhanced Graph Convolu-011
tional Networks) for semi-supervised text clas-012
sification. A text graph for an entire corpus is013
firstly constructed to describe the undirected014
and multi-dimensional relationship of word-015
to-word, document-document, and word-to-016
document. The graph is initialised with corpus-017
trained multi-dimensional word and document018
node representation, and the relations are rep-019
resented according to the distance of those020
words/documents nodes. Then, the generated021
graph is trained with ME-GCN, which consid-022
ers the edge features as multi-stream signals,023
and each stream performs a separate graph con-024
volutional operation. Our ME-GCN can inte-025
grate a rich source of graph edge information of026
the entire text corpus. The results have demon-027
strated that our proposed model has signifi-028
cantly outperformed the state-of-the-art meth-029
ods across eight benchmark datasets.030

1 Introduction031

Deep Learning models, such as Recurrent Neural032

Networks (RNN) or Transformer, have performed033

well and have been widely used for text classifi-034

cation. However, the performance is not always035

satisfactory when utilising small labelled datasets.036

In many practical scenarios, the labelled dataset is037

very scarce as human labelling is time-consuming038

and may require domain knowledge. There is a039

pressing need for studying semi-supervised text040

classification with a relatively small number of la-041

belled training data in deep learning paradigm. For042

the successful semi-supervised text classification, it 043

is crucial to maximize effective utilization of struc- 044

tural and feature information of unlabelled data. 045

Graph Neural Networks have recently received 046

lots of attention as it can analyse rich relational 047

structure, prioritize global features exploitation, 048

and preserve global structure of a graph in embed- 049

dings. Due to these benefit, there have been suc- 050

cessful attempts to revisit semi-supervised learning 051

with Graph Convolutional Networks (GCN) (Kipf 052

and Welling, 2017). TextGCN (Yao et al., 2019) 053

initialises the whole text corpus as a document- 054

word graph and applies GCN. It shows potential of 055

GCN-based semi-supervised text classification. Hu 056

et al. (2019) worked on semi-supervised short text 057

classification using GCN with topic-entity, and Liu 058

et al. (2020) proposed tensorGCN with semantic, 059

syntactic, and sequential information. 060

One major problem in those existing GCN-based 061

text classification models is that edge features are 062

restricted to be one-dimensional, which are the in- 063

dication about whether there is edge or not (e.g. 064

binary connectedness) or often one-dimensional 065

real-value representing similarities (e.g. pmi, tf- 066

idf). Instead of being a binary indicator variable 067

or a single-dimensional value, edge features can 068

possess rich information and fully incorporated by 069

using multi-dimensional vectors. Addressing this 070

problem is likely to benefit several graph-based 071

classification problems but is particularly impor- 072

tant for the text classification task. This is because 073

the relationship between words and documents can 074

be better represented in a multi-dimensional vec- 075

tor space rather than a single value. For example, 076

word-based vector space models embed the words 077

in a vector space where similarly defined words 078

are mapped near to each other. Rather than us- 079

ing the lexical-based syntactic parsers or additional 080

resources, words that share semantic or syntactic 081

relationships will be represented by vectors of sim- 082

ilar magnitude and be mapped in close proximity 083
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to each other in the word embedding. Using this084

multi-dimensional word embedding as node and085

edge features, it would be more effective to anal-086

yse rich relational information and explore global087

structure of a graph. Then, what would be the088

best way to exploit edge features in a text graph089

convolutional network? According to the recently090

reported articles (Gong and Cheng, 2019; Khan091

and Blumenstock, 2019; Huang et al., 2020; Liu092

et al., 2020; Schlichtkrull et al., 2018), more rich093

information should be considered in the relations094

in the graph neural networks.095

In this paper, we propose a new multi-096

dimensional edge enhanced text graph convolu-097

tional networks (ME-GCN), which is suitable for098

the semi-supervised text classification. Note that099

the focus of our semi-supervised text classification100

task is on small proportion of labelled text docu-101

ments with no other resource, i.e. no pre-trained102

word embedding or language model, syntactic tag-103

ger or parser. We construct a single large textual104

graph from an entire corpus, which contains words105

and documents as nodes. The graph describes the106

undirected and multi-dimensional relationship of107

word-to-word, document-document, and word-to-108

document. Each word and document are initialised109

with corpus-trained multi-dimensional word and110

document embedding, and the relations are repre-111

sented based on the semantic distance of those rep-112

resentations. Then, the generated graph is trained113

with ME-GCN, which considers edge features as114

multi-stream signals, and each stream performs a115

separate graph convolutional operation. We con-116

duct experiments on several semi-supervised text117

classification benchmark datasets. The proposed118

model can achieve strong text classification per-119

formance with a small proportion of labelled doc-120

uments with no additional resources. The main121

contributions are as follows:122

1) To the best of our knowledge, this is the first123

attempt to apply multi-dimensional edge fea-124

tures on GNN for text classification.125

2) ME-GCN is proposed to use corpus-trained126

multi-dimensional word and document-based127

edge features for the semi-supervised text clas-128

sification.129

3) Experiments are conducted on several bench-130

mark datasets to illustrate the effectiveness of131

ME-GCN for semi-supervised text classifica-132

tion.133

2 Related Works 134

2.1 Semi-supervised text classification 135

Due to the high cost of human labelling and the 136

scarcity of fully-labelled data, semi-supervised 137

models have received attention in text classifica- 138

tion. Latent variable models (Chen et al., 2015) 139

apply topic models by user-oriented seed infor- 140

mation and infer the documents’ labels based on 141

category-topic assignment. The embedding-based 142

model (Tang et al., 2015; Meng et al., 2018) utilise 143

seed information to derive text (word or document) 144

embeddings for documents and labels for text clas- 145

sification. Yang et al. (2017) leveraged sequence- 146

to-sequence Variational AutoEncoders (VAEs), and 147

Miyato et al. (2017) utilized adversarial training to 148

the text domain by applying perturbations to the 149

word embeddings. Graph convolutional networks 150

(GCN) have been popular in semi-supervised learn- 151

ing as it shows superior global structure understand- 152

ing ability.(Kipf and Welling, 2017). 153

2.2 GNN for Text Classification 154

Graph Neural Networks have successfully used in 155

various NLP tasks (Bastings et al., 2017; Tu et al., 156

2019; Cao et al., 2019; Xu et al.). Yao et al. (2019) 157

proposed the Text Graph Convolutional Networks 158

by applying a basic GCN (Kipf and Welling, 2017) 159

to the text classification task. In their work, a text 160

graph for the whole corpus is constructed; word 161

and document nodes are initialised with one-hot 162

representation and edge features are represented 163

as one-dimensional real values, such as PMI, TF- 164

IDF. Several studies have attempted multiple dif- 165

ferent graph alignments using knowledge graph or 166

semantic/syntactic graph. Vashishth et al. (2019) 167

applied GCN to incorporate syntactic/semantic in- 168

formation for word embedding training. Cao et al. 169

(2019) proposed an alignment-oriented knowledge 170

graph embedding for entity alignment. TensorGCN 171

(Liu et al., 2020) proposed semantic, syntactic, 172

and sequential contextual information. In their 173

framework, multiple aspect graphs are constructed 174

from external resources, and those graph are jointly 175

trained. There are several Multi-aspect, Multi- 176

dimension edge research have been published but 177

none of them are working on the Natural Language 178

Processing field (Schlichtkrull et al., 2018; Khan 179

and Blumenstock, 2019; Ma et al., 2020; He et al., 180

2020). Hence, our model ME-GCN constructs and 181

trains multi-dimensional node and edge features 182

alone based on the given text corpus. 183
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3 ME-GCN184

We propose the Multi-dimensional Edge-enhanced185

Graph Convolutional Networks (ME-GCN) for186

semi-supervised text classification. Note that all187

graph components are only based on the given text188

corpus without using any external resources. We189

utilize the GCN as a base component, due to its190

simplicity and effectiveness. We first give a brief191

overview of GCN and introduce details of how to192

construct our corpus-based textual graph from a193

given text corpus. Finally, we present ME-GCN194

learning model.195

GCN Graph A GCN (Kipf and Welling, 2017)196

is a generalised version of the convolutional neural197

networks for semi-supervised learning that operates198

directly on the graph-structured data and induces199

embedding vectors of nodes based on properties200

of their neighbourhoods. Consider a graph G =201

(V,E,A), where V (|V | = N) is the set of graph202

nodes, E is the set of graph edges, and A ∈ RN×N203

is the graph adjacency matrix.204

3.1 Textual Graph Construction205

We first describe how to construct a textual graph206

that contains word/document node representation207

and multi-dimensional edge features for a whole208

text corpus. We apply a straightforward textual con-209

struction approach that treats words and documents210

as nodes in the graph. Unlike (Yao et al., 2019), we211

have three types of edges, namely word-document212

edge, word-word edge, and document-document213

edge with the aim to investigate all possible rela-214

tions between nodes. Formally, we define a ME-215

GCN graph GME = (V,E(t),ME(t)), where t216

denotes the tth dimensional edge, V (|V | = N) is217

the set of graph nodes of word/document, E(t) are218

the set of graph edges, which can be one of the219

three types, and ME(t) is the set of adjacency ma-220

trix at the tth dimension. The details of node and221

edge features construction are presented as follows.222

3.1.1 Textual Node Construction223

From an entire textual corpus, we construct word224

and document nodes in a graph so that the global225

word and document distance can be explicitly mod-226

eled and graph convolution can be easily adapted.227

ME-GCN considers the word and document nodes228

as components for preserving rich information and229

representing the global structure of a whole cor-230

pus, which can fully support for the successful231

semi-supervised text classification. With this in232

Figure 1: ME-GCN model architecture

mind, ME-GCN trains word/node feature by us- 233

ing a Word2Vec (Mikolov et al., 2013) for word 234

nodes, and a Doc2Vec (Le and Mikolov, 2014) for 235

document nodes. For instance, Word2Vec takes as 236

its input a whole corpus of words, and the trained 237

word vectors are positioned in a vector space such 238

that words that share common contexts in the cor- 239

pus are located in close proximity to one another 240

in the space. This is well-aligned with the role 241

of graph neural networks, representing the global 242

structure of the corpus, and preserving rich seman- 243

tic information of the corpus. Most importantly, 244

those word/document embeddings are distributed 245

representations of text in an T -dimensional space 246

so the distance between words and documents can 247

be represented as a multi-dimensional vector. For- 248

mally, the word/document node features in ME- 249

GCN are initialised as follows. Note that the nega- 250

tive sampling is applied to reduce the training time. 251

Word Node Construction We train the 252

Word2Vec CBOW (Mikolov et al., 2013) using 253

context words to predict the centre word. Assume 254

we have a given text corpus consisting of K docu- 255

ments and U unique words. The input is a set of 256

context words Xik in document k ∈ K encoded as 257

one-hot vector of size U . Then the hidden layer H 258

and output layer Output are formulated in equa- 259

tion (1) and (2), in which WU×T and W ′
T×U are 260

two projection matrix. After training, we extract 261

the U vectors of dimension T from the updated 262

matrix WU×T representing the corresponding U 263
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unique words in the whole corpus.264

H =
C∑
i=1

XikWU×T (1)265

Output = HW ′
T×U (2)266

Document Node Construction Doc2Vec CBOW267

(Le and Mikolov, 2014) is essentially the same as268

Word2Vec. In Doc2Vec, we feed the context words269

Xik together with the current document k to the270

model, which is also encoded as one-hot vector271

based on the document id, and the vector size be-272

comes Û = U +K. We have the projection matrix273

WÛ×T containing U +K vectors. After training,274

those K vectors in the updated WT×Û are used for275

representing the corresponding K document.276

H = DkWÛ×T +

C∑
i=1

XikWÛ×T (3)277

Output = HW ′
T×Û

(4)278

3.1.2 Multi-dimensional Edge Construction279

In this section, we describe how to construct a280

multi-dimensional edge feature in a graph. A281

traditional textual graph edge (Yao et al., 2019)282

was based on word occurrence in documents283

(document-word edges), and word co-occurrence284

in the whole corpus (word-word edges), however,285

the occurrence information is not enough to extract286

how close two pieces of text are in both surface287

proximity and meaning. According to Mikolov288

et al. (2013); Kusner et al. (2015), the distance289

between word/document embeddings learn seman-290

tically meaningful representations for words from291

local co-occurrences in sentences and each dimen-292

sion of word2vec and doc2vec represents the same293

aspect of word/document representations. Inspired294

by this, we utilise the distance between each dimen-295

sion of word/document embeddings to preserve296

the rich semantic information captured by edges,297

which are also presented as multi-dimensional vec-298

tors. To represent all possible edge types, we299

propose three types of edges: word-word edges,300

document-document edges, and word-document301

edges. Our goal is to incorporate the semantic sim-302

ilarity between individual node pairs (each unique303

word and document) into multi-dimensional edge304

features. One such measure for word/document305

node similarity is provided by their Euclidean306

distance in the Word2Vec or Doc2Vec embed-307

ding space. We separately use each dimension308

space in the node feature (Word2Vec/Dec2Vec) for309

representing each of the dimension in the multi- 310

dimensional node edge. Thus, we have T dimen- 311

sional edges between nodes of T dimensional fea- 312

tures and each t ∈ {1, 2, ..., T} is represented by 313

one dimensional Euclidean distance calculation in 314

the tth dimensional space. This edge calculation 315

method is applied to word-word and doc-doc edges. 316

Word-Word Edge Feature We draw on the 317

learned semantics in each feature dimension of 318

the word embedding of size T to calculate the 319

edge weight for each dimension. Concretely, 320

the T -dimensional word-word edge E
(t)
wi,wj , t ∈ 321

{1, 2, ..., T} between word i and word j is formu- 322

lated as in equation (5), in which W
(t)
i and W

(t)
j 323

represents the feature value at the dimension t of 324

the word embedding Wi for word i and Wj for 325

word j respectively. The denominator calculates 326

the distance of the two words regarding dimension 327

t and tanh(−1) is used for normalization. 328

E(t)
wi,wj

= tanh
1

|W (t)
i −W

(t)
j |

(5) 329

Doc-Doc Edge Feature The document-document 330

edge is constructed in a way similar to the word- 331

word edge. As is shown in equation (6), the T - 332

dimensional document-document edge E
(t)
di,dj

is 333

calculated based on the normalized Euclidean dis- 334

tance between the values D
(t)
i and D

(t)
j at each 335

dimension t of the features for document i and j. 336

E
(t)
di,dj

= tanh
1

|D(t)
i −D

(t)
j |

(6) 337

Word-Doc Edge Feature We use the same calcula- 338

tion method for a single-dimension word-document 339

edge as in TextGCN while repeating it for each 340

dimension t. Thus, the T -dimensional word- 341

document edge E
(t)
wi,dj

is simply represented as the 342

TF-IDF value of word i and document j. This is 343

repeated for each dimension t, as is formulated in 344

equation (7). We also found using TF-IDF weight 345

is better than using term frequency only. 346

E
(t)
wi,dj

= TF-IDFwi,dj (7) 347

ME
(t)
ij =



E
(t)
wi,wj wi, wj are words

E
(t)
di,dj

di, dj are docs, Wdi∩dj ≥ u

E
(t)
wi,dj

wi is word, dj is doc
1 i = j

0 otherwise

(8) 348

Formally, the multi-dimensional edge weights 349

between node i and j is defined as in equation 350
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(8). We noted that the threshold u for the doc-doc351

edges is not compulsory but efficient for the better352

computation. The detailed threshold is described353

in Section 4.3.354

3.2 ME-GCN Learning355

After constructing the multi-dimensional edge en-356

hanced text graph, we focus on applying effective357

learning framework to perform GCN on the textual358

graph with multi-dimensional edge features.359

The traditional GCN learning takes into the ini-360

tial input matrix H(0) ∈ RN×d0 containing N node361

features of size d0. Then the propagation through362

layers is made based on the rule in equation (9),363

which takes into consideration both node features364

and the graph structure in terms of connected edges.365

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)) (9)366

The l and (l+1) represents the two subsequent lay-367

ers, Â = D̃− 1
2 ÃD̃− 1

2 is the normalized symmetric368

adjacency matrix Ã = A+ I (I is an identity ma-369

trix for including self-connection), D̃ is the diago-370

nal node degree matrix with D̃(i, i) = ΣjÃ(i, j),371

and W (l) ∈ Rdl×dl+1 is a layer-specific train-372

able weight matrix for lth layer. dl and dl+1 in-373

dicates the node feature dimension for lth layer374

and (l + 1)th respectively. σ denotes a non-linear375

activation function for each layer such as Leaky376

ReLu/ReLU except for the output layer where soft-377

max is normally used for the classification.378

Our goal is to represent the node representation379

by aggregating neighbour information with each380

edge features in a multi-stream manner. Hence,381

we generalize the traditional GCN learning ap-382

proach to perform multi-stream(MS) learning for383

the multi-dimensional edge enhanced graph. The384

overall MS learning procedure is in equation (10),385

for each node feature in H(l) ∈ RN×dl , we ap-386

ply the multi-stream GCN learning fMS that for-387

mulates t streams of traditional GCN learning in388

equation (9) through the t dimensions of the con-389

nected edge, resulting in the multi-stream hidden390

feature H(l+1)
t ∈ RN×d

(l+1)
ms at (l+1)th layer. Here391

t ∈ {1, 2, ..., T} and d
(l+1)
ms is the multi-stream392

feature size for each edge dimension at this layer.393

Then a multi-stream aggregation function ϕMS is394

applied over the t streams, producing the feature395

matrix H(l+1) ∈ RN×d(l+1) that contains the ag-396

gregated feature for each node in N . Here we use397

concatenation function as ϕMS for the hidden398

layer in the multi-stream aggregation, leading us to399

have dl+1 = t ∗ d(l+1)
ms . Specifically, for the output 400

layer, pooling method is used instead and the de- 401

tails are provided in later paragraph. Accordingly, 402

the updated propagation rule is provided in equa- 403

tion (11). Unlike the original GCN propagation in 404

equation (9), we have T streams of GCN learning 405

in each layer, sharing the same input H(l) and prop- 406

agating based on the T adjacency matrices ME(t), 407

which involves a set of layer and stream specific 408

trainable weight matrices denoted as W (l)(t). We 409

also tried the shared-stream learning that shares the 410

trainable weight matrices across each stream but 411

found that separate stream-specific trainable weight 412

matrices have better performance. The compari- 413

son of the two learning mechanisms is provided in 414

Section Learning and Pooling Variant Testing5.2. 415

H(l) fMS−−−→ H
(l+1)
t

ϕMS−−−→ H(l+1) (10) 416
417

H(l+1) = ϕMS(fMS(H
(l),ME(t))) (11) 418

= ϕMS(σ(M̂E
(t)
H(l)W (l)(t))) 419

3.2.1 Pooling 420

Unlike the hidden layers where we use 421

concatenation to aggregate the node fea- 422

tures over each stream to continue propagation to 423

next layer, we instead apply the pooling at the 424

output layer to further synthesize the multi-stream 425

features of each node to do the final classification. 426

Equation (12) formulizes max pooling, in which 427

H
(lO)
t ∈ RN×d

lO
ms , t ∈ {1, 2, ..., T} denotes the 428

T streams of node features for N nodes at the 429

output layer lO, and here dlOms is the node feature 430

dimension that equals to the classification label 431

number C. Through max pooling, we select the 432

best valued features over the T streams for each 433

node in N before the final classification. We also 434

tried other pooling and provide the comparison in 435

Section Learning and Pooling Variant Testing 5.2. 436

poolingmax = max
1≤t≤T

(H
(lO)
t ) (12) 437

4 Evaluation Setup 438

We evaluate our ME-GCN on semi-supervised text 439

classification, and examine the effectiveness of 440

corpus-based multi-dimensional edge features. 441

4.1 Baselines 442

We compare ME-GCN with state-of-the-art semi- 443

supervised text classification models, which do not 444

use any external resources. Additionally, we also 445

include four baseline models, which use pretrained 446
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Datasets # Doc # Words # Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4

R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4

Agnews 6,000 5,360 11,360 4 35.2
Twit nltk 3,000 634 3,634 2 11.5

Waimai(zh) 11,987 10,979 22,966 2 15.5

Table 1: The summary statistics of datasets

embedding or language model: CNN-Pretrained,447

LSTM-Pretrained, BERT, and TMix.448

1)TF-IDF+LR, 2)TF-IDF+SVM: Term fre-449

quency inverse document frequency for feature en-450

gineering with Logistic Regression or SVM with451

rbf kernel. 3)CNN-Rand, 4)-Pretrained: Text-452

CNN (Kim, 2014) is used as the classifier. Both453

CNN-Rand using random initialized word embed-454

ding and CNN-Pretrained using pretrained word455

embedding are evaluated. We used English Glove-456

pretrained (Pennington et al., 2014) and Chinese457

Word Vectors (Li et al., 2018) for Chinese dataset-458

zh. 5)LSTM-Rand, 6)-Pretrained: We apply the459

same set-up as the CNN, but with Long Short-460

Term Memory (LSTM). 7)TextGCN: We follow461

the same hyperparameters of the TextGCN (Yao462

et al., 2019). 8)BERT: We use huggingface(Wolf463

et al., 2020) BERTBASE (Devlin et al., 2018) in our464

experiments (‘bert-base-chinese’ model is used for465

Chinese). 9)TMix: TMix(Chen et al., 2020) gen-466

erates new training text data by interpolating over467

labelled text encoded using BERT hidden represen-468

tation and train on the generated text data for text469

classification. We use the default setting provided.470

4.2 Dataset471

We evaluated our experiments on five widely used472

text classification benchmark datasets (Yao et al.,473

2019), 20NG, R8, R52, MR and Ohsumed, and474

three additional semi-supervised text classification475

datasets (Hu et al., 2019), Agnews, Twitter nltk and476

Waimai. All the data is split based on the extreme477

low resource text classification enviornment- 1%478

training and 99% test set. The summary statistics479

of the datasets can be found in Table 1. For the480

data sample selection, we randomly select them481

but the class distribution is followed by the original482

datasets. 1)20NG is a 20-class news classification483

dataset and we select 3,000 samples from the origi-484

nal dataset. 2)R8, 3)R52 are from Reuters which485

is a topic classification dataset with 8 classes and486

52 classes. 3,000 samples from each dataset are487

selected. 4)MR(Pang and Lee, 2005) is a binary488

classification dataset about movie comments and 489

we use all samples from the dataset. 5)Ohsumed 490

is a medical dataset with 23 classes, and we select 491

3,000 samples from the original dataset. 6)Ag- 492

news(Zhang et al., 2015) is a 4-class news clas- 493

sification dataset and 6,000 samples are selected. 494

7)Twitter nltk is a binary classification sentiment 495

analysis from Twitter, we sampled 1,500 positive 496

and 1,500 test samples from the original dataset. 497

8)Waimai is a binary sentiment analysis dataset 498

about food delivery service comments from a Chi- 499

nese online food ordering platform. The dataset is 500

in Chinese and pre-tokenized. We use all samples 501

from the original dataset. All the datasets have been 502

made anonymous, for example, "@somebody" has 503

been changed to "@USER". 504

5 Results Analysis 505

5.1 Performance Evaluation 506

Table 2 presents a comprehensive performance ex- 507

periment, conducted on the benchmark datasets. 508

The most bottom row shows the accuracy from our 509

best models using either max or average pooling.1 510

Overall, our proposed model significantly out- 511

performs the baseline models on all eight datasets, 512

demonstrating the effectiveness of our ME-GCN 513

on semi-supervised text classification for various 514

length of text. With in-depth analysis, CNN/LSTM- 515

Rand is quite low in performance on several 516

datasets but increases significantly when using pre- 517

trained embeddings. While TextGCN achieves bet- 518

ter accuracy than above baselines on most datasets, 519

the performance is all lower than ME-GCN. This 520

shows the efficiency of preserving rich informa- 521

tion using multi-dimensional edge features. The 522

merit of pre-training stands out with BERT and 523

TMix, producing better accuracy than the base- 524

line TextGCN on most datasets. Especially, BERT 525

achieves the best and second best performance on 526

MR and Waimai, which are short-text sentiment 527

analysis datasets. This would be because of the two 528

aspects of sentiment classification: (1) compared to 529

topic-specific text classification, sentiment analysis 530

task may benefit from the pretrained general se- 531

mantics learned from a large external text; (2) word 532

order matters for sentiment analysis, which could 533

be missing in GNNs. Nevertheless, our ME-GCN, 534

with no external resources, still outperforms those 535

pertrained models in seven datasets, illustrating 536

1The detailed comparison of pooling method variants can
be found in Table 3.
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Methods Pretrained 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
TFIDF + SVM ✗ 0.2529 0.7246 0.5932 0.1589 0.5884 0.4241 0.5737 0.7521
TFIDF + LR ✗ 0.2633 0.7249 0.6332 0.1798 0.5871 0.5370 0.5791 0.7381
CNN - Rand ✗ 0.0768 0.7219 0.6325 0.1889 0.5641 0.3825 0.5822 0.7784
CNN - Pretrained ✓ 0.2380 0.7428 0.6896 0.2458 0.6005 0.6636 0.6088 0.7926
LSTM - Rand ✗ 0.0545 0.6788 0.4253 0.1319 0.5442 0.3444 0.5458 0.6458
LSTM - Pretrained ✓ 0.0593 0.6919 0.5285 0.0948 0.5933 0.5815 0.6098 0.6663
TextGCN ✗ 0.1188 0.8628 0.4847 0.1612 0.6222 0.7420 0.7806 0.8065
BERT ✓ 0.1347 0.5148 0.6291 0.1464 0.7666 0.7261 0.7024 0.8248
TMix ✓ 0.2286 0.7322 0.6195 0.1721 0.6267 0.8025 0.6111 0.6376
Our ME-GCN ✗ 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 2: Test accuracy comparison with baselines on benchmark datasets. The bottom row shows the best test
accuracy from our proposed model using either max pooling or average pooling. The comparison of our model
performance for each dataset using the three pooling methods is provided in Table 3. The second best is underlined.

Pooling Method 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Max Pooling 0.2775 0.8473 0.7828 0.2475 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.2861 0.8679 0.7675 0.2740 0.6658 0.7911 0.8205 0.8303
Min Pooling 0.0424 0.2987 0.2550 0.0294 0.5000 0.2005 0.5000 0.6663

Table 3: Test accuracy of ME-GCN with three different pooling methods, max, average, and min pooling

Learning Methods 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Separated Learning 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Shared Learning 0.1582 0.8016 0.6554 0.2635 0.6575 0.6993 0.7037 0.8137

Table 4: Test accuracy of ME-GCN with two multi-stream learning methods, shared and separated learners.

the potential superiority of self-exploration on the537

corpus via multi-dimensional edge graph in com-538

parison of pretraining on large external resource.539

5.2 Learning and Pooling Variant Testing540

We compare ME-GCN with three different pooling541

approaches (max, average, and min pooling) and542

the result is shown in Table 3. Most datasets pro-543

duce better results when using max pooling, and544

the result with max and average pooling outper-545

forms that with min pooling. This is very obvious546

because the min pooling captures the minimum547

value of each graph component.548

We also compare two multi-stream graph learn-549

ing methods, including separated and shared stream550

learning to examine the effectiveness of ME-GCN551

learning with multi-dimensional edge features. Ta-552

ble 4 presents that the separated stream learners553

significantly outperforms the shared learners. This554

shows it is much efficient to learn each dimensional555

stream with an individual learning unit and initially556

understand the local structure, instead of learning557

all global structures at once.558

5.3 Impact of Edge Feature Dimension559

To evaluate the effect of the dimension size of the560

edge features, we tested ME-GCN with different561

dimensions. Figure 2 shows the test accuracy of our562

ME-GCN model on the four dataset, including R8,563

R52, MR, Waimai(zh). The bottom right corner564

(a) R8 (b) R52

(c) MR (d) Waimai(zh)

Figure 2: Test accuracy by varying edge feature di-
mensions. The bottom right corner shows the average
number of words per document in each corpus.

for each subgraph includes the average number of 565

the words per document. We noted that the test 566

accuracy is related to the average number of words 567

per document in the corpus. For instance, for ‘MR’ 568

(avg #: 18.4), test accuracy first increases with the 569

increase of the size of edge feature dimensions, 570

reaching the highest value at 10; it falls when its 571

dimension is higher than 15. However, for R8 and 572

R52 (avg #: 84.2 and 104.5), got the highest value 573

at 20 or 25. This is consistent with the intuition that 574

7



Word Embedding 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Word2Vec 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

fastText 0.2510 0.8394 0.7783 0.2550 0.6727 0.7812 0.8333 0.8191
GloVe 0.2526 0.8247 0.7835 0.2832 0.6895 0.7628 0.8341 0.8298

Table 5: Test accuracy comparison of our ME-GCN model with different word embedding techniques to train word
node embeddings and word-word multi-dimensional edge features.

(a) Dim = 5, second layer (b) Dim = 25, second layer

Figure 3: t-SNE visualisation of test set document em-
beddings in AgNews (4 classes). The (a) and (b) show
second layer document embeddings learned by 5 and 25
dimensional node and edge features respectively.

(a) R52 (b) Twitter nltk

Figure 4: Test accuracy comparison with different num-
ber of labelled documents.

the average number of words per document in the575

corpus should align with the dimension size of the576

edge features in ME-GCN. The trend is different577

in waimai dataset as it is Chinese, this is because578

different languages would have different nature of579

choosing the efficient edge feature dimension.580

Moreover, in order to analyse the impact of the581

edge feature dimension, we present an illustrative582

visualisation of the document embeddings learned583

by ME-GCN. We use the t-SNE tool (Van der584

Maaten and Hinton, 2008) in order to visualise585

the learned document embeddings. Figure 3 shows586

the visualisation of test set document embeddings587

in AgNews learned by ME-GCN (second layer) 5588

and 25 dimensional node and edge features. The589

AgNews has 4 classes and the average number of590

words per document is 35.2. Instead of dim=5,591

having dim=25 as edge features would better to592

separate them into four classes.593

5.4 Impact of Ratio of Labelled Docs594

We choose 3 representative methods with the595

best performance from Table 2: CNN-Pretrained,596

TextGCN and our ME-GCN, in order to study the 597

impact of the number of labelled documents. Par- 598

ticularly, we vary the ratio of labelled documents 599

and compare their performance on the two datasets, 600

Twitter nltk and R52, that have the smallest num- 601

ber and largest number of classes. Figure 4 reports 602

test accuracies with 1%, 10%, and 33% of the R52 603

and Twitter nltk training set. We note that our ME- 604

GCN outperforms all other methods consistently. 605

For instance, ME-GCN achieves a test accuracy 606

of 0.8232 on Twitter nltk with only 1% training 607

documents and a test accuracy of 0.8552 on R52 608

with only 10% training documents which are higher 609

than other models with even the 33% training doc- 610

uments. It demonstrates that our method can more 611

effectively take advantage of the limited labelled 612

data for text classification. 613

5.5 Comparison of Embedding Variants 614

ME-GCN apply a Word2Vec CBOW in order to 615

train the word node embedding and the related 616

multi-dimensional edge feature. We compare our 617

model with three different word embedding tech- 618

niques, Word2Vec, fastText, and Glove in Table 5. 619

We noted that using Word2Vec and Glove, word- 620

based models, is comparatively higher than apply- 621

ing the fastText, a character n-gram-based model. 622

This would be affected because the node and edge 623

of ME-GCN are based on words, not characters. 624

6 Conclusion 625

We introduced ME-GCN (Multi-dimensional Edge- 626

enhanced Graph Convolutional Networks) for semi- 627

supervised text classification, which takes full ad- 628

vantage of both limited labelled and large unla- 629

belled data by rich node and edge information 630

propagation. We propose corpus-trained multi- 631

dimensional edge features to efficiently handle the 632

distance/closeness between words and documents 633

as multi-dimensional edge features, and all graph 634

components are based on the given text corpus 635

only. ME-GCN demonstrates promising results by 636

outperforming numerous state-of-the-arts on eight 637

semi-supervised text classification datasets consis- 638

tently. In the future, it would be interesting to make 639

this multi-aspect graph under inductive learning. 640
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20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
# Stream 30 20 25 30 10 20 25 30

Document Threshold 15 10 15 5 5 5 3 3
Pooling Method avg avg max avg max avg max max

Accuracy 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 6: Best hyperparameters for each dataset

20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)

Word Node
# Parameters 304,750 217,650 230,950 432,950 225,050 268,000 31,700 548,950

Running Time(s) 118 25 76 140 71 83 20 74

Doc Node
# Parameters 454,750 367,650 380,950 582,950 758,150 568,000 181,700 1,148,300

Running Time(s) 104 35 118 272 270 140 29 312

Model Learning
# Parameters 328,125 140,625 828,125 375,000 46,875 78,125 46,875 46,875

Running Time(s) 198 16 164 286 120 612 14 610

Total
# Parameters 1,087,625 725,925 1,440,025 1,390,900 1,030,075 914,125 260,275 1,744,125

Running Time(s) 420 76 358 698 461 835 63 996

Table 7: Number of Parameters and Running time for each dataset

A Settings822

A.1 Hyperparameter Setting823

All documents are tokenized using NLTK tok-824

enizer(Bird et al., 2009), and words occurring no825

more than 5 times have been excluded. Both826

word2vec and Dec2vec are trained on the corpus we827

get using gensim package with window_size =828

5 and iter = 200. The initial feature dimension829

for node and document is set to d0 = 25, which830

is same to the multi-dimension number for edge831

features and multi-stream number T in ME-GCN832

learning. Different multi-stream numbers are tested833

and discussed in 5.3. The threshold u = 5 is used834

for document-document edge construction. We835

use two-layers of multi-stream GCN learning with836

dl1ms = 25 (thus dl1 = 625) for the first multi-837

stream GCN layer and dlOms = C(no. of label in the838

datasets) for the output layer. In the training pro-839

cess, following Liu et al. (2020), we use dropout840

rate as 0.5 and learning rate as 0.002 with Adam op-841

timizer. The number of epochs is 2000 and 10% of842

the training set is used as the validation set for early843

stopping when there is no decreasing in validation844

set’s loss for 100 consecutive epochs.845

A.2 Hyperparemeter Search846

For each dataset we use grid search to find the847

best set of hyperparameters and select the base848

model based on the average accuracy by running849

each model for 5 times. The number of stream:850

5,10,20,25,30,40,50. The document edge thresh-851

old: 3,5,10,15. The pooling method: max pooling,852

min pooling, average pooling. The number of hy-853

perparameter search trials is 72(= 6 ∗ 4 ∗ 3) for854

each dataset. The best hyperparameters for each855

Figure 5: Number of Parameters Comparison

dataset and their average accuracy on test set shows 856

in Table 6. And the trend of validation performance 857

is very similar to the testing performance trend. 858

A.3 Running Details 859

All the models are trained by using 16 In- 860

tel(R) Core(TM) i9-9900X CPU @ 3.50GHz and 861

NVIDIA Titan RTX 24GB using Pytorch (Paszke 862

et al., 2019). 863

The number of parameters for each part of the 864

model is: Word Node (Word2vec): 2UT , Docu- 865

ment Node (Doc2vec): 2T (U + K), ME-GCN 866

Learning: T 2dl1ms(1 + C). The default value of 867

dl1ms is 25. Table 7 shows the number of parameters 868

and training time when using the default hyperpa- 869

rameters. The number of parameters of TextGCN 870

is (U +K) ∗D +D ∗ C and the default value of 871

D is 200. Comparison of the number of parame- 872

ters between TextGCN and our ME-GCN shows in 873

figure 5. 874
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B License875

The license for packages used in this paper:876

• Pytorch: Copyright (c) 2016- Facebook, Inc877

(Adam Paszke)878

• Hugging Face: Apache License 2.0879

• Glove-pretrained: Apache License 2.0880

• Chinese Word Vectors: Apache License 2.0881

C Links Related to Datasets and Baseline882

Models883

The links for Datasets:884

• 20NG: http://qwone.com/~jason/20Newsgro885

ups/886

• R8, R52: https://www.cs.umb.edu/~smimar887

og/textmining/datasets/888

• MR: http://www.cs.cornell.edu/people/pabo889

/movie-review-data/890

• Ohsumed: http://disi.unitn.it/moschitti/corp891

ora.htm892

• Agnews: http://www.di.unipi.it/~gulli/AG_c893

orpus_of_news_articles894

• Twitter nltk: http://nltk.org/howto/twitter.h895

tml896

• Waimai: https://github.com/SophonPlus/Ch897

ineseNlpCorpus/898

The links for Baseline Models:899

• TextCNN: https://github.com/DongjunLee/te900

xt-cnn-tensorflow901

• TextGCN: https://github.com/yao8839836/te902

xt_gcn903

• BERT BASE: https://huggingface.co/bert-ba904

se-uncased905

• Tmix: https://github.com/GT-SALT/MixText906

• Chinese BERT: https://huggingface.co/bert-907

base-chinese908

• GloVe-pretrained: https://nlp.stanford.edu909

/projects/glove/910

• Chinese Word Vectors: https://github.com/E911

mbedding/Chinese-Word-Vectors912

The tokenizer used: 913

• English Tokenizer - NLTK: https://www.nl 914

tk.org/api/nltk.tokenize.html 915

• Chinese Tokenizer - Jieba: https://github.c 916

om/fxsjy/jieba 917
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