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Abstract

Compared to sequential learning models, graph-
based neural networks exhibit excellent abil-
ity in capturing global information and have
been used for semi-supervised learning tasks,
including citation network analysis or text clas-
sification. Most Graph Convolutional Net-
works are designed with the single-dimensional
edge feature and failed to utilise the rich
edge information about graphs. In this
paper, we introduce the ME-GCN (Multi-
dimensional Edge-enhanced Graph Convolu-
tional Networks) for semi-supervised text clas-
sification. A text graph for an entire corpus is
firstly constructed to describe the undirected
and multi-dimensional relationship of word-
to-word, document-document, and word-to-
document. The graph is initialised with corpus-
trained multi-dimensional word and document
node representation, and the relations are rep-
resented according to the distance of those
words/documents nodes. Then, the generated
graph is trained with ME-GCN, which consid-
ers the edge features as multi-stream signals,
and each stream performs a separate graph con-
volutional operation. Our ME-GCN can inte-
grate a rich source of graph edge information of
the entire text corpus. The results have demon-
strated that our proposed model has signifi-
cantly outperformed the state-of-the-art meth-
ods across eight benchmark datasets.

1 Introduction

Deep Learning models, such as Recurrent Neural
Networks (RNN) or Transformer, have performed
well and have been widely used for text classifi-
cation. However, the performance is not always
satisfactory when utilising small labelled datasets.
In many practical scenarios, the labelled dataset is
very scarce as human labelling is time-consuming
and may require domain knowledge. There is a
pressing need for studying semi-supervised text
classification with a relatively small number of la-
belled training data in deep learning paradigm. For

the successful semi-supervised text classification, it
is crucial to maximize effective utilization of struc-
tural and feature information of unlabelled data.

Graph Neural Networks have recently received
lots of attention as it can analyse rich relational
structure, prioritize global features exploitation,
and preserve global structure of a graph in embed-
dings. Due to these benefit, there have been suc-
cessful attempts to revisit semi-supervised learning
with Graph Convolutional Networks (GCN) (Kipf
and Welling, 2017). TextGCN (Yao et al., 2019)
initialises the whole text corpus as a document-
word graph and applies GCN. It shows potential of
GCN-based semi-supervised text classification. Hu
et al. (2019) worked on semi-supervised short text
classification using GCN with topic-entity, and Liu
et al. (2020) proposed tensorGCN with semantic,
syntactic, and sequential information.

One major problem in those existing GCN-based
text classification models is that edge features are
restricted to be one-dimensional, which are the in-
dication about whether there is edge or not (e.g.
binary connectedness) or often one-dimensional
real-value representing similarities (e.g. pmi, tf-
idf). Instead of being a binary indicator variable
or a single-dimensional value, edge features can
possess rich information and fully incorporated by
using multi-dimensional vectors. Addressing this
problem is likely to benefit several graph-based
classification problems but is particularly impor-
tant for the text classification task. This is because
the relationship between words and documents can
be better represented in a multi-dimensional vec-
tor space rather than a single value. For example,
word-based vector space models embed the words
in a vector space where similarly defined words
are mapped near to each other. Rather than us-
ing the lexical-based syntactic parsers or additional
resources, words that share semantic or syntactic
relationships will be represented by vectors of sim-
ilar magnitude and be mapped in close proximity



to each other in the word embedding. Using this
multi-dimensional word embedding as node and
edge features, it would be more effective to anal-
yse rich relational information and explore global
structure of a graph. Then, what would be the
best way to exploit edge features in a text graph
convolutional network? According to the recently
reported articles (Gong and Cheng, 2019; Khan
and Blumenstock, 2019; Huang et al., 2020; Liu
et al., 2020; Schlichtkrull et al., 2018), more rich
information should be considered in the relations
in the graph neural networks.

In this paper, we propose a new multi-
dimensional edge enhanced text graph convolu-
tional networks (ME-GCN), which is suitable for
the semi-supervised text classification. Note that
the focus of our semi-supervised text classification
task is on small proportion of labelled text docu-
ments with no other resource, i.e. no pre-trained
word embedding or language model, syntactic tag-
ger or parser. We construct a single large textual
graph from an entire corpus, which contains words
and documents as nodes. The graph describes the
undirected and multi-dimensional relationship of
word-to-word, document-document, and word-to-
document. Each word and document are initialised
with corpus-trained multi-dimensional word and
document embedding, and the relations are repre-
sented based on the semantic distance of those rep-
resentations. Then, the generated graph is trained
with ME-GCN, which considers edge features as
multi-stream signals, and each stream performs a
separate graph convolutional operation. We con-
duct experiments on several semi-supervised text
classification benchmark datasets. The proposed
model can achieve strong text classification per-
formance with a small proportion of labelled doc-
uments with no additional resources. The main
contributions are as follows:

1) To the best of our knowledge, this is the first
attempt to apply multi-dimensional edge fea-
tures on GNN for text classification.

2) ME-GCN is proposed to use corpus-trained
multi-dimensional word and document-based
edge features for the semi-supervised text clas-
sification.

3) Experiments are conducted on several bench-
mark datasets to illustrate the effectiveness of
ME-GCN for semi-supervised text classifica-
tion.

2 Related Works

2.1 Semi-supervised text classification

Due to the high cost of human labelling and the
scarcity of fully-labelled data, semi-supervised
models have received attention in text classifica-
tion. Latent variable models (Chen et al., 2015)
apply topic models by user-oriented seed infor-
mation and infer the documents’ labels based on
category-topic assignment. The embedding-based
model (Tang et al., 2015; Meng et al., 2018) utilise
seed information to derive text (word or document)
embeddings for documents and labels for text clas-
sification. Yang et al. (2017) leveraged sequence-
to-sequence Variational AutoEncoders (VAEs), and
Miyato et al. (2017) utilized adversarial training to
the text domain by applying perturbations to the
word embeddings. Graph convolutional networks
(GCN) have been popular in semi-supervised learn-
ing as it shows superior global structure understand-
ing ability.(Kipf and Welling, 2017).

2.2 GNN for Text Classification

Graph Neural Networks have successfully used in
various NLP tasks (Bastings et al., 2017; Tu et al.,
2019; Cao et al., 2019; Xu et al.). Yao et al. (2019)
proposed the Text Graph Convolutional Networks
by applying a basic GCN (Kipf and Welling, 2017)
to the text classification task. In their work, a text
graph for the whole corpus is constructed; word
and document nodes are initialised with one-hot
representation and edge features are represented
as one-dimensional real values, such as PMI, TF-
IDF. Several studies have attempted multiple dif-
ferent graph alignments using knowledge graph or
semantic/syntactic graph. Vashishth et al. (2019)
applied GCN to incorporate syntactic/semantic in-
formation for word embedding training. Cao et al.
(2019) proposed an alignment-oriented knowledge
graph embedding for entity alignment. TensorGCN
(Liu et al., 2020) proposed semantic, syntactic,
and sequential contextual information. In their
framework, multiple aspect graphs are constructed
from external resources, and those graph are jointly
trained. There are several Multi-aspect, Multi-
dimension edge research have been published but
none of them are working on the Natural Language
Processing field (Schlichtkrull et al., 2018; Khan
and Blumenstock, 2019; Ma et al., 2020; He et al.,
2020). Hence, our model ME-GCN constructs and
trains multi-dimensional node and edge features
alone based on the given text corpus.



3 ME-GCN

We propose the Multi-dimensional Edge-enhanced
Graph Convolutional Networks (ME-GCN) for
semi-supervised text classification. Note that all
graph components are only based on the given text
corpus without using any external resources. We
utilize the GCN as a base component, due to its
simplicity and effectiveness. We first give a brief
overview of GCN and introduce details of how to
construct our corpus-based textual graph from a
given text corpus. Finally, we present ME-GCN
learning model.

GCN Graph A GCN (Kipf and Welling, 2017)
is a generalised version of the convolutional neural
networks for semi-supervised learning that operates
directly on the graph-structured data and induces
embedding vectors of nodes based on properties
of their neighbourhoods. Consider a graph G =
(V,E,A), where V(|V| = N) is the set of graph
nodes, F is the set of graph edges, and A € RV*N
is the graph adjacency matrix.

3.1 Textual Graph Construction

We first describe how to construct a textual graph
that contains word/document node representation
and multi-dimensional edge features for a whole
text corpus. We apply a straightforward textual con-
struction approach that treats words and documents
as nodes in the graph. Unlike (Yao et al., 2019), we
have three types of edges, namely word-document
edge, word-word edge, and document-document
edge with the aim to investigate all possible rela-
tions between nodes. Formally, we define a ME-
GCN graph Gy = (V, E®, ME®), where t
denotes the " dimensional edge, V' (|V| = N) is
the set of graph nodes of word/document, E® are
the set of graph edges, which can be one of the
three types, and M E) is the set of adjacency ma-
trix at the #* dimension. The details of node and
edge features construction are presented as follows.

3.1.1 Textual Node Construction

From an entire textual corpus, we construct word
and document nodes in a graph so that the global
word and document distance can be explicitly mod-
eled and graph convolution can be easily adapted.
ME-GCN considers the word and document nodes
as components for preserving rich information and
representing the global structure of a whole cor-
pus, which can fully support for the successful
semi-supervised text classification. With this in
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Figure 1: ME-GCN model architecture

mind, ME-GCN trains word/node feature by us-
ing a Word2Vec (Mikolov et al., 2013) for word
nodes, and a Doc2Vec (Le and Mikolov, 2014) for
document nodes. For instance, Word2Vec takes as
its input a whole corpus of words, and the trained
word vectors are positioned in a vector space such
that words that share common contexts in the cor-
pus are located in close proximity to one another
in the space. This is well-aligned with the role
of graph neural networks, representing the global
structure of the corpus, and preserving rich seman-
tic information of the corpus. Most importantly,
those word/document embeddings are distributed
representations of text in an 7-dimensional space
so the distance between words and documents can
be represented as a multi-dimensional vector. For-
mally, the word/document node features in ME-
GCN are initialised as follows. Note that the nega-
tive sampling is applied to reduce the training time.

Word Node Construction We train the
Word2Vec CBOW (Mikolov et al., 2013) using
context words to predict the centre word. Assume
we have a given text corpus consisting of K docu-
ments and U unique words. The input is a set of
context words X;;, in document k € K encoded as
one-hot vector of size U. Then the hidden layer H
and output layer Output are formulated in equa-
tion (1) and (2), in which Wiy« and W, are
two projection matrix. After training, we extract
the U vectors of dimension 7' from the updated
matrix Wy« representing the corresponding U



unique words in the whole corpus.

C

H=> XyWyur )
i=1

Output = HWi, (s 2)

Document Node Construction Doc2Vec CBOW
(Le and Mikolov, 2014) is essentially the same as
Word2Vec. In Doc2Vec, we feed the context words
X1 together with the current document k to the
model, which is also encoded as one-hot vector
based on the document id, and the vector size be-
comes U = U + K. We have the projection matrix
WUXT containing U + K vectors. After training,
those K vectors in the updated W, ; are used for
representing the corresponding K document.

C

H = DkWUXT + ZXikWUXT 3)
=1

Output = H W}X P 4)

3.1.2 Multi-dimensional Edge Construction

In this section, we describe how to construct a
multi-dimensional edge feature in a graph. A
traditional textual graph edge (Yao et al., 2019)
was based on word occurrence in documents
(document-word edges), and word co-occurrence
in the whole corpus (word-word edges), however,
the occurrence information is not enough to extract
how close two pieces of text are in both surface
proximity and meaning. According to Mikolov
et al. (2013); Kusner et al. (2015), the distance
between word/document embeddings learn seman-
tically meaningful representations for words from
local co-occurrences in sentences and each dimen-
sion of word2vec and doc2vec represents the same
aspect of word/document representations. Inspired
by this, we utilise the distance between each dimen-
sion of word/document embeddings to preserve
the rich semantic information captured by edges,
which are also presented as multi-dimensional vec-
tors. To represent all possible edge types, we
propose three types of edges: word-word edges,
document-document edges, and word-document
edges. Our goal is to incorporate the semantic sim-
ilarity between individual node pairs (each unique
word and document) into multi-dimensional edge
features. One such measure for word/document
node similarity is provided by their Euclidean
distance in the Word2Vec or Doc2Vec embed-
ding space. We separately use each dimension
space in the node feature (Word2Vec/Dec2Vec) for

representing each of the dimension in the multi-
dimensional node edge. Thus, we have T dimen-
sional edges between nodes of T dimensional fea-
tures and each t € {1,2,..., T} is represented by
one dimensional Euclidean distance calculation in
the ¢'* dimensional space. This edge calculation
method is applied to word-word and doc-doc edges.

Word-Word Edge Feature We draw on the
learned semantics in each feature dimension of
the word embedding of size 7' to calculate the
edge weight for each dimension. Concretely,
the T'-dimensional word-word edge Egle,t €
{1,2,..., T} between word i and word j is formu-
lated as in equation (5), in which Wi(t) and Wj(t)
represents the feature value at the dimension ¢ of
the word embedding W; for word i and W; for
word j respectively. The denominator calculates
the distance of the two words regarding dimension
t and tanh(~!) is used for normalization.

EW — tanh; 5)

Wi wy ’Wz(t) _ Wj(t)’

Doc-Doc Edge Feature The document-document
edge is constructed in a way similar to the word-
word edge. As is shown in equation (6), the T-
dimensional document-document edge Eéi) d; is
calculated based on the normalized Euclidean dis-
tance between the values Dl@ and Dj(-t) at each

dimension ¢ of the features for document ¢ and j.

®  _ 1
Edi,dj = tanh’D(t) - D(.t)\ (6)
J

1

Word-Doc Edge Feature We use the same calcula-
tion method for a single-dimension word-document
edge as in TextGCN while repeating it for each
dimension ¢. Thus, the 7T-dimensional word-
document edge ES}? d; is simply represented as the
TF-IDF value of word ¢ and document j. This is
repeated for each dimension ¢, as is formulated in
equation (7). We also found using TF-IDF weight
is better than using term frequency only.

ES), = TFIDF,, 4 %
Efut,i),wj w;, w; are words
t
i = Buw,a, wiisword,d;isdoc (8)
1 i=j
0 otherwise

Formally, the multi-dimensional edge weights
between node ¢ and j is defined as in equation



(8). We noted that the threshold u for the doc-doc
edges is not compulsory but efficient for the better
computation. The detailed threshold is described
in Section 4.3.

3.2 ME-GCN Learning

After constructing the multi-dimensional edge en-
hanced text graph, we focus on applying effective
learning framework to perform GCN on the textual
graph with multi-dimensional edge features.

The traditional GCN learning takes into the ini-
tial input matrix H(©) € RN*% containing N node
features of size dy. Then the propagation through
layers is made based on the rule in equation (9),
which takes into consideration both node features
and the graph structure in terms of connected edges.

HFD = f(HO A) = o(AHOW D) (9)

The [ and (I + 1) represents the two subsequent lay-
ers, A = D=2 AD~2 is the normalized symmetric
adjacency matrix A = A + I (I is an identity ma-
trix for including self-connection), D is the diago-
nal node degree matrix with D(i,4) = 3, A(i, j),
and W e RUxdit1 g a layer-specific train-
able weight matrix for Ith layer. d; and d;4; in-
dicates the node feature dimension for /th layer
and (I + 1)th respectively. o denotes a non-linear
activation function for each layer such as Leaky
ReLu/ReLU except for the output layer where soft-
max is normally used for the classification.

Our goal is to represent the node representation
by aggregating neighbour information with each
edge features in a multi-stream manner. Hence,
we generalize the traditional GCN learning ap-
proach to perform multi-stream(MS) learning for
the multi-dimensional edge enhanced graph. The
overall MS learning procedure is in equation (10),
for each node feature in H) € RN*4, we ap-
ply the multi-stream GCN learning fjg that for-
mulates ¢ streams of traditional GCN learning in
equation (9) through the ¢ dimensions of the con-
nected edge, resulting in the multi-stream hidden
feature Ht(lﬂ) e RNxdni" o (I+1)th layer. Here
t € {1,2,..,T} and a5tV is the multi-stream
feature size for each edge dimension at this layer.
Then a multi-stream aggregation function ¢, is
applied over the ¢ streams, producing the feature
matrix H(*+1D e RV*dut1) that contains the ag-
gregated feature for each node in N. Here we use
concatenation function as ¢p;g for the hidden
layer in the multi-stream aggregation, leading us to

have djy1 =t * dg,l»;fl). Specifically, for the output

layer, pooling method is used instead and the de-
tails are provided in later paragraph. Accordingly,
the updated propagation rule is provided in equa-
tion (11). Unlike the original GCN propagation in
equation (9), we have T streams of GCN learning
in each layer, sharing the same input H*) and prop-
agating based on the T adjacency matrices M E(®),
which involves a set of layer and stream specific
trainable weight matrices denoted as ()1 We
also tried the shared-stream learning that shares the
trainable weight matrices across each stream but
found that separate stream-specific trainable weight
matrices have better performance. The compari-
son of the two learning mechanisms is provided in
Section Learning and Pooling Variant Testing5.2.

gO fms Ht(l-i-l) dms H+D) (10)
HY = gps(fars(HO, MEDY)  (11)

— dars(o(M g HOWOOY)

3.2.1 Pooling

Unlike the hidden layers where we use
concatenation to aggregate the node fea-
tures over each stream to continue propagation to
next layer, we instead apply the pooling at the
output layer to further synthesize the multi-stream
features of each node to do the final classification.
Equation (12) formulizes max pooling, in which
Ht(lO) IS RNXdiv%,t € {1,2,...,T} denotes the
T streams of node features for N nodes at the
output layer [, and here d'9, is the node feature
dimension that equals to the classification label
number C. Through max pooling, we select the
best valued features over the T' streams for each
node in NV before the final classification. We also
tried other pooling and provide the comparison in
Section Learning and Pooling Variant Testing 5.2.

Poolingmaer = max (Ht(lO)) (12)

1<t<T

4 Evaluation Setup

We evaluate our ME-GCN on semi-supervised text
classification, and examine the effectiveness of
corpus-based multi-dimensional edge features.

4.1 Baselines

We compare ME-GCN with state-of-the-art semi-
supervised text classification models, which do not
use any external resources. Additionally, we also
include four baseline models, which use pretrained



Datasets | #Doc # Words #Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4
R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed | 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4
Agnews 6,000 5,360 11,360 4 35.2
Twitnltk | 3,000 634 3,634 2 11.5
Waimai(zh) | 11,987 10,979 22,966 2 15.5

Table 1: The summary statistics of datasets

embedding or language model: CNN-Pretrained,
LSTM-Pretrained, BERT, and TMix.
1)TF-IDF+LR, 2)TF-IDF+SVM: Term fre-
quency inverse document frequency for feature en-
gineering with Logistic Regression or SVM with
rbf kernel. 3)CNN-Rand, 4)-Pretrained: Text-
CNN (Kim, 2014) is used as the classifier. Both
CNN-Rand using random initialized word embed-
ding and CNN-Pretrained using pretrained word
embedding are evaluated. We used English Glove-
pretrained (Pennington et al., 2014) and Chinese
Word Vectors (Li et al., 2018) for Chinese dataset-
zh. 5)LSTM-Rand, 6)-Pretrained: We apply the
same set-up as the CNN, but with Long Short-
Term Memory (LSTM). 7)TextGCN: We follow
the same hyperparameters of the TextGCN (Yao
etal., 2019). §)BERT: We use huggingface(Wolf
et al., 2020) BERTgasg (Devlin et al., 2018) in our
experiments (‘bert-base-chinese’ model is used for
Chinese). 9)TMix: TMix(Chen et al., 2020) gen-
erates new training text data by interpolating over
labelled text encoded using BERT hidden represen-
tation and train on the generated text data for text
classification. We use the default setting provided.

4.2 Dataset

We evaluated our experiments on five widely used
text classification benchmark datasets (Yao et al.,
2019), 20NG, RS8, R52, MR and Ohsumed, and
three additional semi-supervised text classification
datasets (Hu et al., 2019), Agnews, Twitter nltk and
Waimai. All the data is split based on the extreme
low resource text classification enviornment- 1%
training and 99% test set. The summary statistics
of the datasets can be found in Table 1. For the
data sample selection, we randomly select them
but the class distribution is followed by the original
datasets. 1)20NG is a 20-class news classification
dataset and we select 3,000 samples from the origi-
nal dataset. 2)R8, 3)R52 are from Reuters which
is a topic classification dataset with 8 classes and
52 classes. 3,000 samples from each dataset are
selected. 4)MR(Pang and Lee, 2005) is a binary

classification dataset about movie comments and
we use all samples from the dataset. 5)Ohsumed
is a medical dataset with 23 classes, and we select
3,000 samples from the original dataset. 6)Ag-
news(Zhang et al., 2015) is a 4-class news clas-
sification dataset and 6,000 samples are selected.
7)Twitter nltk is a binary classification sentiment
analysis from Twitter, we sampled 1,500 positive
and 1,500 test samples from the original dataset.
8)Waimai is a binary sentiment analysis dataset
about food delivery service comments from a Chi-
nese online food ordering platform. The dataset is
in Chinese and pre-tokenized. We use all samples
from the original dataset. All the datasets have been
made anonymous, for example, "@somebody" has
been changed to "@USER".

5 Results Analysis

5.1 Performance Evaluation

Table 2 presents a comprehensive performance ex-
periment, conducted on the benchmark datasets.
The most bottom row shows the accuracy from our
best models using either max or average pooling.'

Overall, our proposed model significantly out-
performs the baseline models on all eight datasets,
demonstrating the effectiveness of our ME-GCN
on semi-supervised text classification for various
length of text. With in-depth analysis, CNN/LSTM-
Rand is quite low in performance on several
datasets but increases significantly when using pre-
trained embeddings. While TextGCN achieves bet-
ter accuracy than above baselines on most datasets,
the performance is all lower than ME-GCN. This
shows the efficiency of preserving rich informa-
tion using multi-dimensional edge features. The
merit of pre-training stands out with BERT and
TMix, producing better accuracy than the base-
line TextGCN on most datasets. Especially, BERT
achieves the best and second best performance on
MR and Waimai, which are short-text sentiment
analysis datasets. This would be because of the two
aspects of sentiment classification: (1) compared to
topic-specific text classification, sentiment analysis
task may benefit from the pretrained general se-
mantics learned from a large external text; (2) word
order matters for sentiment analysis, which could
be missing in GNNs. Nevertheless, our ME-GCN,
with no external resources, still outperforms those
pertrained models in seven datasets, illustrating

!The detailed comparison of pooling method variants can
be found in Table 3.



Methods Pretrained | 20NG R8 R52  Ohsumed MR  Agnews Twitnltk Waimai(zh)
TFIDF + SVM X 0.2529 0.7246 0.5932 0.1589 0.5884 0.4241 0.5737 0.7521
TFIDF + LR X 0.2633 0.7249 0.6332 0.1798 0.5871 0.5370 0.5791 0.7381
CNN - Rand X 0.0768 0.7219 0.6325 0.1889 0.5641 0.3825 0.5822 0.7784
CNN - Pretrained v 0.2380 0.7428 0.6896 0.2458 0.6005  0.6636 0.6088 0.7926
LSTM - Rand X 0.0545 0.6788 0.4253 0.1319 0.5442  0.3444 0.5458 0.6458
LSTM - Pretrained v 0.0593 0.6919 0.5285 0.0948 0.5933  0.5815 0.6098 0.6663
TextGCN X 0.1188 0.8628 0.4847 0.1612 0.6222  0.7420 0.7806 0.8065
BERT v 0.1347 0.5148 0.6291 0.1464 0.7666  0.7261 0.7024 0.8248
TMix v 0.2286 0.7322 0.6195 0.1721 0.6267  0.8025 0.6111 0.6376
Our ME-GCN X 0.2861 0.8679 0.7828 0.2740 0.6811  0.8043 0.8232 0.8393

Table 2: Test accuracy comparison with baselines on benchmark datasets. The bottom row shows the best test
accuracy from our proposed model using either max pooling or average pooling. The comparison of our model
performance for each dataset using the three pooling methods is provided in Table 3. The second best is underlined.

Pooling Method | 20NG RS R52 Ohsumed MR Agnews Twitnltk Waimai(zh)
Max Pooling 0.2775 0.8473 0.7828 0.2475 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.2861 0.8679 0.7675 0.2740 0.6658  0.7911 0.8205 0.8303
Min Pooling 0.0424 0.2987 0.2550 0.0294 0.5000  0.2005 0.5000 0.6663

Table 3: Test accuracy of ME-GCN with three different pooling methods, max, average, and min pooling

Learning Methods | 20NG RS R52 Ohsumed MR  Agnews Twitnltk Waimai(zh)
Separated Learning | 0.2861 0.8679 0.7828  0.2740  0.6811 0.8043 0.8232 0.8393
Shared Learning | 0.1582 0.8016 0.6554  0.2635  0.6575 0.6993 0.7037 0.8137

Table 4: Test accuracy of ME-GCN with two multi-stream learning methods, shared and separated learners.

the potential superiority of self-exploration on the
corpus via multi-dimensional edge graph in com-
parison of pretraining on large external resource.

5.2 Learning and Pooling Variant Testing

We compare ME-GCN with three different pooling
approaches (max, average, and min pooling) and
the result is shown in Table 3. Most datasets pro-
duce better results when using max pooling, and
the result with max and average pooling outper-
forms that with min pooling. This is very obvious
because the min pooling captures the minimum
value of each graph component.

We also compare two multi-stream graph learn-
ing methods, including separated and shared stream
learning to examine the effectiveness of ME-GCN
learning with multi-dimensional edge features. Ta-
ble 4 presents that the separated stream learners
significantly outperforms the shared learners. This
shows it is much efficient to learn each dimensional
stream with an individual learning unit and initially
understand the local structure, instead of learning
all global structures at once.

5.3 Impact of Edge Feature Dimension

To evaluate the effect of the dimension size of the
edge features, we tested ME-GCN with different
dimensions. Figure 2 shows the test accuracy of our
ME-GCN model on the four dataset, including RS,
R52, MR, Waimai(zh). The bottom right corner

090
—
0388
3 086
<
5 084
082 072
avg #: 84.2 avg #: 104.5
180 0.70
10 20 0 40 50 10 20 30 40 50
Edge Feature Dimensions Edge Feature Dimensions
(a) R8 (b) R52
070 090
— nr —— waimai
068 0388
3 066 3 086
< <
g o064 5 ose
062 082 /\
avg #: 18.4 avg #: 15.5
0.60 0.80
10 20 0 L] 50 5 10 15 20 b 0
Edge Feature Dimensions Edge Feature Dimensions
(c) MR (d) Waimai(zh)

Figure 2: Test accuracy by varying edge feature di-
mensions. The bottom right corner shows the average
number of words per document in each corpus.

for each subgraph includes the average number of
the words per document. We noted that the test
accuracy is related to the average number of words
per document in the corpus. For instance, for ‘MR’
(avg #: 18.4), test accuracy first increases with the
increase of the size of edge feature dimensions,
reaching the highest value at 10; it falls when its
dimension is higher than 15. However, for R8 and
R52 (avg #: 84.2 and 104.5), got the highest value
at 20 or 25. This is consistent with the intuition that



Word Embedding | 20NG RS R52 Ohsumed MR  Agnews Twitnltk Waimai(zh)
Word2Vec 0.2861 0.8679 0.7828  0.2740  0.6811  0.8043 0.8232 0.8393
fastText 0.2510 0.8394 0.7783  0.2550  0.6727 0.7812 0.8333 0.8191
GloVe 0.2526 0.8247 0.7835  0.2832  0.6895 0.7628 0.8341 0.8298

Table 5: Test accuracy comparison of our ME-GCN model with different word embedding techniques to train word
node embeddings and word-word multi-dimensional edge features.

(a) Dim = 5, second layer

(b) Dim = 25, second layer

Figure 3: t-SNE visualisation of test set document em-
beddings in AgNews (4 classes). The (a) and (b) show
second layer document embeddings learned by 5 and 25
dimensional node and edge features respectively.
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Figure 4: Test accuracy comparison with different num-
ber of labelled documents.

the average number of words per document in the
corpus should align with the dimension size of the
edge features in ME-GCN. The trend is different
in waimai dataset as it is Chinese, this is because
different languages would have different nature of
choosing the efficient edge feature dimension.

Moreover, in order to analyse the impact of the
edge feature dimension, we present an illustrative
visualisation of the document embeddings learned
by ME-GCN. We use the t-SNE tool (Van der
Maaten and Hinton, 2008) in order to visualise
the learned document embeddings. Figure 3 shows
the visualisation of test set document embeddings
in AgNews learned by ME-GCN (second layer) 5
and 25 dimensional node and edge features. The
AgNews has 4 classes and the average number of
words per document is 35.2. Instead of dim=5,
having dim=25 as edge features would better to
separate them into four classes.

5.4 Impact of Ratio of Labelled Docs

We choose 3 representative methods with the
best performance from Table 2: CNN-Pretrained,

TextGCN and our ME-GCN, in order to study the
impact of the number of labelled documents. Par-
ticularly, we vary the ratio of labelled documents
and compare their performance on the two datasets,
Twitter nltk and R52, that have the smallest num-
ber and largest number of classes. Figure 4 reports
test accuracies with 1%, 10%, and 33% of the R52
and Twitter nltk training set. We note that our ME-
GCN outperforms all other methods consistently.
For instance, ME-GCN achieves a test accuracy
of 0.8232 on Twitter nltk with only 1% training
documents and a test accuracy of 0.8552 on R52
with only 10% training documents which are higher
than other models with even the 33% training doc-
uments. It demonstrates that our method can more
effectively take advantage of the limited labelled
data for text classification.

5.5 Comparison of Embedding Variants

ME-GCN apply a Word2Vec CBOW in order to
train the word node embedding and the related
multi-dimensional edge feature. We compare our
model with three different word embedding tech-
niques, Word2Vec, fastText, and Glove in Table 5.
We noted that using Word2Vec and Glove, word-
based models, is comparatively higher than apply-
ing the fastText, a character n-gram-based model.
This would be affected because the node and edge
of ME-GCN are based on words, not characters.

6 Conclusion

We introduced ME-GCN (Multi-dimensional Edge-
enhanced Graph Convolutional Networks) for semi-
supervised text classification, which takes full ad-
vantage of both limited labelled and large unla-
belled data by rich node and edge information
propagation. We propose corpus-trained multi-
dimensional edge features to efficiently handle the
distance/closeness between words and documents
as multi-dimensional edge features, and all graph
components are based on the given text corpus
only. ME-GCN demonstrates promising results by
outperforming numerous state-of-the-arts on eight
semi-supervised text classification datasets consis-
tently. In the future, it would be interesting to make
this multi-aspect graph under inductive learning.
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20NG RS R52 | Ohsumed | MR | Agnews | Twit nltk | Waimai(zh)
# Stream 30 20 25 30 10 20 25 30
Document Threshold 15 10 15 5 5 5 3 3
Pooling Method avg avg max avg max avg max max
Accuracy 0.2861 | 0.8679 | 0.7828 0.2740 0.6811 | 0.8043 0.8232 0.8393
Table 6: Best hyperparameters for each dataset
20NG RS R52 Ohsumed MR Agnews | Twit nltk | Waimai(zh)
Word Node # Parameters 304,750 | 217,650 | 230,950 432,950 225,050 | 268,000 31,700 548,950
Running Time(s) 118 25 76 140 71 83 20 74
Doc Node # Parameters 454,750 | 367,650 | 380,950 582,950 758,150 | 568,000 | 181,700 1,148,300
Running Time(s) 104 35 118 272 270 140 29 312
Model Learning # P?lramf?ters 328,125 | 140,625 | 828,125 375,000 46,875 78,125 46,875 46,875
Running Time(s) 198 16 164 286 120 612 14 610
Total # Parameters 1,087,625 | 725,925 | 1,440,025 | 1,390,900 | 1,030,075 | 914,125 | 260,275 1,744,125
Running Time(s) 420 76 358 698 461 835 63 996

Table 7: Number of Parameters and Running time for each dataset

A Settings

A.1 Hyperparameter Setting

All documents are tokenized using NLTK tok-
enizer(Bird et al., 2009), and words occurring no
more than 5 times have been excluded. Both
word2vec and Dec2vec are trained on the corpus we
get using gensim package with window_size =
5 and iter = 200. The initial feature dimension
for node and document is set to dy = 25, which
is same to the multi-dimension number for edge
features and multi-stream number 7" in ME-GCN
learning. Different multi-stream numbers are tested
and discussed in 5.3. The threshold uv = 5 is used
for document-document edge construction. We
use two-layers of multi-stream GCN learning with
dlL. = 25 (thus d'* = 625) for the first multi-
stream GCN layer and d'9, = C(no. of label in the
datasets) for the output layer. In the training pro-
cess, following Liu et al. (2020), we use dropout
rate as 0.5 and learning rate as 0.002 with Adam op-
timizer. The number of epochs is 2000 and 10% of
the training set is used as the validation set for early
stopping when there is no decreasing in validation
set’s loss for 100 consecutive epochs.

A.2 Hyperparemeter Search

For each dataset we use grid search to find the
best set of hyperparameters and select the base
model based on the average accuracy by running
each model for 5 times. The number of stream:
5,10,20,25,30,40,50. The document edge thresh-
old: 3,5,10,15. The pooling method: max pooling,
min pooling, average pooling. The number of hy-
perparameter search trials is 72(= 6 * 4 x 3) for
each dataset. The best hyperparameters for each
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Figure 5: Number of Parameters Comparison

dataset and their average accuracy on test set shows
in Table 6. And the trend of validation performance
is very similar to the testing performance trend.

A.3 Running Details

All the models are trained by using 16 In-
tel(R) Core(TM) 19-9900X CPU @ 3.50GHz and
NVIDIA Titan RTX 24GB using Pytorch (Paszke
et al., 2019).

The number of parameters for each part of the
model is: Word Node (Word2vec): 2UT, Docu-
ment Node (Doc2vec): 2T(U + K), ME-GCN
Learning: T2d!% (1 + C). The default value of
d'_ is 25. Table 7 shows the number of parameters
and training time when using the default hyperpa-
rameters. The number of parameters of TextGCN
is (U + K) * D 4+ D % C and the default value of
D is 200. Comparison of the number of parame-
ters between TextGCN and our ME-GCN shows in
figure 5.



B License
The license for packages used in this paper:

* Pytorch: Copyright (c) 2016- Facebook, Inc
(Adam Paszke)

* Hugging Face: Apache License 2.0
* Glove-pretrained: Apache License 2.0

* Chinese Word Vectors: Apache License 2.0

C Links Related to Datasets and Baseline
Models

The links for Datasets:

* 20NG: http://qwone.com/~jason/20Newsgro
ups/

* R8, R52: https://www.cs.umb.edu/~smimar
og/textmining/datasets/

* MR: http://www.cs.cornell.edu/people/pabo
/movie-review-data/

* Ohsumed: http://disi.unitn.it/moschitti/corp
ora.htm

* Agnews: http://www.di.unipi.it/~gulli/AG_c
orpus_of_news_articles

o Twitter nltk: http://nltk.org/howto/twitter.h
tml

e Waimai: https://github.com/SophonPlus/Ch
ineseNIpCorpus/

The links for Baseline Models:

* TextCNN: https://github.com/DongjunLee/te
xt-cnn-tensorflow

* TextGCN: https://github.com/yao8839836/te
Xt_gen

* BERT BASE: https://huggingface.co/bert-ba
se-uncased

e Tmix: https://github.com/GT-SALT/MixText

* Chinese BERT: https://huggingface.co/bert-
base-chinese

* GloVe-pretrained: https://nlp.stanford.edu
/projects/glove/

* Chinese Word Vectors: https://github.com/E
mbedding/Chinese-Word- Vectors
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The tokenizer used:

* English Tokenizer - NLTK: https://www.nl
tk.org/api/nltk.tokenize.html

* Chinese Tokenizer - Jieba: https://github.c
om/fxsjy/jieba
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