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Abstract

Vision-Language Models (VLMs) have recently demonstrated incredible
strides on diverse vision language tasks. We dig into vision-based de-
ductive reasoning, a more sophisticated but less explored realm, and find
previously unexposed blindspots in the current SOTA VLMs. Specifi-
cally, we leverage Raven’s Progressive Matrices (RPMs), to assess VLMs’
abilities to perform multi-hop relational and deductive reasoning relying
solely on visual clues. We perform comprehensive evaluations of several
popular VLMs employing standard strategies such as in-context learning,
self-consistency, and Chain-of-thoughts (CoT) on three diverse datasets, in-
cluding the Mensa IQ test, IntelligenceTest, and RAVEN. The results reveal
that despite the impressive capabilities of LLMs in text-based reasoning,
we are still far from achieving comparable proficiency in visual deductive
reasoning. We found that certain standard strategies that are effective when
applied to LLMs do not seamlessly translate to the challenges presented
by visual reasoning tasks. A detailed analysis reveals that VLMs strug-
gle to solve these tasks mainly because they are unable to perceive and
comprehend multiple, confounding abstract patterns in RPM examples.

1 Introduction

Recent advancements in Vision-Language Models (VLMs) have showcased the success
of models such as GPT4-V (OpenAI, 2023) and Gemini (Team et al., 2023) across various
vision language tasks. These tasks include captioning, object localization, multimodal
world knowledge and commonsense, visual question answering (VQA), and vision-based
coding (Yang et al., 2023). Previous evaluations of these models have proven that state-of-
the-art (SOTA) VLMs are capable of performing well in numerous vision-based reasoning
and understanding tasks (OpenAI, 2023; Team et al., 2023). Notably, prior works have
demonstrated that strong VLMs can accurately extract text from images, understand and
reason with charts and tables, and solve simple visual math problems (Yang et al., 2023;
Nahida Akter et al., 2023).

In this study, we aim to evaluate the limitations of VLMs on challenging tasks that demand
sophisticated vision-based deduction abilities, an area that has been relatively unexplored.
Specifically, we ask the models to complete a set of Raven’s Progressive Matrices (RPMs)
problems (Kunda et al., 2013; Zhang et al., 2019), which are frequently used to measure
human intelligence, by identifying the correct pattern to fill in the blank from multiple
options. See Figure 1 for illustration. This requires the models to 1) comprehend each
given pattern including the choices, 2) deduce underlying rules and identify any trend that
can explain the evolution of these patterns, and 3) employ the learned rules to choose the
missing pattern from the given options. The model’s capacity to handle each aspect must
be effectively coordinated to provide the correct answer. Our findings reveal that although
some problems may seem intuitive to humans, they might not be as intuitive to VLMs.

⇤ Equal contribution.
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Grid:

Alternative shapes:

A B C

D E F

Prompt:
You can see a grid of 9 boxes, one of which is empty (marked as ?). You 
have to choose which of the 6 alternative shapes (A-F) to be placed in the 
empty box in order to complete the pattern that connects the shapes. 
Finally, provide your prediction as Answer: “X”

From the figure we can see:
The grid:
    1. Top left box: square with a cross sign.
    …
    9. Bottom right box: ’?’.
The alternative shapes are:

A. Triangle with a star .
    …
    F. Triangle with a cross sign.

Analyzing the grid, there seems to be a pattern involving both 
the shapes and the symbols inside them:
    - The symbols inside the shapes alternate between a cross, a 
star, and then a blank space as you move horizontally across 
each row.
    - The shapes themselves also alternate within each row – this 
is seen with the square, circle, and triangle repeating in each 
row in that order.

Given the identified patterns, the correct shape should be a 
triangle with a cross sign. Looking at the alternative shapes, 
option "F" fits the described pattern perfectly. 
Hence, the answer is: "F"

Perception
Deductive
Reasoning

Hypothesis
Verification

Figure 1: Illustration of the visual deductive reasoning for Raven’s Progressive Matrices. The
task requires intricate coordination among perception, deductive reasoning, and hypothesis
verification capabilities exhibited by Vision-Language Models.

Compared to standard image reasoning tasks like VQA (Antol et al., 2015), RPMs pose
several unique challenges: 1) RPMs require sophisticated deductive capabilities that involve
multi-hop comparative reasoning, such as discrimination, relation, and analogy, while
VQA typically requires only few steps of reasoning, 2) RPMs rely solely on visual clues to
generate hypotheses and verify them, while VQA often involves using natural language to
infer the objective and determine which parts to focus on, 3) RPMs are inherently few-shot
(mostly 2-shot) learning tasks. Each RPM problem may have different underlying rules,
which demands strong generalization abilities to solve them. Humans have a remarkable
ability to learn from just a few examples, and powerful language models like LLMs have
demonstrated this ability in text-based tasks. However, the ability of strong VLMs to solve
few-shot reasoning tasks by relying solely on visual cues has not been well studied.

As an emerging field, it is crucial to establish benchmarks and systematic evaluations in
order to push the limits of the visual deductive ability of VLMs. Our contributions include:

• We set up a framework for systematically evaluating VLMs on RPM problems. We
evaluated several SOTA open-source and closed-source VLMs on three diverse
datasets, including the Mensa IQ test, IntelligenceTest, and RAVEN, providing a
comprehensive assessment of their performance. The results indicate that although
LLMs exhibit impressive capabilities in text-based reasoning, such proficiency has
not been achieved in image-based reasoning. The code and evaluation datasets
have been released to facilitate future investigation and improvement over VLMs.

• We employed standard inference-time strategies in LLMs such as in-context learning
(Brown et al., 2020) and self-consistency (Wang et al., 2022) to probe the potential of
VLMs. We found that some standard strategies that are effective in LLMs do not
seamlessly translate to the VLMs we used.

• We finely diagnose the performance bottleneck of VLMs by breaking down their
capability into perception, deductive reasoning, and hypothesis verification. Our analysis
reveals that perception is the limiting factor in current VLMs. To scrutinize this
specific “blind spot” in strong VLMs such as GPT-4V, we provide a case study
highlighting where issues occur.
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• We identified and examined several issues associated with the current VLMs in
this task. These issues include overconfidence, sensitivity to prompt design and
an inability to effectively leverage in-context examples. We ablated the effects of
different prompts on the overall performance of the model and found models can
benefit from more structured prompts.

2 Related Work

General LLM Reasoning benchmarks Many text-based reasoning tasks and benchmarks
have been introduced to evaluate LLMs in various domains (Huang & Chang, 2022) such as
general knowledge (Hendrycks et al., 2020), math reasoning (Cobbe et al., 2021), common-
sense reasoning (Geva et al., 2021; Clark et al., 2018), factual reasoning (Laban et al., 2023),
and coding (Chen et al., 2021). Some noteworthy examples of these works are BIG-bench
(Srivastava et al., 2022), HELM (Liang et al., 2022) and SuperGLUE (Sarlin et al., 2020).

Visual reasoning evaluation Previous work on visual reasoning tasks has primarily focused
on tasks such as visual question answering (VQA) Antol et al. (2015) and image captioning.
These tasks involve answering questions about images or generating natural language
descriptions of visual content. Researchers have also examined the ability of models to
understand the relational and compositional aspects of objects in images. Datasets like
CLEVR (Johnson et al., 2017) and SHAPES (Andreas et al., 2016) assess visual reasoning
abilities such as counting, comparing, logical reasoning, and storing information in memory.
As the VLMs abilities to perform visual reasoning have evolved so have the benchmarks.
New benchmarks, like MMMU (Yue et al., 2023) and MathVista (Lu et al., 2023) have
been developed that test the models’ ability to emulate human-like understanding of
scenes and objects in images and videos. These benchmarks include areas such as scene
text understanding (Sidorov et al., 2020; Schiappa et al., 2024), formulation (?), table and
chart interpretation (?), the comprehension of visual stimuli (Yang et al., 2023), geometric
reasoning (Ahrabian et al., 2024), spatial reasoning (Chen et al., 2024), and facial expression
comprehension and reasoning (Yang et al., 2023).

This paper focuses on RPMs. Our goal was to simulate a more holistic challenge that mirrors
scenarios where generalist VLMs must navigate through even unseen and unfamiliar
scenarios. Although the RPMs were designed for humans, they represent a fundamental
type of visual-spatial reasoning that artificial intelligence systems, particularly those aimed
at achieving general intelligence, should also be able to perform well on.

Deductive reasoning Deductive reasoning evaluation and benchmarks have been conducted
for both textual and visual domains. Two notable examples are GuessWhat?! (De Vries
et al., 2017) and ReferIt (Kazemzadeh et al., 2014), which assess the visual reasoning abilities
of the models being tested. More recently, LMRL Gym (Abdulhai et al., 2023) and Entity
Deduction Arena (Zhang et al., 2023) have been introduced as methods to evaluate the
ability of LLMs to perform multi-turn deductive reasoning tasks. Another relevant task
is ARC (Acquaviva et al., 2022) which shares similarities with RPMs, as they both require
correctly inferring unseen outputs based on given examples. Comparing with ARC, RPMs
are abstract and requires intricate analogical and relational reasoning.

Using RPMs to assess VLM is not rare. For instance, many general VLM benchmarks like
MATHVISTA (Lu et al., 2023) and MMMU (Yue et al., 2023) uses RPMs problems to probe
models’ reasoning and understanding ability of complex patterns. When GPT-4v came
out, technical evaluation work (Yang et al., 2023) also probed its performance on abstract
patterns, especially the RPMs. Different from them, our work dives deep into scrutinizing
the blindspot, and the underlying issues when VLMs deals with these abstract patterns,
showing some potential directions for future improvement.
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3 Experiment Setting

Dataset In our paper, we employed three RPMs datasets. The Mensa Test1 consists of 35
questions with progressive levels of difficulty. For the purpose of 1-shot learning, we used
the first question as an in-context example and reserved the remaining 34 questions for
evaluation. The IntelligenceTest (IT)2 provided an IQ test encompassing verbal, pattern
recognition, math, and structural components. We specifically focused on pattern recogni-
tion, which solely comprised RPMs problems and included 66 examples. Additionally, we
incorporated the RAVEN dataset (Zhang et al., 2019) for evaluation. The RAVEN dataset
employs a generative model to create RPMs problems using a hierarchical pipeline. The test
dataset of RAVEN contains 14,000 examples, covering 7 types of distinct figural configura-
tions that incorporate different layouts, shapes, and relational structures. In this work, we
generate 140 new samples, 20 samples for each figural configuration.

Models We compared various VLMs that represent the state-of-the-art for both closed-
source and open-source models, including GPT4-V (gpt-4-vision-preview) (OpenAI, 2023),
Gemini-pro (Team et al., 2023), Qwen-VL-Max (Bai et al., 2023), LLaVA-1.5-13B and LLaVA-
1.6-34B(Liu et al., 2023). We use the default sampling method for each of the tested VLMs in
our generation process, show in Appendix A.3.

Prompts We prompt the model with the instruction followed by the query image. We
provide the prompt in the Appendix A.2.

4 Evaluation Results

4.1 Evaluation of VLMs on Visual Deductive Reasoning

Mensa IntelligenceTest (IT) RAVEN

Entropy Accuracy" Entropy Accuracy" Entropy Accuracy"
GPT-4V 1.49 0.24 ± 0.05 1.40 0.16 ± 0.04 2.07 0.12 ± 0.04
Gemini Pro 1.24 0.15 ± 0.04 1.18 0.18 ± 0.03 1.37 0.11 ± 0.04
QWen-VL-Max 1.13 0.17 ± 0.01 0.97 0.13 ± 0.02 0.48 0.10 ± 0.03
LLaVA-1.5-13B 0.72 0.23 ± 0.01 0.64 0.09 ± 0.01 0.25 0.10 ± 0.03
LLaVA-1.6-34B 0.81 0.22 ± 0.01 0.78 0.11 ± 0.01 0.25 0.10 ± 0.03

Random Guess 2.58 0.16 2.58 0.16 3.00 0.12

Table 1: Benchmark of VLMs on three different datasets. “Entropy” denotes uncertainty of
the prediction, and “Accuracy” indicates the percentage of accurately answered questions.

In Table 1 we show how different VLMs performed on each dataset. For each model and
dataset, we computed the statistics by averaging them over 10 repetitions. From the table,
it is evident that GPT-4 either slightly surpasses or is on par with the other models across
all benchmarks. However, the accuracy gap between the models is not substantial in terms
of their ability to solve RPM puzzles. It is interesting to note that the performance of these
models is comparable to random guessing (last row), indicating their limited effectiveness
in this area. Converting the accuracy on the questions to human ranking scale, we find
that the models rank in the 2-8 percentile on the Mensa tests. On the IT dataset humans
demonstrate a wide range of success rates per question, spanning from 30% to 93.4%, which
is much higher than the highest accuracy of a mere 18% observed for Gemini Pro. Similarly,
on the Raven dataset humans attain an impressive success rate of 84.67% (Zhang et al., 2019),
starkly outperforming VLMs, which consistently yield results akin to random guessing.

Uncertainty of the prediction We analyze the entropy of model predictions in order to
assess the uncertainty inherent in their predictive distribution. For the choices set C, the

1
https://www.mensa.org/public/mensa-iq-challenge

2
https://www.intelligencetest.com/questions
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Entropy is defined as S = �Âi2C pi log pi. If the model consistently predicts a single answer,
it is has an entropy of 0. If it randomly guesses, the entropy reaches the upper bound shown
in the Table 1. For Self-consistency model, we bootstrapped 1000 leave-one-out repetitions
from 5 answers per question and calculated entropy over aggregated predictions from each
repetition.

We see that GPT-4 and Gemini Pro exhibit a greater diversity of answers, which is also
reflected in the greater diversity in recognizing and attempting to identify various patterns.
On the other hand, LLaVA and QWen-VL produce more deterministic predictions, resulting
in lower entropy.

Interestingly, we observed that even when the entropy was high, models tried to provide
a nonsensical rationale, instead of acknowledging their inability to perform the task; this
was observed to happen more often with models that had higher entropy. All the tested
models never express any level of uncertainty by using words like “likely” or “maybe”. This
excessive confidence can presumably be attributed to the model pretraining and instruction
finetuning steps, which typically do not involve calibrating the model for uncertainty.
Instead, the models are encouraged to generate uncertain content, leading to more errors in
aggregating in the generated output.

4.2 Do standard strategies in LLMs translate effectively to visual deductive reasoning?

We tried two strategies effective in LLMs: 1) 1-shot (Brown et al., 2020) prompts in-context
RPM example and its solution to the VLMs. 2) Self-consistency (SC) (Wang et al., 2022)
samples multiple responses and selecting the majority voted answer.

Mensa IntelligenceTest RAVEN

Entropy Accuracy" Entropy Accuracy" Entropy Accuracy"
GPT-4V (0-shot) 1.49 0.24 ± 0.05 1.40 0.16 ± 0.04 2.07 0.12 ± 0.04
GPT-4V (1-shot) 1.41 0.22 ± 0.06 1.31 0.17 ± 0.04 2.03 0.12 ± 0.04
GPT-4V (SC) 0.17 0.31 ± 0.01 0.15 0.19 ± 0.02 0.20 0.10 ± 0.02

Gemini Pro (0-shot) 1.24 0.15 ± 0.04 1.18 0.18 ± 0.03 1.37 0.11 ± 0.04
Gemini Pro (1-shot) 0.69 0.17 ± 0.03 0.54 0.19 ± 0.01 1.35 0.10 ± 0.03
Gemini Pro (SC) 0.03 0.18 ± 0.01 0.03 0.18 ± 0.01 0.08 0.10 ± 0.01

Table 2: Expanded benchmark of VLMs on three different datasets, including the 1-shot and
SC variants for both GPT-4 and Gemini models. The prompts are provided in Appendix A.2.

In-context Query Accuracy

Desc. + Rat. + Ans. Desc. 100%
Img. + Desc. + Rat. + Ans. Img. + Desc. 80%
Img. + Desc. + Rat. + Ans. Img. 20%

Img. + Ans. Img. + Desc. 80%
Img. + Ans. Img. 40%

Table 3: GPT-4V analogizes better when
solely based on text descriptions. Desc., Rat.,
Ans. and Img. represents description, ratio-
nale, answer and image, respectively

VLMs struggle with reading in-context im-
age The performance of the 1-shot eval-
uation, shown in Table 2, did not demon-
strate improvement compared to the 0-shot
evaluation. Specifically, we observed only
a marginal 1% enhancement for the Intelli-
genceTest dataset, while encountering a de-
crease of 2-4% in accuracy for the Mensa test.
Surprisingly, all the tested models, including
GPT-4V and Gemini, struggle with a high fail-
ure rate even when the in-context example is iden-
tical to the current task being solved. This is peculiar because powerful LLMs usually exhibit
the ability to analogize and copy the in-context example when provided with the same
query. We observed accuracy ranging from 10% to 20% for these in-context examples across
different datasets, which is comparable to the accuracy when a different example is used as
the in-context example.

In order to make this observation concrete we present an ablation experiment with a specific
example we created manually in the style of Mensa problems, which we call M-easy (See
Figure 2a for the problem and Table 3 for a summary of results). Here the same example is
used as the in-context example, and as the task being solved, the model only needs to be
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able to draw a comparison between the in-context example and the query, and copy over
the answer from the in-context sample3.

We first cast the problem as a text-only problem using appropriate descriptions for both the
in-context example and the query (row 1). The model demonstrates a perfect accuracy of
100% showing that it is easy for it to solve this problem when it is represented as text. Next,
we added the image to the textual description for both the in-context example and the query.
The accuracy now decreases to 80%, even though additional visual information has been
provided (row 2). Finally, when the text description is removed from the query, the accuracy
significantly drops to 20% (row 3). We hypothesize that the drop in accuracy arises because
it is much harder for the model to compare image tokens than it is to compare textual tokens
and also that the model utilizes text more than it does the images.

5 What limits the performance of the VLMs?

Grid:

Alternative shapes:

A B C

D E F

"The grid:\n1. Top left box: square with a 
cross sign.\n2. Top center box: circle with 
a star.\n3. Top right box: Empty 
triangle.\n4. Middle left box: empty 
square. \n5. Middle center box: circle 
with a cross sign. \n6. Middle right box: 
triangle with a star. \n7. Bottom left box: 
square with a star. \n8. Bottom center 
box: empty circle. \n9. Bottom right box: 
"?".\nThe alternative shapes are:\nA. 
Triangle with a star .\nB. Triangle with a 
plus sign.\nC. Circle with a cross sign.\nD. 
Circle with a star.\nE. Empty triangle.\nF. 
Triangle with a cross sign."

(a) M-Easy RPM Problem

Grid:

Alternative shapes:

A B C

D E F

"The grid:\n1. Top left box:  A downward-
pointing triangle with three dots in it.\n2. 
Top center box: A leftward-pointing 
triangle with two dots in it.\n3. Top right 
box:  An upward-pointing triangle with 
one dot in it.\n4. Middle left box: A 
rightward-pointing triangle with two dots 
in it.\n5. Middle center box:  A 
downward-pointing triangle with one dot 
in it.\n6. Middle right box: A leftward-
pointing triangle with three dots in it.\n7. 
Bottom left box:  An upward-pointing 
triangle with one dot in it.\n8. Bottom 
center box: A rightward-pointing triangle 
with three dots in it.\n9. Bottom right 
box: '?'.\nThe alternative shapes are:\nA.  
An upward-pointing triangle with two 
dots in it.\nB.  A downward-pointing 
triangle with one dot in it.\nC. A leftward-
pointing triangle with one dot in it.\nD. A 
rightward-pointing triangle with two dots 
in it.\nE. A leftward-pointing triangle with 
two dots in it.\nF.  A downward-pointing 
triangle with two dots in it."

(b) M-Medium RPM Problem

Grid:

Alternative shapes:

A B C

D E F

"The grid:\n1. Top left box: white circle, 
white triangle, black square.\n2. Top 
center box: white triangle, black circle, 
white square.\n3. Top right box: black 
square, black square, white triangle.\n4. 
Middle left box: black circle, white 
square, white triangle.\n5. Middle center 
box: black square, white triangle, black 
square.\n6. Middle right box: white 
triangle, black square, white circle.\n7. 
Bottom left box: white triangle, black 
square, black square.\n8. Bottom center 
box: black square, white circle, white 
triangle.\n9. Bottom right box: '?'.\nThe 
alternative shapes are:\nA. white circle, 
white triangle, black square.\nB. black 
circle, white square, white triangle.\nC. 
white circle, white square, black 
triangle.\nD. white circle, black square, 
white triangle.\nE. black square, white 
triangle, white circle.\nF. white square, 
white triangle, black circle."

(c) M-Hard RPM Problem

Figure 2: Three manually created RPM problems evaluated for text description augmenta-
tion, illustrating varying levels of difficulty. The correct answers are “F, F, F”.

We investigate why VLMs fail to reach human-level performance in answering even simple
questions that are intuitive to humans. For this purpose, as a case study, we manually
created three RPMs with varying degrees of difficulty, as depicted in Figure 2. The manually
curated examples are similar to instances in the larger datasets (e.g. Mensa), whose example
cannot be presented due to copyright issues. We aim to use these examples as qualitative
probes to showcase the blind spots in depth, and show that the issues are ubiquitous in
VLMs, spanning stages of perception, reasoning, and verification. To conduct a fine-grained
analysis and diagnosis of the VLM’s inability to perform this task of visual deductive
reasoning with RPMs, we decompose the evaluation into three consecutive stages: 1)
Perception: assess if the model can understand and describe the patterns in the RPMs; 2)
Deductive reasoning: evaluate if the model can discern and articulate underlying rules;
3) Hypothesis verification: examine the model’s proficiency in formulating a plausible
hypothesis for the missing pattern and identifying a matching option among alternatives.

5.1 How good is the VLM’s perception on this task?

We first asked the model to describe the RPM figures, to assess if they understood the images
that were provided as part of the problem. Surprisingly, even though VLMs are astoundingly

3The results are based on 10 repetitions
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Position Description of M-Easy

RPM Description of M-Medium RPM Desc. of segmented M-Medium

RPM

Top left A square with an X inside. Triangle pointing down with three dots
forming a vertical line in the center.

Inverted triangle with three dots in-
side.

Top cen-
ter A circle with a star inside.

Triangle pointing right with three dots
forming a horizontal line along the cen-
ter.

Right-pointing triangle with two
dots.

Top right An empty triangle. Triangle pointing up with four dots
forming a vertical line in the center.

Upright triangle with one dot in the
center.

Middle
left A square with an X inside. Triangle pointing down with two dots

forming a horizontal line in the middle.
Right-pointing triangle with two
dots.

Middle
center A circle with an X inside. Triangle pointing right with a single dot

in the center.
Inverted triangle with one dot in the
center.

Middle
right A triangle with an X inside.

Triangle pointing up with two dots
forming a vertical line along the cen-
ter.

Left-pointing triangle with three
dots.

Bottom
left A square with a star inside. Triangle pointing down with one dot in

the center.
Upright triangle with one dot in the
center.

Bottom
center A circle. Triangle pointing right with two dots

forming a horizontal line in the middle.
Right-pointing triangle with three
dots.

Table 4: The M-Easy and M-Medium RPMs descriptions from GPT-4V for the patterns
can contain errors, including hallucinations and Chimera descriptions. When the model
is provided with segmented RPM images (i.e., when patterns are separated into multiple
image inputs), it leads to a reduction in the error. Errors are indicated in red.

accurate in describing commonplace images, they seemed to be quite unsuccessful at
accurately describing even the simpler abstract patterns we gave them. The generated
descriptions contained numerous errors across all the tested models, as exemplified by results
from GPT-4V in Table 4. More examples are shown in Appendix A.5. We identified two
major issues for this blind spot of VLMs:

Compounding error: Models tend to replicate the descriptions of previous patterns, leading
to an autoregressive amplification of compounding errors in successive descriptions. This
results in an increasingly erroneous narrative throughout the generation process. For
example, in Table 4 (M-Medium), When the model first makes a mistake by including “a
vertical line” in the description, the subsequent text follows the same error. We think that
the autoregressive nature of the VLMs causes it to repeat itself, with the preceding text
dictating the entire follow-up text.

Figure 3: Accuracy of the origi-
nal RPM as input with that of
the segmented RPM as input.
Results based on 10 repetitions.

Confounding error: The similarities between patterns
cause confusion, as the model struggles to maintain fo-
cus on a single pattern. Consequently, we often observe
“Chimera descriptions” that erroneously combine ele-
ments from multiple patterns. For example, in Table 4
(M-Easy, middle right), the description seems to combine
elements in two adjacent patterns (middle center, middle
right). This could be attributed to the model’s failure to ef-
fectively focus its attention on the corresponding pattern
when all the patterns appear similar.

These two issues are prevalent across all the methods and
datasets. When the patterns contain multiple elements
and are more detailed, these issues become severer.

Can decomposing the RPMs into each single pattern
from the grid enhance perception? Presumably, by de-
composing the patterns into individual components, we
can eliminate the confounding errors. To investigate this,
we first segmented each of the three manual examples
shown in Figure 2, into 9 individual question patterns and
6 candidate patterns. We then used a new prompt A.2 for
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GPT-4V to read both the full image and the segmented patterns to infer the answer. In this
way, we found GPT-4V would describe each pattern more accurately. The descriptions of
the M-Medium RPM can be found in Table 4. We conducted 10 tests for each RPM and report
the accuracy comparison with and without segmentation in Figure 3. We also verify the
segmentation impact using the Raven dataset (60 examples). We got 21.2% accuracy for
segmented RPMs and 7.4% for non-segmented RPMs. The results demonstrate a significant
reduction in confounding errors, confirming the issues discussed earlier.

Hallucination We have also observed the model generating hallucinations in the descrip-
tions, particularly regarding counting. For instance, in Table 4 (M-Medium, top right), the
model erroneously states that there are four dots when, in reality, there are only three.

Data distribution aspect VLMs are presumably trained primarily on naturalist images,
which may cause them to be less sensitive to abstract patterns. However, evaluation tasks
on foundation models often involve significant distribution shifts or completely novel
tasks, and foundational models like VLMs are expected to have some capacity for task
generalization and zero-shot capabilities. RPM puzzles challenge VLMs to engage in abstract
reasoning and pattern recognition, serving as a controlled test for perception, self-reflection,
and deductive reasoning abilities. Additionally, IQ evaluations for humans already use
abstract visual puzzles, establishing a comparative connection to human performance.

While we believe that additional finetuning could potentially improve the performance,
we hypothesize that finetuning the model with RPMs might not entirely eliminate the
compounding and confounding errors, as they appear to be inherent limitations of the VLMs
from training.

5.2 How good is the VLM’s deductive reasoning on this task?

Next, we assess the model’s ability to perform effective reasoning by conditioning it on the
ground truth text description of the RPMs. We provide the prompts in Appendix A.2.

Does the oracle text description improve the model’s performance? The original evalua-
tion (Tables 1 and 2) requires the model to directly generate the answer, making it difficult
to disentangle the understanding and deductive reasoning aspects. To examine the VLMs
more closely, we provided each evaluated model with oracle text descriptions that were
manually created by the authors. We then evaluated the models’ performance on the three
RPM problems and present the results in Table 5 (GPT-4V + Oracle Desc.). The oracle
text descriptions can be found in the Appendix A.4. We also provide sampled rationale
generated by GPT-4V in the Appendix A.6.

It is evident that the model’s performance has been significantly improved with the addition
of oracle descriptions for each pattern (Table 5). The models are able to analyze the given
patterns and deduce rules for the M-Easy and M-Medium RPMs, and provide rationale for
the problem. For the M-Hard RPM, the models demonstrate some capability of reasoning,
albeit with some challenges and is far from human parity. We provide additional examples
in the Appendix. However, it is not clear whether the models still rely heavily on visual
cues or if their reasoning is purely text-based.

Will removing the visual cues harm the model? Next, we examine whether textual
information alone is sufficient by removing the visual information. The results, shown
in Table 5 (GPT-4V + Oracle Desc. - Visual), are intriguing. Without visual information,
the models can maintain a similar level of performance for M-Easy and M-Medium RPMs.
Notably the result solely rely on the textual information of the input is superior to the GPT-
4V baseline, which mostly rely on visual information of the input. However, as the tasks
become more challenging (M-Hard RPM), the models start to struggle. The performance
is also worse than GPT-4V baseline. This suggests that for tasks that involve complex
spatial layouts and relational reasoning, text alone may be insufficient and potentially
confusing, while visual cues may provide additional visual alignment and better comparative
attention. In such cases, visual information and textual clues would complement each
other and work in synergy to achieve the optimal performance. Interestingly, when we
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M-Easy
Model Acc. Ent. A B C D E F

GPT-4V 1-shot 50% 1.69 0 0 1 1 3 5
GPT-4V 1-shot + Gen. Desc. (CoT) 50% 1.36 0 1 0 0 4 5
GPT-4V 1-shot + Oracle Desc. 60% 1.57 0 1 0 1 2 6
GPT-4V 1-shot + Oracle Desc. - Visual 60% 0.97 0 4 0 0 0 6

GPT-4V 1-shot + Oracle Desc. + Rationale 60% 1.57 1 0 0 1 2 6

M-Medium
Model Acc. Ent. A B C D E F

GPT-4V 1-shot 20% 2.25 0 3 2 2 1 2
GPT-4V 1-shot + Gen. Desc. (CoT) 50% 1.69 0 3 1 1 0 5
GPT-4V 1-shot + Oracle Desc. 80% 0.92 1 1 0 0 0 8
GPT-4V 1-shot + Oracle Desc. - Visual 60% 1.57 1 0 0 1 2 6

GPT-4V 1-shot + Oracle Desc. + Rationale 70% 0.88 3 0 0 0 0 7

M-Hard
Model Acc. Ent. A B C D E F

GPT-4V 1-shot 20% 1.49 0 0 3 0 5 2
GPT-4V 1-shot + Gen. Desc. (CoT) 30% 1.97 0 2 2 0 3 3
GPT-4V 1-shot + Oracle Desc. 40% 1.85 0 3 0 1 2 4
GPT-4V 1-shot + Oracle Desc. - Visual 10% 1.96 2 0 1 5 1 1

GPT-4V 1-shot + Oracle Desc. + Rationale 50% 1.49 0 2 0 0 3 5

Table 5: Breakdown of GPT-4V variants with augmented text description across different
RPMs. Each combination is ran for 10 repetitions. The correct answer “F” is marked in color.
Given budget constraint we only test on the 3 manual examples for this analysis.

provide GPT-4V with an incorrect description, there is around an 80% chance that the model
recognizes the mismatch between the text and the image and responds as: “There has been
a misinterpretation of the provided image”. The model, nevertheless, still generates some
rationale which seems adhere more closely to the text description than to the visual cues.

Can the performance be improved by reasoning with noisy text descriptions generated by
the model itself? Drawing inspiration from Chain-of-Thoughts (CoT) in the text domain
(Wei et al., 2022) and the recent Self-Imagine work (Akter et al., 2024), we further investigate
whether VLMs can enhance their performance using noisy text descriptions that they
generate on their own. This also helps us understand the extent to which VLM reasoning
relies on accurate descriptions of images and the extent to which it can recover from errors
in the descriptions. Table 5 (GPT-4V + Gen Desc.) shows that incorrect text descriptions can
still produce a gain. The gap between self-generated descriptions and oracle descriptions,
however, varies across the different cases.

5.3 How good is the VLM’s hypothesis verification on this task?

Finally, We tested the performance of GPT-4V when it received both an oracle description
and an oracle rationale. The oracle rationale, which can be found in Appendix A.2, only
includes the explanation of the underlying rule without predicting the final pattern or
answer. The results for 10 repetitions on manual examples are shown in Table 5 (GPT-4V +
Oracle Desc. + Rationale). Surprisingly, compared to the row representing GPT-4V + Oracle
Desc., the oracle rationale did not significantly improve accuracy. In cases where the model
failed, it sometimes directly generated an incorrect answer and at other times extended the
rationale but still generated false answers. For example, for M-easy, GPT-4V continued to
generate “the third row should have a star, as the first two boxes of the third row (square
and circle) already have a star.” This indicates that hypothesis generation and verification
are closely tied to deductive reasoning, and the model has not yet reached human-level
performance in following hints and turning learned rules into future predictions.

Interestingly, strong models like GPT-4V exhibit some strategies similar to humans. For
instance, they often use the answer options along with the grid to form and tests hypothe-
ses, rather than generating a hypothesis solely based on the grid and then checking for
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any matches with the alternative shapes.4 GPT-4V also sometimes employs a strategy of
elimination to rule out incorrect answers (e.g., “the right shape should have a cross sign,
which leaves the options to C and F.”).

5.4 How does the prompt format influence the model prediction?

Prompting Structure Mensa

Gemini Pro Image First 2.3 ± 1.3
Gemini Pro Instruction First 5.4 ± 1.2

GPT4V 1-Shot w/o Sentinel Token 6.1 ± 1.5
GPT4V 1-Shot w/ Sentinel Token 7.8 ± 1.7

Table 6: Average number of cor-
rect predictions made by GPT4-V
and Gemini Pro on the Mensa test,
demonstrating its sensitivity to the
structure of prompts used.

The format of the prompt can sometimes significantly
impact the performance of VLM. For example, we
found the arrangement of task instruction and images
is crucial to Gemini Pro. We show the results in Table 6.
We observed a remarkable 200% increase in predic-
tion accuracy when we simply altered the sequence
of these elements. However, we don’t observe similar
conclusion from other tested models.

We also delves into the differences in how the model
performs under 0-shot and 1-shot evaluation setups.
We discovered that using special sentinel tokens, such
as [{BEGIN/END} OF EXAMPLE] to separate text prompts
from images helps the model delineate task instructions from in-context examples. This
method of structuring prompts is particularly effective in aiding the model’s comprehension
across all tested VLMs. For instance, we show the results of GPT-4V in Table 6. Experiment
results of k-shot evaluations are detailed in Appendix A.1.

This study underscores that VLMs, unlike their text-only counterparts, can benefit from a
more structured format in their task prompts. Furthermore, the interaction between different
modalities, such as text and image, needs to be carefully considered and evaluated.

6 Conclusion

This work is a systematic evaluation of the performance of popular Vision-Language Models
(VLMs) in a variety of Raven’s Progressive Matrices (RPMs). These tasks serve as a challeng-
ing benchmark for assessing the models’ ability to reason based on visual clues. We observed
that the current state-of-the-art VLMs still fall short of achieving human-level performance
on these tasks, with the best-performing models being close-sourced. Our analysis of the
models’ performance reveals that perceptual understanding may be the main bottleneck, as
the models perform better when provided with appropriate textual descriptions. In future
work, it would be intriguing to validate our hypothesis concerning the blind spot of VLMs
when it comes to describing patterns. This investigation has the potential to enhance the
general recognition and attentiveness capabilities of VLMs. Additionally, exploring the
development of contrastive learning or reinforcement learning algorithms could further
improve the model’s visual deductive reasoning abilities. To investigate whether the VLMs’
struggle is due to a lack of general reasoning or data distributional shifts, future work can
be done to evaluate VLMs on pattern-based reasoning tasks with naturalistic images, and
investigate the impact of additional instruction fine-tuning on RPMs.

4This generate-then-verify strategy accounts for less than 10% of GPT-4V’s behavior in our ob-
servation. In such cases the model often rejects the options provided and responds as follows:
“Unfortunately, the given options do not correspond with the identified pattern.”
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