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Abstract

Data assimilation (DA) in chaotic spatiotemporal systems, such as turbulent partial
differential equations (PDEs), is essential but computationally demanding, often
requiring expensive adjoints, ensembles, or test-time optimization. We introduce an
amortized framework that augments autoregressive diffusion models with learned
feedback control. A pretrained diffusion model provides one-step forecasts, while
a compact control network, trained offline, injects affine residuals into the DDIM
denoising steps. These residuals gently nudge the sampler toward consistency with
upcoming observations, preventing forecast drift during long observations gaps.
With the proposed approach, DA at inference reduces to a single forward rollout
with on-the-fly corrections, avoiding costly optimizations or ensembles. On chaotic
Kolmogorov flow, our method yields improved long-horizon stability, substantial
accuracy gains, and over 30× faster runtime. To our knowledge, this is the first
framework to integrate amortized assimilation directly into autoregressive diffusion
models, opening a new direction for efficient learned control in high-dimensional
PDE forecasting.

1 Introduction

Forecasting chaotic spatiotemporal dynamics is hard: small state errors grow rapidly, so open-loop
rollouts drift from reality. Data assimilation (DA) mitigates this by combining a dynamical model
with sparse, noisy observations to produce analyses that improve predictability [1, 2]. Operational
staples such as 4D-Var and the Ensemble Kalman Filter (EnKF) [3, 4, 5] can be highly effective, but
typically hinge on quasi-linear approximations and incur heavy adjoint/ensemble costs [6]. Diffusion
models provide a flexible Bayesian alternative for reconstructing full states from partial data. Recent
diffusion-based DA methods either (i) apply guidance only at inference [7, 8, 9] or (ii) train models
to condition directly on observations [10, 11]. However, inference-only guidance can allow errors
to accumulate between observation times, naïve conditioning can destabilize long autoregressive
forecasts, and iterative denoising can make inference slow.

We introduce a diffusion-based DA framework that inserts a lightweight, learned controller into
the generative dynamics. A pretrained diffusion forecaster defines the backbone transitions, while
a control network injects affine residuals into each Denoising Diffusion Implicit Model (DDIM)
step (Fig. 1), producing preview-aware corrections that steer toward upcoming observations without
modifying the backbone. The controller is trained offline on synthetic assimilation scenarios, so test-
time DA is a single causal, feed-forward rollout with on-the-fly corrections—avoiding per-instance
optimization while improving stability, accuracy, and speed in chaotic PDE forecasting.
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Figure 1: At step k, a pretrained diffusion backbone advances xk to xk+1 via S DDIM denoising
sub-steps, generating latents z(S)k+1→ · · · → z

(0)
k+1 ≡ xk+1. Our controller uψ injects small affine

residuals Uk+1 into the latents (per sub-step), conditioned on the current state xk and a preview buffer
ωk of upcoming observations inWk. This yields stable, feed-forward autoregressive assimilation
without test-time optimization.

2 Method

Notation. Physical time indices k ∈ N; DDIM denoising sub-steps s ∈ {S−1, . . . , 0}. We define
the state space X ≜ RC×H×W , with states xk ∈ X . Observation arrival indices T ⊆ N with
observations yT ≜ {yt}t∈T . For measures P,Q on trajectory space, dP/dQ denotes the Radon–
Nikodym derivative when P≪Q. We use ⊙ for Hadamard products; ∥ · ∥2 is the Euclidean norm
over all channels/pixels.

2.1 Problem: Chaotic Forecasting with Delayed, Sparse Observations

Open-loop forecasts of chaotic dynamics quickly drift from the ground truth. DA combats this by
using observations to periodically steer the forecast back toward reality. In practice, observations are
sparse and may be delayed relative to the simulator’s internal step size, so the model can evolve for
many steps without guidance. Purely retrospective corrections then arrive too late to prevent drift.
Classical DA mitigates this by using windows of observations (e.g., fixed-lag smoothing). We adopt
the same perspective via a preview regime: during each transition xk→xk+1, the sampler can access
a short lookahead window of upcoming observations, enabling small anticipatory corrections that
improve consistency at the next arrivals while staying close to the unguided simulator.

We now formalize the ingredients of our approach.

2.1.1 Forecaster’s Prior Dynamics

Given an initial distribution p0(x0) and one-step transition kernels q(xk+1 | xk), the induced
trajectory distribution over the first n+1 states is Q(x0:n) = p0(x0)

∏n−1
k=0 q(xk+1 | xk), n ∈ N.

In our setting, the kernel q is realized by a pretrained one-step diffusion forecaster (details in App. A).
We denote this kernel as qθ(xk+1 | xk) ≡ DDIMS(gθ;xk), yielding

Qθ(x0:n) = p0(x0)

n−1∏
k=0

qθ(xk+1 | xk), ∀n ∈ N. (1)

The family {Qθ(x0:n)}n∈N is consistent and induces a semi-infinite path measure Q∞
θ on XN,

corresponding to an infinite-horizon autoregressive process.

2.1.2 Preview Selector: Windowed, Multi-Observation

Observations arrive only at sparse indices T ⊆ N, so forecasts can drift between arrivals. We
therefore allow a bounded preview: at each transition xk→xk+1, the controller may condition on
upcoming observations within a fixed horizon Λ, analogous to finite assimilation windows (e.g.,
fixed-lag smoothing in 4D-Var and conditional lookahead in Shysheya et al. [10]).
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Anchored preview windows. Let k0 be the rollout start and generate Xk0+1:k0+Λ. For step
k ∈ {k0, . . . , k0 + Λ− 1}, define

Wk|k0 ≜ { j ∈ T : k+1 ≤ j ≤ k0+Λ }, ∆k,j ≜ j − (k+1), (2)

and preview context ωk|k0 ≜ {(yj ,∆k,j) : j ∈ Wk|k0}. In experiments we use the nearest-arrival
variant ω⋆k|k0 = {(yj⋆ ,∆k,j⋆)} with j⋆ = minWk|k0 when nonempty. Online filtering is recovered
with Λ = 0. Observation-operator metadata (e.g., masks Mj) accompanies yj for use in Φj (App. B,
App. C).

2.1.3 Observations as Arrival-Time Costs

Observations arrive at sparse indices T ⊆ N. At each arrival k ∈ T we impose an arrival-time cost

C(x) ≜
∑
k∈T

Φk(xk; yk), (3)

where Φk penalizes mismatch between forecast xk and observation yk. Our objective trades off
minimizing C(x) with staying close to the unguided simulator (Sec. 2.2). In our experiments, Φk
uses linear masking/downsampling with least-squares penalties (App. B); more generally we only
require Φk(·; yk) to be differentiable in xk to train the controller.

Takeaway. Our setting combines (i) a diffusion path measure Q∞
θ , (ii) a finite-horizon preview

selector, and (iii) arrival-time costs tying forecasts to sparse observations. We next derive their
optimal combination via exponential tilting.

2.2 Variational Principle: Gibbs Tilt for DA

We bias diffusion trajectories toward observations by reweighting the baseline path measure Q∞
θ

(Eq. (1)) using arrival-time costs (Eq. (3)). This yields the exponentially tilted (Gibbs) posterior
dP ⋆β
dQ∞

θ

(x) =
e−βC(x)

Zβ
, Zβ = EQ∞

θ

[
e−βC

]
, (4)

assuming 0 < Zβ < ∞ (e.g., under mild integrability of Φk and sparse/summable arrivals). The
family {P ⋆β}β>0 is the Gibbs posterior with temperature β−1.

Gibbs variational characterization. The Gibbs variational principle gives
logZβ = sup

P≪Q∞
θ

{−β EP [C]−KL(P∥Q∞
θ )} , (5)

with equality at P = P ⋆β , implying for any P≪Q∞
θ the bound

−β EP [C]−KL(P∥Q∞
θ ) ≤ logZβ , (6)

i.e., approaching P ⋆β requires simultaneously low expected cost and small deviation from the baseline
(proof in App. D).

Why we need a controlled variational family. Although P ⋆β ∝ e−βC(x)Q∞
θ is optimal, exact

sampling or estimating Zβ is intractable for autoregressive DDIM: C(x) requires full rollouts, and
in chaotic regimes importance weights collapse. We therefore introduce a tractable family Pψ by
injecting preview-aware residual controls into Q∞

θ (Sec. 2.3), preserving the diffusion backbone
while reducing arrival-time costs without costly Gibbs sampling.

2.3 Approximation: Amortized Preview-Aware Control Family Pψ

Motivation for Amortization. One could optimize controls per trajectory at test time, e.g., run a
few inner iterations at each denoising step with future controls set to zero. This mirrors NDTM [12]
in non-autoregressive images, where arrival costs can be estimated from intermediate noisy states (via
Tweedie corrections) without full rollouts. In autoregressive forecasting this is not possible: xk at any
arrival k ∈ T depends on the entire preceding trajectory, so evaluating Φk(xk; yk) requires explicit
rollouts through intermediate steps. Even a few inner iterations would therefore require repeated full
rollouts, making test-time optimization infeasible. We instead amortize control selection by training
a lightweight policy uψ offline on short preview rollouts, enabling single-pass, feed-forward control
at test time while keeping the diffusion backbone frozen for stability and expressivity.
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Controlled path measure. We retain the baseline sampler Qθ and perturb only the parent input
of each denoising sub-step through a small preview-aware map fs. Formally, for latent variables
z
(S)
k+1, . . . , z

(0)
k+1 with z(0)k+1≡ xk+1, the baseline one-step kernel factors as

qθ(xk+1 | xk) =

∫ [ 0∏
s=S−1

q
(s)
θ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; xk

)]
pS
(
z
(S)
k+1

)
dz

(1:S)
k+1 , (7)

with pS denoting the noise prior. Given the active preview ωk (Sec. 2.1.2, App. C), the policy uψ
(more details in App. F) emits control vectors

Uk+1 = (u
(S−1)
k+1 , . . . , u

(0)
k+1), u

(s)
k+1 = uψ

(
xk, ωk|k0 , s

)
,

which enter through the affine perturbation

f(z, u) = z + γ u, γ > 0. (8)

Each controlled sub-step is then defined as

p
(s)
ψ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; u

(s)
k+1, xk

)
≜ q

(s)
θ

(
z
(s)
k+1

∣∣∣ f(z(s+1)
k+1 , u

(s)
k+1); xk

)
. (9)

Composing across s yields the controlled one-step kernel

pψ(xk+1 | xk; Uk+1) =

∫ [ 0∏
s=S−1

p
(s)
ψ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; u

(s)
k+1, xk

)]
pS
(
z
(S)
k+1

)
dz

(1:S)
k+1 . (10)

By Kolmogorov consistency, the controlled kernels define the semi-infinite process

P∞
ψ (x0:∞ | yT ) = p0(x0)

∏
k≥0

pψ
(
xk+1

∣∣xk; Uk+1

)
. (11)

From principle to a learnable objective. Restricting (5) to the controlled family yields

min
ψ

β EP∞
ψ

[
C(x)

]
+ KL

(
P∞
ψ

∥∥Q∞
θ

)
, (12)

trading observation fidelity against deviation from the pretrained diffusion. Since the pathwise KL
is intractable for autoregressive DDIM, we optimize a finite-window surrogate consistent with the
preview protocol.

Windowed surrogate. For rollout start k0 and horizon Λ, define arrivals Ak0,Λ ≜ T ∩
[k0+1, k0+Λ] and windowed cost C[k0,Λ](x) ≜

∑
j∈Ak0,Λ

Φj(xj ; yj). We minimize

min
ψ

E
[

1

max{|Ak0,Λ|, 1}
C[k0,Λ](X

ψ) +
1

β
Rdiv(ψ; k0,Λ)

]
, (13)

where Xψ = Xψ
k0+1:k0+Λ is generated under the controlled kernel pψ using the anchored preview

ωk|k0 . The regularizerRdiv is a tractable proxy for divergence from Qθ (e.g., control energy ∥U∥22
or per-step proximity with shared noise seeds [12]), serving as the finite-window analogue of (12).

2.4 Algorithm: Preview-Aware Sampler & Trainer

Training: Windowed Rollouts with Arrival Supervision. We sample windows of length Λ, roll
out with preview-aware injections, and minimize (14) in Alg. 1 (App. E). This aligns the training loss
with the evaluation protocol (arrival-only supervision) and makes the learned controller causal with
respect to the preview window.

Inference: Preview-Aware Sampler. At test time we run the preview-aware selector once per
physical step and advance the sampler in Alg. 2, injecting residuals via (8). When generating L
frames with L > Λ, we generate in moving-window chunks of length Λ, carrying the final state of
chunk j as the initial state of chunk j+1; this mirrors operational overlapping-window DA [13].
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Figure 2: Qualitative DA on Kolmogorov flow. Rows: Observations, Controlled (ours), Ground
Truth, Uncontrolled. Bullets mark observation arrivals. Uncontrolled forecasts are plausible until
t≈35–36, then chaotic phase errors amplify, causing large structural drift for t ≥ 40. Our preview-
aware controller injects small corrections to stabilize rollouts, preserving phase coherence and
fine-scale vortices. Top: Downsample ×4 (denser). Bottom: Masked stride 4 (sparser).

3 Experiments

3.1 Kolmogorov Flow

We evaluate on 2D Kolmogorov flow, a standard turbulent PDE benchmark. The incompressible
Navier–Stokes dynamics on [0, 2π]2 with periodic boundaries are u̇ = −u∇u+ 1

Re∇
2u− 1

ρ∇p+
f, ∇· u = 0, with Re=103, ρ=1, and Kolmogorov forcing with linear damping. We generate
trajectories with jax-cfd on a 256×256 grid, coarsened to 64×64, with snapshots every ∆=0.2 (82
forward–Euler substeps). We simulate 1024 independent length-64 trajectories from the statistically
stationary regime and split 80/10/10 into train/val/test. Each state is a two-channel (ux, uy) field.

3.2 Observation Scenarios and Preview

Training uses a preview horizon Λ=17 (index 0 seeds autoregression). We study four observation
operators, which define both training and evaluation tasks: (i) Downsample ×2 and Downsample
×4: observations at all preview indices 1:16 and (ii) Masked (stride 2) and Masked (stride 4):
observations only at indices {4, 8, 12, 16}.
Across all experiments we instantiate the preview policy with the nearest upcoming observation. At
physical step k, with lookahead horizon Λ, we select

k⋆ = arg min
j∈T ∩{k+1,...,k+Λ}

(
j − (k+1)

)
, ωk =

{
(yk⋆ , ∆k,k⋆) if such k⋆ exists,
∅ otherwise,
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Table 1: RMSD (lower is better) across observation tasks.

Method Masked (s=2) Masked (s=4) Downsample (×2) Downsample (×4)

SDA (AAO) 0.1411 0.3529 0.0413 0.2099
Joint AR 0.0429 0.1495 0.0383 0.1846
Ours 0.0151 0.0223 0.0152 0.0220

Table 2: Sampling time (seconds)

Method Masked Obs. Downsampled Obs.

SDA (AAO) 244.10 248.24
Joint AR 119.80 120.43
Ours 3.55 3.86

where ∆k,k⋆ = k⋆ − (k+1) is the lead time. When ωk = ∅ the controller receives no preview and
the step reduces to the frozen backbone transition. This nearest-arrival policy yields a constant-time,
causal selector per step and keeps the controller lightweight. Extending to multi-arrival aggregation
is supported by the formulation (Sec. 2.1.2) but is not used in our reported results.

3.3 Training Objective

In our implementation we operate in the high-β regime, yielding

min
ψ

E
[

1

max{|T ∩Wk0 |, 1}
C[k0,Λ](X

ψ)

]
, Xψ ∼ P∞

ψ (· | yT ; k0,Λ). (14)

We rely on a small-gain design—small control scale γ, a limited number of DDIM sub-steps (S=3
per physical step in all experiments), and near-zero control initialization—to keep P∞

ψ close to
Q∞
θ in practice while still achieving substantial cost reduction.1 Empirically this provides stable

long-horizon rollouts without an explicit divergence term, while preserving the principled variational
view through (12)–(13).

3.4 Metrics, Protocol, and Baselines

Protocol. We roll out L=60 steps autoregressively. Unless otherwise stated, all methods use identical
observation streams and are evaluated with root mean square deviation (RMSD) over the forecast
horizon; we report per-task means across the test set.

Baselines. (1) SDA [7]: score-based data assimilation that samples all-at-once trajectories and
applies observation guidance at inference; this decouples observation models from training and
enables zero-shot observation types but requires iterative, window-level denoising at test time. (2)
Joint AR [10]: the “joint” score model conditioned on history but sampled autoregressively with
reconstruction guidance; compared to AAO, AR improves forecasting stability while keeping the
same score parameterization. These reflect current practice in diffusion-for-PDE DA and provide
complementary trade-offs between conditioning flexibility and rollout stability.

3.5 Results

Accuracy. Table 1 reports RMSD across the four tasks. The preview-aware controller achieves the
lowest error in all scenarios, with the largest margins under sparse masked observations.

Efficiency. We benchmark wall-clock sampling on a single RTX A6000 for 10 assimilated trajecto-
ries (data loading and metric computation excluded). Amortized preview control yields markedly
lower runtime than both baselines (Table 2), translating to 30×–70× speedups depending on the
baseline.

Takeaway. Across masking and downsampling tasks, amortized preview control combines the
stability of a frozen diffusion backbone with lightweight, lookahead corrections. This yields consistent
accuracy gains and large end-to-end speedups, making assimilation a single forward rollout rather
than a test-time optimization or ensemble computation. Fig. 2 clearly states the efficacy of such
controlled autoregressive diffusion models in preventing trajectory divergence.

1See App. G for implementation notes (gradient checkpointing across UNet calls) and App. F for the
ControlNet/UNet specifications.
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A DDIM parameterization, coefficients, SNR, and v→ε

At denoising step s, DDIM yields a Gaussian transition

x(s−1) ∼ N
(
µθ(x

(s), s), σ2
sI
)
, µθ(x

(s), s) = as x
(s) + bs ε̂θ(x

(s), s),

with schedule-dependent (as, bs, σs); deterministic DDIM uses σs=0. We pass log SNR(s) =
log ᾱs

1−ᾱs to the control. Our UNet is trained with v-prediction; we convert to noise prediction via

ε̂θ(x
(s), s) =

√
ᾱs v̂θ(x

(s), s) +
√
1− ᾱs x(s)

and use ε̂θ in all DDIM formulas.
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B Observation operators used in experiments

We instantiate terminal costs using simple linear observation operators for clarity and stability. For a
(possibly time-varying) mask M ∈{0, 1}1×H×W broadcast across channels,

Amask(x) =M ⊙ x, Φmask
k (x; y) =

∥M ⊙ (x− y)∥22
∥M∥1 + ε

,

with ε = 10−6 and the step skipped if ∥M∥1 = 0. For downsample/upsample we use average pooling
Pf over non-overlapping f × f blocks and nearest-neighbor upsampling Uf :

A↓f (x) = Uf (Pfx), Φds
k (x; y) =

∥∥Uf (Pfx)− Uf (Pfy)∥∥22.
These operators are used to generate the observed signals yk that enter terminal costs. Any differen-
tiable Φk could replace these without changing the method.

C Active observation selector (preview DA)

In practice, we maintain a preview buffer containing future observations from T that lie within the
lookahead horizon Λ. Each entry is a triplet (yj ,Mj ,∆j), where:

• j ∈ T is the physical time index of the observation,
• yj is the observed signal (lifted to full resolution if needed),
• Mj is an auxiliary mask (binary for masking operators, all ones for downsampling; see

App. B; for other operators, Mj may be ignored or replaced by auxiliary metadata as
appropriate),

• ∆j = j − k + 1 is the lead time relative to the current forecast step k.

At each physical step k, the active preview is chosen by
k⋆ = arg min

j∈T ∩Wk

{∆j : ∆j ≥ 0},

whereWk = {k + 1, . . . , k + Λ} is the preview window. The selected preview is then
ωk = (yk⋆ ,Mk⋆ ,∆k⋆),

which is passed to the controller at step k. This selection occurs once per physical step.

D Gibbs variational principle (proof)

Let (XN,F) denote the trajectory space with its product σ-algebra, and let Q∞
θ be the baseline

path measure from Eq. (1). Fix a measurable cost C : XN→ R and β > 0, and assume the mild
integrability condition

0 < Zβ ≜ EQ∞
θ

[
e−βC

]
< ∞.

Define the exponentially tilted (Gibbs) measure P ⋆β by

dP ⋆β
dQ∞

θ

(x) =
e−βC(x)

Zβ
. (15)

Variational identity. For any P ≪ Q∞
θ ,

KL
(
P
∥∥P ⋆β ) = ∫ log

(
dP

dP ⋆β

)
dP =

∫
log

(
dP/dQ∞

θ

dP ⋆β/dQ
∞
θ

)
dP

=

∫
log
(

dP
dQ∞

θ
· Zβ eβC

)
dP

= KL(P∥Q∞
θ ) + β EP [C] + logZβ .

Since KL(P∥P ⋆β ) ≥ 0, we obtain

−β EP [C] − KL(P∥Q∞
θ ) ≤ logZβ , ∀P ≪ Q∞

θ , (16)
which is Eq. (6) in the main text.
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Algorithm 1 Preview-Aware Control Training (Windowed Arrival Supervision)

Require: Frozen pretrained diffusion forecaster gθ with S DDIM sub-steps; control policy network
uψ with parameters ψ to be trained; preview horizon length Λ; control scale factor γ; arrival
indices T with costs {Φk}k∈T ; initial distribution p0 or dataset states.

1: Initialize ψ.
2: while not converged do
3: Sample a start index k0 and an initial state xk0 .
4: Define the training window {k0+1, . . . , k0+Λ} and preview sets Wk = { j ∈ T : 1 ≤
j − (k+1) ≤ Λ } for k ∈ {k0, . . . , k0+Λ−1} (Sec. 2.1.2).

5: x← xk0 , L ← 0.
6: for k = k0, . . . , k0+Λ−1 do
7: Form the active preview ωk={(yj ,∆k,j) : j∈Wk} with ∆k,j=j − (k+1).
8: Compute controls Uk+1=(u

(S−1)
k+1 , . . . , u

(0)
k+1) with u(s)k+1=uψ(x, ωk, s).

9: Generate xk+1 by composing controlled sub-steps (9) with map f(z, u)=z + γu (8):

z
(S)
k+1∼ pS , z

(s)
k+1∼ q

(s)
θ

(
· | f(z(s+1)

k+1 , u
(s)
k+1); x

)
, s=S−1:0, xk+1≡ z(0)k+1.

10: x← xk+1.
11: if k+1 ∈ T then
12: L ← L+Φk+1(xk+1; yk+1) ▷ arrival-only supervision (3)

13: Normalize window loss L̃= L
max{|T ∩Wk0 |, 1}

and update ψ ← ψ − ηψ∇ψL̃ ▷ gθ

frozen; backprop through controlled DDIM
14: return Trained control parameters ψ⋆.

Algorithm 2 Preview-Aware Amortized Assimilation (Inference)

Require: Frozen gθ; trained controller uψ⋆ ; control scale γ; preview horizon Λ; initial state x0;
observation stream {(yk,Φk)}k∈T .

1: for k = 0, 1, . . . , L−1 do
2: Build preview set Wk = { j ∈ T : 1 ≤ j − (k+1) ≤ Λ } and active preview ωk =
{(yj ,∆k,j)}j∈Wk

.
3: Compute controls Uk+1=(u

(S−1)
k+1 , . . . , u

(0)
k+1) with u(s)k+1=uψ⋆(xk, ωk, s).

4: Advance one physical step using the controlled kernel (10):

z
(S)
k+1∼ pS , z

(s)
k+1∼ q

(s)
θ

(
· | f(z(s+1)

k+1 , u
(s)
k+1); xk

)
, s=S−1:0, xk+1≡ z(0)k+1.

5: Optionally discard arrivals j ≤ k+1 from the stream; set conditioner xk ← xk+1.
6: return Forecast path x1:L.

Optimality and uniqueness. Equality in (16) holds iff KL(P∥P ⋆β ) = 0, i.e., iff P = P ⋆β (equality
Q∞
θ -a.s.). Equivalently,

logZβ = sup
P≪Q∞

θ

{
− β EP [C] − KL(P∥Q∞

θ )
}
, (17)

and the unique maximizer is P ⋆β .

Remarks. (i) The same proof applies verbatim on any finite horizon by replacing Q∞
θ and C with

their restrictions to X 0:n, yielding the identical identity and optimizer. (ii) If P ̸≪ Q∞
θ , interpret

KL(P∥Q∞
θ ) = +∞, so such P do not affect the supremum in (17).

E Algorithm

Alg. 1 and Alg. 2 are the training and inference algorithm respectively. While the model has been
trained on a small preview window, we test the performance on rollouts far larger than that.
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F Control network implementation

Purpose. The control policy uψ generates the residual control u(s)k . In Sec. 2.3, we write u(s)k+1 =
uψ(xk, ωk, s) for clarity. Here we expand ωk and the additional inputs required in practice. Formally,

u
(s)
k = uψ

(
x
(s)
k+1, xk, y

⋆
k, M

⋆
k , ∆

⋆
k, log SNR(s), τ, uprev

)
.

Inputs and fusion. We concatenate five image-like tensors along channels: the current latent x(s)k+1,
the previous state xk, the preview observation y⋆k, the auxiliary mask M⋆

k , and the previous control
uprev. A shallow encoder with a two-level down/up path extracts limited spatial context. FiLM
modulation injects scalar metadata (∆⋆

k, τ, log SNR(s)) where ∆⋆
k is the preview lag and τ is the

local position index in the Λ windowWk.

FiLM conditioning. Each scalar is normalized and embedded by an MLP: ∆⋆
k/Λ, τ/Λ, and

log SNR(s). The embeddings are concatenated and mapped to (γ, β), which modulate feature maps
as feat 7→ feat · (1+γ) + β.

Residual head and stability. A 3×3 convolutional head outputs ∆ψ , which is added to a normalized
copy of uprev to yield u(s)k . At the first denoising sub-step (s=S−1), we set uprev = 0.

Usage notes. We normalize (∆⋆
k, τ) to [0, 1], and compute log SNR(s) from the current DDIM

schedule (App. A). This design keeps uψ lightweight relative to the UNet backbone while expressive
enough to bias forecasts toward observations.

G Implementation notes

Gradients flow only into ψ (the UNet θ is frozen). We use gradient checkpointing at each UNet call
and detach uprev within a frame to avoid deep denoising-step recurrences; memory scales with the
number of checkpoints.
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