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Abstract

Data assimilation (DA) in chaotic spatiotemporal systems, such as turbulent PDEs,
is essential but computationally demanding, often requiring expensive adjoints,
ensembles, or test-time optimization. We introduce an amortized framework
that augments autoregressive diffusion models with learned feedback control. A
pretrained diffusion model provides one-step forecasts, while a compact control
network, trained offline, injects affine residuals into the DDIM denoising steps.
These residuals gently nudge the sampler toward consistency with upcoming
observations, preventing forecast drift during long observation gaps. At inference,
assimilation reduces to a single forward rollout with on-the-fly corrections, avoiding
optimization or ensembles. On chaotic Kolmogorov flow, our method yields
improved long-horizon stability, substantial accuracy gains, and over 30x faster
runtime. To our knowledge, this is the first framework to integrate amortized
assimilation directly into autoregressive diffusion models, opening a new direction
for efficient learned control in high-dimensional PDE forecasting.

1 Introduction

Forecasting spatiotemporal dynamics, from turbulence to weather, is notoriously difficult due to chaos:
small state errors amplify exponentially, causing open-loop forecasts to diverge. Data assimilation
(DA) counters this by incorporating sparse, noisy observations, producing improved analyses that
extend predictability [1}2]. Classical schemes such as 4D-Var and EnKF [3} 4, 5] have long powered
operational forecasting, but rely on quasi-linear assumptions and demand costly adjoint or ensemble
computations [6].

Deep generative models offer an alternative. Diffusion models in particular capture high-dimensional
distributions and can reconstruct full states from partial data. Recent works apply diffusion for
Bayesian DA, either by guiding sampling at test time [7, |8, 9] or by conditioning training directly on
observations [10} [11]]. While promising, these approaches remain limited: guidance applied only at
inference allows errors to accumulate between arrivals; naive conditional training destabilizes long
rollouts; and iterative denoising makes inference slow.

We propose a diffusion-based DA framework that introduces a learned control mechanism into the
generative dynamics. A pretrained diffusion forecaster provides the backbone transitions, while
a control network injects affine residuals into each DDIM step (Fig. [T). These residuals act as
lightweight, preview-aware corrections, nudging the trajectory toward upcoming observations without
altering the backbone. Crucially, the controller is trained offline on synthetic assimilation scenarios,
so at test time the system performs causal, feed-forward rollouts with on-the-fly corrections. This
amortized design combines the expressivity of diffusion models with the efficiency of learned control,
enabling accurate, stable, and fast assimilation in autoregressive chaotic PDE forecasting.

Submitted to the Al for Science workshop (NeurIPS 2025).
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Figure 1: At physical step k, the pretrained diffusion backbone (DM) advances the state xj, through
S denoising sub-steps to produce x1. Internally, the latent chain zl(i)l — e = z,ﬁ)l = Tiyl
is generated by the pretrained DDIM sampler. Our control policy u., injects small residuals Uy 41
(added affinely to the parent latent at sub-steps s) that gently nudge the denoiser towards corrected
trajectory. These residuals depend on the current state xj, and a preview buffer wy, which collects
upcoming observations within the lookahead horizon W;. This design enables stable assimilation
through feed-forward autoregressive rollouts without test-time optimization.

2 Method

Notation. Physical time indices k¥ € N; DDIM denoising sub-steps s € {S—1,...,0}. We define
the state space X £ REXHXW with states z;, € X. Observation arrival indices 7 C N with
observations y1 = {y; }+e7. For measures P, Q on trajectory space, dP/d(Q denotes the Radon—
Nikodym derivative when P < (). We use ©® for Hadamard products; || - ||2 is the Euclidean norm
over all channels/pixels.

2.1 Problem: Chaotic Forecasting with Delayed, Sparse Observations

Open-loop neural simulators of chaotic dynamics inevitably diverge exponentially from ground-truth
trajectories. Data assimilation (DA) mitigates this instability by periodically steering forecasts back
toward reality using observational data or other guidance signals.

In practice, observations arrive far less frequently than the simulator’s internal time step, and often
with reporting delays. This creates a mismatch: the simulator advances many steps without guidance,
so purely retrospective corrections cannot prevent substantial drift. Classical data assimilation
addresses this by optimizing over windows of past and future observations (e.g., fixed-lag smoothing).
Inspired by this view, we introduce a preview regime: during each transition xy — z1, the sampler
can access a short lookahead window of upcoming observations. These future cues allow the controller
to apply small anticipatory corrections, nudging the forecast toward consistency at the next arrival
while staying close to the unguided simulator.

With this intuition in place, we now introduce the formal ingredients of our approach.

2.1.1 Prior Dynamics

Given an initial distribution po(zo) and one-step transition kernels ¢(xx+1 | 2x), the induced

trajectory distribution over the first n+1 states is Q(zo.,) = po(zo) HZ;S q(xg+1 | xk),n € N.
In our setting, the kernel ¢ is realized by a pretrained one-step diffusion forecaster (details in App. [A).
We denote this kernel as gp(zx11| xx) = DDIMg(gg; 1), yielding

n—1

Qo(wo:m) = po(wo) [] wo(@asa [21),  VneN. ()

k=0

The family {Qg(z0.n)}nen is consistent and induces a semi-infinite path measure Q§° on A,
corresponding to an infinite-horizon autoregressive process.
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2.1.2 Preview Selector: Windowed, Multi-Observation

Observations in our setting occur only at a sparse subset of simulator steps 7 C N, leaving long
stretches without direct guidance. Relying solely on past arrivals can therefore allow the simulator to
drift substantially before the next observation is available. To address this, we introduce a bounded
preview: during the transition x;y — 1, the controller is permitted to condition on nearby
upcoming arrivals within a fixed horizon A. This design is analogous to finite assimilation windows
in data assimilation (e.g., fixed-lag smoothing in 4D-Var/EnKS and conditional lookahead in[10)).

Formally, for each step k the preview window is
We £ {jeT:1<j—(k+1) <A},
the set of arrival indices within the next A simulator steps. If W, # @, the active preview is

wi = {(ys, Dry) 1 J € Wi, Ay =j — (k+1)}.
Operator-specific metadata (e.g., masks A; for masked losses) travel with 3; as needed to evaluate
@, but are not part of the assimilation logic itself (see App.[B] App.[C). In experiments we restrict to
the nearest-observation special case for efficiency, though the formulation supports aggregation over
all elements of wy,.

2.1.3 Observations as Arrival-Time Costs

Observations arrive at a sparse subset of simulator steps, indexed by 7 C N. At these arrival indices
k € T we impose arrival-time costs:

Clz) 2 Dplan; yr). 2)
keT

Each @, penalizes mismatch between forecast state xj, and its corresponding observation yy, and our
learning objective balances this cumulative arrival-time cost against remaining close to the unguided
simulator (Sec. [2.2). Concrete operators used in our experiments are defined in App. Bl while
these are linear masking/downsampling operators instantiated with least-squares penalties, the only
essential requirement for the framework is that @ (- ; yx) be differentiable in xy, so that gradients can
train the controller.

Takeaway. Together, these ingredients define our assimilation setting: (i) a diffusion-based path
measure (Q7° that generates forecasts over an infinite horizon, (iii) a preview selector that associates
each simulator step with the nearest upcoming arrivals inside a finite lookahead window, and (ii) an
arrival-time cost interface that ties those forecasts to sparse observations. The next step is to ask how
to optimally combine these ingredients, which leads to a variational view via exponential tilting.

2.2 Variational Principle: Gibbs Tilt for DA

Given the baseline path measure Q3° (Eq. (I)) and arrival-time costs C(z) = 3 wer Pr(Triur), a
natural way to bias trajectories toward observations is through an exponential tilt:

dpz _exp(—BC(z)) _
05 (z) = —z; Zg = Eqglexp(—pC)]. 3

For this to define a valid probability measure we require 0 < Zg < oo, which holds under mild
integrability assumptions, e.g. bounded ®, or suitably sparse/summable observation schedules. Under
these conditions, {Pg } >0 forms the Gibbs posterior family, with temperature 371

Gibbs Variational Characterization. By the Gibbs variational principle,
logZg = sup {-BEp[C] — KL(P|QF")}, “
PLQge

with equality attained at P = Pg . Thus, for any P < (Q5° we obtain the bound
~BEp[C] — KL(P|QF) < log Zs. 5)

This shows that small expected cost and small divergence from the baseline are jointly necessary: a
distribution P can only approach the optimal Gibbs posterior by balancing both terms. A short proof

of @) and () is given in App.[D}
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Why Direct Tilt Is Intractable for Autoregressive DDIM.  The Gibbs posterior Pj o e‘BC(g”)ng
is in principle the optimal distribution, but computing its normalization constant Zz or sampling from
it exactly is intractable. A natural idea is importance sampling from ()3°, but in the autoregressive
DDIM setting this quickly breaks down: evaluating the cost C(x) requires full autoregressive rollouts
of the diffusion backbone, and in chaotic regimes the importance weights concentrate on a vanishing
fraction of trajectories. Thus an astronomical number of rollouts would be needed to obtain reliable
estimates. We therefore turn to variational inference: rather than reweighting, we define a tractable
parametric family Py, by injecting preview-aware residual controls into Qg° (Sec. . This retains
the diffusion backbone for stability while enabling lightweight corrections that reduce arrival-time
costs without incurring the prohibitive expense of direct Gibbs sampling.

2.3 Approximation: Amortized Preview-Aware Control Family P,

Motivation for Amortization. A natural strategy within the control family is to optimize controls
per trajectory at test time. At each denoising step the control vector can be initialized at zero, future
controls assumed zero, and a few inner iterations carried out to improve the current control before
proceeding. This is analogous to NDTM [12] in the non-autoregressive image setting, where the cost
at an arrival index can be estimated directly from a noisy intermediate state via a Tweedie correction,
thereby avoiding a full rollout. In the autoregressive forecasting setting, however, such shortcuts
are unavailable: the state at an arrival index k € T depends on the entire preceding trajectory, so
evaluating ®y(xx; yx) requires an explicit rollout through all intermediate denoising steps. As a
result, even a handful of inner optimization iterations per control would entail repeated full rollouts,
which is computationally infeasible. We therefore amortize control selection: a lightweight policy .,
is trained offline on short preview rollouts so that, at test time, controls can be applied in a single
forward pass per step. This design avoids costly trajectory-level optimization while retaining the
frozen diffusion backbone for stability and expressivity.

Controlled path measure. We retain the baseline sampler (Jy and perturb only the parent input
of each denoising sub-step through a small preview-aware map fs. Formally, for latent variables

z,ﬁ)l, e z,iojl with z,(c?gl = Tj41, the baseline one-step kernel factors as

Qo(Tk41| 1) = /

0
[T G0 | 2.
=5—-1

S

with ps denoting the noise prior. Given the active preview wy, (Sec.[2.1.2] App.[C), the policy u,
(more details in App.|E) emits control vectors

S-1 0
Ugs1 = (u,(C+1 ), . ,uéil), “1(21 = uy(Tk, Wk, 9),

which enter through the affine perturbation
flzu) = z+7u, 7> 0. (7N
Each controlled sub-step is then defined as
(), (s) | (s+1),  (s) s () (s) (s+1)  (s) .
Dy, (Zk-i-l “h+1 RONSPETY) 2 g (Zk-i-l‘f(zk-&-l  Upq); fk) ®)

Composing across s yields the controlled one-step kernel

Py (Trg1 | Tr; Upy1) = /[

0
I 6L 4 2 i) a7, )
—5—

s 1

By Kolmogorov consistency, the controlled kernels define the semi-infinite process

P (x0:00 | y7) = po(20) [[ pul@ri | zns Ui (@, wi)). (10)
k>0
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From principle to a learnable objective. A direct instantiation of (@) with our family leads to the
principled objective

min BEpxe[C(z)] + KL(PZ || Q7). (1D

which trades off fidelity to observations against deviation from the frozen backbone. Computing
the pathwise KL exactly is intractable for autoregressive DDIM; instead, we optimize a windowed
surrogate aligned with preview rollouts. For a start index kq and horizon A, define

Clig,a)(T) = Z O (2r;Yr), Wy =17 €T :1<j— (kot1) <A}
kETNWy,

‘We then minimize

1 1
min E C XY + = Raiw (¥ ko, A) |, XY ~ P( | yri ko, A),
" max{|T N Wi, |, 1} [koJ\]( ) 3 aiv(¥; ko, A) W ¢ [ y73 ko, A)
arrival-time cost over preview window divergence control (proxy)
(12)

where Rg;y is any tractable proxy that discourages large departures from )y (e.g., control-energy
||U]|3, or a per-step proximity penalty between controlled and baseline one-step predictions with a
shared noise seed akin to Pandey et al. [12]]). This surrogate is the finite-window counterpart of (TT)
and matches the causal preview protocol.

2.4 Algorithm: Preview-Aware Sampler & Trainer

Training: Windowed Rollouts with Arrival Supervision. We sample windows of length A, roll
out with preview-aware injections, and minimize (T3) in Alg.[I] This aligns the training loss with the
evaluation protocol (arrival-only supervision) and makes the learned controller causal with respect to
the preview window.

Inference: Preview-Aware Sampler. At test time we run the preview-aware selector once per
physical step and advance the sampler in Alg. [2] injecting residuals via (7). When generating L
frames with L > A, we generate in moving-window chunks of length A, carrying the final state of
chunk 7 as the initial state of chunk j4-1; this mirrors operational overlapping-window DA [13].

3 Experiments

3.1 Kolmogorov Flow

We evaluate on the two—dimensional Kolmogorov flow, a standard turbulent PDE benchmark. Incom-
pressible dynamics follow the Navier—Stokes equations on [0, 27]? with periodic boundaries,

u:—uVu—i—éVQu—%Vp—i—f, 0 =V-u,

with Re=103, p=1, and Kolmogorov forcing with linear damping. We generate trajectories using
jax-cfd on a 256x256 grid and coarsen states to 64x64. Snapshots are spaced by A =0.2 (82
forward—Euler substeps). We simulate 1024 independent length-64 trajectories from the statistically
stationary regime and split into train/val/test as 80%,/10%/10%. Each state is a two-channel (u, u,)
field.

3.2 Observation Scenarios and Preview

Training uses a preview horizon A=17 (index 0 seeds autoregression). We study four observation
operators, which define both training and evaluation tasks:

* Downsample x2 and Downsample x4: observations at all preview indices 1:16.
» Masked (stride 2) and Masked (stride 4): observations only at indices {4, 8,12, 16}.
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Algorithm 1 Preview-Aware Control Training (Windowed Arrival Supervision)

Require: Frozen diffusion forecaster gg with S DDIM sub-steps; control policy u,, with parameters
1; preview horizon A; control scale ; arrival indices T with costs {®y } xc7; initial distribution
po or dataset states.

1: Initialize .

2: while not converged do

3: Sample a start index ko and an initial state xy,.

4: Define the training window {ko+1,...,ko+A} and preview sets W, ={j €T : 1 <

j— (k+1) <A} fork € {ko,..., ko+A—1} (Sec.[2.1.2).

5: T 4= Ty, L+ 0
6: for k = ko,...,ko+A—1do
7: Form the active preview wy ={(y;, A ;) : JEWr} with Ay ;=7 — (k+1).
8: Compute controls U1 = (ufle), . ,(221) with ugl =y (T, Wk, 5).
9: Generate z51 by composing controlled sub-steps () with map f(z,u) =z + yu (7):

S s s+1) _ 0

Z](c-l,-)l ~ Ps, Z](C ~ q& ( ‘ f(zl(c-l,-l 7u§g—‘,)-1) )7 825—1:07 Tp+1= Z](f_uzl

10: T4 Tpg1-
11: if k+1 € T then
12: L+ L4 Ppi1(Tpt1; Yrs1) > arrival-only supervision (2)
13: Normalize window loss £ = and update ¢ < 1 — ny, Vwﬁ > go

max{|T N W,|, 1}
frozen; backprop through controlled DDIM

14: return Trained control parameters i*.

Algorithm 2 Preview-Aware Amortized Assimilation (Inference)

Require: Frozen gy; trained controller uy«; control scale +; preview horizon A; initial state xg;
observation stream {(yx, Px) }reT-
1: fork=0,1,...,L—1do
2: Build preview set Wy, = {j € T : 1 < j — (k+1) < A} and active preview wy =
{(vs, Ar.j) Yiew-
Compute controls Uy, 1= (u,(cill)7 . “1(21) with ugfll =Uyr (Tpy, W, S).
4: Advance one physical step using the controlled kernel (9):

w

s (s+1 _ (o
z,(H)l ~ Ppg, Z](€+1 ~ q0 ( | f(z:,jH ),uksll) a:k), s=85—1:0, xpi1= Zi(<+)1
5: Optionally discard arrivals 7 < k+1 from the stream; set conditioner xy <— Tjy1.
6: return Forecast path x1.1,.

Across all experiments we instantiate the preview policy with the nearest upcoming observation. At
physical step &, with lookahead horizon A, we select

k* = arg min (j — (k+1)),

(Yi+, D gr) if such k* exists,
W =
FETO{k+1,....k+A}

1% otherwise,

where Ay g+ = k* — (k+1) is the lead time. When wy, = @ the controller receives no preview and
the step reduces to the frozen backbone transition. This nearest-atrival policy yields a constant-time,
causal selector per step and keeps the controller lightweight. Extending to multi-arrival aggregation
is supported by the formulation (Sec.[2.1.2) but is not used in our reported results.

3.3 Training Objective

In our implementation we operate in the high-/3 regime, yielding

1
min E X1, XY ~ P(- i ko, A). 13
" maX{|7-ka0‘ 1} ko, ( ) P ( |yT 0 ) (13)
We rely on a small-gain design—small control scale -, a limited number of DDIM sub-steps (S=3
per physical step in all experiments), and near-zero control initialization—to keep Pj° close to
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Figure 2: Qualitative assimilation results on Kolmogorov flow. Rows show Observations, Con-
trolled (ours), Ground Truth, and Uncontrolled forecasts. Bullets above columns mark observation
arrivals. Uncontrolled forecasts remain visually plausible up to about ¢~ 35-36, after which chaotic
divergence manifests: small phase errors amplify exponentially, leading to severe structural mis-
matches at later times (¢ > 40). Our preview-aware controller successfully stabilizes rollouts by
injecting small corrections, maintaining phase coherence and preserving fine-scale vortical structures
across the horizon. Panel (top): Downsample x4 (dense arrivals). Panel (bottom): Masked stride 4
(sparse arrivals).
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Qg° in practice while still achieving substantial cost reductionﬂ Empirically this provides stable
long-horizon rollouts without an explicit divergence term, while preserving the principled variational

view through (TT)—(T2).
3.4 Metrics, Protocol, and Baselines

Protocol. We roll out L=60 steps autoregressively. Unless otherwise stated, all methods use identical
observation streams and are evaluated with RMSD (root mean square deviation) over the forecast
horizon; we report per-task means across the test set.

Baselines. (1) SDA [[7)]: score-based data assimilation that samples all-at-once trajectories and
applies observation guidance at inference; this decouples observation models from training and
enables zero-shot observation types but requires iterative, window-level denoising at test time. (2)
Joint AR [[I0]: the “joint” score model conditioned on history but sampled autoregressively with
reconstruction guidance; compared to AAO, AR improves forecasting stability while keeping the
same score parameterization. These reflect current practice in diffusion-for-PDE DA and provide
complementary trade-offs between conditioning flexibility and rollout stability.

See App. E for implementation notes (gradient checkpointing across UNet calls) and App. |[E| for the
ControlNet/UNet specifications.



191
192

193
194

196

197
198

200
201

202

204

205
206
207
208

209
210
211

212
213
214
215

216
217
218

219
220

221
222

Table 1: RMSD (lower is better) across observation tasks.

Method Masked (s=2) Masked (s=4) Downsample (x2) Downsample (x4)
SDA (AAO) 0.1411 0.3529 0.0413 0.2099
Joint AR 0.0429 0.1495 0.0383 0.1846
Ours 0.0151 0.0223 0.0152 0.0220

Table 2: Sampling time (seconds) for 10 trajectories on one RTX A6000.

Method Masked Obs. Downsampled Obs.
SDA (AAO) 244.10 248.24

Joint AR 119.80 120.43

Ours 3.55 3.86

3.5 Results

Accuracy. Table[I|reports RMSD across the four tasks. The preview-aware controller achieves the
lowest error in all scenarios, with the largest margins under sparse masked observations.

Efficiency. We benchmark wall-clock sampling on a single RTX A6000 for 10 assimilated trajecto-
ries (data loading and metric computation excluded). Amortized preview control yields markedly
lower runtime than both baselines (Table [J), translating to 30x—70x speedups depending on the
baseline.

Takeaway. Across masking and downsampling tasks, amortized preview control combines the
stability of a frozen diffusion backbone with lightweight, lookahead corrections. This yields consistent
accuracy gains and large end-to-end speedups, making assimilation a single forward rollout rather
than a test-time optimization or ensemble computation. Fig. [2]clearly states the efficacy of such
controlled autoregressive diffusion models in preventing trajectory divergence.
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A DDIM parameterization, coefficients, SNR, and v — ¢

At denoising step s, DDIM yields a Gaussian transition
2~ N (pg(2),5), 021), po(z'®,s) = asz) + b8z, 5),

with schedule-dependent (as, bs, 05); deterministic DDIM uses 05=0. We pass log SNR(s) =

log 172~ to the control. Our UNet is trained with v-prediction; we convert to noise prediction via

g‘9(z(5)a 5) =Qs 69(‘T(S), 5) + V1 — Qg I(S)

and use £y in all DDIM formulas.

B Observation operators used in experiments

We instantiate terminal costs using simple linear observation operators for clarity and stability. For a
(possibly time-varying) mask M € {0, 1}1*#*W broadcast across channels,

m Mo (z—y)|3
Amask () = M © w, q’kaSk(x;y) = H]W(||1+Z)|27

with e = 107° and the step skipped if || M||; = 0. For downsample/upsample we use average pooling
Py over non-overlapping f x f blocks and nearest-neighbor upsampling Uy:

Ayp(z) = Up(Ppa),  ®F(ay) = U (Pra) — U (Pry) |-

These operators are used to generate the observed signals y;, that enter terminal costs. Any differen-
tiable @, could replace these without changing the method.

C Active observation selector (preview DA)

In practice, we maintain a preview buffer containing future observations from 7 that lie within the
lookahead horizon A. Each entry is a triplet (y;, M;, A;), where:

* j € T is the physical time index of the observation,
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* y; is the observed signal (lifted to full resolution if needed),

* Mj is an auxiliary mask (binary for masking operators, all ones for downsampling; see
App. |B for other operators, M; may be ignored or replaced by auxiliary metadata as
appropriate),

* Aj =j— (k+1) is the lead time relative to the current forecast step k.
At each physical step k, the active preview is chosen by
k* = i AjA; >0
g, (89 4 2 OF
where Wy, = {k +1,...,k + A} is the preview window. The selected preview is then
wi = (Yrr, Mg, Agr),

which is passed to the controller at step k. This selection occurs once per physical step.

D Gibbs variational principle (proof)

Let (XN, F) denote the trajectory space with its product o-algebra, and let Q5° be the baseline
path measure from Eq. (). Fix a measurable cost C : XN — R and 8 > 0, and assume the mild
integrability condition
0 < Zﬁ £ ]EQSC[eiﬁc] < 0.

Define the exponentially tilted (Gibbs) measure Pj by

dPj (@) e—BC(x)

x) = .
dQg° Zs

Variational identity. For any P < Q§°,

o dP B dP/dQg°

= /log(% - Z3 eﬁc) dpP
= KL(P[|QF°) + BEp[C] + log Z.
Since KL(P[|P5) > 0, we obtain
—BEp[C] — KL(P||QF") < logZs, VP <Qy, (15)
which is Eq. (B) in the main text.

(14)

Optimality and uniqueness. Equality in (T5) holds iff KL(P||P}) = 0, i.e., iff P = P (equality
Qg°-a.s.). Equivalently,

log Zs = sup { —BEpIC] — KL(PIQF) } (16)

and the unique maximizer is Pj.

Remarks. (i) The same proof applies verbatim on any finite horizon by replacing Q3° and C with
their restrictions to X", yielding the identical identity and optimizer. (ii) If P £ Q3°, interpret
KL(P||Qg°) = 400, so such P do not affect the supremum in (T6).

E Control network implementation

Purpose. The control policy u,, generates the residual control u,(:). In Sec. we write “1(21 =
Uy (Tg, wi, §) for clarity. Here we expand wy, and the additional inputs required in practice. Formally,

u,(:) = u¢<xf§11, Tk, Y, My, AL, logSNR(s), T, uprCV>'

10
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Inputs and fusion. We concatenate five image-like tensors along channels: the current latent xgizl,

the previous state xy, the preview observation y, the auxiliary mask M}, and the previous control
Uprev- A shallow encoder with a two-level down/up path extracts limited spatial context. FILM
modulation injects scalar metadata (A}, 7,log SNR(s)) where A} is the preview lag and T is the
local position index in the A window W,.

FiLM conditioning. Each scalar is normalized and embedded by an MLP: A} /A, /A, and
log SNR(s). The embeddings are concatenated and mapped to (-, 3), which modulate feature maps
as feat — feat - (1+v) + 5.

Residual head and stability. A 33 convolutional head outputs A, which is added to a normalized
copy of upey to yield u,(f). At the first denoising sub-step (s=S5—1), we set Upyev = 0.

Usage notes. We normalize (A}, 7) to [0, 1], and compute log SNR(s) from the current DDIM

schedule (App. EI) This design keeps u,, lightweight relative to the UNet backbone while expressive
enough to bias forecasts toward observations.

F Implementation notes

Gradients flow only into v (the UNet € is frozen). We use gradient checkpointing at each UNet call
and detach up,e, Within a frame to avoid deep denoising-step recurrences; memory scales with the
number of checkpoints.
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