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Abstract

Data assimilation (DA) in chaotic spatiotemporal systems, such as turbulent PDEs,1

is essential but computationally demanding, often requiring expensive adjoints,2

ensembles, or test-time optimization. We introduce an amortized framework3

that augments autoregressive diffusion models with learned feedback control. A4

pretrained diffusion model provides one-step forecasts, while a compact control5

network, trained offline, injects affine residuals into the DDIM denoising steps.6

These residuals gently nudge the sampler toward consistency with upcoming7

observations, preventing forecast drift during long observation gaps. At inference,8

assimilation reduces to a single forward rollout with on-the-fly corrections, avoiding9

optimization or ensembles. On chaotic Kolmogorov flow, our method yields10

improved long-horizon stability, substantial accuracy gains, and over 30× faster11

runtime. To our knowledge, this is the first framework to integrate amortized12

assimilation directly into autoregressive diffusion models, opening a new direction13

for efficient learned control in high-dimensional PDE forecasting.14

1 Introduction15

Forecasting spatiotemporal dynamics, from turbulence to weather, is notoriously difficult due to chaos:16

small state errors amplify exponentially, causing open-loop forecasts to diverge. Data assimilation17

(DA) counters this by incorporating sparse, noisy observations, producing improved analyses that18

extend predictability [1, 2]. Classical schemes such as 4D-Var and EnKF [3, 4, 5] have long powered19

operational forecasting, but rely on quasi-linear assumptions and demand costly adjoint or ensemble20

computations [6].21

Deep generative models offer an alternative. Diffusion models in particular capture high-dimensional22

distributions and can reconstruct full states from partial data. Recent works apply diffusion for23

Bayesian DA, either by guiding sampling at test time [7, 8, 9] or by conditioning training directly on24

observations [10, 11]. While promising, these approaches remain limited: guidance applied only at25

inference allows errors to accumulate between arrivals; naïve conditional training destabilizes long26

rollouts; and iterative denoising makes inference slow.27

We propose a diffusion-based DA framework that introduces a learned control mechanism into the28

generative dynamics. A pretrained diffusion forecaster provides the backbone transitions, while29

a control network injects affine residuals into each DDIM step (Fig. 1). These residuals act as30

lightweight, preview-aware corrections, nudging the trajectory toward upcoming observations without31

altering the backbone. Crucially, the controller is trained offline on synthetic assimilation scenarios,32

so at test time the system performs causal, feed-forward rollouts with on-the-fly corrections. This33

amortized design combines the expressivity of diffusion models with the efficiency of learned control,34

enabling accurate, stable, and fast assimilation in autoregressive chaotic PDE forecasting.35
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Figure 1: At physical step k, the pretrained diffusion backbone (DM) advances the state xk through
S denoising sub-steps to produce xk+1. Internally, the latent chain z(S)k+1→ · · · → z

(0)
k+1 ≡ xk+1

is generated by the pretrained DDIM sampler. Our control policy uψ injects small residuals Uk+1

(added affinely to the parent latent at sub-steps s) that gently nudge the denoiser towards corrected
trajectory. These residuals depend on the current state xk and a preview buffer ωk, which collects
upcoming observations within the lookahead horizonWk. This design enables stable assimilation
through feed-forward autoregressive rollouts without test-time optimization.

2 Method36

Notation. Physical time indices k ∈ N; DDIM denoising sub-steps s ∈ {S−1, . . . , 0}. We define37

the state space X ≜ RC×H×W , with states xk ∈ X . Observation arrival indices T ⊆ N with38

observations yT ≜ {yt}t∈T . For measures P,Q on trajectory space, dP/dQ denotes the Radon–39

Nikodym derivative when P≪Q. We use ⊙ for Hadamard products; ∥ · ∥2 is the Euclidean norm40

over all channels/pixels.41

2.1 Problem: Chaotic Forecasting with Delayed, Sparse Observations42

Open-loop neural simulators of chaotic dynamics inevitably diverge exponentially from ground-truth43

trajectories. Data assimilation (DA) mitigates this instability by periodically steering forecasts back44

toward reality using observational data or other guidance signals.45

In practice, observations arrive far less frequently than the simulator’s internal time step, and often46

with reporting delays. This creates a mismatch: the simulator advances many steps without guidance,47

so purely retrospective corrections cannot prevent substantial drift. Classical data assimilation48

addresses this by optimizing over windows of past and future observations (e.g., fixed-lag smoothing).49

Inspired by this view, we introduce a preview regime: during each transition xk→xk+1, the sampler50

can access a short lookahead window of upcoming observations. These future cues allow the controller51

to apply small anticipatory corrections, nudging the forecast toward consistency at the next arrival52

while staying close to the unguided simulator.53

With this intuition in place, we now introduce the formal ingredients of our approach.54

2.1.1 Prior Dynamics55

Given an initial distribution p0(x0) and one-step transition kernels q(xk+1 | xk), the induced56

trajectory distribution over the first n+1 states is Q(x0:n) = p0(x0)
∏n−1
k=0 q(xk+1 | xk), n ∈ N.57

In our setting, the kernel q is realized by a pretrained one-step diffusion forecaster (details in App. A).58

We denote this kernel as qθ(xk+1 | xk) ≡ DDIMS(gθ;xk), yielding59

Qθ(x0:n) = p0(x0)

n−1∏
k=0

qθ(xk+1 | xk), ∀n ∈ N. (1)

The family {Qθ(x0:n)}n∈N is consistent and induces a semi-infinite path measure Q∞
θ on XN,60

corresponding to an infinite-horizon autoregressive process.61
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2.1.2 Preview Selector: Windowed, Multi-Observation62

Observations in our setting occur only at a sparse subset of simulator steps T ⊆ N, leaving long63

stretches without direct guidance. Relying solely on past arrivals can therefore allow the simulator to64

drift substantially before the next observation is available. To address this, we introduce a bounded65

preview: during the transition xk → xk+1, the controller is permitted to condition on nearby66

upcoming arrivals within a fixed horizon Λ. This design is analogous to finite assimilation windows67

in data assimilation (e.g., fixed-lag smoothing in 4D-Var/EnKS and conditional lookahead in 10).68

Formally, for each step k the preview window is69

Wk ≜ { j ∈ T : 1 ≤ j − (k+1) ≤ Λ },
the set of arrival indices within the next Λ simulator steps. IfWk ̸= ∅, the active preview is70

ωk ≜ {(yj , ∆k,j) : j ∈ Wk, ∆k,j = j − (k+1)}.
Operator-specific metadata (e.g., masks Mj for masked losses) travel with yj as needed to evaluate71

Φj , but are not part of the assimilation logic itself (see App. B, App. C). In experiments we restrict to72

the nearest-observation special case for efficiency, though the formulation supports aggregation over73

all elements of ωk.74

2.1.3 Observations as Arrival-Time Costs75

Observations arrive at a sparse subset of simulator steps, indexed by T ⊆ N. At these arrival indices76

k ∈ T we impose arrival-time costs:77

C(x) ≜
∑
k∈T

Φk(xk; yk). (2)

Each Φk penalizes mismatch between forecast state xk and its corresponding observation yk, and our78

learning objective balances this cumulative arrival-time cost against remaining close to the unguided79

simulator (Sec. 2.2). Concrete operators used in our experiments are defined in App. B; while80

these are linear masking/downsampling operators instantiated with least-squares penalties, the only81

essential requirement for the framework is that Φk(· ; yk) be differentiable in xk so that gradients can82

train the controller.83

Takeaway. Together, these ingredients define our assimilation setting: (i) a diffusion-based path84

measure Q∞
θ that generates forecasts over an infinite horizon, (iii) a preview selector that associates85

each simulator step with the nearest upcoming arrivals inside a finite lookahead window, and (ii) an86

arrival-time cost interface that ties those forecasts to sparse observations. The next step is to ask how87

to optimally combine these ingredients, which leads to a variational view via exponential tilting.88

2.2 Variational Principle: Gibbs Tilt for DA89

Given the baseline path measure Q∞
θ (Eq. (1)) and arrival-time costs C(x) ≜

∑
k∈T Φk(xk; yk), a90

natural way to bias trajectories toward observations is through an exponential tilt:91

dP ⋆β
dQ∞

θ

(x) =
exp(−βC(x))

Zβ
, Zβ = EQ∞

θ
[exp(−βC)] . (3)

For this to define a valid probability measure we require 0 < Zβ < ∞, which holds under mild92

integrability assumptions, e.g. bounded Φk or suitably sparse/summable observation schedules. Under93

these conditions, {P ⋆β}β>0 forms the Gibbs posterior family, with temperature β−1.94

Gibbs Variational Characterization. By the Gibbs variational principle,95

logZβ = sup
P≪Q∞

θ

{
−β EP [C] − KL(P∥Q∞

θ )
}
, (4)

with equality attained at P = P ⋆β . Thus, for any P≪Q∞
θ we obtain the bound96

−β EP [C] − KL(P∥Q∞
θ ) ≤ logZβ . (5)

This shows that small expected cost and small divergence from the baseline are jointly necessary: a97

distribution P can only approach the optimal Gibbs posterior by balancing both terms. A short proof98

of (4) and (5) is given in App. D.99
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Why Direct Tilt Is Intractable for Autoregressive DDIM. The Gibbs posterior P ⋆β ∝ e−βC(x)Q∞
θ100

is in principle the optimal distribution, but computing its normalization constant Zβ or sampling from101

it exactly is intractable. A natural idea is importance sampling from Q∞
θ , but in the autoregressive102

DDIM setting this quickly breaks down: evaluating the cost C(x) requires full autoregressive rollouts103

of the diffusion backbone, and in chaotic regimes the importance weights concentrate on a vanishing104

fraction of trajectories. Thus an astronomical number of rollouts would be needed to obtain reliable105

estimates. We therefore turn to variational inference: rather than reweighting, we define a tractable106

parametric family Pψ by injecting preview-aware residual controls into Q∞
θ (Sec. 2.3). This retains107

the diffusion backbone for stability while enabling lightweight corrections that reduce arrival-time108

costs without incurring the prohibitive expense of direct Gibbs sampling.109

2.3 Approximation: Amortized Preview-Aware Control Family Pψ110

Motivation for Amortization. A natural strategy within the control family is to optimize controls111

per trajectory at test time. At each denoising step the control vector can be initialized at zero, future112

controls assumed zero, and a few inner iterations carried out to improve the current control before113

proceeding. This is analogous to NDTM [12] in the non-autoregressive image setting, where the cost114

at an arrival index can be estimated directly from a noisy intermediate state via a Tweedie correction,115

thereby avoiding a full rollout. In the autoregressive forecasting setting, however, such shortcuts116

are unavailable: the state at an arrival index k ∈ T depends on the entire preceding trajectory, so117

evaluating Φk(xk; yk) requires an explicit rollout through all intermediate denoising steps. As a118

result, even a handful of inner optimization iterations per control would entail repeated full rollouts,119

which is computationally infeasible. We therefore amortize control selection: a lightweight policy uψ120

is trained offline on short preview rollouts so that, at test time, controls can be applied in a single121

forward pass per step. This design avoids costly trajectory-level optimization while retaining the122

frozen diffusion backbone for stability and expressivity.123

Controlled path measure. We retain the baseline sampler Qθ and perturb only the parent input124

of each denoising sub-step through a small preview-aware map fs. Formally, for latent variables125

z
(S)
k+1, . . . , z

(0)
k+1 with z(0)k+1≡ xk+1, the baseline one-step kernel factors as126

qθ(xk+1 | xk) =

∫ [ 0∏
s=S−1

q
(s)
θ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; xk

)]
pS
(
z
(S)
k+1

)
dz

(1:S)
k+1 , (6)

with pS denoting the noise prior. Given the active preview ωk (Sec. 2.1.2, App. C), the policy uψ127

(more details in App. E) emits control vectors128

Uk+1 = (u
(S−1)
k+1 , . . . , u

(0)
k+1), u

(s)
k+1 = uψ(xk, ωk, s),

which enter through the affine perturbation129

f(z, u) = z + γ u, γ > 0. (7)

Each controlled sub-step is then defined as130

p
(s)
ψ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; u

(s)
k+1, xk

)
≜ q

(s)
θ

(
z
(s)
k+1

∣∣∣ f(z(s+1)
k+1 , u

(s)
k+1); xk

)
. (8)

Composing across s yields the controlled one-step kernel131

pψ(xk+1 | xk; Uk+1) =

∫ [ 0∏
s=S−1

p
(s)
ψ

(
z
(s)
k+1

∣∣ z(s+1)
k+1 ; u

(s)
k+1, xk

)]
pS
(
z
(S)
k+1

)
dz

(1:S)
k+1 . (9)

By Kolmogorov consistency, the controlled kernels define the semi-infinite process132

P∞
ψ (x0:∞ | yT ) = p0(x0)

∏
k≥0

pψ
(
xk+1

∣∣xk; Uk+1(xk, ωk)
)
. (10)
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From principle to a learnable objective. A direct instantiation of (4) with our family leads to the133

principled objective134

min
ψ

β EP∞
ψ

[
C(x)

]
+ KL

(
P∞
ψ

∥∥Q∞
θ

)
, (11)

which trades off fidelity to observations against deviation from the frozen backbone. Computing135

the pathwise KL exactly is intractable for autoregressive DDIM; instead, we optimize a windowed136

surrogate aligned with preview rollouts. For a start index k0 and horizon Λ, define137

C[k0,Λ](x) =
∑

k∈T ∩Wk0

Φk(xk; yk), Wk0 = { j ∈ T : 1 ≤ j − (k0+1) ≤ Λ }.

We then minimize138

min
ψ

E

 1

max{|T ∩Wk0 |, 1}
C[k0,Λ](X

ψ)︸ ︷︷ ︸
arrival-time cost over preview window

+
1

β
Rdiv(ψ; k0,Λ)︸ ︷︷ ︸

divergence control (proxy)

 , Xψ ∼ P∞
ψ (· | yT ; k0,Λ),

(12)
where Rdiv is any tractable proxy that discourages large departures from Qθ (e.g., control-energy139

∥U∥22, or a per-step proximity penalty between controlled and baseline one-step predictions with a140

shared noise seed akin to Pandey et al. [12]). This surrogate is the finite-window counterpart of (11)141

and matches the causal preview protocol.142

2.4 Algorithm: Preview-Aware Sampler & Trainer143

Training: Windowed Rollouts with Arrival Supervision. We sample windows of length Λ, roll144

out with preview-aware injections, and minimize (13) in Alg. 1. This aligns the training loss with the145

evaluation protocol (arrival-only supervision) and makes the learned controller causal with respect to146

the preview window.147

Inference: Preview-Aware Sampler. At test time we run the preview-aware selector once per148

physical step and advance the sampler in Alg. 2, injecting residuals via (7). When generating L149

frames with L > Λ, we generate in moving-window chunks of length Λ, carrying the final state of150

chunk j as the initial state of chunk j+1; this mirrors operational overlapping-window DA [13].151

3 Experiments152

3.1 Kolmogorov Flow153

We evaluate on the two–dimensional Kolmogorov flow, a standard turbulent PDE benchmark. Incom-154

pressible dynamics follow the Navier–Stokes equations on [0, 2π]2 with periodic boundaries,155

u̇ = −u∇u + 1
Re∇

2u − 1
ρ∇p + f, 0 = ∇· u,

with Re=103, ρ=1, and Kolmogorov forcing with linear damping. We generate trajectories using156

jax-cfd on a 256×256 grid and coarsen states to 64×64. Snapshots are spaced by ∆= 0.2 (82157

forward–Euler substeps). We simulate 1024 independent length-64 trajectories from the statistically158

stationary regime and split into train/val/test as 80%/10%/10%. Each state is a two-channel (ux, uy)159

field.160

3.2 Observation Scenarios and Preview161

Training uses a preview horizon Λ=17 (index 0 seeds autoregression). We study four observation162

operators, which define both training and evaluation tasks:163

• Downsample ×2 and Downsample ×4: observations at all preview indices 1:16.164

• Masked (stride 2) and Masked (stride 4): observations only at indices {4, 8, 12, 16}.165
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Algorithm 1 Preview-Aware Control Training (Windowed Arrival Supervision)

Require: Frozen diffusion forecaster gθ with S DDIM sub-steps; control policy uψ with parameters
ψ; preview horizon Λ; control scale γ; arrival indices T with costs {Φk}k∈T ; initial distribution
p0 or dataset states.

1: Initialize ψ.
2: while not converged do
3: Sample a start index k0 and an initial state xk0 .
4: Define the training window {k0+1, . . . , k0+Λ} and preview sets Wk = { j ∈ T : 1 ≤
j − (k+1) ≤ Λ } for k ∈ {k0, . . . , k0+Λ−1} (Sec. 2.1.2).

5: x← xk0 , L ← 0.
6: for k = k0, . . . , k0+Λ−1 do
7: Form the active preview ωk={(yj ,∆k,j) : j∈Wk} with ∆k,j=j − (k+1).
8: Compute controls Uk+1=(u

(S−1)
k+1 , . . . , u

(0)
k+1) with u(s)k+1=uψ(x, ωk, s).

9: Generate xk+1 by composing controlled sub-steps (8) with map f(z, u)=z + γu (7):

z
(S)
k+1∼ pS , z

(s)
k+1∼ q

(s)
θ

(
· | f(z(s+1)

k+1 , u
(s)
k+1); x

)
, s=S−1:0, xk+1≡ z(0)k+1.

10: x← xk+1.
11: if k+1 ∈ T then
12: L ← L+Φk+1(xk+1; yk+1) ▷ arrival-only supervision (2)

13: Normalize window loss L̃= L
max{|T ∩Wk0 |, 1}

and update ψ ← ψ − ηψ∇ψL̃ ▷ gθ

frozen; backprop through controlled DDIM
14: return Trained control parameters ψ⋆.

Algorithm 2 Preview-Aware Amortized Assimilation (Inference)

Require: Frozen gθ; trained controller uψ⋆ ; control scale γ; preview horizon Λ; initial state x0;
observation stream {(yk,Φk)}k∈T .

1: for k = 0, 1, . . . , L−1 do
2: Build preview set Wk = { j ∈ T : 1 ≤ j − (k+1) ≤ Λ } and active preview ωk =
{(yj ,∆k,j)}j∈Wk

.
3: Compute controls Uk+1=(u

(S−1)
k+1 , . . . , u

(0)
k+1) with u(s)k+1=uψ⋆(xk, ωk, s).

4: Advance one physical step using the controlled kernel (9):

z
(S)
k+1∼ pS , z

(s)
k+1∼ q

(s)
θ

(
· | f(z(s+1)

k+1 , u
(s)
k+1); xk

)
, s=S−1:0, xk+1≡ z(0)k+1.

5: Optionally discard arrivals j ≤ k+1 from the stream; set conditioner xk ← xk+1.
6: return Forecast path x1:L.

Across all experiments we instantiate the preview policy with the nearest upcoming observation. At166

physical step k, with lookahead horizon Λ, we select167

k⋆ = arg min
j∈T ∩{k+1,...,k+Λ}

(
j − (k+1)

)
, ωk =

{
(yk⋆ , ∆k,k⋆) if such k⋆ exists,
∅ otherwise,

where ∆k,k⋆ = k⋆ − (k+1) is the lead time. When ωk = ∅ the controller receives no preview and168

the step reduces to the frozen backbone transition. This nearest-arrival policy yields a constant-time,169

causal selector per step and keeps the controller lightweight. Extending to multi-arrival aggregation170

is supported by the formulation (Sec. 2.1.2) but is not used in our reported results.171

3.3 Training Objective172

In our implementation we operate in the high-β regime, yielding173

min
ψ

E
[

1

max{|T ∩Wk0 |, 1}
C[k0,Λ](X

ψ)

]
, Xψ ∼ P∞

ψ (· | yT ; k0,Λ). (13)

We rely on a small-gain design—small control scale γ, a limited number of DDIM sub-steps (S=3174

per physical step in all experiments), and near-zero control initialization—to keep P∞
ψ close to175
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Figure 2: Qualitative assimilation results on Kolmogorov flow. Rows show Observations, Con-
trolled (ours), Ground Truth, and Uncontrolled forecasts. Bullets above columns mark observation
arrivals. Uncontrolled forecasts remain visually plausible up to about t≈35–36, after which chaotic
divergence manifests: small phase errors amplify exponentially, leading to severe structural mis-
matches at later times (t ≥ 40). Our preview-aware controller successfully stabilizes rollouts by
injecting small corrections, maintaining phase coherence and preserving fine-scale vortical structures
across the horizon. Panel (top): Downsample ×4 (dense arrivals). Panel (bottom): Masked stride 4
(sparse arrivals).

Q∞
θ in practice while still achieving substantial cost reduction.1 Empirically this provides stable176

long-horizon rollouts without an explicit divergence term, while preserving the principled variational177

view through (11)–(12).178

3.4 Metrics, Protocol, and Baselines179

Protocol. We roll out L=60 steps autoregressively. Unless otherwise stated, all methods use identical180

observation streams and are evaluated with RMSD (root mean square deviation) over the forecast181

horizon; we report per-task means across the test set.182

Baselines. (1) SDA [7]: score-based data assimilation that samples all-at-once trajectories and183

applies observation guidance at inference; this decouples observation models from training and184

enables zero-shot observation types but requires iterative, window-level denoising at test time. (2)185

Joint AR [10]: the “joint” score model conditioned on history but sampled autoregressively with186

reconstruction guidance; compared to AAO, AR improves forecasting stability while keeping the187

same score parameterization. These reflect current practice in diffusion-for-PDE DA and provide188

complementary trade-offs between conditioning flexibility and rollout stability.189

1See App. F for implementation notes (gradient checkpointing across UNet calls) and App. E for the
ControlNet/UNet specifications.
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Table 1: RMSD (lower is better) across observation tasks.
Method Masked (s=2) Masked (s=4) Downsample (×2) Downsample (×4)

SDA (AAO) 0.1411 0.3529 0.0413 0.2099
Joint AR 0.0429 0.1495 0.0383 0.1846
Ours 0.0151 0.0223 0.0152 0.0220

Table 2: Sampling time (seconds) for 10 trajectories on one RTX A6000.
Method Masked Obs. Downsampled Obs.

SDA (AAO) 244.10 248.24
Joint AR 119.80 120.43
Ours 3.55 3.86

3.5 Results190

Accuracy. Table 1 reports RMSD across the four tasks. The preview-aware controller achieves the191

lowest error in all scenarios, with the largest margins under sparse masked observations.192

Efficiency. We benchmark wall-clock sampling on a single RTX A6000 for 10 assimilated trajecto-193

ries (data loading and metric computation excluded). Amortized preview control yields markedly194

lower runtime than both baselines (Table 2), translating to 30×–70× speedups depending on the195

baseline.196

Takeaway. Across masking and downsampling tasks, amortized preview control combines the197

stability of a frozen diffusion backbone with lightweight, lookahead corrections. This yields consistent198

accuracy gains and large end-to-end speedups, making assimilation a single forward rollout rather199

than a test-time optimization or ensemble computation. Fig. 2 clearly states the efficacy of such200

controlled autoregressive diffusion models in preventing trajectory divergence.201
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A DDIM parameterization, coefficients, SNR, and v→ε241

At denoising step s, DDIM yields a Gaussian transition242

x(s−1) ∼ N
(
µθ(x

(s), s), σ2
sI
)
, µθ(x

(s), s) = as x
(s) + bs ε̂θ(x

(s), s),

with schedule-dependent (as, bs, σs); deterministic DDIM uses σs=0. We pass log SNR(s) =243

log ᾱs
1−ᾱs to the control. Our UNet is trained with v-prediction; we convert to noise prediction via244

ε̂θ(x
(s), s) =

√
ᾱs v̂θ(x

(s), s) +
√
1− ᾱs x(s)

and use ε̂θ in all DDIM formulas.245

B Observation operators used in experiments246

We instantiate terminal costs using simple linear observation operators for clarity and stability. For a247

(possibly time-varying) mask M ∈{0, 1}1×H×W broadcast across channels,248

Amask(x) =M ⊙ x, Φmask
k (x; y) =

∥M ⊙ (x− y)∥22
∥M∥1 + ε

,

with ε = 10−6 and the step skipped if ∥M∥1 = 0. For downsample/upsample we use average pooling249

Pf over non-overlapping f × f blocks and nearest-neighbor upsampling Uf :250

A↓f (x) = Uf (Pfx), Φds
k (x; y) =

∥∥Uf (Pfx)− Uf (Pfy)∥∥22.
These operators are used to generate the observed signals yk that enter terminal costs. Any differen-251

tiable Φk could replace these without changing the method.252

C Active observation selector (preview DA)253

In practice, we maintain a preview buffer containing future observations from T that lie within the254

lookahead horizon Λ. Each entry is a triplet (yj ,Mj ,∆j), where:255

• j ∈ T is the physical time index of the observation,256

9

https://arxiv.org/abs/2406.16947


• yj is the observed signal (lifted to full resolution if needed),257

• Mj is an auxiliary mask (binary for masking operators, all ones for downsampling; see258

App. B; for other operators, Mj may be ignored or replaced by auxiliary metadata as259

appropriate),260

• ∆j = j − (k + 1) is the lead time relative to the current forecast step k.261

At each physical step k, the active preview is chosen by262

k⋆ = arg min
j∈T ∩Wk

{∆j : ∆j ≥ 0},

whereWk = {k + 1, . . . , k + Λ} is the preview window. The selected preview is then263

ωk = (yk⋆ ,Mk⋆ ,∆k⋆),

which is passed to the controller at step k. This selection occurs once per physical step.264

D Gibbs variational principle (proof)265

Let (XN,F) denote the trajectory space with its product σ-algebra, and let Q∞
θ be the baseline266

path measure from Eq. (1). Fix a measurable cost C : XN→ R and β > 0, and assume the mild267

integrability condition268

0 < Zβ ≜ EQ∞
θ

[
e−βC

]
< ∞.

Define the exponentially tilted (Gibbs) measure P ⋆β by269

dP ⋆β
dQ∞

θ

(x) =
e−βC(x)

Zβ
. (14)

Variational identity. For any P ≪ Q∞
θ ,270

KL
(
P
∥∥P ⋆β ) = ∫ log

(
dP

dP ⋆β

)
dP =

∫
log

(
dP/dQ∞

θ

dP ⋆β/dQ
∞
θ

)
dP

=

∫
log
(

dP
dQ∞

θ
· Zβ eβC

)
dP

= KL(P∥Q∞
θ ) + β EP [C] + logZβ .

Since KL(P∥P ⋆β ) ≥ 0, we obtain271

−β EP [C] − KL(P∥Q∞
θ ) ≤ logZβ , ∀P ≪ Q∞

θ , (15)

which is Eq. (5) in the main text.272

Optimality and uniqueness. Equality in (15) holds iff KL(P∥P ⋆β ) = 0, i.e., iff P = P ⋆β (equality273

Q∞
θ -a.s.). Equivalently,274

logZβ = sup
P≪Q∞

θ

{
− β EP [C] − KL(P∥Q∞

θ )
}
, (16)

and the unique maximizer is P ⋆β .275

Remarks. (i) The same proof applies verbatim on any finite horizon by replacing Q∞
θ and C with276

their restrictions to X 0:n, yielding the identical identity and optimizer. (ii) If P ̸≪ Q∞
θ , interpret277

KL(P∥Q∞
θ ) = +∞, so such P do not affect the supremum in (16).278

E Control network implementation279

Purpose. The control policy uψ generates the residual control u(s)k . In Sec. 2.3, we write u(s)k+1 =280

uψ(xk, ωk, s) for clarity. Here we expand ωk and the additional inputs required in practice. Formally,281

u
(s)
k = uψ

(
x
(s)
k+1, xk, y

⋆
k, M

⋆
k , ∆

⋆
k, log SNR(s), τ, uprev

)
.
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Inputs and fusion. We concatenate five image-like tensors along channels: the current latent x(s)k+1,282

the previous state xk, the preview observation y⋆k, the auxiliary mask M⋆
k , and the previous control283

uprev. A shallow encoder with a two-level down/up path extracts limited spatial context. FiLM284

modulation injects scalar metadata (∆⋆
k, τ, log SNR(s)) where ∆⋆

k is the preview lag and τ is the285

local position index in the Λ windowWk.286

FiLM conditioning. Each scalar is normalized and embedded by an MLP: ∆⋆
k/Λ, τ/Λ, and287

log SNR(s). The embeddings are concatenated and mapped to (γ, β), which modulate feature maps288

as feat 7→ feat · (1+γ) + β.289

Residual head and stability. A 3×3 convolutional head outputs ∆ψ , which is added to a normalized290

copy of uprev to yield u(s)k . At the first denoising sub-step (s=S−1), we set uprev = 0.291

Usage notes. We normalize (∆⋆
k, τ) to [0, 1], and compute log SNR(s) from the current DDIM292

schedule (App. A). This design keeps uψ lightweight relative to the UNet backbone while expressive293

enough to bias forecasts toward observations.294

F Implementation notes295

Gradients flow only into ψ (the UNet θ is frozen). We use gradient checkpointing at each UNet call296

and detach uprev within a frame to avoid deep denoising-step recurrences; memory scales with the297

number of checkpoints.298

11


	Introduction
	Method
	Problem: Chaotic Forecasting with Delayed, Sparse Observations
	Prior Dynamics
	Preview Selector: Windowed, Multi-Observation
	Observations as Arrival-Time Costs

	Variational Principle: Gibbs Tilt for DA
	Approximation: Amortized Preview-Aware Control Family P
	Algorithm: Preview-Aware Sampler & Trainer

	Experiments
	Kolmogorov Flow
	Observation Scenarios and Preview
	Training Objective
	Metrics, Protocol, and Baselines
	Results

	DDIM parameterization, coefficients, SNR, and v
	Observation operators used in experiments
	Active observation selector (preview DA)
	Gibbs variational principle (proof)
	Control network implementation
	Implementation notes

