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ABSTRACT

Causal inference estimates the treatment effect by comparing the potential out-
comes of the treated and control groups. Due to the existence of confounders,
the distributions of treated and control groups are imbalanced, resulting in lim-
ited generalization ability of the outcome prediction model, i.e., the prediction
model trained on one group cannot perform well on the other group. To tackle
this, existing methods usually adjust confounders to learn balanced representa-
tions for aligning the distributions. However, these methods could suffer from
the over-balancing issue that predictive information about outcomes is removed
during adjustment. In this paper, we propose to adjust the outcome prediction
model to improve its generalization ability on both groups simultaneously, so that
the over-balancing issue caused by confounder adjustment can be avoided. To ad-
dress the challenge of large distribution discrepancy between groups during model
adjustment, we propose to generate intermediate groups through the Wasserstein
geodesic, which smoothly connects the control and treated groups. Based on this,
we gradually adjust the outcome prediction model between consecutive groups by
a self-training paradigm. To further enhance the performance of the model, we fil-
ter the generated samples to select high-quality samples for learning. We provide
the theoretical analysis regarding our method, and demonstrate the effectiveness
of our method on several benchmark datasets in terms of multiple evaluation met-
rics.

1 INTRODUCTION

Causal inference from observational data has been widely used in many real-world applications to
evaluate the effects of a treatment (Yazdani & Boerwinklel [2014; |Varian, [2016), such as healthcare
(Foster et al., |2011) and recommendation (Sato et al.l [2020; [Luo et al., 2024} |Gao et al., [2024).
Based on the Rubin-Neyman potential outcome framework (Rubin, (1974} [Splawa-Neyman et al.,
1990), the treatment effect can be estimated by comparing the potential outcomes under treatment
and no treatment, where the outcome models are independently trained on the treated and control
groups to estimate the respective potential outcomes (Kiinzel et al.|[2019). Nevertheless, due to con-
founders that affect both treatment assignment and potential outcomes, the covariates of the control
and treated groups follow significantly different distributions, thereby limiting the generalization
ability of the outcome prediction models. For instance, patients receiving surgery (i.e., the treated
group) typically have more severe conditions than patients not receiving surgery (i.e., the control
group). As a result, the prediction model trained on the treated group fails to accurately predict
outcomes for the control group.

To tackle the above confounding bias, existing methods usually adjust and align confounders by
learning latent representations, so that the distributions of the control and treated groups are bal-
anced, and the outcome prediction models can be generalized between groups (Robins et al.| |2000;
Shalit et al., 2017; Johansson et al., |2018). However, these methods could excessively balance the
distributions of two groups while ignoring discriminative information which are vital for outcome
prediction, suffering from the over-balancing issue (Yao et al., 2018 Du et al.,[2021). In the extreme
situation where two distributions collapse to a single point, the distributions are perfectly balanced,
while the predictive information for outcomes is completely eliminated. Although a compromise
between distribution balancing and outcome prediction can be considered (Shalit et al. |2017), it is
heuristic and remains under-explored how to achieve a promising trade-off.
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In this paper, we seek to adjust outcome prediction models rather than covariates, so that the over-
balancing issue can be avoided. It is non-trivial to adjust the outcome prediction model from one
group to the other group due to the significant distribution shift between them. To address this,
we propose a method named G-learner, which generates a sequence of intermediate groups that drift
gradually from the control group to the treated group, and then gradually adjusts the outcome predic-
tion model trained on one group to the other. Specifically, we establish an optimal transport model
between the control and treated groups, which induces a geodesic path between these two distribu-
tions in the sense of the Wasserstein metric (Villani, |2021). Such a Wasserstein geodesic is derived
from the theory of optimal transport (Mongel |1781; |Kantorovitch, [1958), which has demonstrated
a powerful ability to characterize data distribution (Courty et al.l [2016; |2017). Based on this, we
exploit data distributions of the control and treated groups to generate intermediate groups, which
smoothly connect the two groups and are beneficial for model adjustment.

Through the generated intermediate group sequence derived from the Wasserstein geodesic, we em-
ploy a self-training strategy to transfer the prediction model trained on the control group towards
the treated group and vice versa. Since the model adjustment is performed between two consecu-
tive distributions, it is feasible to effectively transfer the prediction model trained on the previous
distribution to the next distribution. To further improve the generalization ability of our model on
different groups, we design a data filtering method to select generated samples according to the
confidence of the predicted results, so that reliable generated samples are leveraged to transfer the
prediction models.

We summarize our major contributions as follows.

* We propose an intermediate group generation method based on the Wasserstein geodesic to
smoothly connect the control and treated groups, so that one group can be gradually shifted
to the other group.

* We gradually adjust the outcome prediction model between the control and treated groups
through the generated intermediate groups, which improves the generalization ability of the
outcome prediction model.

* We theoretically analyze the effect estimation error of our proposed method, and empiri-
cally demonstrate the effectiveness of our method on several benchmark datasets.

2 RELATED WORKS

Over the past decades, a variety of methods have been proposed to address the issue of confound-
ing bias. Reweighting aims to reweight samples to reduce the distribution shift between the groups
(Hainmueller;, |2012). For example, |Rosenbaum & Rubin| (1983)) adopt the inverse of propensity
scores as the sample weights, and [Kuang et al.| (2017) learn sample weights by aligning the mo-
ments between the control and treated groups. Representation learning methods adjust covariates by
learning balanced representations, so that the distributions of the control and treated groups in the
embedding space can be aligned (Johansson et al.|[2016). [Shalit et al.|(2017) trains a neural network
to learn balanced representations, where the distribution shift is measured by the Integral Probability
Metric (IPM). In (Kazemi & Ester} 2024), the Kullback-Leibler divergence is adopted to measure
the distribution shift. However, these methods could excessively balance the covariates while ignor-
ing the discriminative information for potential outcome prediction, which is known as the issue of
over-balancing and hampers the performance of causal inference (Johansson et al., 2018} Zhao et al.,
2019). Different from them that adjust the covariates by learning sample weights or representations,
we adjust the outcome prediction model to improve the generalization ability on different groups,
avoiding the over-balancing issue in existing methods.

Recently, optimal transport has also been employed for causal inference (Wang et al., [2023; [Yan
et al.}2024). Optimal transport studies how to transport masses from one distribution to another dis-
tribution with a minimized cost (Monge, [1781; [Kantorovitch, |1958; |Villani, [2021). Existing studies
have demonstrated the powerful ability of optimal transport to model data distribution (Courty et al.,
20165 [2017; |Adler & Lunz, [2018)). Inspired by this, optimal transport is applied in causal inference
to reduce the confounding bias (Li et al.| [2021). In (Yan et al.,[2024), sample weights are learned
based on a semi-relaxed optimal transport model between control and treated groups. In (Shalit
et al., |2017; [Wang et al., 2023), IPM is implemented by the Wasserstein distance to measure the



Under review as a conference paper at ICLR 2026

distribution shift between groups, and balanced representations are learned to minimize the Wasser-
stein distance. These methods are still under the paradigm of reweighting or representation learning,
in which the optimal transport cost is minimized to align the distributions of the control and treated
groups. Different from them, we generate intermediate groups between distributions through the
Wasserstein geodesic, which smoothly connects the control and treated groups in the sense of the
metric defined by optimal transport. Based on the generated intermediate groups, we can gradually
adjust the outcome prediction model from one group to another.

Self-training methods (Grandvalet & Bengio} [2004;|[Zou et al.,2019; Gao et al., | 2021) have been ap-
plied to the problem of semi-supervised learning and domain adaptation (Nigam et al.| 2000; |Grand-
valet & Bengio, 2004; | Han et al.,[2019). |Amini & Gallinari| (2002) presents a semi-supervised algo-
rithm that improves classification by iteratively training on unlabeled data with pseudo labels. Han
et al.|(2019) calibrates predictive uncertainties between source and target domains using Bayesian
neural networks, enabling reliable pseudo-labeling and effective unsupervised domain adaptation.
He et al.|(2024) proposes to generate intermediate domains and applies gradual self-training, signif-
icantly improving domain adaptation when intermediate domains are scarce. Compared with them,
we leverage self-training to learn counterfactual outcome prediction models, and design a data fil-
tering method to select reliable samples for training. Moreover, we provide a theoretical analysis
regarding the effect estimation error of our self-training methods.

3 PROBLEM STATEMENT

We adopt the Neyman—Rubin potential outcomes framework (Rubin, [1974; Splawa-Neyman et al.,
1990). Let {(x;,yi,t;)}_; denote n samples drawn from the joint distribution of covariates X,
treated assignment 7', and outcome Y, where x; € X" denotes the covariates of the i-th sample, ¢; €
T = {0, 1} indicates the treatment assignment, and y; € R denotes the observed factual outcome
under the treatment ¢;. The observed outcome Y is the potential outcome Y (t) corresponding to
the actually received treatment . The control group (¢ = 0) received no treatment is denoted as
{x0,:}i2;, and the treated group (¢ = 1) received the treatment is denoted as {x1 ;}1;, where ng
and n; are the numbers of the samples in two groups, respectively. The first subscript 0/1 is the
group index, and the second subscript i/ is the sample index.

For given x € X, our objective is to estimate the conditional average treatment effect (CATE) as
follows:

7(x) = E[Y(1) - Y(0)|X =x]. (1)
To facilitate the identification and estimation of causal effects within the framework outlined above,
we typically invoke the following key assumptions:

Assumption 1 (Stable Unit Treatment Value Assumption). The potential outcomes for any sample
do not vary with the treatments assigned to other samples, and for each sample, there are no different
forms or versions of each treatment value which leads to different potential outcomes.

Assumption 2 (Ignorability). Conditional on covariates, the treatment assignment is independent
of potential outcomes: 7" 1L Y (¢)|X.

Assumption 3 (Positivity). Conditional on covariates, the treatment assignment is not deterministic:
0<p(T=tX=x)<1.
Under these assumptions, 7(x) can be represented by f(x,t) as follow:

7(x) = E[Y (1) = Y(0)|X =x] = f(x,1) = f(x,0) 2)

which quantifies how the effects vary with the treatment received by an individual. To predict
potential outcomes, we define a function h(x, t) to estimate the ground-true ITE as follow:

#(x) = h(x,1) = h(x,0). 3)
For convenience, we define f(x,t) = fi(x) and hi(x) = h(x, t).

Throughout the paper, 1,, € R™ is a vector with all the entry being 1. For the matrix A, A;; is the
(i,7)-th entry, AT is the transpose of A. ||A|¢ is the £o-norm that counts the non-zero entries of
A. The probability simplex X,, is defined as ¥, = {v € R" | 1" | v; = 1,v; > 0Vi}.
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Figure 1: Overview of G-learner. In the figure, the yellow and blue boxes represent the outcomes
of the corresponding groups. Here, yy and y; denote the observed factual outcomes of the control
group and treated group, respectively, while the remaining outcomes are pseudo outcomes generated
by hg .- or hy ,+. The observed covariates of the control and treated groups are also shown as xg
and x;; the remaining covariates x,, are generated via optimal transport.

4 METHODOLOGY

Figure[I]illustrates the main idea of our proposed method G-learner. Given the control group (¢ = 0)
and the treated group (¢ = 1) with covariate shift, we generate intermediate groups indexed by x €
(0,1) between the control and treated groups based on optimal transport. After that, we gradually
adjust outcome prediction models between groups with the help of generated data, during which the
models trained on filtered samples of high quality. In the following, we present the technical details
of our method.

4.1 INTERMEDIATE GROUP GENERATION

Due to the existence of confounders, the control and treated groups follow different distributions.
As aresult, the outcome prediction model trained on one group cannot perform well on the opposite
group, suffering from limited generalization ability (Shalit et al.|[2017). To address this, we propose
to connect the control and treated groups by generating a series of intermediate groups, which is
derived by the Wasserstein geodesic from the optimal transport theory.

Optimal transport seeks to find the optimal plan to move mass from one distribution to another with
a minimized transport cost (Villani, 2008; Peyré et al.,|2019). Formally, given the feature space X,
let M(X) be the set of Radom measures, o € M(X') and 5 € M(X) be two distributions, whose
corresponding samples are a and b, respectively. v € T'(«, 3) is a transport plan, and I'(«v, 3) is the
set of all joint probability couplings whose marginal distributions are « and (3, respectively. (a, b)
indicates how many masses are transported from the sample a to the sample b, and the transport cost
between them is measured by a cost function c(a, b), where ¢ : X X X — R™ can be implemented
by a distance metric. Optimal transport minimizes the total transport cost between the distributions
and defines the following p-Wasserstein distance

1
W, (a, :( inf / c(a,b)Pd a,b)p. 4
plond)= (it [ clabPdr(a,D) @
In the remainder, we adopt p = 2 and implement the cost function by the Euclidean distance, i.e.,
¢(a,b) = ||a — b||2, which derives the 2-Wasserstein distance Ws.

The Wasserstein distance not only measures the discrepancy between two data distributions, but
also induces a geodesic structure of the space of probability measures. The geodesic path can be
naturally constructed via optimal transport-based interpolation between two distributions (Villani,
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2008), and the distributions along the geodesic path provide a smooth connection between two
distributions. Mathematically, the distributions on the Wasserstein geodesic can be obtained by
solving the following problem parameterized by « € [0, 1]

p = argmin (1 £)Wa(a, 0)” + KWa (B, 1), 5)

The constructed distribution 1 is also known as the Wasserstein barycenter of two distributions,
which is the mean of two probability measures under the optimal transport metric (Bonneel et al.,
2015).

Our target is to adjust the outcome prediction model trained on the control group to the treated group
and vice versa, so that the outcome prediction models h(x, 1) and h(x,0) can perform well on both
groups. To this end, we establish an optimal transport problem between the control and treated
groups, and generate the intermediate groups between them based on the Wasserstein geodesic.
Through the generated intermediate groups, we can gradually adjust the outcome prediction models
from one group to another, which avoids the over-balancing issue in balanced representation learning
and achieves prediction models with promising generalization ability.

Specifically, for the control samples {xq ;};; and the treated samples {x1,;}72;, let {po,; };"*; and

{p1,;};L, be the corresponding probability mass, and §(x) be the Dirac function at the location x.
The empirical distributions of the control and treated groups can be represented as

no ni
po = ZPO,MS(XOJ)’ p1 = Zpl,j§(xl,j)v (6)
i=1 =1

where the first subscript 0/1 indicates the group index while the second subscript corresponds to
the sample index. The probability masses can be denoted as a probability simplex, ie., pg =
[P0.1,--sP0mg) T € Zngs P1 = [P11,---»P1my) € Sp,. Without additional prior information,

we usually implement py and p; as uniform distributions (Courty et al. 2016), i.e., po; = % Vi,
D1,j = n% Vj. Based on this, the transport plan + is defined in the following set
Do, 1) = {7 € RT)"*™ | 41,, = po,7 " 1ny = P1}, @)

and the optimal transport plan is obtained by solving the following optimization problem, which is
the discrete form of Problem (@):

nog N1

7= argmvinz > Hislxoi = x5 st v € T(uo, ). (8)
i=1j=1

This is a constrained linear programming problem that can be efficiently solved by the Earth Mover
Distance solver (Flamary et al. [2021). Once the optimal transport plan v* is obtained, following
(Villani, 2008 He et al.,2024), the intermediate group derived by Eq. @) boils down to the following
empirical distribution

no N1

P = ZZ’Y:j(s((l — K)X0,; + KX1,j)- 9)

i=1 j=1

We generate a sequence of intermediate groups with different values of « to connect the control and
treated groups. For a given x € [0, 1], p,, involves ||v*||o generated samples, in which each non-zero
entry ;5 > 0 is the probability mass of the corresponding sample. As a result, we obtain weighted

generated samples {(X,,i;,7,5) : 7;; > 0} that can be used to gradually adjust outcome models by
self-training. According to (Peyré et al.,|2019), the total sum of n,, for the set x,; is ng +n1 — 1.

4.2 PREDICTION MODEL ADJUSTMENT

To smoothly connect po and pq, we generate K intermediate groups indexed by « €
{ﬁ, ey KL_H}, and then adjust the outcome prediction models between two consecutive groups

by a self-training paradigm (He et al., 2024). In the following, we take the model hg(-) predicting
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the potential outcome of non-treatment as the example to present our method of model adjustment.
The adjustment for the model A4 (-) to predict the treated potential outcome is similar.

_1

Specifically, we transfer hg(-) from the group k= = Kk — to the group «, and define Ay ,,— () as

K+1
the non-treatment outcome prediction model have been trained on the group x~. At the initial step
with K~ = 0, the model hg o(+) is trained on the control group po with ground-truth non-treatment

factual outcomes. Although hg o(-) cannot perform well on the treated group i, it is expected to
perform much better on the distribution 141 /(g 41y compared with on the distribution p1, since the
covariate shift between pg and 41 /(x41) is much smaller than that between po and p;. Therefore,
ho,0(x) can be used as supervised information for the sample x € 11 /(1) to train g 1 /(g 41)(+),
which can be leveraged as the annotation function to train the model 2 2/(x+1)(-) in the next step.
Finally, we can obtain the prediction model h ; (-) to predict non-treatment potential outcomes for
the treated group 1. ho,1(+) is gradually adjusted from the model hg o(-) through the intermediate
groups derived from the Wasserstein geodesic.

Formally, model adjustment from the group «~ to the group x can be achieved by solving the
following problem

o, = argmin zej O(h(xy), ho - (X)), (10)
Xk CHr
where the sample x,; in the distribution i, is annotated by the model Ay ,,- (-), and then is used
to train the model A(-). The loss function is implemented by the squared loss based on the sample
weight obtained from optimal transport, i.e.,

O((Xn,i5)s ho— (Kiig)) = 115 (MK i) — ho e (Xn,i5)) %, (1D
where x,; ;; is a sample in the distribution p,; with the weight ~;;, which is obtained according to
Eq. (9).

To improve the performance of potential outcome prediction, we further refine our model by filtering
generated data, which is described by the following.

4.2.1 GENERATED DATA FILTERING.

During the procedure of adjusting hg(-) from the distribution (.- to 1., we train the model on the
samples x,; € f,, with the pseudo labels hg ., (x,). In order to leverage high-quality samples to
train the model, we filter generated data to remove samples with low prediction certainty. Specifi-
cally, for the sample x,,, we conduct M times dropout-enable forward passes to obtain M predicted
outcomes, which are denoted as {Yoyi(x,i) M. . After that, we calculate the standard deviation of
the multiple predicted results o(x,;) to measure the uncertainty of prediction. To improve reliabil-
ity, we select the r proportion of the generated samples with the lowest standard deviations, which
enjoy high prediction certainty and are beneficial for model training (Gal & Ghahramani, [2016). As
a result, we construct a filtered group i, with high quality generated samples, and refine Problem
(10) as follows

hox = axgmin Y ((A(xx), ho e~ (%x))- (12)

Xy Eflk

Obeying a similar approach above, the model to predict treated potential outcomes h4 (+) is adjusted
from the group " = K + L5 to the group x by the following

hix = argmhin Z (h(xx), hy g+ (Xk)), (13)

X €l

where hq 1(-) is trained on the distribution 11 with ground-truth treated factual outcomes, and hq (+)
is gradually adjusted from h4 ;(-) through the intermediate groups.

We summarize our proposed method G-learner in Algorithm 1 in the appendix.
4.3 THEORETICAL ANALYSIS

In this part, we analyze the estimation errors of outcomes and effects of our method. We de-
fine K = K + 1 for notational simplicity, where K is the number of intermediate groups.
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Let A be the average Wasserstein distance between two consecutive distributions, £(ho1) =
S (ho,1(x) — fo(x))?p(x]t = 1)dx be the expected loss of the prediction model hg 1 on the treated
group, Similarly, €(ho,0) = [, (ho,o(x) — fo(x))*p(x|t = 0)dx is the expected loss of the predic-
tion model hg o on the control group. We have the following results

Lemma 1. Following (He et al.| | 2024), consider two arbitrary measures from group k and x~, the
error of |E(ho,x) — E(ho,x- )| is upper bounded with probability at least 1 — r as:

£(R00) = £l < OOyt ) + LV 0EULT, 19

Under Lemma it can be readily observed that the error between group x and ™, as measured by
the Wasserstein distance W, (p, 14— ), depends on the sample size n and the probability 7.

Lemma 2. For a filtering ratio v € (0,1), the loss E(ho.1) is upper bounded with probability at
least1 —r as

. K - [log(1 1 log n K )3L—2 log(1
Eho) < Ehoo) + O(RA+ X 1+ & [log(1/r) N _ 4 (lognK) N og( ~/T))’
vn n VK nkK nk

5)

where n is the number of training samples, L is the model depth, and KA is the accumulated
distribution shift between control and treated groups through intermediate groups

In addition, let E(h1 1) = [ (h1,1(x) — f1(x))*p(x|t = 1)dx is the expected loss of the prediction
model h; on the treated group. The effect estimation error is measured by the pairwise precision
in the estimation of heterogeneous effect (PEHE) is defined as epprr = [, (7 X (x) — 7(x))?p(x)dx
(Shalit et al., [2017). According to Lemma 2] the effect estimation error is upper bounded by the
following theorem.

Theorem 1. The effect estimation error e ppp g is upper bounded by:

€epEHE < 25(}1070) + 25(}1171) + 20 (KA + B(n,f(, L,T)) s (16)
where
- 2 - )3L—2
B(n, K, L,v) K LR log‘(l/r \/ log‘nK n 10g(1~/r)' (17)
Vn «/ nk

The proof of Lemma2)and Theorem([I]is given in the appendix. Theorem|[T]indicates that the epprE
is upper bound by the prediction error of the treated and control group, with an additional term
depending on n, K,rand L. In particular, with fixed K, r, and L, the additional term approaches
Zero as n — oo.

5 EXPERIMENTS

In this section, we first describe the experimental settings, including the compared methods and
evaluation metrics. After that, we present experimental results and discussions on real-word and
simulation datasets.

5.1 EXPERIMENTAL SETTINGS
5.1.1 COMPARED METHODS.

We compare the performance of G-learner with classical and state-of-the-art methods, including
OLS, BART (Chipman et al.} 2010; Hill, 2011), PSM (Rosenbaum & Rubin, |1983), £-NN (Crump
et al., 2008), T-learner (Kiinzel et al.,[2019), TARNet (Shalit et al., [2017), BNN (Johansson et al.,
2016), CFRyy,ss and CFR/3rp (Shalit et al.l 2017), GANITE (Yoon et al.l [2018)), DragonNet
(Shi et al., 2019), DKLite (Zhang et al., 2020), and ESCFR (Wang et al.| 2023).
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Table 1: Results for out-sample performance on real-world datasets in terms of mean and standard
deviation. A lower metric indicates better performance. We highlight the best results in bold and
underline the second-best results.

Method News Twins Jobs
Ve€PEHE €ATE VePEHE €ATE RpoL €ATT

OLS 4.0051 + 1.6369 0.4777 + 0.2632 | 0.5212 £ 0.4070 0.0128 + 0.0150 | 0.2612 4+ 0.0632 0.1825 + 0.1224
BART 7.6180 + 2.2501 5.8950 + 1.6207 | 0.3246 £+ 0.0082  0.0305 + 0.0075 | 0.2770 4+ 0.0603  0.1133 + 0.1092
T-learner 2.9004 + 0.9077 0.5526 4+ 0.4227 | 0.3385 4+ 0.0087 0.0224 4+ 0.0126 | 0.2769 4+ 0.0180  0.1409 =+ 0.0962
k-NN 13.0410 + 11.2283  9.5025 £ 5.2287 | 0.3735 £ 0.0087 0.0330 £ 0.0089 | 0.2642 £ 0.0686 0.1731 £ 0.1494
PSM 7.0947 £+ 2.1623 5.3695 4+ 1.4663 | 0.3954 4+ 0.0072 0.0168 4 0.0047 | 0.2667 4+ 0.0746  0.1495 4+ 0.1190
GANITE 3.7838 £ 1.2759 1.7325 £ 0.6216 | 0.3202 4+ 0.0085 0.0130 4 0.0055 | 0.2811 +0.1308 0.1648 4+ 0.1083
DKLite 3.4381 £ 1.3630 0.8782 4+ 0.5693 | 0.3207 4+ 0.0086  0.0086 + 0.0041 | 0.1730 4+ 0.0001  0.1470 £+ 0.1059
TARNet 2.1524 + 0.6421 4.2959 + 0.3899 | 0.3413 +0.0085 0.0129 £ 0.0054 | 0.2364 + 0.0672  0.0920 + 0.0810
DragonNet 3.2137 + 0.8048 0.7673 4+ 0.5775 | 0.4454 +0.0184 0.0110 4 0.0101 | 0.0957 4+ 0.0810 0.2516 4 0.0506
BNN 4.2182 + 1.2550 2.4453 4+ 0.6801 | 0.3202 4+ 0.0085 0.0132 4 0.0046 | 0.2576 4+ 0.1275 0.0782 4 0.0755
CFRwss 3.0044 £ 1.0921 1.0049 £ 0.7090 | 0.3217 4+ 0.0095 0.0220 4+ 0.0254 | 0.2393 +0.0703  0.0920 + 0.0808
CFRyMD 3.0688 £ 1.2633 1.0373 £0.7943 | 0.3233 +0.0085 0.0279 £+ 0.0185 | 0.2390 &+ 0.0760  0.0938 £+ 0.0813
ESCFR 2.7435 + 0.9110 0.4255 + 0.3082 | 0.3209 £+ 0.0085 0.0147 + 0.0083 | 0.2396 + 0.0438 0.0893 + 0.0801
G-learner 2.8681 4 0.8696 0.2451 4 0.1955 | 0.3200 £ 0.0086 0.0084 + 0.0060 | 0.1691 £ 0.0622 0.0596 + 0.0740

Table 2: Results on out-sample simulated dataset in terms of mean and standard deviation. A lower
metric indicates better performance and we highlight the best results in bold.

Method me = 0.5 me = 0.8 me = 1.1 me =14
VePEHE €EATE VePEHE €ATE \VePEHE €EATE \VePEHE €ATE

OLS .12+ 050 030+£022 | 1.134+£0.50 030+0.22 | 1.164+0.50 0.30+£024 | 1.31+£059 0.35+0.28
BART 4.07+£0.66 098 +0.31 | 403+0.59 041+£028 | 428+£0.53 045+£0.27 | 471 £0.50 1.14 £0.37
T-learner 823+0.78 041+0.34 | 893+0.78 2.79+0.51 | 10.20£0.70 5.40+0.50 | 12.10 £0.63 8.07 £0.53
kNN 449 4+0.84 1324022 |376+091 085+024 | 3.69+0.71 037+0.22 | 419+0.56 021 +£0.11
PSM 198 £0.59 0.514+0.53 | 268 +£0.69 0.61+041 | 416+099 0.86+0.61 | 576 +1.24 1.96 £ 0.88
GANITE 0.85+0.08 0.28+0.22 | 1.49+0.03 147+0.06 | 1.50+0.01 1.504+0.01 | 1.51 +£0.01 1.50+£0.01
DKLite 0.59 £0.11 0.074+0.05 | 273 +0.69 247 +0.78 | 584 +0.66 5.734+0.65 | 8.96+0.63 8.89 +0.64
TARNet 0.55+0.05 0.534+0.05 | 0.55+0.04 053+005| 054+0.06 0.524+0.06 | 0.55+0.05 0.53+£0.05
DragonNet | 0.27 £0.04 0.05+0.03 | 049 £0.25 0.05+0.05 | 038=£0.15 0.06£0.05| 0.46+0.22 0.10 £ 0.09
BNN 042 +0.01 040+0.01 | 0.48+0.01 046+0.01 | 044+0.01 0414+0.01 | 044+0.01 042+0.01
CFRywgass | 052£0.03 0.50+0.03 | 0.53£0.05 0.51+0.05| 0.54+0.07 0.52+0.07 | 0.55+£0.05 0.53+0.05
CFRymp | 051+£0.03 049+0.03 | 0.51 £0.03 049+0.03 | 0.50+0.08 048+0.08 | 096+ 1.38 0.56+0.27
ESCFR 0.59 £0.15 0.124+0.07 | 0.75+0.18 024 +0.11 | 096 +0.21 0404+0.12 | 096 +0.21 040 £0.12
G-learner 0.20 = 0.03 0.05 +0.04 | 0.23 +0.04 0.05+0.05| 0.29+0.07 0.08+0.05| 0.36 +0.14 0.09 £ 0.11

5.1.2 EVALUATION METRICS.

Following (Shalit et al) [2017), we evaluate the performance of different methods based on the
Precision in Estimation of Heterogeneous Effect error (e pg ) and the absolute error in estimating
the Average Treatment Effect (e 47r). Additionally, we also assess performance using the policy
risk (Rpor) and the error in the Average Treatment Effect on the Treated group (e 477). Complete
formulas of these metrics are given in the Appendix.

5.2 EXPERIMENTS ON REAL-WORLD DATA

We compare the performance of different methods on three real-world datasets: News, Twins, and
Jobs. (i) The News dataset includes 5,000 news articles, which are represented by embedding each
article in a topic space and defining two device centroids (desktop and mobile). (Johansson et al.,
2016)) (i1) The Twins dataset is collected from U.S. twins born in 1989-1991 (Almond et al., 2005)
For each twin pair, we record both treatment conditions, including lighter ({ = 0) and heavier
(t = 1), and the one-year mortality outcome. To simulate the confounding bias, we choose one of
the twins as follows: ¢ ~ Bernoulli(o(w " x + b)), where w is drawn uniformly from (—0.1, 1)3°
and b from N (0,0.1), and o is the sigmoid function. (iii) The Jobs dataset includes experimental
samples (297 treated samples and 425 control samples) and the Panel Study of Income Dynamics
(PSID) comparison group (2490 control), which not only capitalizes on the internal validity of the
Randomized Controlled Trial (RCT) but also draws on large-scale observational data to boost in-
ferential precision and enhance generalizability (LaLonde} |1986). Following the experiments in
(Johansson et al., [2016; |Machlanski et al., 2023), the News and Twins frameworks provide both
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factual and counterfactual outcomes for two-treatment causal inference, so we assess methods using

eppnr and earp. In contrast, Jobs supplies only factual outcomes, which we evaluate via R POL
and e go7p. More details of the datasets can be found in the appendix.

Table |1| shows the results of different methods on the real-world datasets under the out-sample set-
ting. The results under the in-sample setting are shown in the appendix. We draw several interesting
observations as follows.

* Overall, our proposed method achieves best or highly competitive performance on all the
datasets in terms of both evaluation metrics, which clearly demonstrates the effectiveness
and robustness of it. These results verify the practical value and generalizability of our
method in different scenarios.

* Among the compared methods, OLS, BART, and T-learner train separate neural regressors
for each treatment group, TARNet and DragonNet train shared representation layers and
separate outcome heads. These methods suffer from the issue of covariate distribution
shifts. Compared with them, G-learner demonstrates superior performance, which verifies
that our method can learn effective prediction models with promising generalization ability
across groups.

* Compared with the generative method GANITE, G-learner leverages optimal transport to
generate intermediate data. Beneficial from the geometric information involved in data
extracted by optimal transport, our method achieves better performance.

* The balanced representation learning method, such as BNN, CFR, and ESCFR, adjusts
confounders to reduce the confounding bias, which suffers from the overbalancing issue
and could discard discriminative features for potential outcome prediction. During the
balancing procedure, some important information could be removed hampering the causal
inference performance. Rather than adjusting the confounders, G-learner adjusts the out-
come prediction models by gradually transferring the models between groups with the aid
of intermediate groups. By doing this, G-learner leverages all the features to train the pre-
diction model without information loss, avoiding the overbalancing issue and achieving
better performance.

5.3 EXPERIMENTS ON SIMULATION DATA

Table 2] shows the results of different methods on simulation data under the out-sample setting.
The results under the in-sample setting are shown in the appendix. We evaluate the robustness
of each method by incrementally widening the group discrepancies, thereby emulating a range of
confounding biases. As the degree of confounding bias increases, all the methods show worse
performance, which indicates that the distribution shift between groups affects the performance of
causal inference. Nevertheless, compared to other methods, G-learner consistently achieves the best
performance, demonstrating its ability to preserve robust predictive accuracy and stability even as
the severity of confounding bias increases.

6 CONCLUSION

In this paper, we propose a model adjustment method to learn outcome prediction models that can
perform well on both control and treated groups. To achieve this, we generate a series of inter-
mediate groups between the control and treated groups through the Wasserstein geodesic, which
is derived from the optimal transport theory. By doing this, the control and treated groups with
significant distribution shift can be smoothly connected, and the outcome prediction model can be
gradually adjusted between them. We further propose a generated data filtering method to refine
our prediction model. We analyze the upper bound of the effect estimation error of our method,
and conduct experiments on simulation and real-world datasets to evaluate the performance of our
method. We provide an alternative approach in addition to covariate adjustment for addressing the
issue of confounding bias in causal inference.
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A PSEUDO-CODE OF G-LEARNER

Algorithm 1 presents the pseudo-code of our method G-learner.

Algorithm 1 G-learner.

Require: factual samples {x;, ¢;, y; }1_;, number of intermediate groups K, proportion parameter
T.
Train the model hg o to predict non-treatment outcomes on the control group fio.
Train the model /i ; to predict treated outcomes on the treated group f¢.
Obtain the optimal transport plan v* by solving Problem (8).
Generate K intermediate groups {, }%_, according to Eq. (9).
forninﬁ,...,%ﬂdo

Select the r proportion of generated samples to obtain fi.

Train the model hg ,(-) via Problem (12).

Select the r proportion of generated samples to obtain fi1_.

Train the model hj 1 (-) via Problem (13).
end for
Output: Outcome prediction models hg 1 (-) and hq o(-).

TReYReRUn AR

—

B EXPERIMENT

All the experiments are run on a single 24GB GPU of NVIDIA GeForce RTX 4090 GPU. Following,
we introduce more details about the experiment, including more details of the datasets, formulations
of evaluation metrics, results of the in-sample setting, and visualization of intermediate group gen-
eration.

B.1 MORE DETAILS OF DATASETS

News The News dataset is first proposed as a benchmark for counterfactual inference by (Johans-
son et al.| [2016). The News dataset simulates counterfactual inference by modeling news articles
as topic distributions z(x), derived from a topic model trained on the NY Times corpus. Multiple
centroids are randomly chosen in the topic space, where one centroid represents the control group,
while the other centroids represent treated groups viewing devices (treatments). Each centroid z; is
associated with a Gaussian outcome distribution: m; ~ N(0.45,0.15), o; ~ N(0.1,0.05), from
which ideal potential outcomes are sampled as §; ~ N(m;,0;) + €, where € ~ N(0,0.15). The
unscaled potential outcomes are computed as y; = J; - [D(2(x), z;) + D(2(x), 2.)], where D(-, )
is the Euclidean distance, and z. represents the control centroid. The treatment assignment follows
t|xz ~ Bernoulli(softmax(ry;)), with v controlling the strength of assignment bias (v = 0 implies
no bias). The true observed outcomes are scaled by a constant D = 50: y; = D - ;. The dataset
can simulate k£ = 2 treatments with v = 10, enabling flexible modeling of counterfactual inference
scenarios.

Twins The Twins Dataset comprises twins born in the United States between 1989 and 1991, with
30 covariates related to pregnancy, birth, and parental characteristics. In causal inference studies,
the treatment is defined as the heavier twin, and the outcome is one-year mortality. This dataset is
widely used to assess the causal effect of birth weight differences on infant survival. (Almond et al.,
2005) For each twin pair, we record both treatment conditions, including lighter (f = 0) and heavier
(t = 1), and the one-year mortality outcome. To simulate the confounding bias, we choose one of
the twins as follows: ¢ ~ Bernoulli(o(wx + b)), where w is drawn uniformly from (—0.1, 1)3°
and b from A (0, 0.1), and o is the sigmoid function.

Jobs The study by (LaLondel [1986)) is a widely used benchmark in the causal inference commu-
nity, where the treatment is job training and the outcomes are income and employment status after
training. 1. This dataset combines a randomized study based on the National Supported Work pro-
gram with observational data to form a larger dataset (Smith & Todd, |2005). The presence of the
randomized subgroup gives a way to estimate the “ground truth” causal effect. The study includes 8

13
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covariates, such as age and education, as well as previous earnings. We construct a binary classifi-
cation task, called Jobs, where the goal is to predict unemployment, using the feature set of (Dehejia
& Wahba, |2002). Following (Smith & Todd, |2005), we use the Lal.onde experimental sample (297
treated, 425 control) and the PSID 2. This dataset combines a randomized study based on the Na-
tional Supported Work program with observational data to form a larger dataset (Smith & Todd,
2005). The presence of the randomized subgroup gives a way to estimate the “ground truth” causal
effect. The study includes 8 covariates such as age and education, as well as previous earnings.
We construct a binary classification task, called Jobs, where the goal is to predict unemployment,
using the feature set of (Dehejia & Wahbal 2002). Following (Smith & Todd, 2005), we use the
LalLonde experimental sample (297 treated, 425 control) and the PSID comparison group (2490
control). There were 482 (15%) subjects unemployed by the end of the study.

Simulation We generate 1,500 treated samples from a multivariate normal distribution x; ~
N(mp**t 0.5%,%]), and 1,500 control samples from x, ~ N (m!°*' 0.5%.%]), where each
Y is drawn from a uniform distribution X. ~ U((O7 m4)10X10). We fix m; = 0.5 and vary
m. to simulate different levels of confounding bias. The potential outcomes are generated as
Y, = 05 +wix+&and Yy = w'x + & where the weight vector w is drawn from w ~
N(l, 0.012 Ilo), w € R19, 1 denotes a length-10 vector of ones, and 710 is the 10 x 10 identity
matrix. The noise term ¢ is generated as & ~ N(0, 0.12).

B.2 COMPARE METHODS
Following is the details of compare methods:

* Statistics-based methods: OLS trains separate linear regression models for the control and
treated groups to predict potential outcomes. BART (Chipman et al., 2010j Hill, 2011)
yields posterior estimates of treatment effects, supporting uncertainty quantification.

* Matching Methods: PSM (Rosenbaum & Rubin| [1983) estimates treatment effects by
matching treated and control units using propensity scores derived from logistic regres-
sion. k-NN (Crump et al.,[2008) predicts potential outcomes using factual outcomes of the
k nearest neighbors in the opposite group.

* Neural Network-based methods: T-learner (Kiinzel et al., 2019) trains a separate neural
network for each treatment group. TARNet (Shalit et al.| [2017) reduces distribution im-
balance by learning shared latent representations of covariates. BNN (Johansson et al.|
2016) combines domain adaptation and representation learning to minimize the discrep-
ancy distance in the hypothesis space. CFRyy .55 and CFR /7 p (Shalit et al.,2017) align
the distributions of treated and control groups in a latent space by minimizing the Integral
Probability Metric, which is implemented by the Wasserstein distance and Maximum Mean
Discrepancy (MMD), respectively. GANITE (Yoon et al.,|2018) leverages a generative ad-
versarial network to output counterfactual outcomes for ITE estimation. DragonNet (Shi
et al.l 2019) leverages propensity scores and targeted regularization to improve outcome
prediction and stabilize treatment effect estimation. DKLite (Zhang et al 2020) learns
invertible representations with overlapping support and standardizes using counterfactual
variance to estimate ITE. ESCFR (Wang et al.,[2023) leverages optimal transport to align
the distributions of treated and untreated groups and address the unobserved confounder
issue.

B.3 FORMULATIONS OF EVALUATION METRICS
Following (Shalit et al.,[2017), we evaluate Rpo1, and € 477 on Jobs dataset:

Rpor =1— (EMi|mn(x) = 1,¢t =1] - p(mp = 1) + E[Yo|ma(x) = 0, = 0] - p(ms = 0)),
earr = |(IT7" Yy = [COE™ Y g) =TI ) (ha(ws) — ho(w:)],

€T i€CNE i€l
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Table 3: Results for in-sample performance on real-world datasets in terms of mean and standard
deviation. A lower metric indicates better performance. We highlight the best results in bold.

Method News Twins Jobs
VEPEHE €ATE VEPEHE €EATE Rpor EATT

OLS 4.0069 + 1.6867 0.4698 =+ 0.2580 0.4299 + 0.1670 0.0061 % 0.0059 0.2380 =+ 0.0427 0.1015 4 0.0417
BART 2.6705 £ 0.8685 0.5464 + 0.2877 0.3208 =+ 0.0027 0.0034 + 0.0028 0.2614 £ 0.0305 0.0939 4 0.0452
T-learner 2.5736 4+ 0.7379 0.5498 + 0.3293 0.3335 4 0.0038 0.0221 + 0.0108 0.2796 + 0.0491 0.1532 4 0.1382
k-NN 7.5610 &+ 11.4923 0.3561 4 0.5392 0.3705 £ 0.0021 0.0054 + 0.0034 0.1939 4 0.0242 0.1256 4+ 0.1263
PSM 2.9310 4 0.7843 0.3333 4+ 0.2515 0.3688 £ 0.0028 0.0057 £ 0.0044 0.2486 4 0.0231 0.1183 4 0.0929
GANITE 3.8045 4 1.2562 1.7301 4 0.6204 0.3193 £ 0.0021 0.0169 + 0.0014 0.2058 4 0.0616 0.1861 4 0.0804
DKLite 3.4522 4 1.3588 0.8766 + 0.5675 0.3193 £ 0.0021 0.0067 £+ 0.0041 0.2870 4+ 0.0115 0.1502 4 0.0344
TARNet 1.4367 £ 0.3708 0.3445 + 0.2771 0.3193 + 0.0021 0.0168 & 0.0014 0.2498 4 0.0398 0.0849 4 0.0250
DragonNet 2.4641 4 0.7849 0.8160 4 0.7010 0.3614 £ 0.0053 0.0065 £ 0.0064 0.1088 + 0.0923 0.0782 4 0.0244
BNN 4.2649 + 1.3215 24577 4 0.7031 0.3194 £ 0.0021 0.0171 % 0.0042 0.2196 =+ 0.0433 0.0714 4 0.0229
CFRwgss 2.0692 £ 0.7105 0.8396 4 0.4813 0.3205 £ 0.0040 0.0196 + 0.0239 0.2386 =+ 0.0490 0.0845 4 0.0250
CFRy M D 2.1810 £ 0.9814 0.9752 4 0.7153 0.3224 4 0.0038 0.0302 + 0.0183 0.2503 £ 0.0418 0.0865 =+ 0.0253
ESCFR 1.7233 4 0.3845 0.3678 4 0.2559 0.3191 £ 0.0021 0.0159 + 0.0085 0.2976 =+ 0.0285 0.0817 £ 0.0253
G-learner 2.2750 £ 0.7415 0.2258 + 0.1472 0.3191 =+ 0.0020 0.0107 % 0.0039 0.2053 £ 0.0151 0.0552 =+ 0.0306

Table 4: Result on simulated dataset in terms of mean and standard deviation. A lower metric
indicates better performance. We highlight the best results in bold and underline the second-best
results.

Method me = 0.5 me = 0.8 me = 1.1 me =14
VEPEHE €EATE VEPEHE €EATE VEPEHE €ATE VEPEHE €EATE

OLS 1.134+£ 049 0304+0.24 | 1.14+0.50 030+024 | 1.17+0.50 0.304+0.26 | 1.36 £0.64 0.35+£0.29
BART 4.18+0.58 0.20+0.18 | 430+0.50 0.62+0.31 | 467+043 139+039 | 525+043 2.16+0.44
T-learner 832+082 040+0.32 | 888 +0.80 2.77+0.49 | 10.18 £0.66 544 +0.51 | 12.14 £0.58 8.16 +0.54
kNN 482+0.55 041+£020|396+041 020+£0.13 | 3.94+047 0.65+£0.19 | 449 £050 1.15+£0.23
PSM 2.05+0.64 053+£0.60 | 276+0.73 0.61 £044 | 425+£097 092+£0.62 | 591 £1.11 199 +£0.88
GANITE 0.88+£0.08 0.304+0.23 | 1.49+0.03 147+0.06 | 1.50+0.01 1.514+0.01 | 1.524+0.02 1.50 £ 0.01
DKLite 0.63 +£0.12 0.08+0.04 | 2.78 £ 0.69 2.51+0.78 | 587+0.68 5.76+0.66 | 8.99+0.59 8.92 + 0.60

TARNet 0.55+0.05 0.54+005|0554+004 053+005| 054+£0.06 0.52£0.06 | 0554005 0.54+0.05
DragonNet | 0.29 +0.08 0.06 +0.04 | 0.51 £0.21 0.06 £0.04 | 0.394+0.13  0.07 £0.05 | 0.47£0.22 0.11 4 0.09
BNN 0.43+£0.00 0.40+0.00 | 0484+0.01 0464001 | 044+£0.01 041£0.01 | 0444001 0424001
CFRwass | 053+£0.03 050+0.03 | 0.53+£0.04 0.51+0.05| 054£0.07 0.524+0.07 | 0.55+0.05 0.53£0.05
CFRymp | 051 £0.03 049 +0.03 | 051 £0.03 049+0.03 | 050+£0.07 048+0.08 | 1.05+1.68 0.59+0.37
ESCFR 0.63+0.16 0.10£0.07 | 0.78 2020 0.24£0.09 | 099 £0.25 041£0.12 | 099 £0.25 041=£0.12
G-learner 0.21 £0.03 0.05+0.04 | 0.23+0.05 0.05+0.05 | 0.30+£0.07 0.09+0.05| 0.36+0.15 0.10 + 0.11

where for a model h, if hy(x) — ho(x) > A, mr(x) = 1 else mp(x) = 0. Besides, we evaluate
epeHE and € 47 g on other datasets:

epprn = 3 (i) — holwi)) = (fi(w:) = folw).

n

are = |- S () — ho(a)) — S () — o)

i=1 i=1

B.4 EXTERNAL RESULT OF IN-SAMPLE SETTING

We give the results of real-world and simulation datasets under the in-sample setting in Table [3|and
Table @l

B.5 VISUALIZATION OF INTERMEDIATE GROUP GENERATION

In this part, we conduct experiments on a toy 2D dataset to visualize the generated intermediate
data. We construct a control group and a treated group with means of -1 and 1, respectively, both
having a standard deviation of 0.1 and covariate dimensionality of 2. The visualization results are
shown in Figure[2] In Figure 2(a)] we present the original covariates separately for the control and
treated groups. In Figure[2(b)] eight intermediate groups are generated via optimal transport between
the control and treated distributions. These intermediate nodes lie precisely along the geodesic
connecting the two groups.
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e T
I'A'-

(a) Original covariates (b) Intermediate group

Figure 2: Illustration results of the original covariates (left) and generated intermediate groups
(right). Blue nodes in the lower-left are control samples, red nodes in the upper-right are treated
samples.
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Figure 3: Result of varying values of the hyperparameters on simulation data (m. = 1.4).

B.6 SENSITIVITY ANALYSIS

In order to assess the impact of hyperparameter configurations on model performance, we take
simulation data where m, = 1.4 as an example to evaluate the performance of our method with
varying values of hyperparameters. Figure[3(a)land Figure[3(b)|show the results of different numbers
of intermediate groups. We observe that when the number of intermediate groups increases from 0 to
4, the performance of our method improves in terms of both PEHE and ATE, which indicates that the
prediction models can be smoothly adjusted from one group to another, enhancing the performance
of causal inference. Figure and Figure present the results with different filter ratios r for
the intermediate data. In general, our method consistently achieves promising performance in terms
of both evaluation metrics with respect to varying values of r.

C PROOF OF LEMMA [I]

Lemma Following (He et al., [2024), consider two arbitrary measures from group k and kK, the
error of |E(ho,x) — E(ho,x-)| is upper bounded with probability at least 1 — r as:

£00.0) = ECho,c )| < OOy (s ) + 22BN a7

Firstly, we have the following assumption:

Assumption 4 (R-Lipschitz). We assume # be a class of regressors h : X — [a, b] is R-Lipschitz
in #5 norm,i.e.,Yh € H, Vz, 2’ € X:

|h(z) = h(z")| < Rllz — 2'[|2. (18)

Assumption 5 (p-Lipschitz Loss). We assumption the loss function £ is p-Lipschitz in each argu-
ment, i.e. Vy,y' € V:

1(y,-) = L', )| < ply — /'], (19)
[0, y) =L, y) < ply =y (20)
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Assumption 6 (Bounded Model Complexity). We assume the Rademacher complexity (Bartlett &
Mendelson, |2002), R, of the hypothesis class,H, is bounded for any distribution p considered in this
paper. That is, for some constant C' > 0,

C
H; su oih(x;)| < — 21
R (H: 1) he?I-)t n Z ] Vn
where the expectation is w.r.t. x; ~ px and o; ~ Uniform({—1,1}) fori =1,...,n.
Proof. For any predictor h, the risk difference is
)~ & =1 [ (o0~ opeax— [ ()~ g el (22)
xe{x, } x’E{xm_}
Introduce a coupling vy of u,; and p,.—.
80(h) = £ ()] < [ 16(h(2). ) — b, o'y
<p(R||lx—=x'| +ly—9'|l) (by Assumption[]and Assumption[3)
< pRWy (s i) (23)
So that we can get,
pC + +/log(1/r
€000 = £ )| £ Oyl o) + L 28, 24)

Specific details of the proof above is similar to the proof of proposition 1 in (He et al., 2024)).

D PROOF OF LEMMA 2]

Lemma 2| For a filtering ratio r € (0,1), the loss £ (ho,1) is upper bounded with probability at least
1—ras

log(1 (1 K)3L—2 log(1
E(ho1) < E(hoo) + O(KA + = \/W \/T Og(f(/r)
n

where n is the number of training samples, L is the model depth, and KA is the accumulated
distribution shift between control and treated groups through intermediate groups

~—

Proof. Treat gradual self-training over K + 1 domains (each with n points) as running an online
learner for nK sequential examples. Directly invoke Corollary 2 of (Kuznetsov & Mohri} 2020) to
get, with probability 1 — r, following (He et al., [2024),

K n
E(ho,1) SZZanﬂ erlSC( A (i +1))
k=0 i=0
R 8 In(1/7)
+an(i<+1)||2+6O\/47T10g(nK) Ry (LoH) +O||qn(K+1)||2 Y

(25)
where we index each group by K = 2 +1, where £ = 0,1,..., K + 1. H denotes the hypothesis

class (the set of all predictors your algorithm may choose from), and C' is the uniform upper bound
on the loss function ¢, i.e. £(h(x),y) € [0,C] for all h € H and all (z,y), disc(-) denotes the
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discrepancy term as defined in (Kuznetsov & Mohri, 2020), and ¢,, ;4 is taken as q,, ;1) =

* _ 1 1 .
Y(R+1) = (n(f<+1) ) n(i{+1))' From Lemma 1 from (He et al.,[2024)) and Lemma 1| we know:
K - [log:
qu’m"‘l <‘€(h0 O)+0(KA)+O(—+K ) (26)
Vn n
k=0 i=0

From Lemma 2 from (He et al., 2024} and Lemma we know disc(qn( I +1)) can be bound. From
Lemma 4 and Example 2 on neural-network sequence complexity from (He et al.l 2024)) we know:

6C /4w log(nk)Rflg(ﬂ oH) < (’)( %) @7
In conclusion,
log(1 log n K )3L—2 log(1
E(hos) <5(hoo)+(’)(KA+ \/W _+ <og7;f() . ogrff(/r))

E PROOF OF THEOREM 1

Theorem 1 The effect estimation error € pg g is upper bounded by:
epEHE < 25(h070) + 2€(h171) + 20(KA + B(n,K', L,?")),

where

- 10g(1/r)+ 1~+ (lognl~(~)3L—2+ 10g(1~/r).

cpEHE = /X (#(x) — 7(%))2p(x)dx = /X () = ho(x)) — (f1(x) — fo(x)))?p(x)dx
- /X (1 (%) = 1)) + (o) — ho(3))2p(x)dx
< / () — £ () + (o) — ho(x))2)p(x)dx
X

- /X ((h1(x) — f1())2p(x]t = 1)dx

" /X (1 (%) — 1(3))2p(x]t = 0)dx

" /X ((ho(x) — fo(3))2p(x]t = 1)dx

" /X ((ho(x) — fo(3))2p(x]t = 0)dx

=E&(h1,1) + E(h1o) +E(hoa) + E(hoo). (28)
Lemma[z] For a filtering ratio v € (0, 1), the loss E(ho,1) is upper bounded with probability at least
1—ras
K log(l/r \/ log nK 3L—2 log(1/7)
E(hoa) < E(hoo) + O(KA+ — + K + L2,
(ho,1) < E(ho0) + O( Tn \ﬁ T )
(29)
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where n is the number of training samples, L is the model depth, and KA is the accumulated
distribution shift between control and treated groups through intermediate groups
According to Lemma 1, it is easy to get:

E(ho) < Elhoo) + O(KA + = +K\/W 1 (1Ogn]~()3L—2 . \/@),
€(h0) <<‘3<hu>+0<KA+ \/W +¢ lognK e [log(1/)

nK
Then, combine Eq.(28), we can obtain the upper bound of €pppg:

epeae < E(h11)+ E(h1,o) +E(hoa) + E(hoyo)
<2&(h1q1) + 25(h0 0)

C)3L—2
+2(’)(KA+ /10g 1/r 1 (lognK~) N log(1~/r)).
nk nk

(30)
O

)’

%
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