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ABSTRACT

Autoregressive video diffusion models have proved effective for world modeling
and interactive scene generation, with Minecraft gameplay as a representative ap-
plication. To faithfully simulate play, a model must generate natural content while
exploring new scenes and preserve spatial consistency when revisiting explored
areas. Under limited computation budgets, it must compress and exploit histor-
ical cues within a finite context window, which exposes a trade-off: Temporal-
only memory lacks long-term spatial consistency, whereas adding spatial memory
strengthens consistency but may degrade new scene generation quality when the
model over-relies on insufficient spatial context. We present Memory Forcing, a
learning framework that pairs training protocols with a geometry-indexed spatial
memory. Hybrid Training exposes distinct gameplay regimes, guiding the model
to rely on temporal memory during exploration and incorporate spatial memory
for revisits. Chained Forward Training extends autoregressive training with model
rollouts, where chained predictions create larger pose variations and encourage re-
liance on spatial memory for maintaining consistency. Point-to-Frame Retrieval
efficiently retrieves history by mapping currently visible points to their source
frames, while Incremental 3D Reconstruction maintains and updates an explicit
3D cache. Extensive experiments demonstrate that Memory Forcing achieves su-
perior long-term spatial consistency and generative quality across diverse environ-
ments, while maintaining computational efficiency for extended sequences.

1 INTRODUCTION

Autoregressive video models (Bar et al., 2025} (Chen et al., 2024} |Song et al., [2025)) based on dif-
fusion (Ho et al.| |2020; |Dhariwal & Nichol, 2021} [Peebles & Xiel [2023)) have recently emerged as
powerful tools for world modeling, showing strong capabilities in interactive scene generation (Feng
et al.| 2024} |Parker-Holder et al.| [2024), particularly in open-world environments like Minecraft,
where multi-dimensional controls enable rich user interactions. These models (Decart et al., 2024}
Guo et al., 2025} |Cheng et al.| [2025) learn to predict future frames conditioned on past observations
and user actions, enabling autoregressive (AR) rollouts that react to player inputs in real time. Within
the AR paradigm, the model must condition on a context window of past frames, but latency and
memory limits bound the window size. Therefore, it is critical to compress and prioritize historical
information (i.e., memory) within this limited window.

In prior works, the allocation of memory manifests in two characteristic failure modes, as shown in
Fig.[I] Models that incorporate long-term spatial memory preserve consistency on revisits (Fig. [I{a))
but fail in novel scenes exploration. Conversely, temporal-only models fail to maintain spatial con-
sistency upon revisit (Fig. b)). Moreover, teacher-forced training [Huang et al.| (2025) underesti-
mates inference-time drift, encouraging over-reliance on short-horizon temporal cues and underuse
of retrieved memory at test time. These observations motivate a training framework that enables
the model to modulate its reliance on temporal and spatial memory across exploration and revisit
regimes, thereby balancing exploration flexibility and revisit consistency.

To address these limitations, we introduce Memory Forcing, a training framework that forces the
model to flexibly and effectively use temporal and spatial memory under a fixed window. Specifi-
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Figure 1: Two paradigms of autoregressive video models and their fail cases. (a) Long-term spatial
memory models maintain consistency when revisiting areas yet deteriorate in new environments. (b)
Temporal memory models excel in new scenes yet lack spatial consistency when revisiting areas.

cally, Hybrid Training uses distinct data distributions to emulate complementary gameplay regimes,
so the model learns to rely on temporal memory for novel-scene exploration and to incorporate
spatial memory on revisits for consistency. In practice, we adopt temporal-only conditioning on
VPT (Baker et al.,[2022) (human play, exploration-oriented) and spatial&temporal conditioning on
MineDojo (Fan et al.,|2022) (simulated trajectories with frequent revisits and adjacent viewpoints),
achieving a balanced optimum across the two tasks. Besides, we introduce Chained Forward Train-
ing to augment autoregressive learning with model rollouts: it progressively replaces ground-truth
temporal context with the model’s own predictions, amplifies pose/viewpoint drift across windows,
and thus encourages reliance on spatial memory to maintain revisit consistency.

Beyond the training protocol, we equip the model with Geometry-indexed Spatial Memory. Prior
frame-level retrieval (Xiao et al., 2025;|Chen et al.,[2025]) is appearance-based, sensitive to viewpoint
and illumination changes, and prone to accumulating near-duplicate views under neighboring poses.
As sequences grow, redundancy and lookup latency grow with the size of the memory bank. State-
space methods (Po et al.|[2025) compress history into latent states and alleviate this efficiency issue,
but they lack explicit spatial indexing, making it difficult to specify which spatial evidence to retain
and which redundancy to discard. Instead, we maintain a coarse scene representation via streaming
3D reconstruction and retrieve history with point-to-frame mapping: currently visible 3D points are
back-traced to their source frames to select a compact, pose-relevant set of views. This geometry-
anchored access is robust to viewpoint changes, bounds the candidate set (top-k), and scales with
visible spatial coverage rather than sequence length.

We conduct comprehensive experiments on Minecraft benchmark (Fan et al.,[2022) across three crit-
ical dimensions: long-term memory with spatial revisitations, generalization on unseen terrains, and
generation in new environments. Our method achieves superior performance across all three settings
compared to both temporal-only and spatial memory baselines, while our Geometry-indexed Spatial
Memory demonstrates 7.3x faster retrieval speed with 98.2% less memory storage. These results
demonstrate that Memory Forcing effectively resolves the trade-off between spatial consistency and
generative quality while maintaining computational efficiency.

In summary, our contributions are threefold:

* We introduce Memory Forcing, a framework that simultaneously addresses capability trade-offs
and efficiency limitations in memory-augmented video generation.

* We develop the Hybrid Training and Chained Forward Training strategy that teaches models to use
temporal memory for exploration and incorporate spatial memory for revisits, and a Geometry-
indexed Spatial Memory built via streaming 3D reconstruction with Point-to-Frame Retrieval,
whose lookup cost scales with visible spatial coverage rather than sequence length.

* Extensive experiments demonstrate that Memory Forcing achieves superior performance in both
spatial consistency and generative quality in new environments, while maintaining computational
efficiency for extended sequences.
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Figure 2: Memory Forcing Pipeline. Our framework combines spatial and temporal memory for
video generation. 3D geometry is maintained through streaming reconstruction of key frames along
the camera trajectory. During generation, Point-to-Frame Retrieval maps spatial context to histor-
ical frames, which are integrated with temporal memory and injected together via memory cross-
attention in the DiT backbone. Chained Forward Training creates larger pose variations, encouraging
the model to effectively utilize spatial memory for maintaining long-term geometric consistency.

2 RELATED WORKS

Autoregressive Video Models. Autoregressive video generation (Harvey et al, 2022} [Li et all}

2025b} Xie et al.|, 2025} [Wu et al.,[2024; [Teng et al.|, 2025} [Henschel et al., [2025) enables long video
synthesis by conditioning on preceding frames. Early token-based approaches (Wu et al., 2024

[Kondratyuk et all, [2023)) achieved temporal consistency but compromised visual fidelity. Recent

diffusion-based methods (Voleti et al., 2022} [Hong et al.,[2024} [Chen et al., 2024} [Song et al., [2025))

achieve superior quality through masked conditioning and per-frame noise control.

Interactive Game World Model. World models predict future states from current states and ac-

tions (Ha & Schmidhuber, [2018aib}; [Hafner et al.l 2019} 2020). Recent video generation advances
have enabled interactive world models (OpenAl, [2024; [Feng et al.,[2024} [Parker-Holder et al.l 2024;

Valevski et al.} 2024} [Zhang et al, 2025} |He et al., 2025} [Yu et al., [2025b} |Che et al.,[2024) for com-

plex gaming environments. Minecraft’s rich action space and environmental dynamics have inspired
numerous game world models (Decart et al} 2024} [Guo et al., 2025}, [Cheng et al., 2025}, [Po et al.}
2025}, [Chen et al, 2025}, Xiao et al., 2025). While models like MineWorld (Guo et al., [2025) and
NFD (Cheng et al.l |2025) show strong interactive capabilities, they lack long-term memory. State-
space approaches (Po et al.| [2025) introduce memory mechanisms but remain limited by training
context length. WorldMem (Xiao et al.] uses pose-based retrieval for long-term memory but
suffers from limited novel scene generation and lacks real-time interactivity.

3D Reconstruction and Memory Retrieval. Learning-based 3D reconstruction was pioneered by

DUSt3R (Wang et al} [2024), with subsequent multi-view extensions (Wang et al., [2025ajc} [Yang

2025) and streaming methods (Wang et al.| 2025b; Wu et al., 2025) for sequential processing.
SLAM-based approaches like VGGT-SLAM (Maggio et al., 2025) handle long sequences through

incremental submap alignment. For memory retrieval in video generation, existing approaches range

from pose-based methods (Xiao et al., 2025 2025a)) using field-of-view overlap to 3D

geometry-based approaches like VMem (L1 et al., 2025a) with surfel-indexed view selection.

3 MEMORY FORCING

We introduce Memory Forcing, a learning framework that pairs training protocols with geometry-
indexed spatial memory to enable long-term spatial consistency. Our approach addresses the funda-
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mental trade-off between temporal memory for generation and spatial memory for revisits through
Hybrid Training and Chained Forward Training (CFT). Section[3.1] provides background on autore-
gressive video diffusion models and interactive game world modeling. Section [3.2] presents our
memory-augmented model architecture. Section [3.3|details our Memory Forcing training protocols.
Section |3.4]introduces our explicit 3D memory maintenance and retrieval approach.

3.1 PRELIMINARIES

Autoregressive Video Diffusion Models. Autoregressive Video Diffusion Models generate video
sequences by predicting future frames conditioned on past observations. Following Diffusion Forc-
ing (Chen et al., [2024), we denote a video sequence as X7 = T1,%2,...,xrT where each frame x;
is assigned an independent noise level k; € [0, 1]. The model learns to predict noise eg (X7, k57T
where X7 represents the noisy sequence and k¥7 = ky, ko, ..., kr are the noise levels. The
training objective minimizes:

L= Ekl:T,Xl:T761:T |61:T — Ge(XlzT, kl:T)|2:| (1)

This framework enables flexible conditioning patterns for autoregressive generation by allowing
arbitrary combinations of clean and noisy frames within a sequence.

Interactive Game World Model. Interactive game environments present unique challenges for
video generation models. Players navigate complex 3D environments where actions A7 include
movement commands, camera rotations, and object interactions that directly influence both imme-
diate visual changes and long-term environment state evolution. For action-conditioned generation,
the model predicts noise conditioned on both visual observations and actions: €y (X LT pLT - ALT)
enabling the model to generate coherent video sequences that respond appropriately to player inputs.

3.2 MEMORY-AUGMENTED ARCHITECTURE

We follow previous works (Cheng et al.l 2025) in adopting block-wise causal attention for efficient
spatio-temporal modeling, adalLN-zero conditioning for action integration, and 3D positional em-
beddings within a Diffusion Transformer (DiT) backbone. To incorporate long-term spatial memory
into the generation process, we introduce several memory-specific components.

Spatial Memory Extraction. We employ the VGGT (Wang et al., 2025a)) network with our cross-
window scale alignment to enable streaming reconstruction. Historical frames are then efficiently
extracted through Point-to-Frame Retrieval, providing accurate access to long-term spatial memory.

Memory Cross-Attention. We integrate Cross-Attention modules within each DiT block to lever-
age long-term spatial memory during generation. Retrieved historical frames serve as keys and
values, while current frame tokens act as queries:

QK £atial
Vd

where Q and f(spaﬁal are queries and keys augmented with Pliicker coordinates to encode relative
pose information between current and historical viewpoints.

Attention(Q, K, spatial » V;patial) = Softmax V;patial (2)

3.3 AUTOREGRESSIVE DIFFUSION TRAINING WITH MEMORY FORCING

Memory-augmented video generation models face a fundamental capability trade-off. Models rely-
ing heavily on long-term spatial memory generate content consistent with previously visited scenes,
but degrade when generating new scenes due to insufficient relevant spatial memory. We therefore
propose Memory Forcing training protocols that teaches models to dynamically balance these two
capabilities, learning when to rely on temporal context versus spatial memory.

Hybrid Training. Our hybrid training approach operates within a fixed context window of L frames.
We strategically allocate half the window (L/2 frames) as fixed temporal context frames, while the
remaining L /2 frames are flexibly assigned based on the scene context. The complete context
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window construction can be formalized as:

W = [Trrea, M = [Tfixed, Mspatial] ~ if revisiting previously observed areas
- fixed text] — s 1
Hedy 77 Teontex [Thixed, Textendea)  if €xploring new scenes

3)

where Trxea represents the fixed L /2 recent temporal context frames, M paial represents long-term
spatial memory retrieved by our Geometry-indexed Spatial Memory and Textended TEPresents
additional temporal frames from earlier time steps. This dynamic allocation enables the model to
leverage the most appropriate memory source for each generation scenario.

Inspired by Figure|l| we apply different memory strategies to different datasets: spatial memory for
synthetic dataset (Fan et al., [2022) with frequent area revisiting, and extended temporal context for
VPT dataset (Baker et al.||2022) with new scene generation.

Chained Forward Training. We introduce Chained Forward Training (CFT) to enhance our hybrid
training strategy. CFT sequentially processes temporal windows where predicted frames from earlier
windows are incorporated into subsequent windows, creating cascading dependencies across the
sequence. Details are shown in Algorithm [I)in the Appendix. At each step j, the temporal window
W; contains both ground-truth frames x;, and previously predicted frames X, leading to the loss:

T—1
1
Lenain = > Eie[lle = ea(W;(x,%),C;,t)[|°], ¢ ~ Uniform(0, Theice), € ~ N(0,T)  (4)
j=0

This approach extends autoregressive training with model rollouts, where larger pose variations
created by chained predictions cause inaccuracies to propagate from earlier windows, encouraging
the model to rely on spatial memory for maintaining consistency across revisited areas. Additionally,
by replacing ground truth temporal context with the model’s own predictions during training, this
approach helps reduce accumulation errors that typically arise during autoregressive inference.

3.4 GEOMETRY-INDEXED SPATIAL MEMORY

Our Geometry-indexed Spatial Memory maintains explicit scene geometry and enables efficient
retrieval of long-term historical visual information based on 3D spatial relationships. This approach
consists of two key components: Point-to-Frame Retrieval for identifying relevant historical frames
and Incremental 3D Reconstruction for maintaining and updating scene representations.

Point-to-Frame Retrieval. For each current frame, we project the global point cloud to the current
camera pose and analyze the source frame indices of visible points to identify the most relevant
historical frames:

Hy = argkniaxézCount(source(pi) 2 pi € Pligiie) %)

where P . represents the set of points visible under the current camera pose for frame ¢,
source(p;) denotes the source frame index of point p;, and #; contains the top-8 most frequently
referenced historical frames among the visible points. This retrieval mechanism maintains O(1)

complexity regardless of sequence length, enabling scalable processing.

Incremental 3D Reconstruction. We adopt a selective reconstruction approach that dynamically
determines keyframes based on spatial information content. A frame qualifies as a keyframe when
it either reveals previously unobserved regions or when insufficient historical context exists:

IsKeyframe(t) = C(IP) V (|Hy| < Thist) (6)

where C (I} roj) determines whether the current view contributes new spatial coverage when projected
onto existing geometry, and Ty = 8 serves as the minimum historical frame count threshold.

Upon reaching window capacity, we jointly process keyframes, historical frames selected via Point-
to-Frame Retrieval for improved geometric consistency, and overlapping frames from the previ-
ous window that provide depth scale reference for aligning the new window. VGGT generates
relative depth maps and confidence scores for each frame in this window, followed by our cross-
window scale alignment module that establishes consistent depth scale across windows through
correspondence analysis in overlapping regions. 3D geometry is reconstructed through depth map
back-projection using camera extrinsics derived from quaternion-composed poses:

E— R(pztgi%,yaw) 71}0 7
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where R(pitch, yaw) encodes the viewing orientation through quaternion-based rotation compo-
sition, and C = [z, y, z]T specifies the camera’s spatial position. The reconstructed geometry is
subsequently integrated into our global representation through spatially-aware voxel sampling.

This design achieves efficient scene representation and retrieval through two key mechanisms. First,
selective keyframe reconstruction processes and stores only frames that contribute new spatial cov-
erage, preventing redundant computation and storage when revisiting encountered areas. Second,
voxel downsampling maintains an upper bound on point density for any pose region, ensuring con-
stant retrieval complexity regardless of temporal sequence length or scene scope. These mechanisms
collectively ensure that memory consumption scales with spatial coverage rather than temporal du-
ration, enabling efficient processing of extended sequences.

4 EXPERIMENTS

GT

Oasis

WorldMem NFD

Ours

WorldMem GT Ours WorldMem GT

Ours

Figure 3: Memory capability comparison across different models for maintaining spatial consistency
and scene coherence when revisiting previously observed areas.
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Figure 4: Generalization performance on unseen terrain types (top) and generation performance in
new environments without historical spatial memory (bottom) across different models.

We conduct comprehensive experiments to evaluate our Memory Forcing framework through both
quantitative and qualitative analyses. We demonstrate our model’s long-term memory capabili-
ties, generalization, and generation performance in new environments on our constructed Minecraft
benchmark, and assess the retrieval and storage efficiency of our Geometry-indexed Spatial Memory.
Additionally, we provide ablation studies on our frame retrieval strategy and training methodology.

4.1 EXPERIMENTAL SETUP

Implementation Details. Our model converges after approximately 400k training steps across 24
GPUs with batch size of 4. We employ the Adam optimizer with a learning rate of 4e-5. All
training and evaluation are conducted on NVIDIA H20/H100 GPUs using PyTorch. We employ a
2D variational autoencoder following NFD (Cheng et al., [2023) for frame tokenization, providing
16x spatial compression and transforming each frame into 24 x 14 continuous tokens. Video frames
are resized to 384 x 224 resolution, maintaining the original aspect ratio and sufficient visual detail.

Baselines. We compare our approach against baseline models including Oasis (Decart et al.,[2024)
and NFD (Cheng et al/, 2025), as well as the long-term memory model WorldMem (Xiao et al.l
[2025). For fair comparison, all models use a 16-frame context window during both training and
evaluation. All models follow their respective training configurations and are trained on identical
Synthetic datasets for approximately 500-600k steps to ensure consistent evaluation conditions.

Datasets. For training, we use the VPT (Baker et al 2022)) dataset, which pairs 25-dimensional
action vectors with corresponding video sequences. Following previous work (Guo et al., [2023),
we exclude frames without actions or when the graphical user interface is visible to reduce noise.
Additionally, we utilize a synthetic dataset generated from MineDoJo [2022) for long-
term memory training, following the configuration of WorldMem 2025)), which consists
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Method \ Long-term Memory \ Generalization Performance \ Generation Performance
etho
| FVD| PSNR{ SSIMt LPIPS| |FVD| PSNRt SSIMt LPIPS| |FVD| PSNRT SSIM{ LPIPS|
Oasis 196.8 16.83 0.5654 0.3791 4773 14.74 0.5175 0.5122 285.7 14.51 0.5063 0.4704
NFD 220.8 16.35 0.5819 0.3891 442.6 15.49 0.5564  0.4638 349.6 14.64 0.5417 0.4343
WorldMem | 122.2 19.32 0.5983 0.2769 3283 16.23 0.5178 0.4336 290.8 14.71 0.4906 0.4531
Ours | 849 21.41 0.6692 0.2156 | 253.7 19.86 0.6341 0.2896 | 185.9 17.99 0.6155 0.3031

Table 1: A comparison of different methods across various capabilities and evaluation metrics.

Frame Range | 0-999 | 1000-1999 | 2000-2999 | 3000-3999 | Total (0-3999)

Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem.
(FPS 1) (Count|) | (FPS1) (Count]) | (FPST) (Count]) | (FPST) (Countl) | (FPS?1) (Count|)

WorldMem 10.11 +1000 3.43 +1000 2.06 +1000 1.47 +1000 4.27 4000
Ours 18.57 +25.45 27.08 +19.70 41.36 +14.55 37.84 +12.95 31.21 72.65

Method

Table 2: Comparison of retrieval efficiency between WorldMem and our Geometry-indexed Spatial
Memory across different sequence lengths. “Mem.” denotes the number of frames in memory bank.

of 11k videos containing 1,500-frame action sequences with frequent pose transitions to previously
visited spatial locations. For evaluation, we constructed three datasets using MineDojo to assess the
model’s performance across various aspects:

* Long-term Memory: 150 long video sequences (1,500 frames) were isolated from the World-
Mem dataset (Xiao et al.,|2025)) to evaluate the model’s capacity for long-term memory retention.

* Generalization Performance: We constructed 150 video sequences (800 frames) from nine un-
seen Minecraft terrains using MineDojo (Fan et al.| 2022)) to evaluate the model’s generalization.

* Generation Performance: We constructed 300 video sequences (800 frames) using Mine-
Dojo (Fan et al.,|2022) to assess generation performance in new environments.

Evaluation Metrics. We evaluate our model’s performance using established video quality met-
rics. We measure perceptual quality with Fréchet Video Distance (FVD) and Learned Perceptual
Image Patch Similarity (LPIPS), while assessing pixel-level accuracy through Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM). These metrics collectively provide
comprehensive assessment of both visual fidelity and consistency in generated sequences.

4.2 MODEL CAPABILITIES ASSESSMENT

For all quantitative and qualitative evaluations, we generate frames 600-800 (200 frames) to assess
long-sequence generation capabilities using the datasets described in our experimental setup.

Long-term Memory. We evaluate models’ ability to maintain spatial consistency and scene coher-
ence when revisiting previously observed areas using our long-term memory evaluation dataset. As
demonstrated in Table I} our method achieves superior performance across all metrics, indicating
enhanced visual fidelity in long-sequence generation. Figure[3]further shows that our model demon-
strates the most precise memory when returning to previously visited locations. While WorldMem
exhibits some memory retention capabilities, it produces inaccurate and unstable view generation
with visual artifacts in the generated scenes (e.g., the fifth frame in the fourth row). In contrast, the
remaining baseline models lack long-term memory mechanisms, resulting in spatial inconsistencies
where camera viewpoint changes inappropriately alter scene geometry and terrain features.

Generalization Performance. Using our generalization evaluation dataset with nine novel terrain
scenarios, our approach demonstrates robust generalization performance, significantly outperform-
ing baselines across all metrics as shown in Table[I] indicating strong adaptability to unseen envi-
ronments. The top portion of Figure[]illustrates qualitative generalization results, where our model
generates stable and consistent outputs across novel terrains. In contrast, WorldMem and NFD ex-
hibit artifacts in their generations, while Oasis shows scene inconsistencies.

Generation Performance. Our comprehensive evaluation using the generation performance dataset
demonstrates that our method outperforms all baselines across metrics in Table |1} highlighting the
effectiveness of balancing long-term and temporal memory. The bottom portion of Figure ] illus-
trates generation performance in new environments, where our model exhibits responsive movement
dynamics with distant scenes progressively becoming clearer as the agent approaches. In contrast,
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Training Strategies Retrieval Strategies Metrics
FT HT-w/o-CFT MF | Pose-based 3D-based | FVD | PSNR1 SSIM?t LPIPS |
v v 366.1 15.09 0.5649  0.4122
v v 230.4 16.24 0.5789  0.3598
v v 2259 16.24 0.5945  0.3722
v v 165.9 18.17 0.6222  0.2876

Table 3: Ablation study comparing training strategies and retrieval mechanisms. FT: full-parameter
fine-tuning, HT-w/o-CFT: hybrid training without CFT, MF: Memory Forcing with HT and CFT.

WorldMem experiences significant quality degradation in this scenario, NFD shows minimal vari-
ation in distant scenes regardless of agent movement, and Oasis generates oversimplified distant
scenes that lack proper distance-based visual transitions.

4.3 EFFICIENCY OF GEOMETRY-INDEXED SPATIAL MEMORY

Table [2| evaluates the computational efficiency and storage requirements of our Geometry-indexed
Spatial Memory compared to WorldMem’s retrieval approach across 20 4000-frame MineDojo
videos. While WorldMem stores all historical frames and performs linear-complexity retrieval
across the entire collection, our selective keyframe approach reduces memory bank size by 98.2%
while achieving 7.3x faster retrieval speed at 0-3999 frames. Efficiency gains increase with sequence
length, reaching 25.7x speedup in the 3000-3999 frame range as WorldMem becomes increasingly
slower. WorldMem’s memory bank grows linearly with sequence length, while our Geometry-
indexed Spatial Memory scales with spatial coverage expansion, storing only keyframes with new
geometric information. Our speeds include the complete 3D memory pipeline (reconstruction and
retrieval), while WorldMem’s include pose-based retrieval across all stored frames.

4.4 ABLATION STUDIES

Table [3]shows ablation studies on 300 videos from Long-term Memory and Generation Performance
datasets analyzing the contributions of our training strategies and retrieval mechanisms.

Training Strategy Analysis. We compare three training approaches: full-parameter Fine-Tuning
(FT) after VPT pre-training, Hybrid Training without Chained Forward Training (HT-w/0-CFT),
and our complete Memory Forcing training strategy (MF). Direct fine-tuning achieves limited per-
formance as the model struggles to balance temporal memory and spatial memory, typically over-
relying on one modality at the expense of the other. HT-w/o-CFT demonstrates improvement by in-
tegrating real and synthetic data, but inadequately trains the model’s dependence on spatial memory
during spatial revisitation scenarios. Our Memory Forcing training approach achieves optimal per-
formance by enabling the model to adaptively utilize temporal context when exploring new scenes
while leveraging spatial memory when revisiting previously observed areas, effectively resolving
the fundamental capability trade-off between generation quality and long-term memory retention.

Retrieval Mechanism Comparison. Our 3D-based approach substantially outperforms pose-based
retrieval by leveraging explicit geometric representations for more precise identification of spatially
relevant historical frames, while achieving superior computational efficiency as shown in Table

5 CONCLUSIONS

We introduced Memory Forcing, a novel framework that addresses the fundamental trade-off be-
tween long-term spatial memory and new scene generation in autoregressive video models. Our
approach consists of two key innovations: an efficient Geometry-indexed Spatial Memory that
achieves constant-time retrieval complexity through streaming 3D reconstruction and point-to-frame
retrieval, and a hybrid training strategy featuring Chained Forward Training that teaches models to
dynamically balance temporal and spatial memory utilization. Our framework encourages adaptive
contextual selection, relying on temporal memory for new scene generation while leveraging spatial
memory for consistency in previously encountered areas. Extensive experiments demonstrate that
Memory Forcing achieves superior performance in both spatial consistency and generative quality
while maintaining computational efficiency for extended sequences, effectively resolving the capa-
bility trade-off that has limited prior memory-augmented video models.
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6 ETHICS STATEMENT

We confirm that this research adheres to the ICLR Code of Ethics. We have carefully considered the
ethical implications of our work and have strived to conduct our research with the highest standards
of scientific integrity and responsibility. We outline the specific considerations below.

1. Broader Impact and Potential for Harm

This research aims to build more capable Al agents for simulated environments, such as games
and robotics, by enhancing their long-term memory. While video generation technologies pose
a dual-use risk (e.g., deepfakes), our model’s application is confined to the non-photorealistic,
domain-specific world of Minecraft. This focus significantly mitigates the potential for misuse
in creating malicious real-world synthetic media.

2. Data and Privacy

Our research utilizes established public datasets (VPT, WorldMem) and a new benchmark we
generated using the MineDojo simulator. All data consists of anonymized Minecraft gameplay
and contains no Personally Identifiable Information (PII). To promote reproducibility and further
research, we commit to open-sourcing our generated dataset upon the paper’s acceptance.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive details of our methodology,
experimental setup, and resources. Our core framework, Memory Forcing, is described in Section|[3]
with specific architectural details in Section [3.2] and [3.4] and our Memory forcing training strat-
egy in Section The complete experimental setup, including implementation details, hardware
(NVIDIA H100/H20 GPUs), and key hyperparameters, is detailed in Section[d.I] The datasets used,
including public benchmarks (VPT, WorldMem) and our newly generated evaluation data, are also
described in Section We provide a full breakdown of our evaluation metrics and comparisons
against baselines in Sectiond.2] Furthermore, we commit to releasing our source code and the newly
generated dataset upon acceptance of this paper.
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A APPENDIX

A.1 DECLARATION OF LLM USAGE

Large Language Models (LLMs) were used as general-purpose assistive tools to improve the gram-
mar and clarity of this manuscript. The core scientific contributions, including the methodology,
experimental design, and analysis, are entirely our own. The authors have reviewed all text and take
full responsibility for the content of this paper.

A.2 CHAINED FORWARD TRAINING ALGORITHM

Algorithm 1 Chained Forward Training (CFT)

Require: Video x, conditioning inputs C, forward steps T', window size W, model €y
1: Initialize Fpreq < 0, Liow < 0
2: forj=0to7T — 1do
3:  Construct window W [k| <= Fprealk] if & € Fpreq else x;, for k € [j,j + W — 1]
4:  Compute L; < |le — eg(W;,C;,1)||%, update Lioa < Liotal + L;
5: Ifj <T —1: Fpealj + W — 1] <= X w—1 {Fewer denoising steps}
6
7

: end for
: return Echain — Elotal/T

A.3 DATASET DETAILS

We utilize the WorldMem (Xiao et al., |2025) dataset together with three additional datasets col-
lected using MineDojo (Fan et al [2022) to evaluate our model across multiple dimensions: mem-
ory capacity, generalization abilities, scene exploration, and efficiency. The WorldMem (Xiao et al.,
2025) dataset contains 150 video sequences of 1,500 frames each, sampled from five terrain types:
ice_plains, desert, savanna, sunflower_plains, and plains. The Scene Generation dataset includes
300 sequences of 800 frames each, while the Efficiency dataset consists of 20 sequences of 4,000
frames. The Generalization Abilities dataset comprises 150 sequences of 800 frames each, sam-
pled from nine unseen terrains: extreme_hills, taiga, stone_beach, swampland, river, beach, mesa,
frozen_ocean, and forest_hills. Dataset statistics are summarized in Table 4]

For action configurations, all MineDojo-collected datasets adopt the same setup as WorldMem, in-
cluding movement actions (left, right, forward, back) and view-control actions (look_up, look_down,
turn_left, turn_right). The Memory Capabilities dataset constrains agents within confined re-
gions with diverse actions including vertical movement. For Scene Generation and Generalization
datasets, we use a two-phase strategy: initial 600 frames with full action diversity, followed by
restricted actions (forward, turn_left, turn_right) to assess generation capabilities.

A.4 MODEL COMPARISON
Table 5] provides a comprehensive comparison of our approach with existing video generation mod-

els for Minecraft environments, highlighting key differences in memory mechanisms, storage effi-
ciency, and capabilities across different methodological paradigms.
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Table 4: Dataset statistics for model evaluation.

Dataset Video Count Frames per Video Terrain Types
Efficiency 20 4,000 5
Generation Performance 300 800 5
Generalization Performance 150 800 9
Long-term Memory 150 1,500 5

Table 5: Comparison of Video Generation Models on Minecraft

Method | Memory Type (Complexity) | Memory Storage | Memory Scope | Dataset | Size | Video Length | Actions
Oasis / / / VPT 2.5M 64 frames 25
Mineworld / / / VPT 2.5M 64 frames 25
NFD / / / VPT 2.5M 64 frames 25
LSVM State Space Model (O(1)) Compressed hidden state Limited by training length TECO (Yan et al.|2023} 200K 150 frames 4
VRAG Similarity-based RAG (O(1)) Fixed-length buffer Limited by buffer size MineRL (Guss et al.[[2019] 1K 1200 frames 5
Worldmem Pose-based RAG (O(n)) Memory bank (Stores all frames) Long-term MineDojo 20K 1500 frames 8
Ours | 3D-based RAG (O(1)) | Scene-dependent sparse storage | Long-term | VPT+MineDojo | 85K | 1500 frames | 25

The first group represents traditional autoregressive video models without explicit memory mech-
anisms. Models like Oasis (Decart et al., 2024), Mineworld (Guo et al.l 2025), and NFD (Cheng
et al.| 2025)) rely solely on temporal context windows and demonstrate strong performance in scene
generation but suffer from spatial inconsistency when revisiting previously encountered areas due to
their limited memory scope.

The second group encompasses recent memory-augmented approaches that attempt to extend model
capabilities through various memory mechanisms. LSVM (Po et al. 2025) employs state space
models to compress historical information into hidden states, achieving constant-time complexity
but with memory scope fundamentally limited by training sequence length. VRAG (Chen et al.|
2025)) utilizes similarity-based retrieval with fixed-length buffers, providing constant-time access but
constraining long-term memory capacity. WorldMem implements pose-based retrieval with compre-
hensive frame storage, enabling true long-term memory but suffering from linear complexity growth
as memory banks accumulate redundant information during extended sequences.

Our Memory Forcing framework uniquely combines the advantages of both paradigms while ad-
dressing their respective limitations. Unlike traditional models, we maintain long-term spatial mem-
ory through explicit 3D scene representation. Unlike existing memory-augmented approaches, our
3D-based retrieval system achieves constant-time complexity with scene-dependent sparse storage
that adapts to spatial redundancy patterns. This design enables efficient scaling to extended se-
quences while preserving both spatial consistency and scene generation capabilities across the most
comprehensive action space among compared methods.

A.5 LIMITATIONS AND FUTURE WORK.

Limitations. While Memory Forcing demonstrates strong performance in memory retention and
generation quality, several limitations remain. Our current implementation is primarily validated
on Minecraft gameplay scenarios, which may not directly generalize to other environments without
domain-specific adaptation. Additionally, our model operates at a fixed resolution of 384 x 224
pixels, which may limit visual detail in applications requiring higher fidelity.

Future Work. Future research should focus on extending our framework to diverse gaming en-
vironments and real-world scenarios at higher resolutions. We plan to explore domain adaptation
techniques that preserve core memory mechanisms while accommodating different visual character-
istics. Additionally, investigating simplified architectural designs that maintain memory advantages
while reducing implementation complexity could enhance broader applicability. Integration with ad-
vanced acceleration techniques may further improve both efficiency and performance across diverse
interactive scenarios.
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A.6 ADDITIONAL QUALITATIVE COMPARISONS

We present additional qualitative analyses of different models’ performance in novel scene gen-
eration. Across Figures [6H8] our method shows superior spatial coherence, temporal continuity,
and scene detail compared to baseline models in both familiar and unfamiliar terrains. Figure [3]
demonstrates generalization on frozen ocean terrain. While WorldMem reproduces familiar training
terrains like plains, our model successfully maintains the target frozen ocean environment, showing
better generalization capabilities. Figures [6] and [7] compare performance across extreme hills, ice
plains, and desert terrains. Baseline methods (Oasis, NFD, WorldMem) often generate unrealistic
views, violate spatial consistency, or fail to reflect agent motion. Our approach maintains geometric
and temporal coherence while producing high-quality novel scenes. Figure [§| examines long-term
memory scenarios. Specialized long-term memory models struggle with novel scene generation and
show limited generalization in new environments. Our model effectively uses long-term memory to
generate consistent, realistic scenes while preserving spatial and temporal coherence. These com-
parisons demonstrate that our geometry-indexed spatial memory and generative approach delivers
robust performance across diverse terrains, generalization tasks, and long-term memory scenarios,
outperforming existing baselines.

Worldmem

Ours

Figure 5: Generalization performance on frozen ocean. When generating frozen ocean terrain,
WorldMem (Xiao et al.} 2025)) produces novel scenes resembling the plains terrain from the training
set. By contrast, our model preserves the frozen ocean terrain across novel scene generations.
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Figure 6: Qualitative results. Comparison of different models’ novel scene generation on two ter-
rains: extreme hills (top) and desert (bottom). In extreme hills, our method generates novel views
while preserving spatial consistency, whereas Oasis (Decart et all, [2024) fails, collapsing to blue
images. WorldMem (Xiao et al} [2025) and NFD (Cheng et al., 2025) produce unrealistic views that
break spatial consistency. In desert, Oasis (Decart et al., 2024) and NFD (Cheng et al., [2025) fail
to reflect the agent’s forward motion, and WorldMem (Xiao et al., lacks temporal and spatial
consistency. By contrast, our method maintains spatial coherence and produces rich, realistic novel
Views.
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WorldMem NFD Qasis

Ours

Figure 7: Qualitative results. Comparison of different models’ novel scene generation on two ter-
rains: ice plains (top) and desert (bottom). In the ice plains scenario, an action sequence drives the
agent into a confined area, testing the models’ memory in generating novel scenes. Oasis
et al} 2024), NFD (Cheng et al, [2025)), and WorldMem fail to produce correct
views when the agent turns left and moves forward, remaining trapped. By contrast, our model
successfully generates novel views after escaping while preserving the ice plains terrain. In the
desert scenario, NFD (Cheng et all, 2023) fails to reflect the agent’s forward motion, while World-
Mem and Oasis (Decart et all, [2024) violate temporal and spatial consistency.

Our method consistently maintains spatial coherence and generates realistic novel views.
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Figure 8: Qualitative results on long-term memory across different models. We compare the gener-

ative capabilities of different models under long-term memory settings. Our model achieves the best
spatial consistency, temporal continuity, and preserves rich scene details.
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