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Abstract

An ideal detection system for machine gen-
erated content is supposed to work well on
any generator as many more advanced LLMs
come into existence day by day. Existing sys-
tems often struggle with accurately identifying
Al-generated content over shorter texts. Fur-
ther, not all texts might be entirely authored
by a human or LLM, hence we focused more
over partial cases i.e human-LLM co-authored
texts. Our paper introduces a set of models
built for the task of token classification which
are trained on an extensive collection of human-
machine co-authored texts, which performed
well over texts of unseen domains, unseen gen-
erators, texts by non-native speakers and those
with adversarial inputs. We also introduce a
new dataset of over 2.4M such texts mostly co-
authored by several popular proprietary LLMs
over 23 languages. We also present findings
of our models’ performance over each texts of
each domain and generator. Additional findings
include comparison of performance against
each adversarial method, length of input texts
and characteristics of generated texts compared
to the original human authored texts.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly narrowed the gap be-
tween machine-generated and human-authored text.
As LLMs continue to improve in fluency and co-
herence, the challenge of reliably detecting Al-
generated content could become increasingly criti-
cal. This issue is particularly pressing in domains
such as education and online media, where the au-
thenticity of textual material is paramount. While
early efforts such as the GLTR (Gehrmann et al.,
2019a) provided valuable insights by leveraging
statistical methods to differentiate between human

and machine text, these methods often lag behind
the rapid pace of LLM evolution. Likewise, initia-
tives aimed at mitigating neural fake news (Zellers
et al., 2019a) have made significant strides in ad-
dressing the societal implications of Al-generated
misinformation. However, as LLMs become more
sophisticated, existing detection systems must be
re-evaluated and enhanced to maintain their effec-
tiveness. Further, Each domain comes with its ver-
sion of the issue of detecting machine generated
texts. For instance, proprietary LLMs with internet
access and better knowledge cutoffs are more likely
to be used in domains like academia. Similarly,
bad actors might use an open source generators for
the task of creating misinformation and deception
through machine generated online content as such
models can be hosted locally to not leave a trail
and are more flexible in terms of not denying user
requests. Hence, tailoring models and approaches
for each specific domain/scenario might be bet-
ter applicable for practical scenarios. We chose
a token-classification approach to train a model
for the task of distinguish writing styles within a
text if more than one were found. This approach
helped us achieve better performance over texts of
unseen features (i.e domain, generator, adversarial
inputs, non-native speakers’ texts) as our models
were trained to distinguish different styles within
a text rather than classifying an input text as one
of the two classes it was trained on. Further, we
explored the findings and results upon testing our
models over other benchmarks which consist of
texts from unseen domain and generators. We also
tested our models over benchmarks which consist
of texts with various adversarial inputs and those
written by non-native speakers. We feel our find-
ings and datasets can aid in further research into
mitigating the harms of Al generated texts.



2 Related Works

A major portion of current research in detecting
machine-generated content focuses on longer-form
writing through binary classification. However, Al-
generated misinformation is more likely to cause
harm than its use in academia, making the distinc-
tion between Al and human-generated texts on so-
cial media platforms a critical challenge. Existing
methods often struggle with accurately identify-
ing Al-generated content over shorter texts. More-
over, binary classification approaches, which cate-
gorize texts as either human or Al-generated (Wang
et al., 2024a), (Wang et al., 2024b), (Bhattachar-
jee et al., 2023), (Zellers et al., 2019b), (Macko
et al., 2023), (Ghosal et al., 2023), (Dugan et al.,
2024) are less practical in settings where texts
could be co-authored by both humans and LLMs.
In contrast, binary classification may be more ef-
fective for shorter texts commonly found on re-
views and social media platforms (Macko et al.,
2024a), (Ignat et al., 2024), where content typi-
cally consists of one or two sentences. Addition-
ally, some detection works rely on detecting wa-
termarks from Al-generated texts, (Chang et al.,
2024), (Dathathri et al., 2024), (Sadasivan et al.,
2024), (Zhao et al., 2023) but not all generators
utilize watermarking limiting the applicability of
such approaches. Few other approaches utilize sta-
tistical methods (Mitchell et al., 2023), (Kumarage
et al., 2023), (Gehrmann et al., 2019b), (Hans et al.,
2024), (Bao et al., 2023), but they can be prone to
mis-classification against adversarial methods like
rephrasing and humanizing. (Abassy et al., 2024)
introduced a 4-way classification as entirely hu-
man authored, entirely llm authored, human-edited
and llm-authored or llm-edited human-authored.
An ideal detection system should be capable of
identifying Al-generated content from any genera-
tor without depending on watermarking, especially
since watermarking techniques may not be effective
for shorter texts. Further an ideal detector should
be robust against adversarial methods. To properly
deal with co-authored text cases, a token classifi-
cation approach to detect boundaries (Dugan et al.,
2022), (Macko et al., 2024b) between machine au-
thored and human authored portions might be more
appropriate. Further in cases of Al usage in sce-
narios like academic cases, users are likely to use
a proprietary LLM with better knowledge cutoffs
than an open source LLM. Similarly, for Al mis-
use over social platforms, users are more likely to

use a open-sourced model due to better flexibility
and privacy. Hence, building models and bench-
marks with a appropriate set of LLMs might be
more applicable for practical scenarios. Many pro-
prietary systems struggle at the task of fine-grained
detection, further a large enough dataset to cover
all POS-tag bi-grams of the text boundaries is re-
quired for such fine-grained detectors to work well
(Kadiyala, 2024). Previous works in the similar
direction include (Lee et al., 2022), (Zhang et al.,
2024), (Dugan et al., 2023), (Macko et al., 2024b),
(Liang et al., 2024) which utilize a dataset of lim-
ited size and limited number of generators or those
less likely to be used, which might not be enough
for a detector to work well on unseen domains and
generators’ texts.

3 Dataset

Our dataset consists of around 2.45M samples We
used 12 different LLMs out of which 9 are popu-
lar proprietary LLMs : GPT-ol (OpenAl, 2024),
GPT-40 (etal., 2024), Gemini-1.5-Pro (DeepMind,
2024), Gemini-1.5-Flash, Claude-3.5-Sonnet (An-
thropic, 2023), Claude-3.5-Haiku, Perplexity-
Sonar-Large (Perplexity, 2023), Amazon-Nova-
Pro (Intelligence, 2024), Amazon-Nova-Lite. We
also included 3 open-source LLMs i.e Aya-23
(Aryabumi et al., 2024), Command-R-Plus (Co-
here For Al, 2024), Mistral-large-2411 (Mistral Al,
2024) which produced outputs that are relatively
difficult to distinguish from human written texts
compared to other similar models in other bench-
marks! as well as our own datasets. The samples
range from 30 to 25K words in length with an aver-
age length of around 600 words.

3.1 Dataset Distribution

The language distribution of the dataset and LLMs
used can be seen in Figure 1. Each language-LLM
pair has roughly 10000 samples. Among each set
of the 10000 samples; training, development and
test sets constitute 40%, 10%, 50% respectively.
Additionally, among each set of 10000 samples,
10% were Completely human written, another 10%
completely machine generated, and the other 80%
were human-LLM co-authored i.e few portions of
the text are machine generated and the rest are
human written.

1https: //raid-bench.xyz/
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Figure 1: Dataset distribution per each generator and language in our dataset

3.2 Dataset Creation

GPT-40 was used through a Azure OpenAl end-
point’>. command-r-plus and aya-23 were used
through cohere’s API platform?. Rest of the models
were used through open router’s”™ API. The Rewrit-
ten samples were created by providing the gen-
erator LLM with the original text and a random
prompt among writing an alternate version, a later
update of what happened or a rephrased version
of the same text. The samples which returned the

2https ://azure.microsoft.com/en-us/products/
ai-services/openai-service/

3https://dashboard. cohere.com/
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exact text or a very similar text were once again
regenerated. The partially machine generated texts
were created by splitting the text at random loca-
tions and the generator was asked to finish the text.
The split locations were chosen randomly starting
from the 30th word to end of text. This was done
to provide the LLM with enough context to better
work towards text completion.

3.3 Original Data Source and Filtering

With a goal of training on one domain and testing
on every other, we chose to train on old newspa-
pers (HC-Corpora) as it has sufficient number of
samples i.e 17.2M for 67 languages of the same
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domain. We then removed samples which origi-
nated after release of gpt-3 to avoid mislabelling of
samples in our dataset. Further we sampled texts
which were at least 3 sentences or 50 words long.
For Chinese and Japanese, we sampled texts which
were at least 100 characters long.

4 Our System

We have experimented with various multilingual
transformer models (He et al., 2023), (Conneau,
2019), (Beltagy et al., 2020) with/without ad-
ditional LSTM (Hochreiter, 1997) or CRF lay-
ers (Zheng et al., 2015) through a binary token-
classification approach. We found that using addi-
tional CRF layer produced better results compared
to other setups with the same model. All of the
transformer models tested have produced nearly
identical results over our test set. However, xIm-
longformer gave better results over unseen domains
and generators’ texts, and was used in the end given
the longer default context length of 16384. The
token level predictions by the models were then
mapped into word-level predictions. We use the
model’s predictions to separate text portions based
on perceived authorship.

5 Evaluation and Results

We evaluate the models at 3 levels of granularity
: word level, sentence level and overall. For Chi-
nese and Japanese, we performed evaluation at a
character level instead of word-level. Each domain
and user might have a different preference towards
metrics and evaluation, hence we report 3 metrics
at each level of granularity : accuracy, recall and
precision. For word level mapping of predictions,
in cases where part of a word i.e a few tokens are
classified differently than others, we assigned the
same label to the word as its first token. While
mapping word level predictions to a sentence we
used majority voting, and in cases where consensus
is not obtained, we assigned the same label as the
first word. For evaluation over other benchmarks
requiring binary classification of texts as human or
machine written, we assign a human written label
to the text if at least two thirds of the words get
classified as human written. We also report several
metrics, some of which can be seen in the below
tables, rest can be found in Appendix D.

5.1 Seen Domains & Seen Generators

The results of our models over our dataset’s test set
can be seen in Table 1. The samples from both the
data splits are of the same domain and originate
from the same set of generators.

5.2 Unseen Domains & Unseen Generators

The models were tested twice over (Wang et al.,
2024a): once by training on just 10000 samples of
a single generator (Aya-23) and again later by train-
ing over our complete training data. The bench-
mark consists of 11,123 samples of peer reviews
and student essays (Koike et al., 2024), the gen-
erators used were various versions of llama-2 and
chat-gpt (earlier version of gpt-4). the samples
would hence be from completely unseen domains
and generators to our models. The results of both
models can be seen in Table 2.

5.3 Unseen Domains & Unseen Generators &
Non-Native Speakers

The models were tested by training on just 10k
samples each from Aya-23 for English and Arabic
Separately. The benchmark’s samples for Arabic
were from (Alfaifi, 2013) and (Zaghouani et al.,
2024). The samples for English consist of ETS
and IELTS student essays sampled from non-native
speakers (Chowdhury et al., 2025). Our models
were used for inference directly over these texts
and the strings of predicted tokens were then used
to for binary classification based on how frequently
the perceived authorship changed from human to
LLM and vice-versa i.e the number of changes
and whether the longest string consists of ones or
zeroes. The metrics obtained for each language can
be seen in Table 3.

5.4 Unseen Domains & Partially Seen
Generators & Adversarial Inputs

We have also tested over raid-bench (Dugan et al.,
2025) which consists of texts from 11 generators
and 8 domains. among them roughly 10% would
be from a seen domain (news articles) while the
rest are unseen by our models. The dataset’s texts
were also created using various sampling strategies
(greedy, random, etc.). The texts were also modi-
fied to have adversarial methods including homo-
glyphs, mis-spellings, alternative spellings, article
deletion etc.. Among the 11 generators used, Gpt-
4 is one which is similar to the generator whose
outputs our model has been trained on (Gpt-40).



Language | Partial cases

Unchanged cases

Rewritten cases Overall

Arabic 97.16 90.69 97.55 96.44
Chinese* 93.13 76.28 91.40 86.58
Czech 96.23 79.63 93.84 94.98
Dutch 96.83 77.60 94.13 95.31
English 97.32 90.23 97.68 96.02
French 96.89 74.46 96.52 94.91
German 96.64 76.54 95.92 95.28
Greek 96.25 82.21 92.08 94.37
Hebrew 96.52 80.56 95.34 95.70
Hindi 97.08 92.60 97.24 96.34
Indonesian 97.20 84.92 97.19 96.64
Italian 96.44 80.69 96.84 95.38
Japanese* 92.74 83.80 92.81 86.13
Korean 97.29 84.13 94.74 95.77
Persian 96.60 88.61 96.19 94.36
Polish 96.63 88.52 92.75 95.94
Portuguese 96.46 88.51 90.29 94.89
Romanian 97.59 78.06 95.15 96.10
Russian 96.64 79.98 95.58 94.02
Spanish 96.38 71.60 96.69 94.47
Turkish 95.74 83.00 94.48 93.62
Ukrainian 95.74 74.03 96.57 93.53
Vietnamese 94.41 77.99 96.65 89.67
Average 96.26 81.94 95.11 94.19

Table 1: Word-Level Accuracy (.2f) of the models on the test dataset for each case

* Character level evaluations were done instead for Japanese and Chinese

Metrics »  Accuracy Precision Recall F1
Initial Model 86.51 91.61 87.46  89.49
Final Model 86.00 87.16 9225 89.63

Table 2: Word level Metrics over Mgtd-bench (.2f)

Metrics —+ Accuracy Precision Recall F1
Arabic 95.9 96.1 945 952
English 99.1 98.7 99.3 99.0

Table 3: Overall Metrics over ETS essays (.1f)

However, both of them have different linguistic and
stylistic features, similar to how Gpt-4 is different
from Gpt-3. We have tested our model’s perfor-
mance once again upon being trained on our own
full training data. Additionally, we have also per-
formed an error analysis to find out what domains,
models, attack strategies and decoding strategies ef-
fected the model’s performance and to what extent.
This can be seen in Figure 2, Figure 3, Figure 4

and Figure 5. The texts were classified as machine
generated if at least one third of the tokens within
the model’s context length were classified as ma-
chine generated. The F1 score obtained with the
initial model trained on a single generator was 0.63
and the F1 score grew to 0.79 upon being trained
on our full dataset. Evaluation was done directly
without performing any preprocessing of the texts
and neither were our models trained on texts with
any of thse adversarial methods.

6 Other Observations

The sentences inside which text authorship
switches from human to LLM or vice versa were
found to be relatively shorter that the original text
portions which they replaced. LLMs may be likely
to finish the current sentence earlier than usual to
move on to the next sentence in text completion
scenarios. The mean length of the original portion
and the replaced portions of those sentences for
each language and generator can be seen in Table 4
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Figure 2: F1 scores VS text sampling method used

and Table 5 respectively. This observation was con-
sistent across all languages and generators with a
20-30% reduction and a larger reduction in Hindi.
For Chinese and Japanese too, we did observe a 20-
30% reduction in character count when comparing
the original and replaced portions of the sentence
after the text boundary. Although there is a good
variation in this feature across languages, the mean
and medians observed for each language were sim-
ilar for all the LLMs. This is further elaborated in
Appendix A.

7 Conclusion

Despite not being trained on the domains or gener-
ators, the models built through our approach per-
formed well over several benchmarks as seen in
subsection 5.3 and subsection 5.4 over inputs which
were from non-native speakers and consist of ad-
versarial methods. Further, one case where many
proprietary systems struggle is when the inputs
were too short, which our models were able to over-
come as seen in Figure 6, which demonstrates our
models’ accuracy over our test set compared to
input text’s sentence count. Table 6 displays our
model’s performance over English subset of our
dataset for each generator. A similar trend from
subsection 5.4 was observed with models which
are likely less instruction-tuned / not instruction-
tuned tend to produce texts which are harder to
distinguish than their alternatives.

7.1 Scalability and scope for extension

The original dataset used to train our current mod-
els as mentioned in section 3 consists of samples

Language Length of Length of
Original part generated part
Arabic 17 13
Czech 11 8
Dutch 12 10
English 15 11
French 14 11
German 12 9
Greek 15 12
Hebrew 11 9
Hindi 26 12
Indonesian 11 8
Italian 15 14
Korean 9 7
Persian 17 15
Polish 10 7
Portuguese 15 11
Romanian 14 11
Russian 11 9
Spanish 15 12
Turkish 10 8
Ukrainian 11 8
Vietnamese 18 14
Average 13.8 10.4

Table 4: Median length (words) of original & newly
generated parts of the sentences : Language wise

Generator Length of Length of
original part generated part

Amazon-Nova-Pro 14 10
Amazon-Nova-Lite 12 10
Aya-23-35B 11 10
Claude-3.5-Haiku 18 10
Claude-3.5-Sonnet l 6 1 O
Command-R-Plus 16 10
GPT-4o 12 10
GPTol 11 9
Gemini-1.5-Pro 1 5 1 O
Gemini-1.5-Flash 9 1 O
Mistral-Large-2411 1 1 1 O
Perplexity-Sonar-large 15 11
Average 13.3 10

Table 5: Median length (words) of original & newly
generated parts of the sentences : Generator wise

over 60 languages which would cover 70% of the
world population’s primary language, and all of the
languages are supported by existing multilingual
transformer models making the process of scaling
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Generator Accuracy 7.2 Scope for Improvement

Amazon-Nova-Pro 94.90 As seen in Figure 5, almost none of the adversarial
Amazon-Nova-Lite 95.26 methods affected the models built through our ap-
Aya-23-35B 91.75 proach other than paraphrasing and homo-glyphs.
Claude-3.5-Haiku 96.07 However homo-glyphs can be pre-processed by
Claude-3.5-Sonnet 95.97 mapping them to the actual character they were
Command-R-Plus 93.92 imitating in the text. This would require a large
GPT-40 91.78 collection of homo-glyph to character mapping set
GPT-ol 96.61 to use for pre-processing. Further, paraphrased
Gemini-1.5-Flash 92.34 samples of various number of iterations being in-
Gemini-1.5-pro 93.38 cluded in the training dataset might lead to further
Mistral-Large-2411 93.47 improvements. It is also worth exploring how de-
Perplexity-Sonar-large 94.91 tectable are texts in cases where multiple generators
Average 94.31 contribute a portion each in a human authored text.

Table 6: Word level accuracy (.2f) of our models over
our dataset (English)

* excluding Chinese and Japanese

the work to more languages easier. Despite not
being trained on the generators or domains’ texts,
our models were able to perform well on several
benchmarks. Even reaching a F1 score of 0.79
against adversarial inputs while they were neither
trained over them nor pre-processed. Similarly,
creation and usage of such large datasets of other
domains along with ours might result in robust and
better models. We couldn’t explore the relation be-
tween instruction tuning sample size of LLMs and
detectability of their texts due to the proprietary
nature of most of the generators we used, but a sim-
ilar study using open-data models could uncover
more insights.

Other missing adversarial methods that are likely
to be used in practical scenarios include usage of
proprietary systems that "humanize’ a given text in
an attempt to evade detection.

7.3 Ideal Usage

The models were built primarily for a human-in-
the-loop use cases where the model would try to
flag most of the likely machine-generated portions
while the flagged content can be validated either
through an ensemble of models or a human and
hence a tilt towards higher recall can be observed
in the metrics as seen in Table 12.

Limitations

Just like any other detector or classifier, no detector
can guarantee a 100% accuracy and hence the mod-
els are not meant to be used directly for decision
making but are meant to be used in a human-in-
the-loop scenarios. Furthermore, the experiments
carried out did not include cases of multiple LLMs
co-authoring a portion each of the same text.
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A Pre- and Post- Boundary Comparisons

The mean and median word counts of the text por-
tions in a sentence after the text authorship shifts
from human to LLM can be seen in Table 10 and
Table 11 in comparison to the texts they replace.

B Dataset Creation

The max_new_tokens value specified to the genera-
tor during creation of partial cases was randomized
between 80% to 200% of the length of the portion
that is being replaced. The prompts used for cre-
ation of the partial samples and rewritten samples
can be seen in Table 7 and Table 8 respectively.

continue this text in Language directly :

complete this text in Language, respond directly :

Table 7: Prompts used in dataset creation : Partial cases

C Reproducibility

We used multilingual longformer > with an addi-
tional CRF layer. The hyper-parameters used for
training the models can be seen in Table 9. We built

Shttps://huggingface.co/hyperonym/
x1lm-roberta-longformer-base-16384
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Rewrite this in Language a different way :
Generate an alternative version of this in Language :

Generate a later update to this in Language :

Generate a previous version of this in Language ;

Table 8: Prompts used in dataset creation : Rewritten
cases

Hyperparameter Value

Seed (Training) 1024

Seed (Shuffling) 1024
Number of Epochs 5
Per Device Batch Size (Train) 12
Per Device Batch Size (Eval) 30

Context Length 16384

Learning Rate 5e-5
Weight Decay 0

Dropout (CRF Layer) 0.075

Table 9: Training Hyper-parameters used

a separate model for each language, the training
was done over A100 SXM over 10h each.

D Other Metrics

The metrics over each type of text for each lan-
guage and LLM separately can be seen in Table 13,
Table 14, Table 15, Table 16, Table 17, Table 18,
Table 19, Table 20, Table 21, Table 22, Table 23,
Table 24.

E License

The xIm-longformer model we used was available
with an mit license, we are releasing the models and
datasets through CC BY-NC 4.0° which permits
usage for research purposes.

6https://creativecommons.org/licenses/by—nc/4.
@/deed.en
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Language | Mean length of Mean length of Median length of Median length of
old text portion new text portion Old text portion New text portion

Arabic 18.73 16.25 17 13
Czech 12.02 9.52 11 8
Dutch 13.73 13.39 12 10
English 16.04 14.59 15 11
French 15.50 13.16 14 11
German 13.03 10.89 12 9
Greek 16.74 14.87 15 12
Hebrew 12.64 10.65 11 9
Hindi 40.56 15.42 26 12
Indonesian 12.44 9.56 11 8
Italian 17.54 16.39 15 14
Korean 9.85 8.08 9 7
Persian 18.83 19.88 17 15
Polish 11.42 8.84 10 7
Portuguese 16.52 13.29 15 11
Romanian 16.30 13.50 14 11
Russian 12.27 10.63 11 9
Spanish 17.18 14.81 15 12
Turkish 11.81 9.74 10 8
Ukrainian 12.04 10.39 11 8
Vietnamese 20.06 18.01 18 14
Average 16.19 12.95 13.76 10.43

Table 10: Comparison of replaced and generated text portion lengths (word count) : Language wise

Generator Mean length of Mean length of Median length of Median length of
old text portion new text portion Old text portion New text portion

Amazon-Nova-Pro 16.02 13.27 12 10
Amazon-Nova-Lite 18.12 12.87 14 10
Aya-23-35B 13.70 12.87 11 10
Claude-3.5-Haiku 20.19 13.13 18 10
Claude-3.5-Sonnet 17.32 12.98 16 10
Command-R-Plus 16.92 13.28 16 10
GPT-40 13.49 12.84 12 10
GPT-o0l 14.83 12.36 11 9
Gemini-1.5-Flash 19.68 13.44 15 10
Gemini-1.5-pro 12.50 13.48 9 10
Mistral-Large-2411 12.85 12.85 11 10
Perplexity-Sonar-large 17.13 13.45 15 11
Average 16.06 13.07 13.33 10

Table 11: Comparison of replaced and generated text portion lengths (word count) : Generator wise
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Language | Accuracy Precision Recall F1-score

Arabic 96.44 92.50 97.17 94.78
Chinese* 86.58 87.03 86.46 86.75
Czech 94.98 94.57 97.96 96.23
Dutch 95.31 93.34 97.97 95.60
English 96.02 92.34 98.44 95.29
French 94.91 93.64 98.42 95.97
German 95.28 94.87 98.38 96.59
Greek 94.37 93.69 96.51 95.08
Hebrew 95.70 95.32 97.94 96.61
Hindi 96.34 89.72 96.66 93.06
Indonesian 96.64 95.61 98.29 96.93
Italian 95.38 95.04 97.58 96.29
Japanese* 86.13 85.64 94.17 89.70
Korean 95.77 95.29 97.69 96.48
Persian 94.36 84.45 96.88 90.24
Polish 95.94 96.76 97.19 96.97
Portuguese 94.89 91.92 96.07 93.95
Romanian 96.10 95.81 98.53 97.15
Russian 94.02 86.67 97.29 91.67
Spanish 94.47 90.02 98.14 93.90
Turkish 93.62 88.56 97.17 92.66
Ukrainian 93.53 86.58 97.93 91.90
Vietnamese 89.67 77.23 97.44 86.17
Average 94.19 91.16 96.97 93.91

Table 12: Word-level Metrics of our models over each language : our test set

* Character level evaluations were done instead for Japanese and Chinese

Language | Partial cases Unchanged cases Rewritten cases  Overall |

Arabic 97.56 88.10 98.09 97.17
Chinese* 93.70 75.35 91.60 87.00
Czech 96.63 80.10 94.36 95.20
Dutch 95.21 78.00 92.10 95.23
English 97.77 89.61 98.87 96.60
French 97.34 72.85 97.14 95.28
German 96.92 75.73 95.29 95.58
Greek 95.65 81.80 82.85 92.96
Hebrew 97.35 70.89 96.26 95.73
Hindi 96.65 92.82 96.67 96.59
Indonesian 97.27 85.73 95.76 96.60
Italian 96.88 80.88 94.70 95.65
Japanese* 97.48 88.57 93.94 96.85
Korean 97.68 84.15 93.73 95.39
Persian 96.91 89.45 93.22 94.05
Polish 96.96 87.52 92.32 95.98
Portuguese 95.28 94.15 96.32 95.28
Romanian 96.53 76.55 96.64 96.23
Russian 96.46 79.10 94.45 94.03
Spanish 96.92 71.75 96.97 94.97
Turkish 95.55 82.68 98.17 92.65
Ukrainian 95.39 73.81 95.48 93.90
Vietnamese 94.46 76.17 97.14 88.74

Table 13: Case wise accuracies over all languages for each generator : amazon-nova-pro
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Language | Partial cases Unchanged cases Rewritten cases Overall

Arabic 96.56 90.93 95.62 95.88
Chinese* 93.20 76.99 93.57 87.77
Czech 97.81 79.40 94.58 96.43
Dutch 97.07 78.10 92.85 95.19
English 98.11 89.25 98.73 96.80
French 97.59 76.28 97.79 96.07
German 98.01 76.34 95.52 96.76
Greek 96.00 79.78 88.01 93.66
Hebrew 98.05 83.84 94.35 96.78
Hindi 96.49 91.59 95.30 95.38
Indonesian 97.99 85.03 97.18 97.06
Italian 96.95 80.81 95.45 95.54
Japanese* 98.07 76.50 93.02 92.78
Korean 98.20 82.49 95.42 95.68
Persian 97.40 88.48 94.92 95.31
Polish 97.55 89.32 93.83 96.63
Portuguese 92.67 87.92 95.09 94.35
Romanian 97.97 76.44 93.76 96.20
Russian 97.22 81.47 96.30 95.10
Spanish 97.49 71.55 97.15 94.98
Turkish 96.63 83.99 90.84 93.87
Ukrainian 96.74 74.80 99.91 94.24
Vietnamese 95.28 78.87 97.03 89.76

Table 14: Case wise accuracies over all languages for each generator : amazon-nova-lite

Language | Partial cases Unchanged cases Rewritten cases  Overall

Arabic 95.14 92.22 97.76 96.05
Chinese* 85.65 75.66 89.10 82.40
Czech 89.75 79.02 87.94 89.24
Dutch 92.45 79.97 92.99 93.12
English 93.01 90.49 96.96 93.52
French 93.28 73.12 95.14 92.72
German 89.89 77.28 92.53 90.06
Greek 92.04 80.69 91.83 91.75
Hebrew 96.71 82.75 91.54 95.32
Hindi 94.18 93.62 92.96 94.88
Indonesian 90.91 83.55 95.28 92.85
Italian 89.21 75.43 88.87 88.87
Japanese* 75.56 78.10 91.21 75.64
Korean 95.04 85.46 92.92 94.14
Persian 93.81 87.28 95.29 92.98
Polish 90.40 86.41 89.15 90.81
Portuguese 92.69 91.17 90.96 92.69
Romanian 93.65 78.15 95.16 93.17
Russian 93.00 79.77 92.12 92.20
Spanish 91.30 72.87 93.17 91.88
Turkish 90.19 82.59 98.19 90.77
Ukrainian 87.77 73.69 97.57 90.69
Vietnamese 87.70 76.08 96.83 88.54

Table 15: Case wise accuracies over all languages for each generator : Aya-23
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Language | Partial cases Unchanged cases Rewritten cases Overall

Arabic 98.82 91.63 95.75 97.18
Chinese* 86.51 75.93 86.18 87.75
Czech 99.80 80.78 91.56 97.55
Dutch 99.49 77.57 86.16 96.41
English 99.37 90.98 98.32 97.76
French 99.63 74.86 90.15 96.30
German 99.79 77.23 94.62 97.37
Greek 99.90 87.33 82.84 97.46
Hebrew 98.94 83.48 82.61 96.27
Hindi 98.72 92.35 95.48 97.23
Indonesian 99.55 88.19 94.11 98.05
Italian 99.97 81.43 93.49 97.48
Japanese* 98.33 87.97 91.08 97.02
Korean 99.40 84.22 94.45 96.93
Persian 97.99 89.54 90.00 94.54
Polish 99.60 88.75 85.69 97.62
Portuguese 99.17 90.82 82.19 96.52
Romanian 99.93 78.70 92.11 97.11
Russian 99.26 80.44 92.17 95.36
Spanish 99.31 71.65 93.24 95.91
Turkish 98.60 81.65 92.86 94.62
Ukrainian 99.27 73.52 91.46 93.99
Vietnamese 98.42 77.05 92.41 91.85

Table 16: Case wise accuracies over all languages for each generator : Claude-3.5-Haiku

Language | Partial cases Unchanged cases Rewritten cases  Overall |

Arabic 98.63 91.82 100.00 96.58
Chinese* 92.64 78.36 95.14 88.43
Czech 99.30 77.22 99.88 97.62
Dutch 99.30 77.53 99.52 97.30
English 99.35 90.02 99.76 98.03
French 99.53 73.66 99.97 97.06
German 99.52 76.06 99.69 97.33
Greek 99.00 80.60 99.62 95.83
Hebrew 97.68 82.69 99.88 96.46
Hindi 99.12 92.51 99.88 97.63
Indonesian 99.66 84.55 100.00 98.43
Italian 99.69 81.13 99.99 98.13
Japanese* 98.59 87.36 99.64 98.04
Korean 98.77 83.49 99.87 97.15
Persian 98.35 87.92 99.97 96.01
Polish 99.00 90.30 99.26 98.20
Portuguese 98.74 89.65 83.74 96.38
Romanian 99.18 80.36 99.71 97.46
Russian 99.33 80.55 99.93 94.55
Spanish 99.06 71.68 99.92 96.65
Turkish 98.45 83.13 99.96 95.32
Ukrainian 99.06 74.14 99.87 95.62
Vietnamese 98.10 77.40 99.92 88.87

Table 17: Case wise accuracies over all languages for each generator : Claude-3.5-Sonnet

Language | Partial cases Unchanged cases Rewritten cases Overall |

Arabic 87.12 85.34 86 82
Chinese* 88.90 86.45 89 84
English 92.45 90.12 91 88
French 89.78 87.21 90 85
German 90.23 88.05 89 86
Italian §89.12 87.00 89 86
Japanese* 87.77 85.88 88 83
Korean 88.56 86.34 87 85
Portuguese 90.12 88.34 89 87
Spanish 90.45 88.12 89 87

Table 18: Case wise accuracies over all languages for each generator : Command-R-Plus
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Language | Partial cases Unchanged cases Rewritten cases Overall

Arabic 95.74 91.26 96.31 95.01
Chinese* 92.63 77.87 92.51 86.36
Czech 93.30 80.96 91.67 91.87
Dutch 94.14 74.85 90.84 92.58
English 94.94 90.02 92.84 94.01
French 92.87 75.18 93.90 90.89
German 93.67 75.82 93.99 91.97
Greek 94.22 81.18 95.67 92.11
Hebrew 92.60 82.51 95.10 91.85
Hindi 96.56 92.44 96.95 96.16
Indonesian 95.08 84.88 95.88 94.70
Italian 93.35 79.95 92.72 92.72
Japanese* 93.98 88.44 94.19 93.84
Korean 94.44 84.84 93.09 93.61
Persian 94.83 88.32 94.68 93.34
Polish 94.53 89.51 89.36 93.73
Portuguese 95.50 88.58 85.07 93.93
Romanian 94.59 77.44 92.73 93.26
Russian 92.90 80.17 97.34 92.61
Spanish 93.54 69.64 91.87 92.13
Turkish 92.83 83.80 88.09 91.37
Ukrainian 91.69 74.93 96.81 90.33
Vietnamese 92.10 77.39 93.32 88.25

Table 19: Case wise accuracies over all languages for each generator : GPT-40

Language | Partial cases Unchanged cases Rewritten cases  Overall

Arabic 99.10 90.46 97.08 97.92
Chinese* 95.08 76.01 86.18 87.30
Czech 98.84 80.76 86.30 97.05
Dutch 98.80 7747 89.03 97.12
English 99.07 88.92 94.25 96.91
French 98.77 76.17 91.74 96.53
German 98.92 76.66 89.69 97.12
Greek 98.87 81.60 85.68 97.05
Hebrew 98.97 83.94 97.33 98.10
Hindi 99.10 92.12 97.42 97.33
Indonesian 98.96 84.98 99.00 98.45
Italian 97.04 80.93 99.10 96.16
Japanese* 90.78 73.63 85.24 78.08
Korean 99.16 83.18 83.13 97.09
Persian 98.72 87.01 94.43 95.50
Polish 99.04 90.29 86.92 97.86
Portuguese 98.65 88.47 83.50 95.18
Romanian 98.77 76.50 98.37 97.57
Russian 98.98 78.13 87.02 95.23
Spanish 98.80 71.70 92.79 96.12
Turkish 98.94 82.37 87.33 96.55
Ukrainian 99.05 75.07 93.34 96.45
Vietnamese 98.29 78.87 91.75 92.24

Table 20: Case wise accuracies over all languages for each generator : GPT-01
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Language | Partial cases Unchanged cases Rewritten cases Overall

Arabic 93.90 88.40 98.59 94.86
Chinese* 89.29 75.98 94.92 85.09
Czech 91.43 78.82 97.15 92.04
Dutch 95.08 78.10 91.91 94.86
English 96.57 91.03 97.34 94.64
French 95.92 76.69 98.72 94.04
German 96.22 78.67 98.80 95.15
Greek 92.04 84.32 98.56 93.52
Hebrew 91.90 69.05 98.50 92.51
Hindi 95.55 93.52 98.72 95.66
Indonesian 96.84 83.45 98.55 95.92
Italian 94.70 76.47 97.03 94.89
Japanese* 84.59 87.53 96.26 87.86
Korean 94.54 85.07 99.41 94.66
Persian 95.68 89.47 96.54 94.66
Polish 93.51 88.07 97.34 94.60
Portuguese 95.22 88.75 94.90 94.28
Romanian 97.31 75.73 97.53 96.30
Russian 94.96 78.53 99.40 92.82
Spanish 95.30 74.56 99.47 94.09
Turkish 94.82 82.44 96.67 92.51
Ukrainian 89.37 73.96 98.39 91.68
Vietnamese 91.06 80.25 99.45 87.71

Table 21: Case wise accuracies over all languages for each generator : Gemini-1.5-Pro

Language | Partial cases Unchanged cases Rewritten cases  Overall

Arabic 98.55 89.55 98.00 95.88
Chinese* 89.94 75.81 94.03 87.75
Czech 98.45 80.42 99.78 96.67
Dutch 98.22 78.00 99.39 95.86
English 97.92 90.02 99.39 95.26
French 98.10 73.66 99.94 95.59
German 98.71 74.75 99.58 96.74
Greek 98.96 85.16 98.90 98.09
Hebrew 97.64 82.90 99.71 96.82
Hindi 98.17 93.06 99.62 97.32
Indonesian 99.11 85.64 99.72 97.65
Italian 98.25 83.62 99.89 98.28
Japanese* 95.71 88.47 97.35 95.88
Korean 98.36 84.40 99.36 97.10
Persian 96.67 88.45 95.52 93.87
Polish 99.01 87.67 99.27 97.84
Portuguese 96.72 88.12 90.12 95.52
Romanian 99.84 77.30 99.75 98.49
Russian 97.62 81.30 99.07 94.29
Spanish 97.50 68.98 99.91 94.37
Turkish 97.69 84.99 99.36 95.47
Ukrainian 97.46 75.89 99.67 93.70
Vietnamese 96.29 79.35 99.81 91.12

Table 22: Case wise accuracies over all languages for each generator : Gemini-1.5-Flash
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Language | Partial cases Unchanged cases Rewritten cases  Overall |

Arabic 96.53 92.00 99.40 95.68
Chinese* 95.05 76.30 97.63 88.07
Czech 96.99 78.78 94.73 94.98
Dutch 94.46 78.10 91.01 94.46
English 96.74 90.32 99.80 95.91
French 97.06 74.65 97.22 94.35
German 96.69 76.14 98.43 94.77
Greek 95.78 79.75 96.39 92.69
Hebrew 95.40 83.36 97.30 93.86
Hindi 96.25 92.00 99.35 95.29
Indonesian 96.67 83.15 96.32 95.55
Italian 97.34 82.59 99.30 96.01
Japanese* 97.05 87.46 94.90 96.12
Korean 96.65 82.64 97.39 95.02
Persian 94.75 89.34 98.55 92.34
Polish 96.69 87.13 93.69 95.36
Portuguese 96.37 88.20 93.68 94.69
Romanian 97.22 77.49 97.42 95.45
Russian 96.64 80.58 97.90 93.09
Spanish 95.54 69.92 98.82 92.76
Turkish 91.99 80.61 98.47 91.99
Ukrainian 96.21 74.58 97.16 93.20
Vietnamese 92.42 78.44 98.60 88.25

Table 23: Case wise accuracies over all languages for each generator : Mistral-Large-2411

Language | Partial cases Unchanged cases Rewritten cases  Overall |

English 97.10 91.08 99.71 96.64
French 95.53 72.58 99.49 93.94
German 94.98 77.21 99.50 94.29
Portuguese 92.66 89.06 98.17 94.03
Spanish 94.79 72.31 99.80 93.99

Table 24: Case wise accuracies over all languages for each generator : Perplexity-Sonar-Large
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