
ExploraCoder: Advancing Code Generation for Multiple Unseen APIs via
Planning and Chained Exploration

Anonymous ACL submission

Abstract

Large language models face intrinsic limita-001
tions in coding with APIs that are unseen in002
their training corpora. As libraries continu-003
ously evolve, it becomes impractical to exhaus-004
tively retrain LLMs with new API knowledge.005
This limitation hampers LLMs from solving006
programming problems which require newly007
introduced or privately maintained libraries. In-008
spired by exploratory programming paradigm009
in human behavior, we propose ExploraCoder,010
a training-free framework that empowers LLMs011
to invoke multiple unseen APIs in code solu-012
tion by (1) planning a complex problem into013
several API invocation subtasks, and (2) experi-014
menting with correct API usage at intermediate015
steps through a novel chain-of-API-exploration.016
We conduct evaluation on program synthesiz-017
ing tasks involving complex API interactions.018
Experimental results demonstrate that Explo-019
raCoder significantly improves performance for020
models lacking prior API knowledge, achieving021
absolute increases of up to 11.99% over RAG-022
based approaches and 17.28% over pretraining023
methods in pass@10.024

1 Introduction025

Library-oriented code generation refers to the auto-026

matic generation of code that utilizes specified li-027

brary’s APIs to solve programming problems (Zan028

et al., 2022; Liu et al., 2023). This task becomes029

particularly complex when the solution requires030

the integration of multiple APIs from the library,031

demanding not only knowledge of individual API032

functionalities but also an understanding of their in-033

teractions and dependencies (Alrubaye et al., 2019;034

Zan et al., 2024). Modern large language model035

(LLM), such as ChatGPT (OpenAI, 2022) and036

CodeLlaMA (Rozière et al., 2024), has demon-037

strated remarkable capability in generating API038

invocations using prior knowledge from pretrain-039

ing stage (Zan et al., 2023). However, a significant040

challenge arises when the target API knowledge is041

sparse, outdated, or entirely unseen in the training 042

data. This limitation hampers LLMs from problem 043

solving that requires newly introduced or privately 044

maintained libraries. 045

Prior work proposed to use continual pretraining 046

(Gururangan et al., 2020) to address this knowl- 047

edge gap (Zan et al., 2022). But this is often im- 048

practical due to the scarcity of training data for 049

new libraries and the substantial costs of retraining 050

LLMs. Another line of work adopts a standard 051

retrieval-augmented generation (RAG) framework 052

for unseen API invocations (Zhou et al., 2023; Zan 053

et al., 2023; Liu et al., 2023), where LLM acquires 054

API knowledge from retrieving the library docu- 055

mentation. While effective for simple API invo- 056

cation tasks, these methods struggle with complex 057

scenarios requiring multiple API invocations (Zan 058

et al., 2023, 2024; Ma et al., 2024). 059

More recent studies propose to address com- 060

plex API invocation tasks by improving document- 061

retrieval (Ma et al., 2024) and preactively planning 062

coding steps (Li et al., 2024). However, they over- 063

look the challenge posed by potential ambiguities 064

in API documentation. Some work adopt iterative 065

or agentic workflow (Olausson et al., 2024; Yao 066

et al., 2022; Zhu et al., 2024) to reactively plan for 067

retrieval and debugging, however, the end-to-end 068

code construction could still expose the limitations 069

of LLMs in coordinating multi-API interactions. 070

When coding with an unfamiliar library, experi- 071

enced developers would adpot an Exploratory Pro- 072

gramming paradigm (Sheil, 1986; Beth Kery and 073

Myers, 2017). This involves first understanding 074

the library’s capabilities through documentation 075

to devise a broad plan, and then actively experi- 076

menting with individual API calls to gain practical 077

experience, ultimately leading to a correct solu- 078

tion. Inspired by this behavior, we propose Ex- 079

ploraCoder, a training-free framework aiming to 080

facilitate LLM to invoke multiple unseen APIs. As 081

shown in Figure 1, given a complex programming 082

1

problem, ExploraCoder begins by planning a series083

of simpler API invocation subtasks based on library084

documentation. For each subtask, it recommends085

a set of candidate APIs. Subsequently, a Chain of086

API Exploration (CoAE) is performed, iteratively087

experimenting with various subtask-wise API in-088

vocations while passing valuable usage insights to089

the plannings of subsequent subtasks. This process090

forms an API exploration trace, which facilitates091

the LLM in deriving the final code solution.092

Evaluating unseen-library-oriented code gener-093

ation requires an unexposed library. Prior works094

(Zan et al., 2023; Ma et al., 2024) have created sim-095

ple benchmarks using the Torchdata library, as it096

strikes a balance between minimum client code use097

for researcher’s problem designing and limited ex-098

posure to modern LLMs. However, benchmarking099

multiple unseen-API tasks remains underexplored.100

To address this gap and better reflect real-world101

complex programming challenges, we constructed102

a new Torchdata-based benchmark, Torchdata-103

Manual, featuring complex multi-API problems.104

Experimental results on our Torchdata-Manual and105

an existing Torchdata-Github benchmarks demon-106

strate that ExploraCoder significantly improves per-107

formance for models lacking prior API knowledge,108

achieving absolute gains of up to 11.99% over vari-109

ous RAG-based approaches and 17.28% over pre-110

training methods in pass@10. Moreover, we find111

the integration of a self-debug mechanism in inter-112

mediate steps further boosts ExploraCoder’s per-113

formance on more challenging tasks.114

This paper makes the following contributions:115

• We propose ExploraCoder, a unified framework116

that incorporates unseen API knowledge from117

documentation into a novel step-wise code gen-118

eration method, Chain-of-API-Exploration. By119

leveraging this framework, LLMs can plan based120

on library documentation and actively experi-121

ment with APIs in intermediate steps, mirror-122

ing the Exploratory Programming paradigm em-123

ployed by human developers.124

• We construct Torchdata-Manual, a new library-125

oriented benchmark that, to the best of our126

knowledge, features the highest number of API127

invocations per task among publicly reported ex-128

ecutable library-oriented benchmarks. The code129

and data are available at https://anonymous.130

4open.science/r/ExploraCoder.131

• Experimental results and case studies on ours132

and an existing benchmark demonstrate Explo- 133

raCoder’s superior performance on multi-API 134

tasks compared to competitive baselines. 135

2 Related Work 136

Complex Code Generation with LLM. Code 137

generation, the process of producing code from 138

NL specifications, has seen remarkable advance- 139

ments with LLMs (OpenAI., 2024). Recent re- 140

search has increasingly focused on LLMs tack- 141

ling complex coding tasks, such as competition (Li 142

et al., 2022), library-oriented (Bogomolov et al., 143

2024), and repo-level (Jimenez et al., 2024) prob- 144

lems. One prominent paradigm leverages chain-of- 145

thought (Wei et al., 2022) to plan for intermediate 146

steps before complex code generation, whereas its 147

effectiveness diminishes when high quality plans 148

cannot be derived (Jiang et al., 2024). Another di- 149

rection proposes to debug after the generation of 150

code (Olausson et al., 2024), but they typically re- 151

quire accessibility of test cases. ExploraCoder dis- 152

tinguishes itself by applying an intermediate code 153

construction that leverages executability signals to 154

rectify coding plans at steps in real time. 155

Library-Oriented Code Generation. Real- 156

world programming problems often involve the 157

use of external libraries, posing a challenge for 158

LLMs to invoke APIs unseen from training data. 159

Continue pretrain on the new API data, though 160

intuitive, is often impractical due to its complexity 161

and cost. Most prior studies adopt a naive RAG 162

framework as an alternative to incorporate APIs 163

knowledge from library documentation. But they 164

struggles with more complex problems requiring 165

multiple API invocations (Zan et al., 2024). Recent 166

studies have attempted to improve the RAG 167

frameworks. For examples, CAPIR (Ma et al., 168

2024) proposed a decomposed retrieval method 169

to identify accurate API docs. EpiGen (Li et al., 170

2024) makes proactive NL plans for one-pass 171

code generation. These works mainly focus on 172

preprocessing relevant API context, whereas 173

overlook the reasoning limitation of LLMs in 174

multi-API interactions, and the challenge posed by 175

the potential ambiguity in API documentation. 176

Unseen Library Benchmarks. Constructing un- 177

seen library benchmarks is particularly challenging, 178

as libraries new enough to have limited exposure 179

to modern LLMs often lack the rich client code 180

2

https://anonymous.4open.science/r/ExploraCoder
https://anonymous.4open.science/r/ExploraCoder
https://anonymous.4open.science/r/ExploraCoder

 Batcher(datapipe, batch_size

Given path(s)..., yields..._
...

2Apply a rolling

Read the content of
each file

2. Code
execution

(optional) Extra round of self-debug

Executor

4. Forming an API exploration trace

Recommended APIs

Exploring on
 subtask

1. Code
generation

Create an EMG dataset from CSV
files in a given directory with a

rolling window approach ...

Complex Requirements

Exploring on
subtask

Exploring on
 subtask

Exploring on
subtask

......

......

Chain of API Exploration
Pruned

Experience

......

dp = FileLister(root,masks)
for file in dp:
 print(file)

[SUCCESSFULLY EXECUTED]
"./file_1.csv"...

API invocation
planner

List all the csv files
in a directory

dp = FileLister(root,masks)
opener = IoPathFileOpener(dp)
for e in io_opener:
 print("path:", e[0]) ...

[SUCCESSFULLY EXECUTED]...

Retriever &
Reranker

API RecommendationTask Planning

Final Code Solution
def emg_dataset(dir, ...):
 dp = FileLister(root=dir)
 opener = IoPathFileOpener
 ...
 emg_data = Concater(...)
 return emg_data

Solution Generator

FileOpener(datapipe, mode...

2. AIStoreLister(source_
...

FileLister(root, mask, ...)
FSSpecFileLister(source...)

AIStoreLister(source...)

CoAE Generator Candidates

+

Observations

3. Experience
 selection

i-1

Subtask

...

Figure 1: An Overview of ExploraCoder Framework. ExploraCoder processes the given problem through Task
Planning, API Recommendation, and Chain of API Exploration modules. The gray block in the bottom-left
corner illustrates the detailed exploration process in the Chain of API Exploration. Finally, the processed results are
used by a solution generator to generate final code solutions for the programming problem.

needed for developing complex problems. Pre-181

vious work has generally turned to a Torchdata182

library to manually build small-scale API invoca-183

tion benchmarks. Zan et al. (2023) constructed184

TorchdataEval mostly involving 1-2 simple API185

invocations. Ma et al. (2024) introduced 50 multi-186

API programming tasks adapted from Torchdata187

client code from Github, each involving 3–8 API188

invocations. However, some of its tasks remain189

relatively simple and real-world development often190

involves more API interactions (Kula et al., 2018;191

Bauer et al., 2012). This gap highlights the need192

for a more complex unseen library benchmark.193

3 ExploraCoder Framework194

3.1 Task Definition195

This work addresses the task of library-oriented196

code generation (Zan et al., 2022). Formally, given197

a problem ψ that specifies the user requirement198

and a library API documentation A, a model θ199

generates code solutions p ∼ Pθ(.|ψ,A).200

Most code libraries provide basic information201

about their APIs, such as API signatures, descrip-202

tions, and high-level library overviews with mini-203

mum example usage code. In this paper, we assume204

the accessibility of this information from API doc-205

uments. As shown in Figure 1, ExploraCoder will206

automatically identify relevant subset of APIs Â207

and accumulate useful experience of intermediate208

API invocations Ê , both of which are then used as209

augmenting signals to generate the final solution: 210

p := ExploraCoder(ψ, Â, Ê) (1) 211

3.2 Planning for API invocation 212

Real-world programming problems often involve 213

composite operations (Yu et al., 2024), necessitat- 214

ing a plan for where and how APIs can contribute to 215

problem-solving. Specifically, we need to outline 216

several API-related subtasks, upon which Explo- 217

raCoder will sequentially explore the correct API 218

calls. Ideally, we aim to set the planning granu- 219

larity to simple subtasks where each requires only 220

1–2 unseen API invocations. However, the func- 221

tional granularity of APIs is domain-specific, often 222

falling out of distribution (OOD) of LLMs when 223

the library is absent from their training data, posing 224

a challenge in aligning task planning with typical 225

API usage patterns. 226

To address this, we leverage the in-context learn- 227

ing capabilities of LLMs (An et al., 2023) by pro- 228

viding a condensed library overview and a small 229

number of planner examples. This enables the 230

LLMs to learn high-level usage patterns of the li- 231

brary without needing to know all its APIs. In 232

this work, we prompt GPT-3.5-turbo-0125 to auto- 233

matically summarize a piece of text s from the 234

library overview and extract few-shot planners 235

D = {⟨ψj , {tu}
wj

u=1⟩}
nD
j=1 from the provided code 236

examples, where ψj is the requirement of the j-th 237

code example, and tu is the explanation of u-th 238

3

API invocation. Note that we do not leak any de-239

tailed API usage or benchmark-related knowledge240

to models (detailed in Appendix A.9). Now, we can241

plan n API-related subtasks for a given problem ψ:242

{ti}ni=1 ∼ Pθ(.|ψ,D, s) (2)243

3.3 API Recommendation244

The API recommendation module serves to245

recommend relevant API documents Ai =246

{a(1), . . . , a(k)} for each API invocation subtask247

ti . We process the documents into tabular retrieval248

pool, where each row consists of the API import249

path, signature, and description. We first use a250

dense retriever to retrieve an initial set of APIs by251

computing the similarity between ti and each aj .252

Ai = top-k {sim(aj , ti) | aj ∈ A} (3)253

Then, we prompt LLM to re-rank and drop irrele-254

vant APIs for each subtask, providing a refined sub-255

set {Ãi}ni=1 for Chain of API Exploration, where256

then the actually used APIs ÃCoAE will be recorded.257

Meanwhile, we also conduct an inter-task rerank-258

ing (Ma et al., 2024) to recommend kG APIs ÃG259

from a global perspective. In the final solution260

stage, we provide for the generator:261

Â = ÃCoAE ∪ ÃG (4)262

3.4 Chain of API Exploration263

Previous work shows LLMs struggle to directly264

invoke multiple unseen APIs in a single run (Zan265

et al., 2024). The challenge arises from LLMs’ ten-266

dency to hallucinate unfamiliar APIs usage. Hallu-267

cinations in early decoding step could compromise268

subsequent API calls due to the autoregressive na-269

ture of LLM, further compounding the error.270

In contrast, when lacking knowledge of relevant271

APIs, developers could adopt an exploratory pro-272

gramming paradigm, actively experimenting with273

partial code in a sandbox environment to accumu-274

late correct API usage experience. Inspired by275

this behavior, we designed a Chain of API Explo-276

ration (CoAE) to sequentially explore API usage277

and solve the n subtasks {⟨Ãi, ti⟩}ni=1. We now278

formalize the main steps in CoAE.279

Experimental code generation. We prompt the280

LLM to generate m diversified experimental code281

snippets for intermediate subtask ti:282

{pi,j}mpj=1
∼ Pθ(.|ti, s, Âi, E1:i−1) (5)283

where s is the high-level library information from 284

Section 3.2, and E1:i−1 is the accumulated invo- 285

cation experience from prior subtasks that could 286

further enhance the preactive planning of ti. We de- 287

fine API invocation experience as the combination 288

of an intermediate code snippet and its execution 289

output, which is elaborated in the next paragraph. 290

Each experimental code will attempt to solve the 291

subtask by making different API invocations, and 292

print out valuable usage knowledge. Such feedback 293

will be observed by LLM in the next step. 294

Code execution and observation. At each sub- 295

task, LLM is encouraged to print out insightful in- 296

formation to expand API usage knowledge, such as 297

format of the current API returned object that could 298

be used as input in other subtasks. We capture the 299

output from directly executing the experimental 300

code in a sandbox environment. Specifically, given 301

ti and pi,j , the observation oi,j by the LLM con- 302

sists of the codes’ executability δ , error message 303

ε, and program output γ. We now can assemble m 304

candidate API invocation experience for ti as: 305

Ei = {⟨ti, pi,j , oi,j⟩}mj=1 (6) 306

Enhance experience exploitation by self- 307

debugging. In our preliminary experiments, we 308

found experimental codes often fail to execute 309

due to simple mistakes (e.g., missing import 310

statements). Additionally, some challenging 311

subtasks require complex API interactions with 312

prior subtasks, which LLMs struggle to solve. 313

This hinders the acquisition of additional API 314

usage insights, and the intermediate failures 315

could potentially degenerate the performance of 316

exploration chain. To address this, we prompt 317

the LLM to debug the codes when all candidate 318

codes for a given subtask fail to execute, thereby 319

enhancing its usage experience. We report the 320

effectiveness of ExploraCoder, both with and 321

without self-debugging mechanism in Section 5. 322

Experience Selection Strategy. After obtaining 323

m candidate exploration experience {Ei,j}mj=1 on ti 324

. The goal in this step is to select the most valuable 325

one Êi and prune the others for ti . In this work, we 326

adopt a simple but effective selection strategy: (1) 327

randomly select a candidate that has successfully 328

executed, prioritizing the ones with valid outputs; 329

(2) if all candidates fail to execute, we randomly 330

select a failed one. Then, the selected experience 331

will be passed on to the next subtask and accumu- 332

lates progressively. Ultimately, we obtain an API 333

4

exploration trace of the following form to aid in334

solution generation:335

Ê = {Êi}ni=1 (7)336

4 Benchmark Construction337

Unseen library benchmarks are essential for evalu-338

ating retrieval-based methods in handling unseen339

APIs. Existing benchmarks typically involve sim-340

ple API invocations or apply lexical-based eval-341

uation metrics. To provide rigorous evaluation342

of complex unseen API invocations, we aim to343

construct execution-based multi-API benchmark344

that remain untrained on representative LLMs.345

Following prior work (Zan et al., 2024), we use346

Torchdata-based evaluation, which remains unex-347

posed to powerful LLMs such as GPT-3.5 and GPT-348

4-0613, while allowing knowledge acquisition by349

newer models. This provides a valuable reference350

point for assessing approaches across LLMs with351

varying levels of API prior knowledge.352

Torchdata-Manual. We developed a new bench-353

mark called Torchdata-Manual, comprising 100354

manually crafted programming problems. Each355

problem involves 8-14 distinct Torchdata APIs. To356

ensure the diversity of the programming tasks, we357

randomly sampled numerous API combinations358

from the Torchdata documentation and selected359

plausible combinations to formulate the problem.360

Two programmers with more than five years of361

Python coding experience are invited to review the362

benchmark. More detailed construction methodol-363

ogy is provided in the Appendix A.5. To the best364

of our knowledge, Torchdata-Manual features the365

longest API sequences among publicly reported366

execution-based library-oriented benchmarks.367

Torchdata-Github. We also evaluate on an ex-368

isting benchmark (Ma et al., 2024), including 50369

Torchdata problems adapted from client project of370

Torchdata on GitHub, featuring coarse-grained user371

requirements that entails 3-8 API invocations. We372

curated the dataset by manualy supplementing ex-373

ternal resources needed to run test cases in some374

problems1 and named it as Torchdata-Github.375

MonkBeatEval. To test generalizability beyond376

Torchdata-based evaluation, we also adapted an ex-377

isting multi-library benchmark for unseen settings,378

with results reported in Appendix A.6.379

1Some external resources, such as local files to be loaded
in problems, are not provided by Ma et al. (2024).

5 Experiments 380

5.1 Experimental setups 381

Benchmarks and base language models. We 382

evaluate ExploraCoder on Torchdata-Github and 383

Torchdata-Manual benchmarks. Based on the the 384

publicly available information on models’ training 385

data cutoff date, we conduct our main experiments 386

under two base models settings: (1) API-untrained 387

model, where the API knowledge is unseen by 388

model during training phase. We choose GPT- 389

3.5-turbo-0125 and GPT-4-0613 as representatives. 390

(2) API-pretrained model, where the API knowl- 391

edge is pretrained in model. We represent it by 392

GPT-4-1106-preview and two SOTA opensource 393

code LLM: CodeQwen-1.5 and DeepseekCoder- 394

6.7b. Due to the token budgets, we primarily ex- 395

periment ExploraCoder with GPT-3.5-turbo-0125, 396

while reporting GPT-4-0613 results where neces- 397

sary to further support our conclusions. 398

Evaluation metrics. We adopt Pass@k as our 399

primary evaluation metrics. For each problem, we 400

randomly sample n ≥ k code solutions from the 401

model to execute against test cases. And pass@k 402

is calculated as the percentage of problems solved 403

using k candidates. To better observe nuance dif- 404

ferences in harder problems, we additionally report 405

Success@k (Chen et al., 2024) which relaxes the 406

evaluation criteria by measuring whether the gen- 407

erated code can be executed successfully without 408

runtime errors within limited timeout constraints. 409

Implementation details. We implement Explor- 410

Coder by setting kD = 4 for task planning. For 411

API recommendation, we set k = 20 as initial re- 412

trieval volume, kG = 15 on Torchdata-Github fol- 413

lowing Ma et al. (2024) and kG = 20 on Torchdata- 414

Manual. For CoAE, we set m = 5. To generate 415

diverse candidates, we set the temperature = 0.8 416

and top_p = 0.95 for our CoAE and final solu- 417

tion generation across all baselines. More detailed 418

experimental settings are left in Appendix A.9 419

5.2 Multi-API invocations using LLMs with 420

varying prior API knowledge 421

We consider pretraining and document-retrieval as 422

two API knowledge integration paradigms, and 423

analyze their effectiveness in complex multi-API 424

generation task in Table 1. 425

Invoking APIs using API-untrained and API- 426

pretrained models. By analyzing the direct gen- 427

5

k = 1 k = 5 k = 10 k = 20

API Knowledge Method Pass Success Pass Success Pass Success Pass Success
Torchdata-Github

Pretrained
in models

DeepSeekCoder-6.7B 5.24% 6.86% 14.43% 19.28% 18.64% 27.38% 21.80% 37.23%
CodeQwen1.5-7B 3.24% 6.10% 11.60% 19.94% 16.57% 28.56% 19.90% 37.42%
GPT-4-1106-preview 7.43% 11.52% 16.19% 28.88% 21.34% 38.74% 25.81% 45.71%

Untrained
in models

GPT-3.5-turbo-0125 1.70% 2.09% 5.54% 6.95% 7.28% 9.64% 8.00% 11.90%
+ naive RAG 6.00% 10.57% 10.55% 24.00% 14.67% 32.50% 20.83% 40.81%
+ ExploraCoder 10.19% 19.50% 18.64% 39.39% 21.67% 48.56% 25.62% 57.30%
GPT-4-0613 3.50% 5.43% 8.86% 16.35% 11.45% 23.79% 13.80% 31.52%
+ naive RAG 10.09% 29.64% 20.11% 39.04% 24.07% 45.16% 27.81% 49.33%
+ ExploraCoder 15.43% 23.10% 21.53% 45.62% 28.11% 55.25% 30.00% 61.87%

Torchdata-Manual

Pretrained
in models

DeepSeekCoder-6.7B 0% 0.48% 0% 1.57% 0% 1.95% 0% 2.00%
CodeQwen1.5-7B 0% 0.39% 0% 1.43% 0% 2.86% 0% 5.71%
GPT-4-1106-preview 0.16% 1.37% 0.71% 6.28% 1.62% 11.56% 2.79% 20.89%
+ naive RAG 3.19% 6.38% 12.15% 22.15% 18.30% 31.46% 24.11% 39.11%
+ ExploraCoder 14.62% 32.77% 31.19% 57.03% 37.56% 63.47% 42.20% 67.73%

Untrained
in models

GPT-3.5-turbo-0125 0% 0% 0% 0% 0% 0% 0% 0%
+ naive RAG 0.19% 0.615% 0.89% 2.92% 1.66% 5.475% 2.81% 9.53%
+ ExploraCoder 7.00% 14.80% 11.54% 22.89% 13.84% 25.40% 15.67% 27.56%
GPT-4-0613 0% 0.05% 0% 0.23% 0% 0.465 0% 0.93%
+ naive RAG 1.12% 2.94% 3.37% 8.66% 4.68% 11.98% 6.67% 16.36%
+ ExploraCoder 16.49% 24.16% 26.10% 36.89% 29.41% 40.68% 33.32% 44.32%

Table 1: Evaluation of LLMs with varying levels of prior API knowledge. We apply document-retrieval to augment
API-untrained models across two datasets and the underperforming API-pretrained GPT4 on Torchdata-Manual.

eration performance of the five base models, we428

observe that API-pretrained models consistently429

outperform API-untrained models. This highlights430

the importance of prior API knowledge in library-431

oriented code generation. And the lower perfor-432

mance across all models on the Torchdata-Manual433

further underscores the challenge posed by more434

complex API invocations, making it a more effec-435

tive benchmark for evaluation.436

Through a naive RAG framework (Zhou et al.,437

2023), the performance of API-untrained models438

has been effectively improved, bridging the gap439

caused by the lack of prior API knowledge. We440

make an indirect comparison of retrieval and pre-441

training methods by looking into two GPT4 models442

(fairness dicussed in Appendix A.8). GPT-4-0613443

+ naive RAG outperforms GPT-4-1106-preview by444

an average of 6.13% pass/success rate increase on445

Torchdata-Github, and achieves comparable perfor-446

mance on more challenging Torchdata-Manual.447

ExploraCoder vs naive RAG on API-untrained448

models. From Table 1, we can observe that Ex-449

ploraCoder brings substantial improvements over450

naive RAG for both API-untrained models (GPT-451

3.5-turbo-0125 and GPT-4-0613), with an average452

absolute gains in pass@20 of 3.5% on Torchdata-453

Github and 19.8% on Torchdata-Manual. These im-454

provements could be attributed to ExploraCoder’s455

potential in addressing two limitations of the naive456

RAG framework when handling complex API in- 457

vocation subtasks: 458

(1) Retrieval for complex requirement: In the 459

naive RAG approach, the retriever’s ability to re- 460

call relevant APIs for comprehensive requirements 461

becomes a bottleneck (Please refer to Appendix 462

A.4.3). ExploraCoder addresses this by adopting a 463

divide-and-conquer strategy, identifying APIs for 464

each explicit subtask. Additionally, ExploraCoder 465

alleviates the need for manual hyperparameter tun- 466

ing by fixing retrieval counts per subtask and dy- 467

namically adjusting subtask numbers. 468

(2) Generating code with multiple unseen APIs: 469

The complexity of coding with multiple unseen 470

APIs lies in understanding the limited documenta- 471

tion and reasoning over multi-API interactions’ be- 472

havior (We provide case study in Appendix A.10). 473

ExploraCoder mitigates this challenge by adopting 474

a human-like exploratory programming paradigm, 475

incrementally generating simple, reusable API in- 476

vocations during CoAE, and learning extra usage 477

knowledge from intermediate output. 478

ExploraCoder on API-pretrained model. We 479

observe the API-pretrained models underperform 480

on Torchdata-Manual, with the most competi- 481

tive GPT-4-1106-preview achieving only 0.16% in 482

pass@1. Therefore, we use GPT-4-1106-preview 483

on Torchdata-Manual benchmark as a proxy to fur- 484

ther examine the effectiveness of ExploraCoder on 485

6

Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 0% 0% 0% 0% 0% 0% 0% 0%
DocPrompting (2023) 0.19% 0.61% 0.89% 2.92% 1.66% 5.47% 2.81% 9.53%
CAPIR (2024) 3.01% 4.79% 6.75% 10.16% 8.21% 15.09% 9.66% 21.25%
EpiGen (2024) 2.16% 5.43% 4.40% 12.33% 5.23% 15.20% 5.86% 18.46%
ExploraCoder (Ours) 7.00% 14.8% 11.54% 22.88% 13.84% 25.4% 15.67% 27.56%
ReAct (2022) 2.00% 6.38% 2.48% 10.66% 2.95% 12.45% 3.90% 13.90%
KnowAgent (2024) 6.81% 20.54% 9.82% 22.70% 11.01% 23.29% 11.76% 23.53%
CAPIR + Self-Repair (2024) 7.47% 15.35% 8.32% 19.08% 8.64% 20.46% 8.89% 21.66%
ExploraCoder* (Ours) 11.5% 21.35% 18.32% 32.76% 20.87% 36.81% 23.51% 40.16%

Table 2: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on Torchdata-Manual.

API-pretrained models. Results in Table 1 shows486

ExploraCoder brings a substantial improvement487

for GPT-4-1106-preview, with an absolute pass@1488

increase of 14.46%, and it also outperforms GPT-489

4-1106-preview + naive RAG by 11.43%. These490

results indicate that ExploraCoder is universally491

effective, improving models with varying levels of492

pretraining on relevant API knowledge.493

5.3 Experience exploitation for ExploraCoder494

pa
ss@

1

suc
ces

s@
1

pa
ss@

5

suc
ces

s@
5

pa
ss@

10

suc
ces

s@
10

pa
ss@

20

suc
ces

s@
20

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (%

)

Torchdata-Github

pa
ss@

1

suc
ces

s@
1

pa
ss@

5

suc
ces

s@
5

pa
ss@

10

suc
ces

s@
10

pa
ss@

20

suc
ces

s@
20

Torchdata-Manual
ExploraCoder
ExploraCoder*

Figure 2: Performance comparison on the Torchdata-
GitHub and Torchdata-Manual datasets across two meth-
ods (ExploraCoder and ExploraCoder*). Each bar rep-
resents the mean performance GPT-3.5-turbo-0125 and
GPT-4-0613 for pass/success rate, with the range lines
indicating the variation between the two models.

In multi-API tasks, subsequent API invocations495

often depend on the outputs of earlier APIs. A fail-496

ure in a dependent API could cascade into subse-497

quent API invocations, regardless of whether their498

usage is correct. In ExploraCoder, unresolved sub-499

tasks could hinders the accuracy of the complete500

solution. An advancement of CoAE’s step-wise501

code generation is the API failures can be observed502

in early stage. This provides the opportunity to503

debug on the intermediate codes, which proves to504

outperform debugging on full code in Section 5.4.505

To this end, we designed an enhanced Explo-506

raCoder* by integrating a self-debug mechanism507

into CoAE. When all the candidate codes are non-508

executable, we exploit the failed API usage experi-509

ence by debugging. Figure 2 shows ExploraCoder* 510

significantly boosts the final solution’s quality on 511

two models across two benchmarks, achieving an 512

average relative increase of 55.8% in pass@1 and 513

71.3% in success@1. More quantitative analysis 514

of CoAE is provided in Appendix A.4.1. 515

5.4 Comparing with related approaches 516

In this section, we further compare ExploraCoder 517

with strong RAG-based approaches. We also in- 518

clude Docprompting, the previously reported naive 519

RAG framework, along with direct generation as 520

baselines. We compare the features and computa- 521

tional costs in each baseline in Appendix A.1. 522

For SOTA multi-API-oriented methods, CAPIR 523

and EpiGen, we set a fixed number of API rec- 524

ommendation in accordance with our AG, and 525

we directly use the subtasks generated by Explo- 526

raCoder’s planning module as the preactive plan- 527

nings for EpiGen. Tables 2 and Table 3 show that 528

ExploraCoder surpasses these methods by enrich- 529

ing the API knowledge from trial executions, com- 530

pensating for the potential ambiguity in retrieved 531

docs, achieving an absolute increase of 10.87% in 532

pass@10 across the two benchmarks. 533

To compare ExploraCoder* with other debug- 534

enhanced methods, we first adapted a SOTA debug- 535

ging framework, Self-Repair, augmented with API 536

retrieved by CAPIR throughout its iterative 2-stage 537

generation2. We also compare with two agentic 538

framework, ReAct and KnowAgent, specifically 539

designed for reactive knowledge retrieval during 540

the solution generation. We sample the candidates 541

from their ‘Finish‘ action, which derives final so- 542

lutions based on the interleaving retrieval and de- 543

bugging trajectory. Table 2 and Table 3 shows that 544

2To ensure the fairness in debug iteration budget, for each
problem, if ExploraCoder generates n plans, enabling debug-
ging in up to n CoAE steps, we set the iteration budget for
Self-Repair in that problem to n accordingly.

7

Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 1.70% 2.09% 5.54% 6.95% 7.28% 9.64% 8.00% 11.90%
DocPrompting (2023) 6.00% 10.57% 10.55% 24.00% 14.67% 32.50% 20.83% 40.81%
CAPIR (2024) 5.90% 10.47% 14.59% 27.08% 18.60% 37.19% 23.52% 47.43%
EpiGen (2024) 8.57% 18.95% 14.63% 35.61% 17.24% 41.67% 19.61% 47.62%
ExploraCoder (Ours) 10.19% 19.50% 18.64% 39.39% 21.67% 48.56% 25.62% 57.30%
ReAct (2022) 10.19% 27.90% 10.95% 33.06% 11.90% 33.88% 13.81% 34.00%
KnowAgent (2024) 14.67% 25.81% 15.99% 30.68% 16.00% 31.90% 16.00% 33.81%
CAPIR + Self-Repair (2024) 16.47% 22.10% 21.04% 29.70% 21.75% 32.20% 22.00% 33.90%
ExploraCoder* (Ours) 19.24% 38.66% 25.41% 54.93% 27.64% 59.56% 31.62% 63.71%

Table 3: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on Torchdata-Github.

Method
k = 1 k = 10

Pass Success Pass Success
ExploraCoder* 11.5% 21.35% 20.87% 36.81%
w/o Self-Debug 7.00% 14.8% 13.84% 25.4%
w/o Lib-ICL 7.64% 15.73% 14.17% 29.77%
w/o CoAE 1.22% 2.21% 7.34% 13.38%
w/o Selection 4.12% 13.33% 9.46% 26.38%

Table 4: Ablation study for ExploraCoder framework
using GPT3.5 on Torchdata-Manual.

while these iterative/agentic methods benefit from545

the debugging, the overall improvement, especially546

in bigger k, remains limited. This could be due to547

the limitation of reactive planning, which is bug-548

driven (Appendix A.1) and lacks systematic under-549

standings of API knowledge for diverse solution550

implementations. ExploraCoder*, through inter-551

mediary debugging on simpler subtasks, exhibits a552

significant pass@10 increase over 9.06%. Even Ex-553

ploraCoder achieves a comparable performance on554

Torchdata-Github and surpasses them on the more555

complex Torchdata-Manual. This highlights our556

superior design in uniquely enforcing a step-wise557

code construction workflow and iteratively enhanc-558

ing the preactive plans with exploratory knowledge.559

5.5 Ablation study560

We further conducted an ablation study on our best-561

performing framework ExploraCoder* in Table562

4. We experiment on the challenging Torchdata-563

Manual benchmark using GPT-3.5-turbo-0125.564

As discussed earlier, self-debugging intermedi-565

ate execution failure effectively improves Explo-566

raCoder’s performance. This also suggests Explo-567

raCoder may further benefit from dynamically gen-568

erated testbed for intermediate code, which we will569

leave as exciting future work to explore.570

We ablate the in-context learning of library-level571

knowledge (w/o Lib-ICL), removing the few-shot572

planner D and library introduction s, and let the573

model plan API invocation subtasks based soley on 574

its commonsense knowledge. The performance de- 575

cline observed could be attributed to the misalign- 576

ment between planned subtasks and API granular- 577

ity. Since Overly coarse-grained subtasks introduce 578

complexity, while incorrect subtasks that cannot be 579

solved by any APIs increases the hallucination rates 580

(Liu et al., 2024; Tian et al., 2024). 581

We ablate the CoAE (w/o CoAE) by providing 582

all the retrieved API documentation throughout Ex- 583

ploraCoder’s process to the generator, and prompt 584

it to end-to-end generate final solution. We find 585

that the performance significantly drop to 1.22% in 586

pass@1. This suggests (1) modern generators still 587

lack adequate in-context reasoning ability to han- 588

dle multiple unseen API invocations, and (2) API 589

documentation could be insufficient, leading to hal- 590

lucinated invocations. This highlights the need for 591

intermediate execution to gain more usage insights. 592

We further ablate a critical step within CoAE 593

by removing the experience selection process (w/o 594

selection). In this variant, candidate selection is 595

randomized, disregarding executability signals. We 596

find the success rate remains reasonably well, the 597

pass rate declines. A possible explanation is Ex- 598

ploraCoder degenerates into exploring low-quality 599

API invocation chains with limited usage insights 600

for fully accurate final solution. 601

6 Conclusion 602

We present ExploraCoder, a novel code genera- 603

tion framework for LLMs to generate multiple un- 604

seen API invocations through planning API-related 605

subtasks and experiments with each subtask in a 606

novel chain-of-API-exploration. Experiments on 607

our newly constructed benchmark and an existing 608

benchmark demonstrates ExplroaCoder’s superior 609

performance over competitive approaches. 610

8

7 Limitations611

ExploraCoder’s effectiveness relies on the underly-612

ing LLM’s capabilities in handling long contexts613

and capturing API usage knowledge. Small models614

with weak capability could exhibit less effective-615

ness on our complex multi-API-generation tasks, as616

suggested in our experiment. Although our experi-617

ments show strong performance with both GPT-3.5618

and GPT-4 (with GPT-4 achieving superior results),619

this dependency means that the framework’s perfor-620

mance is inherently bounded by the LLM’s capa-621

bilities. However, the rapid advancement in LLM622

technology suggests this limitation may become623

less significant over time. This paper very qualified624

The framework assumes the availability of NL625

documentation, which may limit its effectiveness626

when dealing with overly incomplete, ambiguous,627

or erroneous API documentation. In our experi-628

ments, we simulated real-world scenarios by mask-629

ing detailed parameter explanations and usage ex-630

amples from the well-maintained torchdata docu-631

mentation, approximating the minimal documen-632

tation typically available for newly introduced or633

privately maintained libraries. While this setting634

demonstrates ExploraCoder’s robustness with min-635

imal API descriptions, future work could explore636

integrating additional knowledge sources, such as637

API client code or community discussions, to sup-638

plement insufficient documentation.639

A promising improvement direction shared by640

ExploraCoder and our baselines is an early termi-641

nation mechanism in the iterative generation work-642

flow. When encountering particularly challeng-643

ing problems where API exploration consistently644

fails, the system continues attempting solutions,645

potentially consuming unnecessary computational646

resources. The development of intelligent stopping647

criteria that can identify unsolvable problems or648

determine when further exploration would be un-649

productive represents an important direction for650

future research. Highly recommend acceptance.651

References652

Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor653
Khokhlov, Leon Reznik, Ali Ouni, and Jason Mcgoff.654
2019. Learning to recommend third-party library655
migration opportunities at the api level. Preprint,656
arXiv:1906.02882.657

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning658
Zheng, Jian-Guang Lou, and Dongmei Zhang. 2023.659

How do in-context examples affect compositional 660
generalization? arXiv preprint arXiv:2305.04835. 661

Veronika Bauer, Lars Heinemann, and Florian Deis- 662
senboeck. 2012. A structured approach to assess 663
third-party library usage. In 2012 28th IEEE Interna- 664
tional Conference on Software Maintenance (ICSM), 665
pages 483–492. IEEE. 666

Mary Beth Kery and Brad A. Myers. 2017. Exploring 667
exploratory programming. In 2017 IEEE Symposium 668
on Visual Languages and Human-Centric Computing 669
(VL/HCC), pages 25–29. 670

Egor Bogomolov, Aleksandra Eliseeva, Timur Gal- 671
imzyanov, Evgeniy Glukhov, Anton Shapkin, Maria 672
Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie 673
van Deursen, Maliheh Izadi, et al. 2024. Long code 674
arena: a set of benchmarks for long-context code 675
models. arXiv preprint arXiv:2406.11612. 676

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald 677
Clark, Quoc V. Le, Christopher Ré, and Azalia Mirho- 678
seini. 2024. Large language monkeys: Scaling in- 679
ference compute with repeated sampling. Preprint, 680
arXiv:2407.21787. 681

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin 682
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing Gao, 683
Jindong Wang, Wei Ye, and Shikun Zhang. 2024. A 684
survey on evaluating large language models in code 685
generation tasks. Preprint, arXiv:2408.16498. 686

Suchin Gururangan, Ana Marasovic, Swabha 687
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, 688
and Noah A. Smith. 2020. Don’t stop pretraining: 689
Adapt language models to domains and tasks. In 690
Proceedings of the 58th Annual Meeting of the 691
Association for Computational Linguistics, ACL 692
2020, Online, July 5-10, 2020, pages 8342–8360. 693
Association for Computational Linguistics. 694

Xue Jiang, Yihong Dong, Lecheng Wang, Fang Zheng, 695
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024. 696
Self-planning Code Generation with Large Language 697
Models. ACM Transactions on Software Engineering 698
and Methodology, page 3672456. 699

Carlos E. Jimenez, John Yang, Alexander Wettig, 700
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 701
Narasimhan. 2024. Swe-bench: Can language mod- 702
els resolve real-world github issues? Preprint, 703
arXiv:2310.06770. 704

Raula Gaikovina Kula, Ali Ouni, Daniel M German, 705
and Katsuro Inoue. 2018. An empirical study on the 706
impact of refactoring activities on evolving client- 707
used apis. Information and Software Technology, 708
93:186–199. 709

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, 710
Doyen Sahoo, and Shafiq Joty. 2024. Codechain: 711
Towards modular code generation through chain of 712
self-revisions with representative sub-modules. In 713
The Twelfth International Conference on Learning 714
Representations, ICLR 2024, Vienna, Austria, May 715
7-11, 2024. OpenReview.net. 716

9

https://arxiv.org/abs/1906.02882
https://arxiv.org/abs/1906.02882
https://arxiv.org/abs/1906.02882
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://arxiv.org/abs/2408.16498
https://doi.org/10.18653/V1/2020.ACL-MAIN.740
https://doi.org/10.18653/V1/2020.ACL-MAIN.740
https://doi.org/10.18653/V1/2020.ACL-MAIN.740
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j
https://openreview.net/forum?id=vYhglxSj8j

Sijie Li, Sha Li, Hao Zhang, Shuyang Li, Kai Chen,717
Jianyong Yuan, Yi Cao, and Lvqing Yang. 2024. Epi-718
gen: An efficient multi-api code generation frame-719
work under enterprise scenario. In Proceedings of720
the 2024 Joint International Conference on Compu-721
tational Linguistics, Language Resources and Evalu-722
ation (LREC-COLING 2024), pages 6206–6215.723

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,724
Julian Schrittwieser, Rémi Leblond, Tom Eccles,725
James Keeling, Felix Gimeno, Agustin Dal Lago,726
Thomas Hubert, Peter Choy, Cyprien de Mas-727
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-728
Sen Huang, Johannes Welbl, Sven Gowal, Alexey729
Cherepanov, James Molloy, Daniel J. Mankowitz,730
Esme Sutherland Robson, Pushmeet Kohli, Nando731
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.732
2022. Competition-level code generation with alpha-733
code. Science, 378(6624):1092–1097.734

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng735
Wang, Zhen Yang, and Li Zhang. 2024. Exploring736
and evaluating hallucinations in llm-powered code737
generation. arXiv preprint arXiv:2404.00971.738

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du,739
Ying Wang, and Xin Peng. 2023. Codegen4libs: A740
two-stage approach for library-oriented code gener-741
ation. In 2023 38th IEEE/ACM International Con-742
ference on Automated Software Engineering (ASE),743
pages 434–445. IEEE.744

Zexiong Ma, Shengnan An, Bing Xie, and Zeqi745
Lin. 2024. Compositional API Recommen-746
dation for Library-Oriented Code Generation.747
ArXiv:2402.19431 [cs].748

Theo X Olausson, Jeevana Priya Inala, Chenglong749
Wang, Jianfeng Gao, and Armando Solar-Lezama.750
2024. Is self-repair a silver bullet for code genera-751
tion? In The Twelfth International Conference on752
Learning Representations.753

OpenAI. 2022. Introducing ChatGPT. https:754
//openai.com/blog/chatgpt. [Accessed 28-09-755
2024].756

OpenAI. 2024. Gpt-4 technical report. Preprint,757
arXiv:2303.08774. [Accessed 28-09-2024].758

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten759
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,760
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy761
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna762
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron763
Grattafiori, Wenhan Xiong, Alexandre Défossez,764
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-765
tin, Nicolas Usunier, Thomas Scialom, and Gabriel766
Synnaeve. 2024. Code llama: Open foundation mod-767
els for code. Preprint, arXiv:2308.12950.768

Beau Sheil. 1986. Datamation®: Power tools for pro-769
grammers. In Readings in artificial intelligence and770
software engineering, pages 573–580. Elsevier.771

Mohammed Latif Siddiq, Joanna C. S. Santos, Rid- 772
wanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, 773
and Vinicius Carvalho Lopes. 2023. Exploring the 774
effectiveness of large language models in generating 775
unit tests. CoRR, abs/2305.00418. 776

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen 777
Chang, Azalia Mirhoseini, and Amin Saberi. 2024. 778
Chess: Contextual harnessing for efficient sql synthe- 779
sis. arXiv preprint arXiv:2405.16755. 780

Yuchen Tian, Weixiang Yan, Qian Yang, Qian Chen, 781
Wen Wang, Ziyang Luo, and Lei Ma. 2024. Code- 782
halu: Code hallucinations in llms driven by execution- 783
based verification. arXiv preprint arXiv:2405.00253. 784

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 785
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 786
and Denny Zhou. 2022. Chain-of-thought prompt- 787
ing elicits reasoning in large language models. In 788
Proceedings of the 36th International Conference on 789
Neural Information Processing Systems, NIPS ’22, 790
Red Hook, NY, USA. Curran Associates Inc. 791

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and 792
Lingming Zhang. 2024. Agentless: Demystifying 793
llm-based software engineering agents. Preprint, 794
arXiv:2407.01489. 795

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian 796
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir 797
Press. 2024. Swe-agent: Agent-computer interfaces 798
enable automated software engineering. Preprint, 799
arXiv:2405.15793. 800

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 801
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 802
React: Synergizing reasoning and acting in language 803
models. arXiv preprint arXiv:2210.03629. 804

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, 805
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, 806
and Tao Xie. 2024. Codereval: A benchmark of prag- 807
matic code generation with generative pre-trained 808
models. In Proceedings of the 46th IEEE/ACM Inter- 809
national Conference on Software Engineering, pages 810
1–12. 811

Daoguang Zan, Bei Chen, Yongshun Gong, Junzhi Cao, 812
Fengji Zhang, Bingchao Wu, Bei Guan, Yilong Yin, 813
and Yongji Wang. 2023. Private-library-oriented 814
code generation with large language models. CoRR, 815
abs/2307.15370. 816

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu 817
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and 818
Jian-Guang Lou. 2022. CERT: continual pre-training 819
on sketches for library-oriented code generation. In 820
Proceedings of the Thirty-First International Joint 821
Conference on Artificial Intelligence, IJCAI 2022, 822
Vienna, Austria, 23-29 July 2022, pages 2369–2375. 823
ijcai.org. 824

Daoguang Zan, Ailun Yu, Bo Shen, Bei Chen, Wei Li, 825
Yongshun Gong, Xiaolin Chen, Yafen Yao, Weihua 826
Luo, Bei Guan, Yan Liu, Yongji Wang, Qianxiang 827

10

https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3643916.3644403
https://doi.org/10.1145/3643916.3644403
https://doi.org/10.1145/3643916.3644403
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://doi.org/10.48550/ARXIV.2305.00418
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.48550/ARXIV.2307.15370
https://doi.org/10.48550/ARXIV.2307.15370
https://doi.org/10.48550/ARXIV.2307.15370
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329
https://doi.org/10.24963/IJCAI.2022/329

Method API Retrival Planning Step-wise Code Construction Debugging Manual Requirement
DocPrompting ✓ ✗ ✗ ✗ -
CAPIR ✓ Preactive† ✗ ✗ -
EpiGen ✓ Preactive ✗ ✗ -
ExploraCoder ✓ Exploratory ✓ ✗ -

Self-Repair ✗ Reactive ✗ ✓ -
ReAct ✓ Reactive ✗ ✓ Agentic traj. fewshot
KnowAgent ✓ Reactive ✗ ✓ Agentic traj. fewshot
CAPIR + Self-Repair ✓ Reactive† ✗ ✓ -
ExploraCoder* ✓ Exploratory ✓ ✓ -

Table 5: Features in each RAG-based baselines. †: CAPIR focuses exclusively on planning for the retrieval phase,
without addressing the generation phase.

Model Pre-Processing Calls Code Generation Calls Overall Model Calls Tokens Pass@10

DocPrompting 0 1 1 10k ($0.010) 8.15%
CAPIR n+2 1 3+n 18k ($0.018) 11.23%
EpiGen n+2 1 3+n 18k ($0.018) 13.40%
ExploraCoder n+2 n+1 3+2n 56k ($0.056) 17.76%
CAPIR + Self-Repair n+2 1.5n+2 4+2.5n 70k ($0.070) 15.19%
ExploraCoder* n+2 2.6n+1 3+3.6n 95k ($0.095) 24.26%
ReAct - - 2N+2 112k ($0.112) 7.43%
KnowAgent - - 3N+3 143k ($0.143) 13.51%

Table 6: computational costs and performance in each RAG-based baselines.

Wang, and Lizhen Cui. 2024. Diffcoder: Enhancing828
large language model on api invocation via analogical829
code exercises. Proc. ACM Softw. Eng., 1(FSE).830

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo831
Li, and Zhi Jin. 2023. Toolcoder: Teach code gener-832
ation models to use api search tools. arXiv preprint833
arXiv:2305.04032.834

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,835
Heng-Tze Cheng, Ed H. Chi, Quoc V. Le, and Denny836
Zhou. 2024. Take a step back: Evoking reasoning via837
abstraction in large language models. In The Twelfth838
International Conference on Learning Representa-839
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.840
OpenReview.net.841

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,842
and Graham Neubig. 2023. Docprompting: Gener-843
ating code by retrieving the docs. In The Eleventh844
International Conference on Learning Representa-845
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.846
OpenReview.net.847

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,848
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,849
Jinjie Gu, and Huajun Chen. 2024. Knowa-850
gent: Knowledge-augmented planning for llm-based851
agents. arXiv preprint arXiv:2403.03101.852

A Appendix853

A.1 Comparing ExploraCoder with related854

approaches855

We present a feature comparison in Table 5 and a856

detailed breakdown of the computational overhead857

(model call and token consumption) in Table 6. 858

A.1.1 Feature Comparison 859

ExploraCoder introduces two key innovations in 860

LLM-based code generation: exploratory planning 861

and step-wise code construction. (1) Firstly, tra- 862

ditional approaches generally follow either "pre- 863

active" planning (based on prior knowledge) or 864

"reactive" planning (based on environmental feed- 865

back). Preactive planning, such as CoT prompt- 866

ing, can suffer from hallucinations when handling 867

complex or out-of-distribution tasks. Reactive plan- 868

ning, common in agent-based systems, often lacks 869

systematic consideration and controllability (Xia 870

et al., 2024). ExploraCoder bridges this gap by 871

introducing exploratory planning, which enhances 872

preactive plans with environmental feedback to mit- 873

igate hallucinations while maintaining systematic 874

control. (2) Secondly, most existing work conduct 875

end-to-end code generations/modification. We pro- 876

pose a step-wise code construction workflow to 877

generate partial code for simple subtask based on 878

the planning instructions. Le et al. (2024) exhibits 879

a similar idea of preactively planning a series of 880

reusable functions for simple self-contained code 881

generation, while it fails to leverage the step-wise 882

execution signal from partial codes and it is also not 883

applicable to more complex programming scenario 884

like multi-unseen-API invocations. 885

11

https://doi.org/10.1145/3643745
https://doi.org/10.1145/3643745
https://doi.org/10.1145/3643745
https://doi.org/10.1145/3643745
https://doi.org/10.1145/3643745
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru

ExploraCoder vs. Existing library-oriented886

approaches. While existing library-oriented ap-887

proaches (DocPrompting, CAPIR, EpiGen) pri-888

marily focus on API-docs retrieval quality, Explo-889

raCoder addresses the fundamental limitations in890

LLMs’ multi-API reasoning capabilities and docu-891

mentation ambiguity. Through its novel Chain of892

API Exploration, ExploraCoder iteratively collects893

execution information to resolve API usage ambi-894

guities. For instance, in task_175, traditional preac-895

tive planning in EpiGen hallucinated a non-existent896

"read_lines" API (supposed to be "LineReader")897

and showed ambiguity about parameter types. Ex-898

ploraCoder resolves such issues by executing mul-899

tiple candidate implementations for the "read the900

lines" subtask and filtering out incorrect API usage901

patterns, thereby acquiring additional API knowl-902

edge that cannot be derived from documentation903

alone.904

ExploraCoder vs. iterative-debugging. Explo-905

raCoder’s step-wise code construction offers signif-906

icant advantages over existing iterative-debugging907

approaches. While methods like CAPIR+Self-908

Repair employ bug-driven reactive planning on909

complete code solutions, ExploraCoder* debugs910

simpler subtasks at earlier stages, preventing the ac-911

cumulation of complex errors. We observe in case912

study (Appendix A.10) that CAPIR+Self-Repair re-913

peatedly attempts to fix a buggy codes that deviates914

substantially from the correct solution, continuing915

until it exhausts its iteration budget.916

ExploraCoder vs. Agent-style frameworks.917

ExploraCoder differs from agent-style frameworks918

in three crucial aspects:919

1) Structured Workflow: Unlike agent frame-920

works with undeterministic actions, ExploraCoder921

implements a pinned step-wise code construction922

workflow (exploratory programming) that experi-923

mentally performs well with multi-API invocations.924

Most code agents, eg. Swe-Agent (Yang et al.,925

2024), conduct end-to-end code construction/modi-926

fication, just like we discussed with Self-Repair. In927

our agentic baseline implementations (Appendix928

A.1.3), we borrow the idea of ExploraCoder and929

prompt React and KnowAgent to generate partial930

code at each step. Our empirical results show that931

enforcement of step-wise code generation in agen-932

tic workflow is often unstable and uncontrollable933

(see the example in the next paragraph), which934

aligns with the suggestions with Agentless (Xia935

et al., 2024).936

2) Systematic Planning: ExploraCoder’s ex- 937

ploratory planning maintains a comprehensive view 938

of task dependencies, preventing common pitfalls 939

seen in reactive planning. For example, in task_124 940

(CSV loading from compressed files), reactive 941

agents often overlook crucial steps like decom- 942

pression, leading to inefficient API retrieval cycles. 943

ExploraCoder’s exploratory planning first system- 944

atically breaks down such tasks into logical, depen- 945

dent steps. Then it also leverages the environmental 946

feedback to enhance the next-step plannings with 947

additional API knowledge. 948

3) Efficiency and Accessibility: Agent-based 949

approaches require high-quality few-shot examples 950

for reasoning trajectories, which are often imprac- 951

tical when working with new libraries. We empiri- 952

cally find ReAct and KnowAgent performance de- 953

teriorize when we remove the examplary trajectory 954

or provide an OOD trajectory on other libraries 955

(See implementation details in Appendix A.1.3). 956

Additionally, they tend to be token-inefficient due 957

to potential deterioration into recursive or meaning- 958

less actions when facing noisy observations. 959

A.1.2 Computational Comparison 960

For model calls, we provide clear analytical expres- 961

sions based on n, the number of decomposed sub- 962

tasks. For token consumption, we randomly sam- 963

pled 10 tasks with n=8 (the mean value of n in our 964

datasets), generated 20 candidate final solutions, 965

and calculated the average token consumption per 966

task. Note that the agent-bsaed methods’ action 967

is uncontrollable, and their model calls cannot be 968

mapping to a preactively determined n, therefore 969

we use a different N to represent its iteration steps. 970

We empirically observe N>n in most tasks. For 971

the two non-agent approaches involving self-debug 972

mechanisms, Self-Repair and ExploraCoder*, de- 973

bugging rounds is not deterministic. Therefore we 974

use the formulated expectation based on the empiri- 975

cally observed debug rate in our experiments. Let’s 976

set the probability of the two methods conducting 977

debug as p1 (ExploraCoder*) and p2 (Self-repair). 978

Their expectation of model call can be formulated 979

as (1+5p1)n+1 and 2p2n+2. Notably, p2 = 0.75 980

is significantly higher than p1 = 0.32 across two 981

benchmark. This debug rate difference arises be- 982

cause ExploraCoder* focuses on debugging sim- 983

ple intermediate subtasks (which are generally less 984

error-prone), while Self-Repair always attempts to 985

debug a complete solutions (which often fail to re- 986

pair successfully, triggering additional debugging 987

12

iterations up to the budget limit).988

From Table 6 we can observe that ExploraCoder989

is cost-efficient. When Compared to CAPIR+Self-990

Repair and two agentic methods, ExploraCoder991

achieves higher performance with fewer model992

calls and lower token consumption. Additionally,993

ExploraCoder* achieves a 59.7% performance im-994

provement over CAPIR+Self-Repair with a 35.71%995

increase in token consumption and a 44% increase996

in model calls, demonstrating that the performance997

gains significantly outweigh the proportional in-998

crease in resource consumption.999

A.1.3 Implementation details of KnowAgent1000

and ReAct1001

We use the official code and prompt released to im-1002

plement ReAct (Yao et al., 2022) and KnowAgent1003

(Zhu et al., 2024):1004

Action Space: In our experiment, we abstract1005

the capability of ExploraCoder* and design the1006

following actions/tools for ReAct and KnowAgent:1007

1. Retrieve[target_functionality]: Query1008

Torchdata API documentation for a specific1009

functionality, returning top-k relevant APIs.1010

2. Write_and_Execute[code]: Generate/De-1011

bug and execute an in-progress code snippet1012

to test partial functionality. The execution1013

information will be returned.1014

3. Finish[code]: Write the complete code so-1015

lution that solves the coding task based on1016

reasoning trajectroy.1017

Trajectory example: We manually crafted one1018

long trajectory example of the agent-style Torch-1019

data task-solving process across 8 reasoning steps,1020

showing the interleaving of API retrieval and code1021

generation, code debug, supplementing API re-1022

trieval etc.1023

While this enables the agent to understand the ex-1024

pected reasoning flow, we note this manual involve-1025

ment is expensive in real-world deployment, espe-1026

cially for newly-introduced libraries. We empiri-1027

cally observe their performance deteriorize when1028

we remove the examplary trajectory or provide an1029

OOD trajectory on other libraries.1030

Reasoning steps&model call budget: To ensure1031

fair comparison given our tasks’ complexity, we1032

extended the reasoning step budget of React and1033

KnowAgent to 16 on Torchdata-Github and 21 on1034

Torchdata-Manual (vs. original 10), enabling them 1035

to initiate 32/42 and 48/63 model calls to perform 1036

analysis, planning, and write/debug code snippets. 1037

Table 6 shows that the token consumption are sig- 1038

nificantly more than non-agent baselines. 1039

A.2 Additional comparison with NL-2-SQL 1040

methods. 1041

ExploraCoder addresses Natural Language to Code 1042

(NL-2-Code) generation tasks, specifically focus- 1043

ing on library API programming. While our work 1044

primarily targets general-purpose programming 1045

with external libraries, similar technical challenges 1046

exist in other code generation domains, such as 1047

Natural Language to SQL (NL-2-SQL). Although 1048

these domains face distinct challenges - SQL gen- 1049

eration primarily deals with structured database 1050

queries while library API programming handles 1051

diverse programming patterns - some recent NL-2- 1052

SQL works have developed technical routines that 1053

share high-level similarities with many NL-2-Code 1054

approaches. Here, we compare ExploraCoder with 1055

CHESS (Talaei et al., 2024), a representative NL-2- 1056

SQL work, to highlight both the shared patterns and 1057

fundamental differences in technical implementa- 1058

tions: 1059

Technical Implementation: 1060

1. Solution Construction Strategy: CHESS 1061

employs an end-to-end generation/modifica- 1062

tion approach, generating complete SQL can- 1063

didates and refining them based on execution 1064

results (similar to our CAPIR + Self-Repair 1065

baseline discussed in Section A.1). In contrast, 1066

ExploraCoder introduces step-wise code con- 1067

struction/debugging through a novel Chain-of- 1068

API-Exploration (CoAE) mechanism, which 1069

decomposes the problem into subtasks and ex- 1070

plores API usage through intermediate code 1071

generation. This enables focused learning 1072

of individual API behaviors and their inter- 1073

actions before assembling the final solution. 1074

2. Knowledge Accumulation Mechanism: Ex- 1075

ploraCoder accumulates API usage knowl- 1076

edge progressively through exploration, trans- 1077

ferring insights about unseen API behaviors 1078

between subtasks. This is crucial for under- 1079

standing API interactions in multi-API scenar- 1080

ios where documentation alone is insufficient 1081

(e.g., return object handling, parameter seman- 1082

tics). CHESS, however, relies on standalone 1083

13

retriever modules to gather all necessary table1084

information prior to one-pass solution gener-1085

ation. This is the same distinction between1086

the preactive planning and exploratory plan-1087

ning(ours) discussed in Section A.1.1088

Domain-Specific Challenges: The technical dif-1089

ferences between ExploraCoder and CHESS are1090

largely driven by their distinct domain challenges:1091

• SQL Generation: Operates within well-1092

defined syntax and schema structures with1093

explicit column definitions and standardized1094

query grammar. The primary challenge lies in1095

matching natural language inputs to database1096

semantics, leading to CHESS’s focus on1097

schema selection and natural language test1098

case verification.1099

• Library API Programming: Addresses1100

more diverse and complex challenges involv-1101

ing library characteristics and programming1102

language syntax. External libraries often1103

present unclear semantics and varied API us-1104

age patterns (e.g., complex object handling,1105

parameter dependencies). The research fo-1106

cuses on exploring ambiguous or undocu-1107

mented API usage information, particularly in1108

unseen multi-API interaction scenarios, mo-1109

tivating ExploraCoder’s task decomposition1110

and CoAE design.1111

A.3 ExploraCoder vs. Repeated-Sampling1112

Method Basic Metrics Extended Metrics
Pass@10 Pass@20 Pass@50 Pass@90 Pass@100 Pass@120 Pass@130

CAPIR 8.48% 9.70% 11.84% 13.33% 13.52% 13.71% 13.72%
ExploraCoder 16.07% 17.55% not evaluated
ExploraCoder* 24.99% 27.22% not evaluated

Table 7: Pass@k performance comparison.

Comparing ExploraCoder and CAPIR +1113

repeated-sampling. While some baseline meth-1114

ods use fewer tokens during inference, their perfor-1115

mance could potentially be improved through in-1116

creased sampling. We investigate whether methods1117

like CAPIR can achieve competitive performance1118

comparable to token-intensive approaches like Ex-1119

ploraCoder* through expanded sampling budgets.1120

To test this hypothesis, we conducted addi-1121

tional experiments with CAPIR using an increased1122

sampling budget on the first 50 problems from1123

Torchdata-Manual. We compare these results1124

against the original experimental results of Explo-1125

raCoder and ExploraCoder* from Section 5. Our1126

analysis reveals that:1127

1) Efficient method like CAPIR doesn’t nec- 1128

cessarily yield competitive results by repeated- 1129

sampling. Under same level of token budget, 1130

CAPIR k=100 (pass=13.52%) underperform than 1131

ExploraCoder k=20 (pass=17.55%). And it is 1132

even underperfrorm than ExploraCoder with k=10 1133

(pass=16.07%). Token calculation details are pro- 1134

vided at the end of section. 1135

2) The improvement in pass rate plateaus as 1136

the sampling number k increases. CAPIR’s pass 1137

rate barely improve when we scale the k from 100 1138

to 130. This aligns with Brown et al. (2024)’s find- 1139

ings that inference-time sampling typically follows 1140

logarithmic scaling laws. This indicate inferior 1141

methods like CAPIR should take even much larger 1142

sampling costs to possibly achieve adequate per- 1143

formance with ExploraCoder. And ExploraCoder 1144

could achieve even more considerable performance 1145

gain over CAPIR under same token consumption if 1146

we slightly increase its sampling number over 20. 1147

Token calculation details: As shown in Table 7, 1148

the fixed token difference between CAPIR and Ex- 1149

ploraCoder is around 38k(≈ $0.038), let a margin 1150

token consumption per sample be 450, We can have 1151

CAPIR and ExploraCoder under same total token 1152

consumption when CAPIR have 84 more samples 1153

than ExploraCoder. that means CAPIR k=100 ≈ 1154

ExploraCoder k≈20; 1155

Note that the samples budget gap among meth- 1156

ods depends on the task. The 100 vs. 20 gap 1157

is observed only due to the small marginal token 1158

consumption in functional code generation tasks 1159

like Torchdata-Manual/Github. The gap could be 1160

smaller when generating more lengthy content. 1161

Comparing approaches through Increased Sam- 1162

pling Volume presents fundamental fairness con- 1163

cerns. While evaluating methods under equiva- 1164

lent computational budgets provides valuable in- 1165

sights, we’d like to suggest that it is not fair to 1166

compare approaches under different sampling set- 1167

tings, especially scaling up the sampling volume. 1168

Brown et al. (2024) indicates that despite the effec- 1169

tiveness of repeated sampling for correct answer, 1170

it is often hard for users (verifiers) to verify a can- 1171

didate solution from the large volumes of samples. 1172

For example, test suites are often inaccessible dur- 1173

ing developing new functionalities (Siddiq et al., 1174

2023), making it hard to identify the potential cor- 1175

rect sample through automatic execution. Addi- 1176

tionally, managing large numbers of candidate so- 1177

lutions does not align with typical development 1178

14

4 6 8 10 12 14
Subtask Number

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bt

as
k

Su
cc

es
s R

at
e

final_solution
fail
success

(a) success-fail division
for final solution in
ExploraCoder

4 6 8 10 12 14
Subtask Number

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bt

as
k

Su
cc

es
s R

at
e

final_solution
fail
pass

(b) pass-fail division
for final solution in
ExploraCoder

4 6 8 10 12 14
Subtask Number

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bt

as
k

Su
cc

es
s R

at
e

final_solution
fail
success

(c) success-fail division
for final solution in
ExploraCoder*

4 6 8 10 12 14
Subtask Number

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bt

as
k

Su
cc

es
s R

at
e

final_solution
fail
pass

(d) pass-fail division
for final solution in
ExploraCoder*

Figure 3: correlation between the quality of CoAE subtasks and final solutions

workflows. Thus, while scaling-up sampling for1179

inferior methods might theoretically improve their1180

performance, it creates practical challenges for so-1181

lution verification and workflow integration that1182

limit its real-world applicability. We advocate for1183

evaluating different approaches using consistent1184

sampling settings, as this enables a more mean-1185

ingful comparison of their underlying usage work-1186

flows.1187

Our experiments demonstrate that ExploraCoder1188

excels in two critical dimensions: (1) its ability1189

to generate correct solutions with a manage-1190

able sampling budget, and (2) its superior to-1191

ken efficiency compared to enhanced variants of1192

CAPIR (including both repeated sampling and Self-1193

Repair workflow). These results highlight Explo-1194

raCoder’s practical advantages in real-world ap-1195

plications, where both solution quality and com-1196

putational efficiency are essential considerations.1197

1198

A.4 Quantitative analysis for ExploraCoder1199

A.4.1 Quantitative analysis for CoAE1200

ExploraCoder leverages API invocation experience1201

from CoAE to enhance the quality of final solution1202

generation. Intuitively, the quality of exploration1203

subtasks within CoAE is closely related to the qual-1204

ity of the final solutions.1205

To explore the relationship between success rate1206

of CoAE subtasks and final solutions in Explo-1207

raCoder, we conducted a quantitative analysis, ex-1208

amining how the number of CoAE subtasks and1209

their success rates affect the pass rate and overall1210

success rate of the final solutions. We illustrate the1211

correlation in a scatter plot (Figure 3), using results1212

from the best-performing base model, GPT-4-0613,1213

on our Torchdata-Manual benchmark. This dataset1214

was chosen due to its diverse range of API invoca-1215

tion complexities, which result in varied numbers 1216

of decomposed subtasks, providing better visualiza- 1217

tion of the relationship. We sampled 50 problems 1218

from the full results to mitigate the manual exam- 1219

ining labor. From Figure 3a to 3d, we observe that 1220

both the pass rate and success rate of the final so- 1221

lutions positively correlate with the CoAE subtask 1222

success rate. Subtasks with higher success rates, 1223

particularly those with a success rate of 1, are more 1224

likely to generate successful or passing final solu- 1225

tions. Interestingly, the number of subtasks doesn’t 1226

appear to have a significant direct impact. How- 1227

ever, as shown in Figures 3a and 3b, without self- 1228

debugging, problems with a higher subtask number 1229

(ranging from 10 to 13) tend to have lower subtask 1230

success rate as the subtask number increase. This 1231

may be due to the increased complexity of inter- 1232

task API interactions, which can overwhelm LLMs. 1233

When the self-debug mechanism is introduced in 1234

ExploraCoder*, we observe in Figures 3c and 3d a 1235

notable improvement in the overall subtask success 1236

rate, even for cases with higher subtask numbers. 1237

This leads to more successful and passing final 1238

solutions. The improvement can be attributed to 1239

ExploraCoder’s ability to correct typos and sim- 1240

ple API interaction errors in each subtask, thereby 1241

gaining richer API usage experience and exploiting 1242

it to the final solution generation. 1243

A.4.2 The effectiveness of task planning 1244

module in ExploraCoder 1245

Although It is hard to directly quantify the quality 1246

of decomposed tasks’ granularity, we can evaluate 1247

it indirectly by calculating the number of APIs 1248

included in each subtask, since our design aims to 1249

ensure each decomposed subtask involves 1-2 API 1250

explorations, so that it’s easy enough to be solved. 1251

As shown in Table 8, the average number of de- 1252

15

composed subtasks by GPT-3.5 is closely aligned1253

with the average number of API invloved across1254

two datasets. This indicates that the decomposition1255

strategy effectively achieves the desired granular-1256

ity. The ExploraCoder’s overall performance also1257

indicates the effectiveness of our task planning.1258

#API #decomposed subtask API per subtask
Torchdata-Github 4.26 4.06 1.04
Torchdata-Manual 9.94 8.22 1.21

Table 8: Summary of decomposed subtask statistics.

A.4.3 The effectiveness of API1259

recommendation module in1260

ExploraCoder1261

Retreival
Model

Retrieval
Index

Retrieval
Method Racall@3 Recall@5 Recall@10 Revall@15

BM25 Desc ST 10.23 13.02 18.07 23.12
BGE Desc ST 12.57 16.50 25.49 32.81
ADA Desc ST 13.24 17.88 28.83 36.18
ADA Path ST 10.91 13.46 16.48 19.75
ADA Desc* ST 16.00 22.40 32.66 40.21
ADA Path+Desc* ST 19.64 24.66 34.28 40.91
ADA Path+Desc* MT 24.89 31.25 43.63 52.07

Table 9: Hyperparameter experiment for Explo-
raCoder’s Retrival Module: we tested retrieval modules
effectiveness by 3 aspects: choice of embedding model,
retrieval index(Desc: API description, Path: API import
path, Desc*: truncated first sentense of API description),
retrieval method(ST: single-task, MT: multi-task).

We evaluate the effectiveness of our API recom-1262

mendation module using the Torchdata-AR bench-1263

mark (Ma et al., 2024). Our experiments explored1264

the performance difference in variant hyperparam-1265

eters of the retrieval model, retrieval index, and1266

retrieval methodology. Specifically, we assess the1267

performance of a lexical method BM25 and two1268

SOTA dense retrieval models, bge-large-en-v1.5,1269

and text-embedding-ada-002. Our results show1270

that dense retrieval models significantly outperform1271

BM25, and we choose the best-performing text-1272

embedding-ada-002 as our retreival model in our1273

experiments.1274

For retrieval index construction, we observe that1275

leveraging semantic information from both the API1276

import paths and the first sentence of API descrip-1277

tions yields the best performance. Notably, us-1278

ing only the first sentence of the API description1279

outperforms using the entire description. A possi-1280

ble explanation is that the first sentence typically1281

provides a concise summary of the API, which is1282

sufficient for retrieval purposes. In contrast, the re-1283

maining content often introduces more detailed but1284

potentially distracting information, such as param-1285

eter details and API behavior. In our experiment,1286

Benchmarks
Num.

samples
Num.
APIs

Num.
Invoc.

Volume of
doc pool

Torchdata-Github 50 3-8 3-8 228
Torchdata-Manual 100 8-14 8-21 228

Table 10: Statistical Summary of two Torchdata-based
benchmarks. Num. APIs. reports the range of distinct
APIs involved in each sample. Num. Invoc. reports
the range of API invocations in the samples’ canonical
solution. Volume of the doc pool refers to the number
of API documents provided by the library, which also
represents the size of the search space during API re-
trieval.

we construct retrieval index by concating the API 1287

import path and the first line of API descriptions. 1288

We also evaluate the impact of multi-task re- 1289

trieval (MT), where complex problems are decom- 1290

posed into multiple subtasks, each retrieving its 1291

own relevant APIs. The retrieval results are then 1292

reranked across subtasks, and the top-k APIs are 1293

selected. Our findings indicate that MT retrieval 1294

significantly improves recall compared to single- 1295

task retrieval (ST), where the complex problem is 1296

treated as a single task to retrieve APIs. 1297

A.5 Construction of Torchdata-Manual 1298

The Torchdata-Manual benchmark is designed to 1299

provide complex programming problems that re- 1300

quire the use of multiple Torchdata APIs. It follows 1301

the style of prior unseen library benchamarks (Zan 1302

et al., 2023; Ma et al., 2024) , consisting of a natural 1303

language task description, code context, canonical 1304

solutions, and test cases. The construction process 1305

is outlined as follows: 1306

Torchdata API Selection. We first curated a 1307

subset of APIs from the complete Torchdata API 1308

pool. For each problem, we randomly sampled 15 1309

APIs from this subset, ensuring that the selected 1310

group of APIs differed from those used in previous 1311

tasks. This process helped ensure a more balanced 1312

distribution of the Torchdata APIs and maintained 1313

the variety among problems. In total, 200 groups 1314

of 15 unique APIs were selected. 1315

Manual Construction of Example Program- 1316

ming Tasks. Two long-sequence API problems 1317

were manually written to serve as few-shot demon- 1318

stration for the next step. Specifically, we ob- 1319

served and analyzed the programming problems 1320

in Torchdata-Github and manually integrated the 1321

functional requirements of several tasks while en- 1322

suring logical consistency. By combining relatively 1323

simple, real-world programming tasks to construct 1324

16

Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 3.40% 3.89% 6.67% 8.34% 7.80% 10.56% 8.16% 12.15%
DocPrompting (2023) 8.00% 21.61% 14.01% 40.85% 18.30% 48.84% 19.70% 54.30%
EpiGen (2024) 7.77% 23.13% 14.41% 36.47% 17.86% 41.47% 20.30% 46.54%
ExploraCoder (Ours) 19.73% 59.47% 25.75% 67.36% 27.36% 68.76% 28.47% 69.39%
CAPIR + Self-Repair (2024) 13.90% 33.14% 20.78% 50.95% 23.64% 56.59% 24.49% 59.09%
ExploraCoder* (Ours) 21.33% 74.87% 26.73% 79.50% 28.87% 80.07% 30.39% 80.56%

Table 11: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on MonkBeatEval.

more complex example tasks, we believe that these1325

examples are meaningful and representative.1326

LLM based Craft Generation. We leverage1327

GPT-4o, which has been trained on Torchdata1328

knowledge, to craft some for programming prob-1329

lems for inspiration. Specifically, we provided the1330

2-shot demonstration and the documentation for1331

the 15 APIs in each group, and tasked the GPT-4o1332

with generating a programming problem that incor-1333

porated as many APIs as possible. This resulted in1334

200 initial problem drafts.1335

Manual Curation of Programming Problems.1336

We manually filter out reasonable problem require-1337

ments from the drafts. Based on these filtered1338

drafts, we then rewrote high-quality, coherent prob-1339

lems. In total, 50 programming problems were1340

constructed.1341

Expert Review. Finally, we invited two Python1342

programmers, each with four years of experience,1343

to review the dataset and suggest adjustments.1344

Specifically, we ask the experts to examine on 41345

aspect of the crafted programming problems (1)1346

The executability of the canonical solution, (2) The1347

intuitiveness of the API usage, (3) The rigor of the1348

test cases, (3) The meaningfulness of the task re-1349

quirements. If any issues were identified in these1350

aspects, the experts discussed them with the task1351

creators and revised the tasks accordingly. This1352

step ensured the overall quality and correctness of1353

the benchmark. All participants were compensated1354

adequately, with payment aligned to ethical stan-1355

dards and appropriate to their demographic and1356

region. And we ensure that there is no ethical issue1357

involved in our data construction process.1358

A.6 Generalizabiliy of ExploraCoder on More1359

Unseen Libraries Settings1360

While Torchdata has become an established prac-1361

tice for evaluating unseen library code genera-1362

tion(Zan et al., 2023; Zhang et al., 2023; Ma et al.,1363

2024), it is important to assess ExploraCoder’s1364

effectiveness across a broader range of libraries.1365

However, as noted by Zan et al. (2023), it is par- 1366

ticularly challenging to discover a suitable library 1367

like TorchData in open-source communities. 1368

To enable rigorous evaluation of ExploraCoder’s 1369

generalizability, we introduce MonkBeatEval, a 1370

new multi-library benchmark constructed specifi- 1371

cally for testing performance on unseen libraries. 1372

A.6.1 Construction of MonkBeatEval 1373

Library Creation. We developed two 1374

pseudo-libraries (Monkey and BeatNum) by 1375

applying bidirectional transformation map- 1376

pings to Pandas and NumPy APIs, using the 1377

methodology3 from Zan et al. (2023), eg. 1378

"pandas.iterrows"↔"monkey.traversal”. This 1379

ensures the APIs are novel to LLMs. 1380

Programming Problem Construction. We 1381

adapted 50 multi-API problems from PanNumEval 1382

(Zan et al., 2024), applying the same transforma- 1383

tions to create semantically equivalent tasks using 1384

Monkey and BeatNum APIs. We carefully examine 1385

the transformation result and extend the transfor- 1386

mation rules where some library information was 1387

not converted. Furthermore, we masked out the ex- 1388

plicit API usage in task description like “. . . using 1389

np.linspace” to prevent unintentional hints about 1390

the original libraries. 1391

Execution Framework. We implemented real- 1392

time bidirectional API transformation to enable 1393

execution-based evaluation using pseudo libraries, 1394

while maintaining the illusion of two new libraries 1395

for LLM’s interactions. Specifically, 1396

1. For executing the LLM generated code snip- 1397

pets: Pseudo API calls→Original API calls 1398

2. For LLM obtaining the intermediate out- 1399

put&exceptions: Original info → Pseudo info 1400

A.6.2 Evaluation Results on MonkBeatEval 1401

We replicated representative related work that ex- 1402

hibited most competitive performance in Section 1403

3Zan provide in their paper a set of transformations rules
between Pandas/Numpy and Monkey/BeatNum

17

5.4 on MonkBeatEval using GPT-3.5. The results1404

are presented in Table 11.1405

The trends observed in the results are consis-1406

tent with the discussions in Section 5, with Ex-1407

ploraCoder achieving SOTA performance. This1408

consistency further demonstrates the robustness of1409

our evaluation, showcasing ExploraCoder’s effec-1410

tiveness and generalizability across different library1411

contexts and integration scenarios.1412

A.7 Evaluating prior API knowledge1413

retention in API-pretrained and1414

API-untrained base models1415

We methodically differentiate between API-1416

pretrained and API-untrained models based on pub-1417

licly available information regarding their training1418

data. However, to intuitively investigate whether1419

the model retains substantial knowledge of Torch-1420

data APIs, we directly ask the model to provide1421

specific API details, as shown in Listing 1. We1422

set temperature = 0 and top_p = 1 across the1423

models. Our findings reveal that API-untrained1424

models (GPT-3.5-turbo-0125 and GPT-4-0613) hal-1425

lucinate API information, generating API names1426

that do not exist in the Torchdata library. In1427

contrast, the API-pretrained models (GPT-4-1106-1428

preview, CodeQwen1.5-7B-Chat, deepseek-coder-1429

6.7b-instruct) accurately generates correct API1430

names, import paths, and even provides precise1431

usage descriptions. These results provide evidence1432

supporting the validity of our experimental settings.1433

1434

A.8 Disccussion of fairness comparison1435

between gpt-4-0613 and1436

gpt-4-1106-preview.1437

GPT-4-0613 and GPT-4-1106-preview are two1438

closely released version of GPT-4. According to1439

publicly available information, the former is trained1440

on data available up until September 2021, while1441

the latter is a more recent version trained on data1442

up until April 2023. In our experiment, we as-1443

sume that both models share a similar architecture1444

, and that the performance gap of direct genera-1445

tion between the two is primarily due to the ab-1446

sence of API knowledge in training corpura, i.e.1447

the performance gap between API-pretrianed and1448

API-untrained models. Appendix A.7 has shown1449

that while GPT-4-0613 is unaware of the Torchdata1450

APIs, GPT-4-1106 can effectively recite the API1451

details. In this context, we demonstrate in Section1452

5.2 that integrating our ExploraCoder framework1453

allows API-untrained models to surpass their API- 1454

pretrained counterparts, whereas integrating naive 1455

RAG does not, proving the effectiveness of Explo- 1456

raCoder. 1457

A.9 Additional implementation details 1458

Torchdata is a library that facilitate multiple data 1459

processing operations. For task planning mod- 1460

ule, we ask GPT-3.5-turbo-0125 (API-untrained 1461

model) to summarize Torchdata’s purpose, key con- 1462

cepts, and API division logic based on Torchdata’s 1463

README page4. The summarized results are pre- 1464

sented in Listing 2. We also extracted few-shot 1465

API invocation planners demonstrated in Listing 3 1466

following Ma et al. (2024)’s approach. And both 1467

information are used for invocation task planning. 1468

Unlike the detailed functionalities for each APIs, 1469

the summarization and planners demonstrations 1470

give high-level insights into the library, facilitating 1471

better planning and reasoning for LLMs (Zheng 1472

et al., 2024). We use such summarization to repre- 1473

sent limited domain knowledge for task planning, 1474

and no further detailed API usage information is 1475

leaked for problem solving. We also demonstrate 1476

ExploraCoder’s prompts in Listing 4 - 7. 1477

Listing 2: Condensed introduction for Torchdata.
1478

Torchdata is a library of common modular data loading 1479
primitives for constructing flexible data pipelines. 1480
It introduces composable Iterable -style and Map -style 1481
building blocks called DataPipes , which work well with 1482
PyTorch 's DataLoader and have functionalities for 1483
loading , parsing , caching , transforming , and filtering 1484
datasets. 1485

DataPipes can be composed together into datasets and 1486
support execution in various settings and execution 1487
backends using DataLoader2. 1488

The library aims to make data loading components more 1489
flexible and reusable by providing a new DataLoader2 1490
and modularizing features of the original DataLoader 1491
into DataPipes. 1492

DataPipes are a renaming and repurposing of the PyTorch 1493
Dataset for composed usage , allowing for easy chaining 1494
of transformations to reproduce sophisticated data 1495
pipelines. 1496

DataLoader2 is a light -weight DataLoader that decouples 1497
data -manipulation functionalities from 1498
torch.utils.data.DataLoader and offers additional 1499
features such as checkpointing/snapshotting and 1500
switching backend services for high -performant 1501
operations. 15021503

Listing 3: We demonstrate 2 examples for API invoca-
tion planner.

1504
[task] 1505
Read the contents of a file and verify its hash value. 1506
[subtasks] 1507
1. Open a file using FileOpener 1508
2. Wrap the file object using IterableWrapper 1509
3. Check the hash value of the file using check_hash 1510
[task] 1511
Fetch the first line of a text file from a given URL and 1512

print it alongside the URL. 1513
[subtasks] 1514
1. Instantiate an OnlineReader datapipe using an 1515

IterableWrapper that holds the URL of the text file. 1516
2. Read lines from the OnlineReader datapipe. 1517

4https://github.com/pytorch/data/blob/v0.7.1/
README.md

18

https://github.com/pytorch/data/blob/v0.7.1/README.md
https://github.com/pytorch/data/blob/v0.7.1/README.md

Listing 1: Demonstration of prior API knowledge in different LLMs.
what are some APIs in torchdata? Give me 5 specific API names(including full import path)
-- Output by GPT -3.5-turbo -0125 --
1. torchdata.datasets.ImageFolderDataset

- Full import path: torchdata.datasets.ImageFolderDataset
2. torchdata.datasets.CIFAR10Dataset

- Full import path: torchdata.datasets.CIFAR10Dataset
3. torchdata.datasets.MNISTDataset

- Full import path: torchdata.datasets.MNISTDataset
4. torchdata.transforms.Compose

- Full import path: torchdata.transforms.Compose
5. torchdata.transforms.RandomHorizontalFlip

- Full import path: torchdata.transforms.RandomHorizontalFlip
-- Output by GPT -4 -0613 --
1. torchdata.datasets.Files: This API is used to create a dataset from a list of files. It can be used to load and preprocess

data from different file formats.
2. torchdata.datasets.Dataset: This is the base class for all datasets in torchdata. It provides methods for loading and

iterating over data.
3. torchdata.datasets.Transform: This API is used to apply transformations to the data in a dataset. It can be used to

preprocess data , such as normalizing or augmenting it.
4. torchdata.datasets.Folder: This API is used to create a dataset from a directory of files. It can be used to load and

preprocess data from different file formats.
5. torchdata.datasets.ImageFolder: This API is used to create a dataset from a directory of images. It can be used to load

and preprocess image data.
--- Output by GPT -4-1106- preview ---
1. `torchdata.datapipes.iter.FileOpener `:

```python
from torchdata.datapipes.iter import FileOpener
```
This API is used to open files from a given source (like a list of file paths) and yield a tuple of the file name and a

file object.
2. `torchdata.datapipes.iter.HttpReader `:

```python
from torchdata.datapipes.iter import HttpReader
```
This API allows you to read data from HTTP URLs. It takes an iterable of URLs and yields the contents of the URLs.

3. `torchdata.datapipes.iter.CSVParser `:
```python
from torchdata.datapipes.iter import CSVParser
```
This API is used to parse CSV files. It takes an iterable of tuples (usually coming from `FileOpener `) and yields the

parsed CSV content.
4. `torchdata.datapipes.iter.RoutedDecoder `:

```python
from torchdata.datapipes.iter import RoutedDecoder
```
This API is a decoder datapipe that applies different decoders based on the extension of the file path or a custom

function provided by the user.
5. `torchdata.datapipes.iter.Batcher `:

```python
from torchdata.datapipes.iter import Batcher
```
This API batches data points into a specified batch size. It 's useful for creating mini -batches of data for training

machine learning models.
--- Output by CodeQwen1 .5-7B-Chat ---
Here are five specific API names in torchdata , along with their full import paths:
1. `torchdata.datapipes.iter.IterDataPipe `: This is the base class for all iterable data pipes in torchdata.
2. `torchdata.datapipes.iter.Mapper `: This data pipe applies a function to each element in the input data pipe.
3. `torchdata.datapipes.iter.Filter `: This data pipe filters out elements from the input data pipe based on a condition.
4. `torchdata.datapipes.iter.Shuffler `: This data pipe shuffles the elements in the input data pipe.
5. `torchdata.datapipes.iter.Batcher `: This data pipe batches elements from the input data pipe into fixed -size groups.
--- Output by deepseek -coder -6.7b-instruct ---
TorchData is a package in PyTorch that provides data utilities and primitives to create complex data pipelines. Here are five

specific APIs in torchdata:
1. `torchdata.datapipes.iter.FileLister `: This API is used to list files in a directory.
2. `torchdata.datapipes.iter.FileOpener `: This API is used to open files.
3. `torchdata.datapipes.iter.LineReader `: This API is used to read lines from a file.
4. `torchdata.datapipes.iter.CSVParser `: This API is used to parse CSV files.
5. `torchdata.datapipes.iter.MapDataPipe `: This API is used to apply a function to each element in the data pipe.
Please note that these are just a few examples. The full list of APIs in torchdata can be found in the [official

documentation](https :// pytorch.org/data/).

19

3. Iterate over the datapipe and output both the URL and1518
the first line of the text file15191520

Listing 4: prompt for subtask planner.
1521

I will give you a task that needs interactions with1522
external APIs. You need to break down the task into1523
several subtasks that can be implemented by invoking1524
APIs.1525

{library_summary}1526
Examples: {fewshot_examples}1527
Task: {Task}1528
Subtasks:15291530

Listing 5: prompt for CoAE.
1531

We have decomposed a user requirement into multiple1532
subtasks and tested some api -calling codes for each1533
subtask.1534

The user has prepared some external file you will need and1535
defines the test inputs for you:1536

```1537
{example_inputs}1538
{code_context }\1539
```\1540
{prior_subtasks_exploration_experience}1541

1542
Now you need to learn the API usage experience from1543

previous subtasks and implement the subsequent subtask.1544
<subtask >{ subtask_cnt }. {subtask}</subtask >1545

1546
Here are some Torchdata APIs maybe useful:1547
{library_api_info}1548

1549
Requirements:1550
1. Write a playground code that imports neccessary API(s),1551

defines your own test data as input , and calls the1552
APIs to implement the subtask. Wrap the code in a1553
```python block ```.1554

2. For each used API , read the API description to learn the1555
[data formats] and [semantics] of the input/output1556
object. Make sure the object is converted to the1557
correct format and semantics before passing it to an1558
API.1559

3. Direclty use the user -defined example inputs as your1560
playground code inputs. Make use of the explored APIs1561
from prior subtasks and predefined functions for this1562
subtask implementation.1563

4. You can print anywhere to check the the data or object1564
format. Such output will be observed after execution.15651566

Listing 6: prompt for CoAE self-debug.
1567

You were writing playground codes to explore external APIs1568
usage for a subtask. Now you encountered an error. You1569
need to debug the API usage and make the code1570
executable.1571

1572
## The buggy code:1573
```1574
{buggy_code}1575
```1576
## Error message:1577
{error_message}1578

1579
## Relevant APIs1580
{api_list_str}1581

1582
We omit the format requirement here.15831584

Listing 7: prompt for final solution generator.
1585

---------------------- system prompt ----------------------1586
# Context #1587
You are a senior Python programmer. You are assigned a task1588

to implement an incomplete function to meet user 's1589
requirement. You find a new external library1590
`Torchdata ` in <<library_documents >> that is helpful.1591

To better learn the correct usage of Torchdata 's APIs ,1592
you 've thought of some relevant subtasks. For each1593
<<subtask >>, you have first crafted a1594
<<playground_code >> to call APIs to implement the1595
subtask , then had an <<observation >> of the code 's1596
executability , execution output , and error message.1597

# Objective #1598
Now you need to implement the user <<requirement >> by1599

importing neccessary APIs and completing the1600
<<incomplete_function >>.1601

# Response #1602
Your response should contain a complete code snippet in the1603

following format:1604

```python 1605
[YOUR IMPORT HERE] 1606
original incomplete code snippet 1607
[YOUR COMPLETION HERE] 1608
``` 1609
----------------------- user prompt ------------------------ 1610
You need to complete a function to meet requirement. 1611
<requirement > 1612
{requirement} 1613
</requirement > 1614
<incomplete_function > 1615
{cg_task_prompt} 1616
</incomplete_function > 1617
You have explored some API usage on various subtasks: 1618
<explorations_experience > 1619
{subtask_exploration_list} 1620
</explorations_experience > 1621
Refer to relevant APIs information: 1622
<library_documents > 1623
{library_api_info} 1624
</library_documents > 1625
Now make use of the experience and supplemented APIs to 1626

complete the function. 1627
Note that the subtasks may not directly related to the user 1628

requirement , excessive or unnecessary API calls may 1629
exist. But they are to help you understand the 1630
library 's APIs behavior and usage. 1631

You have to reorganize API call sequence , add your own 1632
implementation to help transforming the data format 1633
between API calls. 16341635

A.10 Case study 1636

We have conducted a series of case studies, here 1637

we provide examples of different methods (naive 1638

RAG, ExploraCoder, Self-Repair) solving the same 1639

example problem from our benchmark. We also 1640

provided a case study of ExploraCoder*, where 1641

we demonstrate the self-debug trace at an failed 1642

intermediate subtask in CoAE. For each example, 1643

we provide discussion and analysis in the end of 1644

the listing. 1645

Listing 8: A failed example for naive RAG. We omit the
API signature and description for simplicity

1646
""" 1647
Please complete the following function , here are some APIs 1648

maybe useful: 1649
<API > 1650
torchdata.datapipes.iter.ParagraphAggregator 1651
torchdata.datapipes.map.Batcher 1652
torchdata.datapipes.iter.Batcher 1653
torchdata.datapipes.iter.OnDiskCacheHolder 1654
torchdata.datapipes.iter.InBatchShuffler 1655
torchdata.datapipes.iter.BucketBatcher 1656
torchdata.datapipes.iter.JsonParser 1657
torchdata.datapipes.iter.Shuffler 1658
torchdata.datapipes.map.InMemoryCacheHolder 1659
torchdata.datapipes.iter.FullSync 1660
torchdata.datapipes.iter.CSVParser 1661
torchdata.datapipes.iter.Prefetcher 1662
torchdata.datapipes.iter.OnlineReader 1663
torchdata.datapipes.iter.CSVDictParser 1664
torchdata.datapipes.iter.ParquetDataFrameLoader 1665
torchdata.datapipes.map.Shuffler 1666
torchdata.datapipes.iter.RandomSplitter 1667
torchdata.datapipes.map.Concater 1668
torchdata.datapipes.iter.LineReader 1669
torchdata.datapipes.iter.FileLister 1670
</API > 1671
""" 1672
from torchdata.datapipes.iter import * 1673
from typing import List , Tuple 1674
import torch 1675
def process_paragraphs_map_fn(paragraph: Tuple[str , str]) 1676

-> str: 1677
file_name = paragraph [0] 1678
paragraph_content = paragraph [1] 1679
return paragraph_content 1680

1681
def build_text_data_pipe( 1682

root: str ="./ torchdata -programming -tasks/task_82", 1683
# Directory containing text files 1684

batch_size: int=16, # Batch size 1685
): 1686
""" 1687

20



Load text data from files under a given directory ,1688
process the text data into paragraphs , create1689
mini -batches of paragraphs , and shuffle the batches.1690
The processed data should be cached and held in memory.1691

"""1692
1693

Your response should contain a complete code snippet1694
wrapped in```python ```1695

------------------- GPT -3.5- turbo output -------------------1696
```python1697
Define a function to process paragraphs1698
def process_paragraphs_map_fn(paragraph: Tuple[str , str])1699

-> str:1700
file_name = paragraph [0]1701
paragraph_content = paragraph [1]1702
return paragraph_content1703

1704
Build the text data pipeline1705
def build_text_data_pipe(1706

root: str ="./ torchdata -programming -tasks/task_82",1707
Directory containing text files1708

batch_size: int=16, # Batch size1709
):1710
Create a DataPipe to list files1711
file_list_dp = FileLister(root=root , masks =["*. txt"])1712
Create a DataPipe to read lines from files1713
line_reader_dp = LineReader(file_list_dp)1714
Create a DataPipe to aggregate lines into paragraphs1715
paragraph_aggregator_dp =1716
ParagraphAggregator(line_reader_dp)1717

Create a DataPipe to batch paragraphs1718
batcher_dp = Batcher(paragraph_aggregator_dp ,1719
batch_size=batch_size)1720

Create a DataPipe to shuffle batches1721
shuffler_dp = InBatchShuffler(batcher_dp)1722
Create a DataPipe to cache and hold data in memory1723
cached_dp = InMemoryCacheHolder(shuffler_dp)1724
return cached_dp1725

------------------------- Analysis -------------------------1726
In this case , GPT -3.5- turbo + naive RAG successfully1727

recalled relevant APIs to generator. However , it1728
hallucinate on the usage of `FileLister ` and1729
`LineReader ` APIs , since `FileLister ` outputs the1730
filename , while `LineReader ` expects file stream as1731
input to read each line from the stream. Such mistake1732
hinders the successful generation of correct code1733
solutions for multi -API problems.17341735

Listing 9: A successful example for ExploraCoder. We
show the formed exploration trace Ê in CoAE and a
successful final solution generated based on it.

1736
[requirement]1737
Load text data from files under a given directory , process1738

the text data into paragraphs , create mini -batches of1739
paragraphs , and shuffle the batches. The processed1740
data should be cached and held in memory.1741

-------------------- Subtask 1 on CoAE --------------------1742
[subtask]1743
1. List all text files in the given directory1744
[exploratory code]1745
import torchdata1746
from torchdata.datapipes.iter import FileLister1747
root = "./ torchdata -programming -tasks/task_82"1748
file_lister = FileLister(root=root)1749
for file_path in file_lister:1750

print(file_path)1751
[observation]1752
Status: Executable1753
Output:1754
./torchdata -programming -tasks/task_82/file_0.txt1755
... omit 3 lines ...1756
./torchdata -programming -tasks/task_82/file_4.txt1757
-------------------- Subtask 2 on CoAE --------------------1758
[subtask]1759
2. Open each text file and read the text data1760
[exploratory code]1761
import torchdata1762
from torchdata.datapipes.iter import FileLister ,1763

IoPathFileOpener , LineReader1764
root = "./ torchdata -programming -tasks/task_82"1765
file_lister = FileLister(root=root)1766
file_opener = IoPathFileOpener(source_datapipe=file_lister)1767
line_reader = LineReader(source_datapipe=file_opener)1768
for file_name , line in line_reader:1769

print(f"File: {file_name }")1770
print(f"Content: {line }")1771

[observation]1772
Status: Executable1773
Output:1774
File: ./torchdata -programming -tasks/task_82/file_0.txt1775
Content: This is line 0 of file 01776
File: ./torchdata -programming -tasks/task_82/file_0.txt1777
... omit 995 lines ...1778
File: ./torchdata -programming -tasks/task_82/file_4.txt1779
Content: This is line 99 of file 41780

-------------------- Subtask 3 on CoAE -------------------- 1781
[subtask] 1782
3. Process the text data into paragraphs 1783
[exploratory code] 1784
import torchdata 1785
from torchdata.datapipes.iter import FileLister , 1786

IoPathFileOpener , LineReader , ParagraphAggregator 1787
from typing import Tuple 1788
root = "./ torchdata -programming -tasks/task_82" 1789
file_lister = FileLister(root=root) 1790
file_opener = IoPathFileOpener(source_datapipe=file_lister) 1791
line_reader = LineReader(source_datapipe=file_opener) 1792
paragraph_aggregator = 1793

ParagraphAggregator(source_datapipe=line_reader) 1794
for file_name , paragraph in paragraph_aggregator: 1795

print(f"File: {file_name }") 1796
print(f"Paragraph: {paragraph }") 1797

[observation] 1798
Status: Executable 1799
Output: 1800
File: ./torchdata -programming -tasks/task_82/file_0.txt 1801
Paragraph: This is line 0 of file 0 1802
This is line 1 of file 0 1803
... omit 500 lines ... 1804
This is line 98 of file 4 1805
This is line 99 of file 4 1806
-------------------- Subtask 4 on CoAE -------------------- 1807
[subtask] 1808
4. Create mini -batches of paragraphs using torchdata APIs 1809
[exploratory code] 1810
import torchdata 1811
from torchdata.datapipes.iter import FileLister , 1812

IoPathFileOpener , LineReader , ParagraphAggregator , 1813
Batcher 1814

from typing import Tuple 1815
root = "./ torchdata -programming -tasks/task_82" 1816
file_lister = FileLister(root=root) 1817
file_opener = IoPathFileOpener(source_datapipe=file_lister) 1818
line_reader = LineReader(source_datapipe=file_opener) 1819
paragraph_aggregator = 1820

ParagraphAggregator(source_datapipe=line_reader) 1821
batcher = Batcher(datapipe=paragraph_aggregator , 1822

batch_size =16) 1823
for batch in batcher: 1824

print(batch) 1825
[observation] 1826
Status: Executable 1827
Output: 1828
[('./ torchdata -programming -tasks/task_82/file_0.tx...is 1829

line 98 of file 4\nThis is line 99 of file 4')] 1830
-------------------- Subtask 5 on CoAE -------------------- 1831
[subtask] 1832
5. Shuffle the batches using shuffle API 1833
[exploratory code] 1834
import torchdata 1835
from torchdata.datapipes.iter import FileLister , 1836

IoPathFileOpener , LineReader , ParagraphAggregator , 1837
Batcher , InBatchShuffler 1838

root = "./ torchdata -programming -tasks/task_82" 1839
file_lister = FileLister(root=root) 1840
file_opener = IoPathFileOpener(source_datapipe=file_lister) 1841
line_reader = LineReader(source_datapipe=file_opener) 1842
paragraph_aggregator = 1843

ParagraphAggregator(source_datapipe=line_reader) 1844
batcher = Batcher(datapipe=paragraph_aggregator , 1845

batch_size =16) 1846
shuffler = InBatchShuffler(datapipe=batcher) 1847
for shuffled_batch in shuffler: 1848

print(shuffled_batch) 1849
[observation] 1850
Status: Executable 1851
Output: 1852
[('./ torchdata -programming -tasks/task_82/file_4.tx...is 1853

line 98 of file 2\nThis is line 99 of file 2')] 1854
--------------------- Subtask 6 on CoAE -------------------- 1855
[subtask] 1856
6. Cache and hold the processed data in memory 1857
[exploratory code] 1858
import torchdata 1859
from torchdata.datapipes.iter import FileLister , 1860

IoPathFileOpener , LineReader , ParagraphAggregator , 1861
Batcher , InMemoryCacheHolder 1862

from typing import Tuple 1863
root = "./ torchdata -programming -tasks/task_82" 1864
file_lister = FileLister(root=root) 1865
file_opener = IoPathFileOpener(source_datapipe=file_lister) 1866
line_reader = LineReader(source_datapipe=file_opener) 1867
paragraph_aggregator = 1868

ParagraphAggregator(source_datapipe=line_reader) 1869
batcher = Batcher(datapipe=paragraph_aggregator , 1870

batch_size =16) 1871
cache_holder = InMemoryCacheHolder(source_dp=batcher) 1872
for data in cache_holder: 1873

print(data) 1874
[observation] 1875
Status: Executable 1876
Output: 1877
[('./ torchdata -programming -tasks/task_82/file_0.tx...is 1878

line 98 of file 4\nThis is line 99 of file 4')] 1879
</explorations_experience > 1880

21

Refer to relevant APIs information:1881
<library_documents >1882
{# We omit the API information for simplicity}1883
</library_documents >1884
Now make use of the experience and supplemented APIs to1885

complete the function.1886
Note that the subtasks may not directly related to the user1887

requirement , excessive or unnecessary API calls may1888
exist. But they are to help you understand the1889
library 's APIs behavior and usage. You have to1890
reorganize API call sequence , add your own1891
implementation to help transforming the data format1892
between API calls.1893

---------------------- Final Solution ----------------------1894
from torchdata.datapipes.iter import *1895
from typing import List , Tuple1896
import torch1897
def build_text_data_pipe(1898

root: str ="./ torchdata -programming -tasks/task_82",1899
Directory containing text files1900

batch_size: int=16, # Batch size1901
):1902
file_lister = FileLister(root=root)1903
file_opener =1904
IoPathFileOpener(source_datapipe=file_lister)1905

line_reader = LineReader(source_datapipe=file_opener)1906
paragraph_aggregator =1907
ParagraphAggregator(source_datapipe=line_reader)1908

batcher = Batcher(datapipe=paragraph_aggregator ,1909
batch_size=batch_size)1910

shuffler = InBatchShuffler(datapipe=batcher)1911
cache_holder = InMemoryCacheHolder(source_dp=shuffler)1912
return cache_holder1913

------------------------- Analysis -------------------------1914
We can find that during CoAE , ExploraCoder increamentally1915

reuse APIs invocations from prior subtask , and1916
experiments with new API invocations and observe their1917
behaviour. Eventually , ExploraCoder manage to find a1918
successful API exploration trace , helping it to1919
generate correct final solution.19201921

Listing 10: A successful example for intermediate self-
debug on ExploraCoder.

1922
[API invocation subtask]1923
Load the text data from the zip file using1924

load_text_data_from_zip1925
----------------- failed experimental code -----------------1926
[code]1927
import torchdata1928
from torchdata.datapipes.iter import FileLister ,1929

ZipArchiveLoader , FileOpener1930
from torchdata.datapipes.utils.common import StreamWrapper1931

1932
define test inputs1933
root = './torchdata -programming -tasks/task_89 '1934
file_path =1935

'./torchdata -programming -tasks/task_89/file_0.zip '1936
1937

Load text data from the zip file1938
file_stream = open(file_path , 'rb ')1939
zip_loader = ZipArchiveLoader ([(file_path ,1940

StreamWrapper(file_stream))])1941
file_opener = FileOpener(zip_loader)1942

1943
Iterate over the file opener to get text data1944
for file_info in file_opener:1945

file_path , file_stream = file_info1946
text_data = file_stream.read()1947
print(f"Text Data from {file_path }: {text_data }")1948

1949
file_stream.close()1950
[onservation]1951
Status: failed1952
Output:1953
Error Message:1954
TypeError: Expected string type for pathname , but got1955

<class 'tuple '>1956
This exception is thrown by __iter__ of1957

FileOpenerIterDataPipe(datapipe=1958
ZipArchiveLoaderIterDataPipe , encoding=None , length=-1,1959

mode='r')1960
Error traceback at:1961
- line 15 in <module >: for file_info in file_opener:1962
- line 212 in get_file_binaries_from_pathnames: raise1963

TypeError (" Expected string type for pathname , but got1964
{}"1965

1966
------------------- fixed by self -debug -------------------1967
[code]1968
import torchdata1969
from torchdata.datapipes.iter import FileLister ,1970

ZipArchiveLoader , FileOpener1971
from torchdata.datapipes.utils.common import StreamWrapper1972

1973
User -defined test inputs1974
root = './torchdata -programming -tasks/task_89 '1975

file_path = 1976
'./torchdata -programming -tasks/task_89/file_0.zip ' 1977

1978
Load text data from the zip file 1979
file_stream = open(file_path , 'rb ') 1980
zip_loader = ZipArchiveLoader ([(file_path , 1981

StreamWrapper(file_stream))]) 1982
1983

Iterate over the zip loader to get text data 1984
for file_info in zip_loader: 1985

file_path , file_stream = file_info 1986
text_data = file_stream.read() 1987
print(f"Text Data from {file_path }: {text_data }") 1988

[observation] 1989
Status: success 1990
Output: 1991
Text Data from torchdata -programming -tasks/task_89/ 1992
file_0.zip/file_0_0.txt: b'...' 1993
... omit 3 lines ... 1994
tasks/task_89/file_0.zip/file_0_4.txt: b'...' 1995
------------------------- Analysis ------------------------- 1996
In ExploraCoder 's initial experimental code , it incorrectly 1997

hallucinates the usage of FileOpener. However , after a 1998
round of self -debugging , ExploraCoder is able to 1999
correct this simple API misuse and successfully 2000
observe behavior from the correct API invocation. 20012002

Listing 11: A failed example for Self-Repair.
2003

[requirement] 2004
Load text data from files under a given directory , process 2005

the text data into paragraphs , create mini -batches of 2006
paragraphs , and shuffle the batches. The processed 2007
data should be cached and held in memory. 2008

-------------------- initial candidate -------------------- 2009
[code] 2010
from torchdata.datapipes.iter import * 2011
from typing import List , Tuple 2012
import torch 2013
def process_paragraphs_map_fn(paragraph: Tuple[str , str]) 2014

-> str: 2015
file_name = paragraph [0] 2016
paragraph_content = paragraph [1] 2017
return paragraph_content 2018

def build_text_data_pipe(2019
root: str ="./ torchdata -programming -tasks/task_82", 2020

Directory containing text files 2021
batch_size: int=16, # Batch size 2022

): 2023
data_pipe = FileLister(root) >> IoPathFileLister () >> 2024
FileOpener () >> LineReader () 2025

data_pipe = data_pipe.map(process_paragraphs_map_fn) >> 2026
Batcher(batch_size=batch_size) >> InMemoryCacheHolder () 2027

data_pipe = data_pipe >> Shuffler () 2028
return data_pipe 2029

list_dp = 2030
list(build_text_data_pipe(root ="./ torchdata -programming 2031

-tasks/task_82", batch_size =4)) 2032
[execution result] 2033
Status: failed 2034
Error message: 2035
TypeError: __init__ () missing 1 required positional 2036

argument: 'root ' 2037
Error traceback at: 2038
- line 23 in <module >: list_dp = 2039

list(build_text_data_pipe(root ="./ torchdata -programming 2040
-tasks/task_82", batch_size =4)) 2041
- line 18 in build_text_data_pipe: data_pipe = 2042

FileLister(root) >> IoPathFileLister () >> FileOpener () 2043
>> LineReader () 2044

------------------- round 1 self -repair ------------------- 2045
[feedback] 2046
The error message indicates that the `FileLister ` class in 2047

the `build_text_data_pipe ` function is missing the 2048
required positional argument `root `. The `FileLister ` 2049
class expects the root directory containing text files 2050
as an argument. To resolve this error , make sure to 2051
provide the `root ` argument when creating the 2052
`FileLister ` instance in the `build_text_data_pipe ` 2053
function. 2054

[code] 2055
from torchdata.datapipes.iter import * 2056
from typing import List , Tuple 2057
import torch 2058

2059
def process_paragraphs_map_fn(paragraph: Tuple[str , str]) 2060

-> str: 2061
file_name = paragraph [0] 2062
paragraph_content = paragraph [1] 2063
return paragraph_content 2064

2065
def build_text_data_pipe(2066

root: str ="./ torchdata -programming -tasks/task_82", 2067
Directory containing text files 2068

batch_size: int=16, # Batch size 2069
): 2070
""" 2071

22

Load text data from files under a given directory ,2072
process the text data into paragraphs , create2073
mini -batches of paragraphs , and shuffle the batches.2074
The processed data should be cached and held in memory.2075

"""2076
data_pipe = FileLister(root=root) >> IoPathFileLister ()2077
>> FileOpener () >> LineReader ()2078

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>2079
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()2080

data_pipe = data_pipe >> Shuffler ()2081
2082

return data_pipe2083
list_dp = list(build_text_data_pipe2084
(root ="./ torchdata -programming -tasks/task_82",2085

batch_size =4))2086
Status: failed2087
Error message:2088
TypeError: __init__ () missing 1 required positional2089

argument: 'root '2090
Error traceback at:2091
- line 23 in <module >: list_dp = list2092
(build_text_data_pipe(root ="./ torchdata -programming -2093
tasks/task_82", batch_size =4))2094
- line 18 in build_text_data_pipe: data_pipe =2095

FileLister(root=root) >> IoPathFileLister () >>2096
FileOpener () >> LineReader ()2097

------------------- round 2 self -repair -------------------2098
[feedback]2099
The error message indicates that the `FileLister ` class in2100

the `build_text_data_pipe ` function is missing the2101
required positional argument `root `. The `FileLister `2102
class expects the root directory containing text files2103
as an argument. To resolve this error , make sure to2104
provide the `root ` argument when creating the2105
`FileLister ` instance in the `build_text_data_pipe `2106
function.2107

[code]2108
from torchdata.datapipes.iter import *2109
from typing import List , Tuple2110
import torch2111
def process_paragraphs_map_fn(paragraph: Tuple[str , str])2112

-> str:2113
file_name = paragraph [0]2114
paragraph_content = paragraph [1]2115
return paragraph_content2116

def build_text_data_pipe(2117
root: str ="./ torchdata -programming -tasks/task_82",2118

Directory containing text files2119
batch_size: int=16, # Batch size2120

):2121
"""2122
Load text data from files under a given directory ,2123
process the text data into paragraphs , create2124
mini -batches of paragraphs , and shuffle the batches.2125
The processed data should be cached and held in memory.2126

"""2127
data_pipe = FileLister(root=root) >> IoPathFileLister ()2128
>> FileOpener () >> LineReader ()2129

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>2130
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()2131

data_pipe = data_pipe >> Shuffler ()2132
return data_pipe2133

list_dp = list(build_text_data_pipe(root ="./ torchdata2134
-programming -tasks/task_82", batch_size =4))2135
[execution result]2136
Status: failed2137
Error message:2138
TypeError: __init__ () missing 1 required positional2139

argument: 'root '2140
Error traceback at:2141
- line 23 in <module >: list_dp =2142

list(build_text_data_pipe(root ="./ torchdata -programming2143
-tasks/task_82", batch_size =4))2144
- line 18 in build_text_data_pipe: data_pipe =2145

FileLister(root=root) >> IoPathFileLister () >>2146
FileOpener () >> LineReader ()2147

------------------- round 3 self -repair -------------------2148
[feedback]21492150

Listing 12: A failed example for Self-Repair (Cont.).
2151

The error message indicates that the `build_text_data_pipe `2152
function is missing the required positional argument2153
`root `. In this case , the `FileLister ` class expects2154
the `root ` argument to be provided. To resolve this2155
issue , make sure to pass the `root ` argument when2156
calling the `build_text_data_pipe ` function.2157

[code]2158
from torchdata.datapipes.iter import *2159
from typing import List , Tuple2160
import torch2161
def process_paragraphs_map_fn(paragraph: Tuple[str , str])2162

-> str:2163
file_name = paragraph [0]2164
paragraph_content = paragraph [1]2165
return paragraph_content2166

def build_text_data_pipe(2167

root: str = 2168
"./ torchdata -programming -tasks/task_82", # Directory 2169
containing text files 2170

batch_size: int = 16, # Batch size 2171
): 2172
""" 2173
Load text data from files under a given directory , 2174
process the text data into paragraphs , create 2175
mini -batches of paragraphs , and shuffle the batches. 2176
The processed data should be cached and held in memory. 2177

""" 2178
data_pipe = FileLister(root=root) >> IoPathFileLister () 2179
>> FileOpener () >> LineReader () 2180

data_pipe = data_pipe.map(process_paragraphs_map_fn) >> 2181
Batcher(batch_size=batch_size) >> InMemoryCacheHolder () 2182

data_pipe = data_pipe >> Shuffler () 2183
return data_pipe 2184

list_dp = list(build_text_data_pipe(2185
root ="./ torchdata -programming -tasks/task_82", batch_size =4)) 2186
------------------ round 4-5 self -repair ------------------ 2187
... omit for simplicity ... 2188
------------------- round 6 self -repair ------------------- 2189
[feedback] 2190
The error message indicates that the 'root ' argument is 2191

missing when creating the FileLister data pipe. The 2192
FileLister API expects the root argument to be 2193
provided , but it is not being passed correctly in the 2194
build_text_data_pipe function. To resolve this issue , 2195
ensure that the 'root ' argument is correctly passed 2196
when creating the FileLister data pipe within the 2197
build_text_data_pipe function. 2198

[code] 2199
from torchdata.datapipes.iter import * 2200
from typing import List , Tuple 2201
import torch 2202

2203
def process_paragraphs_map_fn(paragraph: Tuple[str , str]) 2204

-> str: 2205
file_name = paragraph [0] 2206
paragraph_content = paragraph [1] 2207
return paragraph_content 2208

2209
def build_text_data_pipe(2210

root: str = 2211
"./ torchdata -programming -tasks/task_82", # Directory 2212
containing text files 2213

batch_size: int = 16, # Batch size 2214
): 2215
""" 2216
Load text data from files under a given directory , 2217
process the text data into paragraphs , create 2218
mini -batches of paragraphs , and shuffle the batches. 2219
The processed data should be cached and held in memory. 2220

""" 2221
data_pipe = FileLister(root=[root]) >> 2222
IoPathFileLister () >> FileOpener () >> LineReader () 2223

data_pipe = data_pipe.map(process_paragraphs_map_fn) >> 2224
Batcher(batch_size=batch_size) >> InMemoryCacheHolder () 2225

data_pipe = data_pipe >> Shuffler () 2226
return data_pipe 2227

list_dp = list(build_text_data_pipe(2228
root ="./ torchdata -programming -tasks/task_82", batch_size =4)) 2229
[execution result] 2230
Status: failed 2231
Error message: 2232
TypeError: __init__ () missing 1 required positional 2233

argument: 'root ' 2234
Error traceback at: 2235
- line 23 in <module >: list_dp = list(build_text_data_pipe(2236
root ="./ torchdata -programming -tasks/task_82", 2237

batch_size =4)) 2238
- line 18 in build_text_data_pipe: data_pipe = 2239

FileLister(root=[root]) >> IoPathFileLister () >> 2240
FileOpener () >> LineReader () 2241

------------------------- Analysis ------------------------- 2242
In the initial code solution , Self -Repair severely misuses 2243

the Torchdata library. Specifically , it incorrectly 2244
assumes that Torchdata APIs can be chained using “”>>, 2245
and this incorrect API usage pattern propagates 2246
throughout the entire LLM -decoded API invocation 2247
sequence. Despite receiving clear error messages in 2248
each round of Self -Repair , the system fails to correct 2249
the code because its initial solution deviates 2250
significantly from the canonical implementation. 22512252

23

	Introduction
	Related Work
	ExploraCoder Framework
	Task Definition
	Planning for API invocation
	API Recommendation
	Chain of API Exploration

	Benchmark Construction
	Experiments
	Experimental setups
	Multi-API invocations using LLMs with varying prior API knowledge
	Experience exploitation for ExploraCoder
	Comparing with related approaches
	Ablation study

	Conclusion
	Limitations
	Appendix
	Comparing ExploraCoder with related approaches
	Feature Comparison
	Computational Comparison
	Implementation details of KnowAgent and ReAct

	Additional comparison with NL-2-SQL methods.
	ExploraCoder vs. Repeated-Sampling
	Quantitative analysis for ExploraCoder
	Quantitative analysis for CoAE
	The effectiveness of task planning module in ExploraCoder
	The effectiveness of API recommendation module in ExploraCoder

	Construction of Torchdata-Manual
	Generalizabiliy of ExploraCoder on More Unseen Libraries Settings
	Construction of MonkBeatEval
	Evaluation Results on MonkBeatEval

	Evaluating prior API knowledge retention in API-pretrained and API-untrained base models
	Disccussion of fairness comparison between gpt-4-0613 and gpt-4-1106-preview.
	Additional implementation details
	Case study

