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Abstract

Mainstream unsupervised anomaly detection algo-
rithms often excel in academic datasets, yet their
real-world performance is restricted due to the
controlled experimental conditions involving clean
training data. Addressing the challenge of training
with noise, a prevalent issue in practical anomaly
detection, is frequently overlooked. In a pioneering
endeavor, this study delves into the realm of label-
level noise within sensory time-series anomaly de-
tection (TSAD). This paper presents a novel and
practical TSAD when the training data is contam-
inated with anomalies. The introduced approach,
called TSAD-C, is devoid of access to abnormality
labels during the training phase. TSAD-C encom-
passes three modules: a Decontaminator to rec-
tify anomalies present during training and swiftly
prepare the decontaminated data for subsequent
modules; a Long-range Variable Dependency Mod-
eling module to capture long-range intra-variable
and inter-variable dependencies within the decon-
taminated data that is considered as a surrogate
of the pure normal data; and an Anomaly Scoring
module that leverages insights of the first two mod-
ules to detect all types of anomalies. Our extensive
experiments conducted on four reliable, diverse,
and challenging datasets conclusively demonstrate
that TSAD-C surpasses existing methods, thus es-
tablishing a new state-of-the-art in the TSAD field.

1 INTRODUCTION

Multivariate time-series data (MTS) is referred to as time-
stamped data that consists of multiple variables, i.e., for
each timestamp, there are multiple values associated with
it. Time-series anomaly detection (TSAD) is the process
of detecting unusual patterns or events within time-series

data that deviate from the expected behavior Schmidl et al.
[2022]. The unusual patterns can be found in many real-
world applications such as instances of financial fraud,
abrupt temperature spikes or unforeseen precipitation in
weather data, security breaches, system malfunctions, and
irregularities in brain activities. Many algorithms have been
proposed to detect anomalies in time-series data Su et al.
[2019], Audibert et al. [2020], Deng and Hooi [2021], Chen
et al. [2022], Yang et al. [2023], Ho and Armanfard [2023],
Chen et al. [2024], Sun et al. [2024], Fang et al. [2024].
However, several critical challenges remain unresolved.

First, existing studies can be categorized into two groups,
which are supervised methods utilizing both labeled normal
and abnormal data in the training phase Lai et al. [2024],
and unsupervised methods assuming that only normal data
is available during training Yang et al. [2023]. Given the
demanding nature of accurately labeling anomalous patterns
– proving to be time-consuming, costly, and labor-intensive
– supervised approaches are deemed impractical. Conse-
quently, there has been a recent surge in the development
of unsupervised approaches. However, in many real-world
applications, anomalies often sneak into normal data, which
come from the data shift or human misjudgment Jiang et al.
[2022]. These unsupervised methods are sensitive to the
seen anomalies due to their exhaustive strategy to model the
normal training data, hence, they would misdetect similar
anomaly samples in the test phase. Therefore, developing
a method that can detect anomalies while being trained on
contaminated data is necessary, yet there is no method that
has aimed to tackle this challenge in the TSAD field (i).

Second, it is important to capture both intra-variable (aka
temporal) and inter-variable (aka spatial) dependencies in
MTS Ho et al. [2025]. However, existing studies are unable
to effectively capture them. Regarding the intra-variable de-
pendencies, they often preprocessed data by segmenting the
signals into short time intervals Lai et al. [2024], or applied
conventional networks such as recurrent neural networks or
transformers Yang et al. [2023]. Such learned dependencies
imply that observations close to each other are expected to



be similar. This is problematic as trends, seasonality and
unpredictability are always present in MTS Ho et al. [2025].
Thus, developing a method that can handle the long-range
intra-variable dependencies to aid in distinguishing normal
and abnormal variations in MTS is crucial (ii).

Regarding the inter-variable dependencies, very recently,
graphs have brought the potential to model the relation-
ships between variables (sensors) in MTS. By representing
variables as nodes and their connections as edges, graphs
provide an intuitive way to understand the underlying rela-
tionships between variables - a useful property in TSAD.
For example, the changes in one variable can be used to
predict the changes in another if they are correlated. How-
ever, modeling graphs to effectively capture this dependency
type is challenging. Existing studies proposed to pre-define
graphs based on prior knowledge, e.g., the known locations
of sensors Tang et al. [2021], Ho and Armanfard [2023], Ho-
jjati et al. [2023]. However, in many real-world applications,
pre-defining the graph properties such as node locations and
node features is not practical due to dynamic testing envi-
ronments – e.g., electroencephalogram sensor locations in
comatose/epilepsy patients may vary depending on the brain
damaged regions. Hence, instead of pre-defining graphs, dy-
namically learning the graph over time is highly desirable.

Lastly, while long-range intra-variable and inter-variable
dependencies are both important for TSAD, designing an ef-
fective joint learning framework to capture them is yet chal-
lenging. Recent studies have shown that there are two groups
of a combined model: time-and-graph and time-then-graph
Gao and Ribeiro [2022]. The time-and-graph approach first
constructs graphs and then embeds a temporal network. On
the other hand, the time-then-graph framework first projects
time-series data to a temporal network, the extracted tem-
poral features are then used to model graphs. It is shown
that compared to the time-and-graph framework, the time-
then-graph approach achieves a significant improvement in
classification and regression tasks Gao and Ribeiro [2022],
Tang et al. [2023]. Yet, till now, no study has explored the
time-then-graph framework for unsupervised TSAD (iii).

Based on the above observations we propose a novel ap-
proach, called TSAD-C, that addresses (i)-(iii) challenges.
The Related Work section is provided in Appendix A. The
main contributions of this paper are described as follows:

• We propose a novel fully unsupervised approach,
namely TSAD-C, trained on contaminated data in an
end-to-end manner to detect all types of anomalies in
MTS. To the best of our knowledge, this is the first
study that uses contaminated data in the training phase
for TSAD, addressing a much more challenging prob-
lem than the existing studies.

• TSAD-C consists of three modules, namely Decontami-
nator, Long-range Variable Dependency Modeling, and
Anomaly Scoring. The initial module aims to identify

and eliminate abnormal patterns that are likely to be
anomalies. This step results in decontaminated data,
which is prepared swiftly for subsequent modules. The
second module is a time-then-graph approach that is de-
signed to model the long-range intra- and inter-variable
dependencies within the decontaminated data. The last
module computes anomaly scores to detect anomalies.

• The novel Decontaminator employs masking strate-
gies and a structure state space (S4)-based conditional
diffusion model, while the second module integrates
Intra-variable Modeling, and Inter-variable Modeling
components. The Anomaly Scoring module leverages
insights of the first two modules.

• Extensive experiments on four reliable, diverse, and
challenging datasets demonstrate that our method out-
performs existing studies, thus establishing a new state-
of-the-art in the TSAD field.

2 PROPOSED METHOD

A dataset is defined as X = (x(1),x(2), . . . ,x(N)), where
x(i) = (x1

(i), x
2
(i), . . . , x

K
(i)) is the ith observation in the time

series of N observations, x(i) ∈ RK×L, K and L denote
the number of variables (sensors) and the length of the ith
observation, respectively. Our task is to detect anomalous ob-
servations from all types in the test data Xtest by training the
model with contaminated data Xtrain. No information about
anomalies that contaminate normal data is provided during
training, such as their labels or their positions within the
time series. A validation set Xvalid is used for early stopping
and finding the decision threshold. The block diagram of
the proposed TSAD-C method, depicting the three modules,
is shown in Figure 1. Details of each module are presented
below. The pseudocodes are provided in Appendix B. The
source code is also available in the provided zip file.

2.1 DECONTAMINATOR

This module incorporates masking strategies and an S4-
based conditional diffusion model. As no information about
anomalies is provided during training, we propose masking
strategies to decontaminate the input data. The diffusion
model is then deployed to rectify anomalies, with S4 - a
noise estimator included to ensure that long-range intra-
variable dependencies are effectively captured. Notably, we
introduce a pioneering concept in the diffusion field, i.e.,
minimizing the noise error on masked portions for a simpler
and more streamlined training process. The decontaminated
data is then obtained by a single step during the reverse
process, which is a fast data preparation for subsequent
modules – a significant advantage for practical applications.

Masking Strategies. Following the practical scenarios, we
assume that normal samples significantly outnumber anoma-



Figure 1: The overall framework of TSAD-C consists of three modules: the Decontaminator integrates masking strategies and
an S4-based diffusion model, the Long-Range Variable Dependency Modeling module incorporates Intra- and Inter-variable
Modeling components; and the Anomaly Scoring module leverages insights from the preceding modules to detect anomalies.

lies. When masking a portion of Xtrain, both normal and ab-
normal patterns might be removed. As normal data predom-
inates in Xtrain, omitting some normal patterns is not likely
to yield detrimental consequences as the substantial amount
of remaining normal data can compensate for masked por-
tions. Conversely, masking can help reducing the proportion
of anomalies. This benefits the downstream module as it
facilitates the learning process of variable dependencies that
characterize the underlying behavior of normality.

We define a mask as v ∈ {0, 1}, v ∈ RK×L, where zeros
and ones denote the values to be masked and the values to
be kept, respectively. Hence, the ith masked observation is
xu
(i) = x(i) ⊙ v, where xu

(i) ∈ RK×L and ⊙ denotes point-
wise multiplication. We perform three masking scenarios,
namely random masking (RandM), random block mask-
ing (RandBM) and blackout masking (BoM) Alcaraz and
Strodthoff [2022]. We control the masking ratio by the hy-
perparameter r, which specifies the number of timestamps
to be masked. RandM randomly samples r to be masked
across variables. In RandBM, there might be no time overlap
between the masked windows across variables, whereas in
BoM, the same time window is masked across all variables.
Note that each masked window has the size of r.

S4-based Conditional Diffusion Model. This is developed
based on a diffusion model Croitoru et al. [2023] that in-
cludes the diffusion and reserve processes. In this paper, the
diffusion process incrementally adds Gaussian noise to the
initial stage of xu

(i), called x0
(i), over T diffusion steps:

p(x1
(i), . . . ,x

T
(i)|x

0
(i)) =

T∏
t=1

p(xt
(i)|x

t−1
(i) ), (1)

where p(xt
(i)|x

t−1
(i) ) := N (xt

(i);µ
t
(i), σ

t
(i)). This indicates

that xt
(i) is sampled from a normal distribution with mean

µt
(i) =

√
1− βtx

t−1
(i) and variance σt

(i) = βtI. I is the

identity matrix, βt ∈ (0, 1) is a variance scheduler that
controls the quantity of noise added at the tth diffusion
step. In our implementation, we increase βt linearly from
10−4 to 0.02. By setting αt = 1 − βt, ᾱt =

∏t
j=1 αj ,

the diffusion process allows to immediately transform
x0
(i) to a noisy xt

(i) according to βt in a closed form as
xt
(i) =

√
ᾱtx

0
(i)+

√
1− ᾱtϵt where the noise ϵt ∼ N (0, I),

ϵt ∈ RK×L. We add noise to both masked and non-masked
portions of x0

(i). As the diffusion step increases, x0
(i) grad-

ually loses its distinguishable features and approaches a
Gaussian distribution; hence, both anomalous and normal
patterns appear indistinguishable.

The reverse process is parameterized by θ as:

qθ(x
0
(i), . . . ,x

T−1
(i) |xT

(i)) =

T∏
t=1

qθ(x
t−1
(i) |xt

(i)), (2)

where each qθ(x
t−1
(i) |xt

(i)) := N (xt−1
(i) ;µθ(x

t
(i), t, c),

σθ(x
t
(i), t, c)

2I). µθ and σθ are parameterized as:

µθ(x
t
(i), t, c) =

1√
αt

(
xt
(i) −

βt√
1−ᾱt

ϵθ(x
t
(i), t, c)

)
,

σθ(x
t
(i), t, c) =

√
β̄t,

(3)

where β̄t =
1−ᾱt−1

1−ᾱt
βt and β̄1 = β1. ϵθ is a noise estimator,

which takes xt
(i), the diffusion step t and a conditional factor

c as the inputs and aims to predict the noise from xt
(i). c is a

concatenation of non-masked parts in xu
(i) and the positional

information of masked parts provided by v. This extra in-
formation facilitates our reverse process to distinguish the
zero portions of non-masked and masked parts.

Note that ϵθ plays a key role in our reverse process. Since
capturing long-range intra-variable dependencies is crucial,
we propose to build ϵθ based on S4 Gu et al. [2022] - a
recent deep sequence model with the concept of a state



Figure 2: The architecture of the Decontaminator includes
two S4 layers in every residual block to ensure that long-
range intra-variable dependencies are effectively captured.

space model (SSM). A continuous-time SSM maps xt
(i) to a

high dimensional state ht
(i) before projecting it to the output

yt
(i). This transition can be defined as:

h̃t
(i) = Aht

(i) +Bxt
(i) and yt

(i) = Cht
(i) +Dxt

(i), (4)

where A,B,C,D are transition matrices learned by gradient
descent. However, S4 shows that a discrete-time SSM can
be represented as a convolution operation by:

O := (CB,CAB, . . . , CA
L−1

B) , y(i) = O ∗ x(i), (5)

where A,B,C are the discretized matrices, CA
L−1

denotes
the multiplication of discretized matrices at L− 1, and O
is a SSM convolution kernel. D is omitted in Equation (5)
as Dxt

(i) can be viewed as a skip connection. S4 parameter-
izes A as a diagonal plus low rank matrix that enables fast
computation of O. It also includes the HiPPO matrices Gu
et al. [2020] capable of capturing long-term intra-variable
dependencies. We employ two S4 layers, one after the ad-
dition of the embeddings related to xu

(i) and another layer
after including c in the residual blocks, shown in Figure 2.

To have a simpler and more streamlined reverse process
during the training of ϵθ, we suggest minimizing the noise
error on the masked parts shown in Equation (6). Note that
the masked parts only consist of noise without any actual
data patterns, unlike the non-masked parts containing both
noise and the actual data patterns. Hence, deriving noise
estimated from the masked data is a more straightforward
task and can be accomplished using less intricate networks.
This approach also speeds up data preparation for subse-
quent modules. We provide Section 3.2.5 that compares two
optimization strategies: minimizing Lnoise on the masked
portions versus minimizing Lnoise on the entire observations
as done by prior diffusion studies Alcaraz and Strodthoff
[2022], Chen et al. [2024]. It shows that the former approach
yields superior performance, simplicity and applicability.

Lnoise = ∥ϵt ⊙ (1− v)− ϵ̂t ⊙ (1− v)∥2, (6)

where ϵ̂t is the predicted noise obtained from ϵθ(x
t
(i), t, c).

We then obtain the decontaminated data in the training as:

x̂0
(i) =

1√
ᾱT

(
xT
(i) −

√
1− ᾱT ϵ̂T

)
. (7)

Note that approximating x̂0
(i) by a single step (immediately

at the T th step) enables a faster reverse speed as x̂0
(i) serves

as the input for the second module during training. Mean-
while, during testing, we perform a complete sampling step
from T to 1 based on Equations (2) and (3) to obtain x̂0

(i).

Theoretical Analysis of Decontamination Effectiveness.
Reducing the fraction of anomalies (“impurity”) in the train-
ing data is crucial for accurate anomaly detection. Training
on less contaminated data helps the model learn normal
patterns more effectively, thereby improving its ability to
detect genuine anomalies.

We define N as the total number of training samples, Na

as the number of truly anomalous samples, ηa = Na

N as the
true anomaly ratio (with 0 < ηa < 0.5), ηe ∈ (0, 1) as the
estimated anomaly ratio chosen by the user, and ip1 = ηa
as the initial impurity level.

Impurity Reduction via Decontaminator Masking. During
training, the Decontaminator masks a fraction ηe of all sam-
ples uniformly at random. Hence, on average, ηeNa anoma-
lous samples are also masked. Since 0 < ηa < 0.5, the new
impurity level after decontamination is:

ip2 =
Na − ηeNa

N
= ηa (1− ηe).

Since 0 < ηe < 1, we have

ip2 = ηa (1− ηe) < ηa = ip1.

Thus, the impurity always strictly decreases compared to
the original contamination level.

User-Controlled Impurity Reduction. Users can control how
much to reduce the impurity by selecting ηe. Suppose one
wishes to reduce the original impurity ip1 = ηa to a fraction
α ∈ (0, 1):

ip2 = α ip1 = αηa.

Solving ηa(1− ηe) = αηa yields:

ηe = 1− α.

For instance, if α = 0.5, then one sets ηe = 0.5 to remove
50% of the initial impurity.

Robustness to Underestimation and Overestimation of ηa.
In practice, ηa is unknown. Nevertheless, the Decontam-
inator remains robust whether ηe is an underestimate or
overestimate.

Regarding underestimation (ηe < ηa), we still have ip2 =
ηa(1− ηe) < ηa = ip1. More specifically,

ip1 − ip21 < ip2 < ip1.



Hence, even if one underestimates the contamination level,
the Decontaminator still strictly reduces impurity.

Regarding overestimation (ηe ≥ ηa), we have

ip2 = ηa(1− ηe) ≤ ηa(1− ηa) = ip1 − ip21 ≤ ip1.

Since ηa < 0.5, the maximum of ip1 − ip21 over ηa ∈
(0, 0.5) is 0.25. Thus, ip2 ≤ 0.25. Even when a large frac-
tion of samples is masked (e.g., ηe = 0.7), as long as suffi-
cient normal data remains, the model can still learn normal
structure effectively.

Conclusion. Regardless of how ηe relates to ηa, the Decon-
taminator strictly reduces the contamination level in the
training set (ip2 < ip1). This guarantees a cleaner dataset,
where the model’s representations are primarily driven by
normal patterns. As a result, reconstruction-based anomaly
detection becomes more robust, even when ηa is inaccu-
rately estimated.

2.2 LONG-RANGE VARIABLE DEPENDENCY
MODELING

This module builds a time-then-graph framework, motivated
in Section 1-Paragraph 5, by incorporating two components:
Intra-variable Modeling and Inter-variable Modeling.

Intra-variable Modeling. We propose to leverage mul-
tiple back-to-back S4 layers to capture long-range intra-
variable dependencies. Specifically, we use x̂0

(i) ∈ RK×L

as the input and project it onto an embedding space, called
H(i) ∈ RK×Γ×U , where Γ and U are hyperparameters
defining the S4 embedding dimension. To maintain a sense
of the number of timestamps present in x(i), we set Γ to L,
corresponding to the input length. This allows us to model
long-term intra-variable dependencies within each variable.
H(i) is then used in the graph learning phase to model inter-
variable dependencies. Prior studies have shown the superior
performance of graph learning when using the temporal em-
bedding rather than the original data Tang et al. [2023].

Inter-variable Modeling. We represent H(i) as a set of
graphs G(i) = {Gm

(i)}
d
m=1, where d = Γ

g and g is the pre-
defined length of the short and non-overlapping time win-
dows within the ith observation. Since each observation can
encompass thousands of timestamps, constructing a graph
for every time step becomes inefficient and computationally
demanding. Hence, we create a graph over a defined time
window, which aids in information aggregation. This strat-
egy not only leads to a graph with reduced noise but also
facilitates faster computations Gao and Ribeiro [2022].

We define Gm
(i) = {Em

(i),Am
(i)}. Em

(i) ∈ RK×U denotes the
embedding derived by averaging the elements of H(i) along
its second dimension. Am

(i) ∈ RK×K is the adjacency ma-
trix. Each row and column in Am

(i) correspond to a node
(variable). The non-zero value indicates that there exists

an edge connecting the two nodes. We then employ a self-
attention paradigm Tang et al. [2023] in which attention
weights are assigned to the edges’ weights, represented as:
Q = Em

(i)W
Q, R = Em

(i)W
R,Am

(i) = softmax(QR⊤
√
D

),

where WQ,WR ∈ RU×U are the learnable weights that
project Em

(i) to the query Q and the key R, respectively.

To help guiding the graph learning process, we also include
a pre-defined adjacency matrix, called A′m

(i), based δ-nearest
neighbors. Its edge values are computed by the cosine simi-
larity between the nodes’ embeddings in Em

(i). We keep the
top δ edges that have the highest values for each node to
avoid overly connected graphs. In our experiments, δ = 3.
Hence, the final Am

(i) = ζA′m
(i) + (1 − ζ)Am

(i), where the
hyperparameter ζ ∈ [0, 1) balances the two components.

It is important to regularize the graph to ensure desired graph
properties such as smoothness (the features should change
smoothly between neighboring nodes), sparsity (avoiding
an overly connected graph) and connectivity (avoiding a
disconnected graph) Zhu et al. [2022]. Hence, we include
three constraints in the regularization loss as:

Lgraph =
1

d

d∑
m=1

ξ1Lsmooth(Em
(i),Am

(i))+

ξ2Lsparse(Am
(i)) + ξ3Lconnect(Am

(i)),

(8)

where Lsmooth = 1
K2 tr(Em⊤

(i) MLapEm
(i)), MLap = Mdegree −

Am
(i) is the Laplacian matrix, Mdegree is the degree matrix of

Am
(i), and tr(·) denotes the trace. Lsparse =

1
K2 ∥Am

(i)∥
2
F and

∥ · ∥F is the Frobenius norm. Lconnect = − 1
K 1⊤ log(Am

(i) ·
1), and 1 ∈ RK×1 is a matrix of ones. ξ1, ξ2 and ξ3 are
hyperparameters defined to balance the terms in Lgraph.

We then leverage a graph isomorphism network (GIN),
which shows a strong representational power Xu et al.
[2019] to capture inter-variable dependencies between nodes
in Gm

(i). The embedding of nodes in Gm
(i) is represented

as zm(i) := GIN(Em
(i),Am

(i)), zm(i) ∈ RK×g×U . We con-
catenate the node embeddings of all graphs within G(i)

as Z(i) = concat(z1(i), . . . , z
d
(i)). Finally, a linear layer is

added to obtain reconstructed data ˆ̂x(i) := Linear(Z(i)),
ˆ̂x(i) ∈ RK×L. Thus, the reconstruction loss is denoted as:

Lrecon = ∥x̂0
(i) − ˆ̂x(i)∥2. (9)

The final loss in the training phase is defined as :

L = Lnoise + Lgraph + Lrecon. (10)

2.3 ANOMALY SCORING

In the test phase, we compute an anomaly score based the
root mean square error (RMSE) for each x(i). Specifically,



we project x(i) to the Decontaminator where masking strate-
gies and the complete sampling step from T to 1 are applied
to obtain x̂0

(i). If x(i) is an anomaly, the masked portions are
expected to be inaccurately sampled. Additionally, instead
of using x̂0

(i) as the input for the second module as done
during training, x(i) is directly used to obtain ˆ̂x(i) in the
test phase. The assumption is that if x(i) is an anomaly, the
second module with the goal of achieving the flawless recon-
struction of normal patterns would be unable to reconstruct
it. The final score s for each x(i) is computed as:

s1 =
(

1
L

L∑
l=1

K∑
k=1

(
(x̂0

(i) − x(i))⊙ (1− v)
)2)0.5

,

s2 =
(

1
L

L∑
l=1

K∑
k=1

(
ˆ̂x(i) − x(i)

)2)0.5

,

s = λ1s1 + λ2s2,
(11)

where s1 and s2 are, respectively, the RMSE scores obtained
from the first and second modules. λ1 and λ2 are hyperpa-
rameters defined to ensure that scores from both modules
fall within a similar numeric range. For a fair comparison,
they are fixed across all experiments and datasets.

We conduct a decision threshold search on the unlabeled
Xvalid, deviating from the TSAD practice where the thresh-
old is selected on a labeled set Carmona et al. [2022], Chen
et al. [2022]. This approach is impractical for unsupervised
applications where labeled data is unavailable. This may
also lead to overfitting when labeled data is not sufficient to
represent the distribution of anomalies, a common challenge
in TSAD. In our case, we determine the threshold τ by a
quantile approach Kuan et al. [2017] applied to anomaly
scores obtained from the unlabeled Xvalid. Specifically, we
select a quantile based on a rough estimation of the per-
centage of normal data in Xvalid, as provided by the dataset
provider. For instance, if about 20% of the data is con-
taminated, we set the quantile to 80%. In the test phase,
observations with s above τ are detected as anomalies. Note
that there is no overlap between Xtrain, Xvalid, and Xtest.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

This section introduces the datasets, baselines and evaluation
metrics in our study. Implementation details are provided in
Appendix E. Due to the diversity in dataset characteristics
and dimensions, we present dedicated discussions on TSAD-
C’s computational cost and scalability in Appendix G.

Datasets. Many TSAD methods have relied on benchmark
datasets such as Yahoo, NASA, SWaT, WADI, SMAP, and
MSL. However, these datasets are unreliable due to (i) mis-
labeled ground truth, (ii) triviality, (iii) unrealistic anomaly
density and (iv) run-to-failure bias Wu and Keogh [2021].
This renders them unsuitable for evaluating TSAD methods.

Table 1: The numbers of observations are shown in Xtrain,
Xvalid and Xtest of each dataset, with the anomaly ratio η
in parentheses. fs is the sampling rate (in Hertz), K is the
number of variables, and L is the length of an observation.

Dataset Xtrain (η) Xvalid (η) Xtest (η) fs K L

SMD 1624 (10.3%) 276 (7.97%) 416 (33.8%) 1
60 38 600

ICBEB 910 (20.0%) 82 (20.7%) 222 (59.9%) 100 12 6,000

DODH 2515 (19.8%) 320 (21.8%) 310 (51.6%) 250 16 7,500

TUSZ 5275 (17.0%) 1055 (20.0%) 1581 (40.0%) 200 19 12,000

Aware of these issues, we carefully select four datasets that
are reliable, diverse, yet challenging. They are recorded us-
ing various sensor systems, each varying in the number and
types of sensors, leading to distinct characteristics. These
include SMD Su et al. [2019], ICBEB Liu et al. [2018],
DODH Guillot et al. [2020], and TUSZ Shah et al. [2018].

Specifically, SMD is an industrial dataset consisting of five
weeks of data from 28 server machines and widely used
in the TSAD field. While not perfect, SMD is considered
of much higher quality compared to criticized benchmarks
Wagner et al. [2023] (see Appendix C.1). ICBEB, DODH
and TUSZ are well-established yet challenging datasets
from the biomedical domain, have not received criticisms (i)-
(iv), and importantly, they reflect real-world scenarios with
diverse anomaly types, while other datasets such as SMD
contain only one anomaly type. ICBEB is an ECG database,
consisting of normal heart rhythms and five anomaly types.
DODH is a sleep database, with the deepest sleep stage
as normal and two anomaly sleep types. TUSZ is an EEG
database, with normal resting-state brain activities and two
anomaly seizure types. Statistics of each dataset are shown
in Table 1, with further details in Appendix C. Note that we
include 10-20% anomalies of all types in Xtrain to contami-
nate normal data during training, increasing the challenge
for algorithms to detect all anomaly types in the test phase.

Baselines. We compare TSAD-C against 12 SOTA unsu-
pervised methods from the TSAD literature, ranging from
autoencoders, self-supervised, transformers to diffusion ap-
proaches. For a fair comparison, we do not include methods
that require transfer learning with any additional datasets.
We categorize all methods into three groups based on their
ability to capture either Intra-, Inter- or Both-variable de-
pendencies. Specifically, Intra- methods include USAD Au-
dibert et al. [2020], LSTM-AE Wei et al. [2023], S4-AE
Gu et al. [2022] and DCdetector Yang et al. [2023]. Inter-
methods are GAE Du et al. [2022], GDN Deng and Hooi
[2021], and EEG-CGS Ho and Armanfard [2023]. Meth-
ods addressing Both- include InterFusion Li et al. [2021],
DVGCRN Chen et al. [2022], GRU-GNN and GraphS4mer
Tang et al. [2023], IMDiffusion Chen et al. [2024] and our
method. Details of the baselines are shown in Appendix D.

Evaluation Metrics. We employ F1-score (F1), Recall



Table 2: Comparison of existing methods and TSAD-C. The best and second-best scores are in bold and underlined.

G
ro

up Method
SMD ICBEB DODH TUSZ Average

F1 Rec APR F1 Rec APR F1 Rec APR F1 Rec APR F1

In
tr

a-

USAD 0.261 0.227 0.398 0.579 0.485 0.705 0.355 0.419 0.514 0.450 0.393 0.581 0.411
LSTM-AE 0.332 0.411 0.445 0.609 0.651 0.752 0.534 0.706 0.643 0.471 0.424 0.592 0.486

S4-AE 0.313 0.305 0.432 0.664 0.735 0.749 0.625 0.821 0.713 0.527 0.576 0.615 0.532
DCdetector 0.318 0.276 0.448 0.626 0.598 0.718 0.442 0.550 0.576 0.485 0.447 0.600 0.468

In
te

r-

GAE 0.241 0.191 0.395 0.575 0.454 0.746 0.480 0.613 0.604 0.508 0.476 0.625 0.451
GDN 0.301 0.283 0.423 0.586 0.515 0.741 0.524 0.687 0.636 0.456 0.398 0.585 0.467

EEG-CGS 0.295 0.291 0.415 0.561 0.470 0.740 0.502 0.650 0.620 0.516 0.490 0.619 0.469

B
ot

h-

InterFusion 0.383 0.504 0.490 0.649 0.651 0.753 0.418 0.512 0.559 0.532 0.520 0.628 0.496
GRU-GNN 0.329 0.383 0.440 0.647 0.689 0.742 0.587 0.806 0.684 0.506 0.474 0.613 0.517
DVGCRN 0.323 0.305 0.442 0.615 0.575 0.744 0.480 0.612 0.604 0.397 0.322 0.554 0.479

GraphS4mer 0.405 0.567 0.514 0.638 0.667 0.738 0.565 0.762 0.667 0.524 0.511 0.621 0.533
IMDiffusion 0.426 0.603 0.533 0.611 0.553 0.750 0.544 0.725 0.651 0.381 0.452 0.532 0.491

TSAD-C 0.479 0.801 0.604 0.707 0.841 0.773 0.652 0.843 0.728 0.545 0.830 0.652 0.596

(Rec), and Area Under the Precision-Recall Curve (APR) to
comprehensively assess the performance of each method.

3.2 EXPERIMENTAL RESULTS

3.2.1 Comparison with State-of-the-Art

The performances of all methods are presented in Table 2,
where TSAD-C uses RandBM. It shows that TSAD-C sur-
passes all existing studies and achieves an average improve-
ment of 6.3% in F1 compared to the second-best method.
TSAD-C also obtains a significant improvement in Rec – the
ability to correctly detect most of anomalies. This improve-
ment is crucial when dealing with contaminated data, where
existing methods failed to detect the anomaly types similar
to those encountered during training due to their assump-
tion of clean training data, leading to misdetection of such
anomalies. Additionally, existing methods handling Both-
generally outperform those addressing only one dependency
type, supporting our assumption that both dependency types
are crucial. For example, GraphS4mer outperforms mod-
els that focus on a single dependency type, such as USAD,
which addresses only temporal aspects, or GAE, which fo-
cuses on spatial dependencies. Moreover, methods handling
long-range Intra- (e.g., S4-AE) outperform those concentrat-
ing solely on Inter-. This suggests that while inter-variable
dependencies are also important, they often represent vari-
able relationships that can be captured over shorter temporal
windows, which might miss the broader temporal context
necessary to detect anomalies effectively.

3.2.2 Resilience to Contamination Levels

This section verifies TSAD-C’s performance through two
additional experiments on ICBEB: (1) varying the number of
anomaly types and (2) varying the anomaly ratio η in Xtrain
and Xvalid. We also select five methods, each achieving high
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Figure 3: (Left) F1 score versus the number of anomaly
types κ. (Right) F1 score versus the anomaly ratio η.

performance within its category, for comparison.

Variability on The Anomaly Types. We assess TSAD-
C’s performance in detecting five anomaly types available
in Xtest while not all types are present in Xtrain and Xvalid.
We introduce κ as the number of anomaly types – e.g.,
κ = 2 signifies two anomaly types present in Xtrain and
Xvalid. Note that η remains constant. Figure 3 (Left) shows
that the performance of existing methods diminishes as κ
increases since they all assume the input data as pure normal
data, hence are incapable of handling contaminated data.
Remarkably, TSAD-C consistently attains the highest F1,
irrespective of changes in κ. This underlines our method’s
denoising prowess as it remains effective regardless of the
diversity in available anomaly types.

Variability on The Anomaly Ratio. We investigate the ro-
bustness of TSAD-C by varying η. Note that all anomaly
types (κ = 5) are present within each subset of the dataset
for this experiment. Figure 3 (Right) shows the consistent
performance of TSAD-C across different anomaly ratios,
demonstrating the Decontaminator’s effectiveness in TSAD-
C. Meanwhile, the performance of other unsupervised meth-
ods tends to decline as normal data impurity increases.



3.2.3 Visualization of Normal Approximation

Figure 4 shows a visualization comparing the ground truth
x(i), decontaminated data x̂0

(i), and reconstructed data ˆ̂x(i)

of a masked segment of normal and abnormal samples in
DODH. Visualizations on other datasets are shown in Ap-
pendix F. The segment of x(i) is masked to zeros using
BoM, before being processed by the Decontaminator. It is
shown that x̂0

(i) and ˆ̂x(i) fit x(i) very well in the normal case,
leading to a lower s. Meanwhile, there are significant fluc-
tuations of x̂0

(i) and ˆ̂x(i) compared to x(i) in the abnormal
case, resulting in a much higher s. This shows TSAD-C’s
effectiveness in distinguishing anomalies from normal data.

Figure 4: Comparison between normal and abnormal cases
for the masked segment in DODH. Sen-k denotes the kth
sensor. Each case includes x(i), x̂0

(i) and ˆ̂x(i).

3.2.4 Ablation Study

Certainly, handling contaminated data requires the indis-
pensable inclusion of the Decontaminator. Excluding it
would align the TSAD-C’s detection results with those of
other unsupervised methods. In this section, we aim to con-
duct ablation studies focusing on all three modules, i.e.,
Module (1) - Decontaminator, Module (2) - Long-range
Variable Dependency Modeling, and Module (3) - Anomaly
Scoring, as shown in Table 3. RandBM is used in all experi-
ments. The sign “–" denotes the exclusion of a component.

Module (1). As stated earlier, the Decontaminator is fun-
damental to TSAD-C’s ability to operate under the realis-
tic setting of contaminated training data. Without it, the
TSAD-C’s detection results would align with those of other
unsupervised anomaly detectors that assume clean training
data, thereby undermining the key contribution of our work.
To empirically demonstrate this, we evaluate TSAD-C with
the Decontaminator removed, as shown in the first row of
the table. The results demonstrate a clear performance drop,
reaffirming our central claim that explicitly addressing con-
tamination in the training data is critical for achieving robust
and generalizable anomaly detection.

Module (2). The results are shown in the first and second
rows, where Intra and Inter, respectively, denote the Intra-,
and Inter-variable Modeling. Note that s2 is computed by the

Table 3: The performance of individual components in
TSAD-C and their combinations. M. (1), M. (2) and M.
(3) denote Module (1), Module (2) and Module (3), respec-
tively.

TSAD-C
ICBEB DODH TUSZ

F1 Rec APR F1 Rec APR F1 Rec APR

– M. (1) 0.649 0.750 0.735 0.573 0.675 0.670 0.489 0.611 0.587

M
.(

2) – Intra 0.651 0.735 0.738 0.565 0.637 0.667 0.499 0.655 0.598

– Inter 0.686 0.803 0.759 0.622 0.762 0.705 0.535 0.789 0.639

M
.(

3) – s1 0.706 0.856 0.771 0.637 0.80 0.716 0.517 0.745 0.622

– s2 0.699 0.818 0.768 0.627 0.787 0.709 0.518 0.712 0.617

All 0.707 0.841 0.773 0.652 0.843 0.728 0.545 0.830 0.652

non-removed block of Module (2), i.e., for the first and sec-
ond rows, s2 is determined by Inter and Intra, respectively.
The results highlight the superior performance achieved by
capturing long-range intra-variable dependencies, showing
that while Inter is also an important component, having Intra
is often prioritized due to the nature of time-series data.

Module (3). In this study, all components of Modules (1)
and (2) are available during training, whereas we exclude
either s1 or s2, respectively, obtained from Module (1) or
Module (2) during testing. The results, shown in the third
and fourth rows, indicate that by removing either s1 or s2,
we observe a small drop in performance. This is due to the
fact that in the test phase, we still perform data decontam-
ination using the Decontaminator trained during training.
Such data decontamination during testing resembles a case
where one performs the unsupervised anomaly detection
of the clean test data. This experiment can be considered
as a demonstration of the Decontaminator’s effectiveness.
Importantly, integrating all components together (aka All)
yields the best performance across all datasets, showcas-
ing the synergistic complementarity of each component in
enhancing the model’s ability to detect anomalies.

3.2.5 Decontaminator Efficiency Study

As described in Section 2.1, we estimate the noise exclu-
sively on the masked portions using Lnoise, shown in Equa-
tion (6). This approach simplifies and streamlines the re-
verse process and can be accomplished using less intricate
networks. To empirically demonstrate this, we conduct ad-
ditional experiments, where the noise is minimized over the
entire observation (rather than just the masked parts), as
commonly done in diffusion studies Chen et al. [2024]. This
loss is defined as Lentire

noise = ∥ϵt − ϵ̂t∥2. The results, shown in
Table 4, indicate that minimizing Lnoise exclusively on the
masked portions achieves better performance, and is more
applicable as the training time, is much faster, hence the
decontaminated data can be quickly prepared for the second



Table 4: Comparison of minimizing Lentire
noise versus Lnoise. All

components of TSAD-C are included in the training phase,
whereas in the test phase, either s1 (i.e., −s2), s2 (i.e., −s1),
or both s1 and s2 (i.e., s1+ s2) are included (min: minutes).

D
at

as
et

TSAD-C
Lentire

noise Lnoise

Training time
per epoch (min) F1 APR

Training time
per epoch (min) F1 APR

IC
B

E
B – s1 14.6 0.590 0.709 12.2 0.706 0.771

– s2 14.6 0.686 0.759 12.2 0.699 0.768

s1 + s2 14.6 0.679 0.756 12.2 0.707 0.773

D
O

D
H – s1 21.8 0.617 0.702 19.3 0.637 0.716

– s2 21.8 0.600 0.703 19.3 0.627 0.709

s1 + s2 21.8 0.623 0.700 19.3 0.652 0.728

T
U

SZ

– s1 40.5 0.498 0.597 38.4 0.517 0.622

– s2 40.5 0.481 0.580 38.4 0.518 0.617

s1 + s2 40.5 0.505 0.603 38.4 0.545 0.652

module. Meanwhile, minimizing Lentire
noise achieves suboptimal

performance. We observe that this could be improved by
increasing the complexity of the network, e.g., increasing
the number of the network layers and the number of reverse
steps. However, it would result in the slower training speed,
which is not desirable for the Decontaminator in our task.

3.2.6 Effect of Masking Strategy

This section evaluates the performance of TSAD-C with
various masking strategies. Note that we maintain a fixed
value for r, which is used to control the masking ratio,
to avoid hyperparameter fine-tuning. The consistency of
better performance of TSAD-C even with a fixed r, irre-
spective of changes in the anomaly ratio η, is demonstrated
in Figure 3 (Right). Table 5 shows that the performance
of TSAD-C remains largely consistent when employing ei-
ther RandM, RandBM, or BoM, across varying κ present in
Xtrain and Xvalid. Despite the consistency, RandBM show-
cases the most optimal performance. This can be attributed
to introducing randomness into the masked time windows,
which increases the level of robustness and adaptability to
diverse patterns in the data. This is crucial for real-world
applications where anomalies can manifest in diverse ways
across sensors. RandBM emulates this diversity, enabling
the model to learn and detect sensor-specific anomalies more
effectively, thus boosting its overall performance.

4 CONCLUSION

This paper introduces TSAD-C, the first method trained on
contaminated data to detect all types of anomalies in multi-
variate time series. TSAD-C comprises the Decontaminator,
aimed at removing the potential anomalies during training
and swiftly preparing decontaminated data for subsequent
modules. The Long-range Variable Dependency Modeling

Table 5: Comparison of masking strategies employed in
TSAD-C across varying numbers of anomaly types κ in
Xtrain and Xvalid. SD stands for standard deviation.

D
at

as
et Anomaly

Type
(κ)

RandM RandBM BoM

F1 APR F1 APR F1 APR

IC
B

E
B

0 0.702 0.771 0.707 0.773 0.694 0.764

1 0.669 0.748 0.687 0.759 0.671 0.752

2 0.701 0.768 0.696 0.742 0.661 0.743

3 0.681 0.755 0.697 0.751 0.675 0.751

4 0.688 0.749 0.708 0.759 0.662 0.745

5 0.694 0.764 0.707 0.773 0.669 0.747
Mean
± SD

0.689
± 0.012

0.759
± 0.009

0.700
± 0.007

0.760
± 0.011

0.672
± 0.011

0.750
± 0.007

D
O

D
H

0 0.662 0.735 0.632 0.713 0.643 0.722

1 0.637 0.717 0.671 0.742 0.618 0.703

2 0.647 0.724 0.652 0.728 0.623 0.707
Mean
± SD

0.649
± 0.010

0.725
± 0.007

0.651
± 0.016

0.727
± 0.012

0.628
± 0.011

0.711
± 0.008

T
U

SZ

0 0.541 0.649 0.530 0.639 0.531 0.640

1 0.527 0.632 0.543 0.645 0.520 0.623

2 0.519 0.631 0.545 0.652 0.531 0.640
Mean
± SD

0.529
± 0.009

0.637
± 0.008

0.539
± 0.006

0.645
± 0.005

0.527
± 0.005

0.634
± 0.008

module is designed to capture long-range intra- and inter-
variable dependencies, and provide an approximation of
purified data. The Anomaly Scoring module integrates the
capability of the first two modules. We demonstrate the su-
perior performance of TSAD-C on four reliable, diverse and
challenging datasets compared to existing methods.
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A RELATED WORK

A.1 TIME-SERIES ANOMALY DETECTION TECHNIQUES

Existing TSAD methods can be broadly categorized into supervised and unsupervised approaches. Early supervised methods
require complete anomaly-labeled datasets that encompass the complete distribution of all potential anomalies during
training Carmona et al. [2022], Tang et al. [2021, 2023]. However, acquiring labels for all possible anomalies is impractical
for real-world applications. As a result, a recent work Lai et al. [2024] has explored TSAD in open-set scenarios Ding et al.
[2022], Tian et al. [2022], where only a limited amount of labeled anomalous data is available during training. Although this
reduces the dependency on complete anomaly-labeled data, open-set approaches still require a small number of labeled
anomalies during training. Nonetheless, obtaining even a few labeled anomalies during data collection can be challenging
in many cases. For example, epileptic seizures in brain recordings may occur unpredictably, often requiring prolonged
monitoring to capture seizure events. Similarly, anomalies in industrial machinery, such as machine failures, are rare and
might only occur after extended periods of operation.

To address these challenges, many studies have proposed unsupervised methods, assuming that only normal data is available
during the training phase Su et al. [2019], Audibert et al. [2020], Shen et al. [2020], Deng and Hooi [2021], Li et al.
[2021], Chen et al. [2022], Yang et al. [2023], Ho and Armanfard [2023], Hojjati et al. [2023], Chen et al. [2024]. Recent
unsupervised methods, mostly leveraging deep learning architectures, can be further divided into four main categories
based on the employed loss functions minimized during training: Autoencoder (AE)-based, Generative Adversarial Network
(GAN)-based, Predictive-based, and Self-supervised methods Ho et al. [2025]. Specifically, AE-based methods utilize
reconstruction loss to minimize the difference between the input data and its reconstructed output within an encoder-decoder
framework Su et al. [2019], Chen et al. [2022]. GAN-based methods leverage the losses from both the generator and
discriminator during training Liang et al. [2021], Deng et al. [2022]. Predictive-based methods utilize prediction error,
aiming to forecast future values or properties rather than simply reconstructing the input data Zhao et al. [2020], Deng and
Hooi [2021], Han and Woo [2022]. Lastly, self-supervised methods employ contrastive loss or other pretext-task-based losses
to learn meaningful representations from the training data Ho and Armanfard [2023], Hojjati et al. [2023]. However, all these
categories of unsupervised methods assume that the training data must be clean and do not address the challenges posed by
contaminated data, limiting their effectiveness in accurately detecting anomalies in practical scenarios and applications.

A.2 DIFFUSION MODELS

Diffusion models, a class of generative models Sohl-Dickstein et al. [2015], Croitoru et al. [2023], have gained significant
attention for anomaly detection across various domains. For example, Livernoche et al. [2024] introduced diffusion models
to capture normal data distributions, enabling anomaly detection in tabular data. In image anomaly detection, Wolleb et al.
[2022] proposed a diffusion model that demonstrates superior performance compared to the baseline methods, by generating
normal image patterns, with anomalies detected as deviations from these patterns. In video anomaly detection, Flaborea et al.
[2023] proposed a multimodal approach with diffusion models to detect anomalies in video data. Additionally, Karami et al.



[2025] proposed a diffusion model coupled with a graph-based module for modeling intra- and inter-variable dependencies
existing in video data, to effectively detect anomalies.

In recent years, researchers have begun to explore the potential of diffusion models in the signal domain. For example,
Tashiro et al. [2021] leveraged diffusion models for time-series imputation tasks, demonstrating strong performance in
handling missing data. Likewise, Alcaraz and Strodthoff [2022], Rasul et al. [2021] applied diffusion models for both
time-series imputation and forecasting tasks, showcasing their capability in achieving accurate future predictions. Notably,
Chen et al. [2024] marked the first to adapt diffusion models specifically for TSAD tasks. Chen et al. [2024] considered
diffusion models as time-series imputers to fill in missing data while simultaneously detecting anomalies. Despite these
advancements, no existing studies have explored the use of diffusion models in the context of contaminated time-series data,
where anomalies sneak into the normal training data. Addressing this challenge would unlock new potential for diffusion
models, enabling them to tackle more complex real-world scenarios and applications.

A.3 LONG-TERM INTRA- AND INTER-VARIABLE DEPENDENCY MODELING

In time-series data, capturing both long-range intra- and inter-variable dependencies is essential for effective anomaly
detectionHo et al. [2025]. Specifically, capturing long-range intra-variable dependencies is valuable for TSAD, as they help
differentiate between normal and abnormal temporal variations. However, many existing methods overlook this critical
aspect by preprocessing data into short-term intervals Carmona et al. [2022], Lai et al. [2024], Chen et al. [2024] or by
relying on conventional temporal networks, such as recurrent neural networks Dai and Chen [2022], Hojjati et al. [2023]
and transformers Yang et al. [2023], Chen et al. [2024]. Such data preprocessing steps may discard important information
encoded in raw signals and neglect long-range intra-variable dependencies Tang et al. [2023]. Moreover, conventional
temporal models struggle in handling sequences that are sampled at high sampling rates, leading to long sequences that
can be up to thousands of time steps Tay et al. [2020]. Recently, advanced deep sequence models, such as structured state
space models Gu et al. [2022], have demonstrated superior performance in long sequence modeling tasks, outperforming
previous state-of-the-art models in speech classification Gu et al. [2022], audio generation Goel et al. [2022], and time-series
forecasting Alcaraz and Strodthoff [2022]. Despite these successes, the potential of these models in unsupervised TSAD
tasks remains unexplored. This presents an exciting opportunity for TSAD research to improve anomaly detection in complex
and long-range time-series data.

Additionally, many recent studies have leveraged graphs to model inter-variable dependencies effectively. This property is
valuable for TSAD as the changes of one variable can be used to predict the changes of another variable if they are related.
For instance, several studies have proposed constructing static graphs based on prior knowledge, such as the Euclidean
distances between sensors Tang et al. [2021, 2023], the correlation matrices of sensor features Ho and Armanfard [2023],
or the mutual information between sensor features Hojjati et al. [2023] in multivariate sensory systems. However, this
approach is often impractical for many real-world applications due to the dynamic nature of testing environments, e.g.,
in electroencephalogram monitoring of epilepsy patients, sensor placements may vary between subjects depending on
many factors such as scalp injuries, epilepsy types and targeted brain regions. This results in variations in the inter-variable
relationships across subjects, making it challenging for models employing static graphs to generalize effectively to diverse
testing scenarios. Hence, dynamically learning the graphs is highly desirable as this approach allows for capturing the
inter-variable dependencies over time Dai and Chen [2022], Deng and Hooi [2021], Han and Woo [2022], leading to
improved anomaly detection performance in complex systems.

B THE PSEUDOCODES OF TSAD-C

To clearly outline the framework of TSAD-C and facilitate reproducibility, we present the pseudocode for the training phase,
as well as the test phase of TSAD-C in Algorithm 1 and Algorithm 2, respectively.



Algorithm 1 Training Phase of TSAD-C
Input: Xtrain, Xvalid, v, hyperparameters {β0, βT , T}, ξ1, ξ2, ξ3.
Output: Learnable parameters Θ.

1: Compute xu
(i) = x(i) ⊙ v, where x(i) ∈ Xtrain.

2: Compute diffusion hyperparameters ᾱt, β̄t, ϵt and c.
3: Compute xt

(i).
4: Randomly initialize learnable parameters Θ.
5: while not converged do
6: // Decontaminator
7: Compute ϵ̂t = ϵθ(x

t
(i), t, c).

8: Lnoise = ∥ϵt ⊙ (1− v)− ϵ̂t ⊙ (1− v)∥2.
9: Compute x̂0

(i).
10: // Long-range Variable Dependency Modeling
11: Compute H(i) = S4(x̂0

(i)).
12: Construct G(i) = {Gm

(i)}
d
m=1.

13: Lgraph = 0.
14: for m ∈ 1, 2, ..., d do
15: Construct Gm

(i) = {Em
(i),A

m
(i)}, where Em

(i) = mean-pool(H(i)), Am
(i) = Graph-Learning(Em

(i),A
′m
(i)).

16: Lgraph = Lgraph + ξ1Lsmooth(Em
(i),Am

(i)) + ξ2Lsparse(Am
(i)) + ξ3Lconnect(Am

(i)).
17: Compute zm(i) = GIN(Em

(i),A
m
(i)).

18: end for
19: Compute Z(i) = concat(z1(i), . . . , z

d
(i)).

20: Compute ˆ̂x(i) = Linear(Z(i)).
21: Lrecon = ∥x̂0

(i) − ˆ̂x(i)∥2.
22: L = Lnoise + Lgraph + Lrecon.
23: Backpropagate L to update Θ.
24: Early stopping using XValid.
25: end while



Algorithm 2 Inference Phase of TSAD-C
Input: Xtest, Xvalid, v, hyperparameters {β0, βT , T}, λ1, λ2.
Output: Anomaly score s.

1: // Decontaminator
2: Compute xu

(i) = x(i) ⊙ v, where x(i) ∈ Xtest.
3: Compute diffusion hyperparameters ᾱt, β̄t, ϵt and c.
4: Compute xT

(i).
5: for t = T, T − 1, . . . , 1 do
6: Compute µθ(x

t
(i), t, c) and σθ(x

t
(i), t, c).

7: Sample xt−1
(i) ∼ qθ(x

t−1
(i) |xt

(i)) := N (xt−1
(i) ;µθ(x

t
(i), t, c), σθ(x

t
(i), t, c)

2I).
8: end for
9: return x̂0

(i).
10: // Long-range Variable Dependency Modeling
11: Compute H(i), G(i), Z(i).
12: Compute ˆ̂x(i).
13: // Anomaly Scoring
14: Compute s1 = RMSE(x̂0

(i),x(i)).
15: Compute s2 = RMSE(ˆ̂x(i),x(i)).
16: Compute s = λ1s1 + λ2s2.
17: Search τ based on the unlabeled Xvalid.
18: if s > τ then
19: x(i) is an anomaly.
20: else
21: x(i) is a normal observation.
22: end if

C DATASETS

In this section, we describe four reliable datasets collected from various domains that are used in our study, including SMD,
ICBEB, DODH and TUSZ datasets.

C.1 SMD

The Server Machine Dataset (SMD) Su et al. [2019] is a multivariate time-series dataset comprising five weeks of data
from 28 different server machines collected by a large Internet company. SMD is widely used in the TSAD field and is
considered of much higher quality Wagner et al. [2023] compared to other benchmarks such as Yahoo Laptev et al. [2015],
NASA Hundman et al. [2018], SWaT Mathur and Tippenhauer [2016], WADI Ahmed et al. [2017], SMAP Hundman et al.
[2018], and MSL Hundman et al. [2018]. However, several concerns have been raised about this dataset. First, Wu and
Keogh [2021] highlighted the triviality issue in SMD, noting that the dataset can be easily solved by just one line of code.
Second, according to Wagner et al. [2023], SMD exhibits a distributional shift issue, where there is a shift in the statistical
distribution between the training and test sets. The authors identified and excluded several machines from the dataset upon
observing significant changes in mean and standard deviation between the training and test sets for those machines. They
then asserted that their modified dataset is more suitable for benchmarking TSAD algorithms.

Aware of these issues, we implement data preprocessing steps that differ significantly from previous studies Su et al. [2019],
Li et al. [2021], Chen et al. [2022], Yang et al. [2023], Chen et al. [2024] to address those concerns. First, we divide
the dataset into observations (intervals), each with a length of 600. We then perform interval-level anomaly detection, as
defined in our problem definition in Section 2 - Paragraph 1 of the main paper, aligning with recent standards in TSAD
Carmona et al. [2022], Lai et al. [2024]. This approach contrasts with point-level anomaly detection, which introduces
point-adjustment bias – a common issue in the TSAD field Kim et al. [2022], i.e., without the point-adjustment strategy, the
performance of existing methods cannot even outperforms a random baseline.

Second, we implicitly and partially mitigate the triviality issue by treating the time series as a multivariate series, emphasizing
the importance of capturing inter-variable dependencies, rather than focusing solely on individual sensors as commonly



done in previous studies Su et al. [2019], Yang et al. [2023]. To build a robust and generalized method, we also combine all
28 machines and train only a single model for both our proposed method and compared methods. Note that, previous studies
Su et al. [2019] suggested that the data from each of the 28 machines should be trained and tested separately. Additionally,
by adopting interval-level anomaly detection instead of point-level anomaly detection, we increase the complexity and
challenge for TSAD algorithms. Lastly, to address the distributional shift issue, we follow the procedure outlined in Wagner
et al. [2023], and examine the mean and standard deviation of the training and test sets to minimize any shift in the dataset.

Given these crucial procedures, we ensure a more rigorous and robust evaluation of TSAD algorithms on SMD. Hence, the
results of our implementation on compared methods may differ from those originally reported in their papers.

C.2 ICBEB

The International Conference on Biomedical Engineering and Biotechnology (ICBEB) Liu et al. [2018] is an electrocar-
diogram (ECG) dataset. It consists of normal data and different types of abnormal cardiac disorders. Each recording is
annotated by up to three ECG experts and might be associated with more than one abnormal classes. We select the normal
ECG waveforms as normal data, while five abnormal types, including atrial fibrillation, first-degree atrioventricular, right
bundle branch, premature ventricular contraction and ST-segment elevation, are selected as abnormal data. We follow the
preprocessing steps as described in Strodthoff et al. [2020], Tang et al. [2023]. The sampling frequency rate is 100Hz,
resulting in observations with the length of 6,000 time steps. Each observation consists of 12 sensors. Our task is to detect
abnormal cardiac observations from all five types that deviate from the normal cardiac activities.

C.3 DODH

The Dreem Open Dataset Healthy, called DODH Guillot et al. [2020] is a sleep dataset collected from polysomnographic
(PSG) signals of 25 volunteers. Each recording includes different sleep stages, namely Awake, rapid eye movement (REM),
and non-REM sleep stage N3, and is annotated by a consensus of five experienced PSG readers. We select N3 (the deepest
sleeping stage) as normal data since the brain activity during this stage has an identifiable pattern of delta waves; and body
activities such as breathing and muscle tone rate decrease. Meanwhile, REM and Awake stages are abnormal since the
brain activity during these periods rises up; and the body activities such as the eyes and the muscles start increasing. The
PSG signals are recorded from different locations across the body (brain-eyes-heart-legs), presenting a very challenging
problem for TSAD algorithms due to inconsistent signal patterns. There is a total of 16 recording sensors: 12 EEG sensors, 1
electromyographic (EMG) sensor, 2 electrooculography (EOG) sensors, and 1 ECG sensor. Following the preprocessing
steps described in Tang et al. [2023], we resample PSG signals with a sampling frequency rate of 250Hz, leading to a length
of 7,500 time steps for every observation. Our task is to detect abnormal sleep observations from two types that deviate from
the normal sleep activities.

C.4 TUSZ

The University Hospital Seizure Detection Corpus, called TUSZ Shah et al. [2018] is the largest public electroencephalogram
(EEG) seizure dataset to date. It contains 5612 EEG files with 3050 annotated seizures, and different types of seizures are
defined although some of them are less presented. Annotations are made through a consensus of at least three experienced
EEG readers. For each patient, there are several sessions that consist of files related to one or more recordings. For each
recording, there are five EDF files containing the raw EEG signals and a header indicating frequency, duration and date. In
our experiments, we select resting states of the brain activities as normal data, while abnormal data is collected from two
types of seizures (focal and generalized). Each EEG recording consists of 19 sensors. Note that compared to other types of
signals such as ECG that represents fairly predictable heart waveforms, TUSZ contains much more stochastic signals due to
various physiological states in the brain. Following prior studies on seizure analysis Tang et al. [2021], Ho and Armanfard
[2023], we resample all EEG signals with a sampling frequency rate of 200Hz, resulting in a length of 12,000 time steps for
each observation. Our task is to detect whether there exist abnormal patterns from two types of seizures in the observation.

It is important to re-emphasize that ICBEB, DODH and TUSZ are well-established yet challenging datasets and have not
received criticisms in the TSAD field. To minimize human labeling errors, they are annotated by a panel of 3-5 experts,
who have practical experience dealing with patients in clinical settings, and take into account factors such as patient history,
symptoms, diagnostic tests, and treatment outcomes when identifying anomalies. Additionally, they often exhibit long-range
intra-variable dependencies, reflecting phenomena like physiological states or disease progression, which oversimplified



models cannot capture complex time-series dynamics. Importantly, unlike existing datasets such as SMD that contain a
single anomaly type, these three datasets reflect real-world scenarios with diverse anomaly types, where each type may have
distinct characteristics or exhibit patterns similar to normal variability.

Note that for all datasets, we first split the data at the machine/patient level into three subsets: Xtrain, Xvalid, and Xtest. This
means each machine/patient’s data is entirely contained within one of these subsets to ensure independence between them.
Within each machine/patient, each observation is collected using a non-overlapping split to avoid data leakage.

D BASELINES

As mentioned in the main paper, we compare TSAD-C with 12 SOTA unsupervised methods in the TSAD field. These
methods can be categorized into three groups as follows:

• Methods capturing Intra-variable dependencies include:

– USAD Su et al. [2019] is a Generative Adversarial Network consisting of two Autoencoders. It is trained in a
two-phase process: the first phase reconstructs the normal data, while the second phase distinguishes the real data
from the data coming from the first Autoencoder. The anomaly score is a combination of the scores obtained from
both phases.

– LSTM-AE Wei et al. [2023] is a Long Short-Term Memory based Autoencoder. The anomaly score is the
reconstruction error.

– S4-AE Gu et al. [2022] is a Structured State Space based Autoencoder. The anomaly score is the reconstruction
error.

– DCdetector Yang et al. [2023] is a Transformer based framework consisting of two self-attention networks. The
first is for a wider patch-wise view and the another is for a finer in-patch view. The Kullback-Liebler contrastive
loss minimizes the distance between the two views for normal data, with the assumption that the views will be
different for abnormal data. The anomaly score is computed based on the contrastive loss.

• Methods capturing Inter-variable dependencies include:

– GAE Du et al. [2022] is a Graph-based Autoencoder that learns the graph structure and features during training.
The reconstruction error is used as the anomaly score.

– GDN Deng and Hooi [2021] is a Predictive-based approach that employs two modules: a graph structure learning
module to capture the sensor relationships and a graph attention-based forecasting module to predict future values
of every sensor. The anomaly score is computed by the prediction error via a graph deviation scoring module.

– EEG-CGS Ho and Armanfard [2023] is a Self-supervised approach that first constructs graphs based on the
correlations between sensors. It then leverages local structural and contextual information within the graphs to
generate positive and negative sub-graphs. EEG-CGS is trained by minimizing contrastive and generative losses,
with the anomaly score derived from a combination of these losses.

• Methods capturing Both-variable dependencies include:

– InterFusion Li et al. [2021] is a Variational Autoencoder based approach with two stochastic latent variables, each
of which learns low-dimensional inter- or intra-variable embeddings within the normal data. The reconstruction
error is considered as the anomaly score.

– DVGCRN Chen et al. [2022] is a Variational Autoencoder based approach designed to capture multilevel intra-
and inter-variable information within the raw data, and the inter-variable information in the latent space. It
comprises two main components to model these relationships: a forecasting model for single-time step prediction,
and a reconstruction model for reconstructing the input data. The anomaly score is a combination of prediction
and reconstruction errors.

– GRU-GNN Tang et al. [2023] incorporates a Gate Recurrent Unit network and a Graph Neural Network model to
extract both intra-variable inter-variable dependencies in time-series data. The reconstruction score is used as the
anomaly score for each observation.

– GraphS4mer Tang et al. [2023] is a Transformer based approach that incorporates S4 layers to extract long-range
intra-variable dependencies, a graph structure learning technique based on an attention mechanism to construct
graphs and Graph Neural Network layers to capture the inter-variable dependencies. The reconstruction score is
used as the anomaly score.



(a) SMD (b) ICBEB

(c) TUSZ

Figure 5: Comparison between normal and abnormal cases for the masked segment in (a) SMD and (b) ICBEB and (c)
TUSZ. The masked strategy used is BoM. Each case includes the ground truth x(i), the decontaminated data x̂0

(i) and the
reconstructed data ˆ̂x(i).

– IMDiffusion Chen et al. [2024] proposes a Diffusion model as a time-series imputer to capture intra- and
inter-variable dependencies. It employs a Transformer network for noise estimation. In the test phase, ImDiffusion
utilizes the prediction error at each denoising step and ensembles them using a voting function to determine the
final anomaly scores.

Note that none of the existing methods incorporate a mechanism to handle contaminated data, i.e., real-world anomalies
contaminate normal data during the training phase, as they all assume that the training data must be clean. We implement
these baselines with their default model architecture, optimization procedure, and hyperparameters as suggested by the
authors of the original papers. To ensure a fair comparison, we use the same datasets, experimental settings and evaluation
protocols for TSAD-C and all compared methods.

E IMPLEMENTATION DETAILS

We set the masking ratio to match the anomaly ratio η in Xtrain. Thus, for each dataset, r is determined as the product of the
observation length L and η as detailed in Table 1. We set Γ to L for each dataset, d = 6, g = Γ

d , U = 128, δ = 3, ζ = 0.6,
ξ1 = 1, ξ2 = 0.05, and ξ3 = 0.5. Additionally, we set β0 = 10−4, βT = 0.02, T = 50, λ1 = 0.01, and λ2 = 1.2. The
dimension of S4 states is fixed at 64. The batch size remains consistent at 4 for all datasets. The entire TSAD-C network is
optimized via the AdamW optimizer Loshchilov and Hutter [2019], with a cosine learning rate scheduler loshchilov and
Hutter [2017], initialized with a learning rate of 8e-4. Model training would be early stopped if the validation loss fails to
decrease for 20 consecutive epochs, with a maximum of 100 epochs. It is worth noting that to ensure a fair comparison,
these hyperparameters are fixed across all experiments and datasets. All experiments are conducted on a single NVIDIA
V-100 GPU (32 GB).

F ADDITIONAL VISUALIZATIONS

Figures 5 (a), (b) and (c) show visualizations that compare the ground truth x(i), decontaminated data x̂0
(i), and reconstructed

data ˆ̂x(i) in SMD, ICBEB and TUSZ, respectively. It is shown that x̂0
(i) and ˆ̂x(i) fit x(i) very well in the normal case,

leading to a lower s. Meanwhile, there are significant fluctuations of x̂0
(i) and ˆ̂x(i) compared to x(i) in the abnormal case,

resulting in a much higher s. These observations are consistent across all datasets. This shows the effectiveness of TSAD-C



in distinguishing anomalies from normal data.

G COMPUTATIONAL COST AND SCALABILITY ANALYSIS

Due to the diversity in dataset characteristics and dimensions described in Appendix C and Table 1, in this section, we
present dedicated discussions on TSAD-C’s computational cost and scalability. Following the TSAD literature Chen et al.
[2022], Li et al. [2021], Wang et al. [2024], we report the Floating-point Operations (FLOPs), the training time per epoch,
the testing time per sample, and the detection performance of TSAD-C in Table 6. Additionally, we conduct a detailed
efficiency comparison between TSAD-C and comparable methods, i.e., InterFusion and IMDiffusion, which similarly handle
both intra- and inter-variable dependencies, as discussed in Appendix D. It is shown that TSAD-C requires the fewest
FLOPs. Notably, the training and testing times of TSAD-C are much faster than those of compared methods, while achieving
significant improvements in detection performance. TSAD-C also maintains manageable training and testing durations,
scaling reasonably as the dataset grows, when utilizing a single GPU. This efficiency is achieved despite significant dataset
variations due to several reasons. First, our Decontaminator minimizes the noise error on only masked portions to have a
simpler and more streamlined training process. The decontaminated data is then obtained in a single step during the reverse
process in the training phase, speeding up data preparation for subsequent modules – a significant advantage for practical
applications. Detailed studies are shown in Section 3.2.5.

Additionally, as mentioned in Section 2.2, since each observation can encompass thousands of timestamps (e.g., ICBEB
with 6,000 timestamps, DODH with 7,500 timestamps and TUSZ with 12,000 timestamps), constructing a graph for every
time step becomes inefficient and computationally demanding. To address this, we construct a graph over a defined time
window, determined by the hyperparameter g, which aids in information aggregation. This strategy not only leads to a
graph with reduced noise but also facilitates faster computations. Moreover, our graph module focuses on local connectivity
patterns by δ-nearest neighbors, which allow to scale efficiently because each node’s computation is limited to its neighbors,
reducing the overall computational complexity compared to fully-connected networks Wang et al. [2024]. We also include
the regularization terms in Lgraph to regularize the graphs, as shown in Equation (8). For instance, including Lsparse helps
avoid overly connected graphs, which reduces computational costs for very large datasets like TUSZ. This regularization
also aids in maintaining computational efficiency while preserving the graph’s ability to capture relevant data patterns. These
aspects ensure TSAD-C’s efficiency to varying dataset sizes without compromising on detection performance.

Table 6: Efficiency comparison between existing methods and TSAD-C in terms of FLOPs, the training time per epoch, the
testing time per sample, and the detection performance (min: minutes, sec: seconds). The best scores are highlighted in bold.

M
et

ho
d

Dataset FLOPs
Training time

per epoch
(min)

Testing time
per sample

(sec)

Performance

F1 APR

In
te

rF
us

io
n SMD 4.6G 4.2 35 0.383 0.490

ICBEB 11.8G 19.1 73 0.649 0.753

DODH 20.4G 29.4 91 0.418 0.559

TUSZ 46.2G 48.4 126 0.532 0.628

IM
D

iff
us

io
n SMD 5.8G 5.4 69 0.426 0.533

ICBEB 20.4G 20.7 94 0.611 0.750

DODH 32.2G 31.5 116 0.544 0.651

TUSZ 69.7G 47.6 157 0.381 0.532

T
SA

D
-C

SMD 2.3G 1.8 17 0.479 0.604

ICBEB 7.3G 12.2 32 0.707 0.773

DODH 12.2G 19.3 66 0.652 0.728

TUSZ 32.1G 38.4 84 0.545 0.652
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