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ABSTRACT

Weight quantisation is an essential technique for enabling efficient training and
deployment of modern deep learning models. However, the recipe book of quan-
tisation formats is large and formats are often chosen empirically. In this paper,
we propose a framework for systematic design and analysis of quantisation for-
mats. By connecting the question of format design with the classical quantisation
theory, we show that the strong practical performance of popular formats comes
from their ability to represent values using variable-length codes. We frame the
problem as minimising the KL divergence between original and quantised model
outputs under a model size constraint, which can be approximated by minimising
the squared quantisation error, a well-studied problem where entropy-constrained
quantisers with variable-length codes are optimal. We develop non-linear quan-
tisation curves for block-scaled data across multiple distribution families and ob-
serve that these formats, along with sparse outlier formats, consistently outper-
form fixed-length formats, indicating that they also exploit variable-length encod-
ing. Finally, by using the relationship between the Fisher information and KL
divergence, we derive the optimal allocation of bit-widths to individual parame-
ter tensors across the model’s layers, saving up to 0.25 bits per parameter when
applied to large language models.

1 INTRODUCTION

Weight quantisation enables large deep learning models to run on low-resource hardware and edge
devices by saving space and memory bandwidth usage. It can be seen as an optimisation problem,
where the goal is to retain the behaviour of the high-precision reference model while reducing the
total number of bits needed to store its parameters. This naturally splits into two sub-problems
of format design and quantisation procedure, both of which are highly active areas of research. We
focus on the format design question, i.e., how to choose a representation space for model parameters.
This is somewhat independent from the quantisation procedure, which aims to find an optimal point
in that space. The space of possible formats for a model is rich, where element formats including
integer, floating-point and non-uniform quantisers can be combined with tensor, channel or block
scaling and augmented using sparse outlier storage or rotations (Dettmers et al., 2022a; Dettmers
& Zettlemoyer, 2023; Dettmers et al., 2023; Dotzel et al., 2024; Rouhani et al., 2023; Tseng et al.,
2024a). Since this combinatorial space is too large to be explored directly, empirical studies typically
narrow the search space.

This work addresses the problem of optimal format design, minimising the KL divergence against a
reference model under a memory constraint. Following Kim et al. (2024), who observe that Fisher
information can be used to predict the degradation based on the squared error of quantisation, we
employ classical quantisation theory (Panter & Dite, 1951; Lloyd, 1982) to derive optimal element-
wise quantisers that minimise squared error. Given this scheme for element formats, we empirically
evaluate scaled formats based on the absmax or RMS of the tensor, channel or sub-tensor block, for
direct-cast quantisation and quantisation-aware training. Our main takeaway is that the most effective
quantisation formats all employ some form of variable-length encoding (see Figure 1). Block for-
mats outperform optimal elementwise formats by effectively allocating their scale bits to represent
the block maximum. Tensor-scaled formats can be effective if sparse outliers are stored separately,
again implying variable bits-per-element. Finally, quantisation followed by lossless compression
employs variable length explicitly and doesn’t benefit from block scaling or sparse outlier removal.
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Figure 1: The trade-off between average bits per parameter and top-k KL divergence for
Llama 3.1 8B. To approach optimal performance, some form of variable-length encoding is needed:
lossless compression, block (or channel) absmax scaling or 0.1% sparse outlier removal. The shaded
line width is ±2 standard error over evaluation data. See Figure 8 for other models.

Contributions Our work explains the performance of various quantisation schemes through the
lens of optimising KL divergence and weight statistics. Towards this, we propose 3

√
p block-

scaled Normal, Laplace and Student-t non-uniform quantisers. We also propose the signmax scaling
scheme. These are, to the best of our knowledge, novel contributions.

Outline Section 2 presents our framework: the optimisation problem, assumptions and solutions.
Experiments on synthetic data in Section 3 and LLM quantisation in Section 4 demonstrate that
block and sparse outlier formats outperform fixed-length codes. Sections 5 to 7 present related
work, limitations and conclusions. Table 3 provides a reference for our notation.

2 OPTIMAL QUANTISATION FORMATS

In this section, we present our framework for format design. We begin by defining the overall opti-
misation problem at the model level, showing how this objective can be reduced to minimising the
squared error of individual tensors through appropriate approximations. Next, we present solutions
for RMS and absmax scaling schemes, as well as a lossless compression scheme. Finally, we revisit
model-level optimisation by proposing a scheme for optimal bit allocation across tensors.

Consider a probabilistic model with output y conditioned on input drawn from a dataset x ∼ X ,
where the pdf pθ(y | x) is represented by a neural network, parametrised by θ ∈ R|θ|. We wish to
find a quantised parameter vector θ̃⋆ which is in Θ̃ ⊂ R|θ|, minimising the expected KL divergence
of pθ̃(y | x) against the reference model,

θ̃⋆ := argmin
θ̃∈Θ̃

DKL

(
pθ∥pθ̃

)
,

DKL

(
pθ∥pθ̃

)
:= E

x∼X

[
E

pθ(y|x)

[
log

pθ(y | x)
pθ̃(y | x)

]]
, (1)

with |Θ̃| ≤ 2|θ|·b.

The final line induces a compression constraint on Θ̃, specifying an average of b bits per parameter.
Considering θ̃ close to θ, we can approximate the objective as

DKL

(
pθ∥pθ̃

)
≈ 1

2
(θ̃ − θ)⊤F (θ̃ − θ), (2)

where F ∈ R|θ|×|θ| is the Fisher information matrix of the reference model (see Section A for a
derivation). As a further simplification, we assume the cross terms are small, in which case the
approximation reduces to the squared quantisation error, weighted by the diagonal of the Fisher
information matrix.
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Deep learning model parameters can be partitioned into tensors, often the maximal sets of parame-
ters that can be applied in parallel to the intermediate activations — in other words, where the input
to the forward pass operation of any scalar parameter does not depend on any other parameter from
the same tensor. It is convenient to encode each tensor using a single format, although different
tensors may use different formats, so we expand Θ̃ =

∏
t Θ̃t, and θ̃Tt

∈ Θ̃t where Tt ∈ N|Tt| is a
vector of parameter indices belonging to tensor t. For much of our analysis, we further approximate
the diagonal of the Fisher matrix as constant (= f̄t) within each parameter tensor. With this ap-
proximation, the increase in KL divergence due to quantisation is a weighted sum across parameter
tensors of the unweighted squared error,

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2. (3)

This form is convenient, as the squared error is easy to compute and the diagonal of F can be esti-
mated with computational and memory costs comparable to a few steps of SGD. We test this equa-
tion for predicting the KL divergence after perturbing with iid normal noise in Figures 10 and 11.

2.1 OPTIMAL TENSOR FORMATS FOR KNOWN DISTRIBUTIONS

We now turn to the problem of designing a format to represent a single parameter tensor. The
formats we consider all operate on blocks of data — all or part of the tensor. The block size B is
fixed within a tensor, but may vary across tensors. For the ith block of the tth tensor, we wish to
quantise the parameters sub-vector θCti , given block indices Cti ∈ NB , but to aid readability we
will drop the indices and use θ directly. Using the approximate relationship given by Equation (3),
KL divergence is minimised by minimising the squared reconstruction error of each parameter. We
therefore consider the following optimisation problem for a block of parameters θ ∈ RB :

find: quantise : RB → Q , dequantise : Q → RB (4)

to minimise: E2 :=
∑

i∈[1..B]

(θi − dequantise(quantise(θ))i)
2

such that: |Q| ≤ 2B·b,

where the set of quantised representations Q is subject to a compression constraint of b bits per
element in the block of B elements. For our analysis, θ is iid, with θi ∼ D from a Normal, Laplace
or Student-t distribution.

Cube root density quantiser When B = 1 and D is known with pdf pD, we can use the cube root
density quantiser (Panter & Dite, 1951) to minimise the error:

Qelem ⊂ R , density(Qelem) ∝ 3
√

pD

quantiseelem(θ) = argminq∈Qelem |θ − q|
dequantiseelem(q) = q,

When D is Normal, Laplace or Student-t, we observe that 3
√

pD is proportional to the pdf of D′,
the same parametric distribution as D but with different parameters. Therefore Qelem can be derived
from the inverse cdf of D′, see Section B.2 for details and E for code examples.

Linear scaling When B > 1, if we assume D is a known parametric distribution but with unknown
scale, we can adapt the scalar quantisation technique above:

Qlinear := R× (Qelem)B , norm : RB → R

quantiselinear(θ) =

[
n, quantiseelem

(
θi
n

)

∀i∈[1..B]

]
where n = norm(θ)

dequantiselinear(n, q)i = n · dequantiseelem (qi) ,

In this scheme, we store and use a statistic norm(θ) to normalise the block values, such that
quantiseelem can assume some properties of its input distribution, Delem. Note that these equa-
tions cannot yet obey the compression constraint, as Qlinear is uncountable; for a practical scheme
we must instead store quantisescale(n) using an appropriate format.

3
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Figure 2: 4-bit quantisation curve gradients for Normal, Laplace, Student-t distributions, showing
strong agreement between cube root density and Lloyd-Max. The legend shows relative quantisation
error R for “(cube root quantiser; Lloyd-Max)” over data from the appropriate distribution. (Left)
RMS-scaled formats. The cube root density rule breaks down with the heavy tails of Student-
t. (Right) absmax-scaled formats. The discrepancy at the extremes occurs because the cube root
quantiser has a special case for ±1, whereas Lloyd-Max treats it as a single distribution to quantise.

RMS scaling Applying linear scaling with norm(θ) =
√

1
B

∑
i θ

2
i , we obtain RMS scaling. If we

replace the random variable n with a point estimate at its expected value, then θi
n follows Delem, a

scaled version of D such that E
[
θ2i
]
= 1. Moment matching of the RMS can provide the parameters

of Delem needed for an optimal format according to the cube root density rule (Table 4). See Figure 2
for example quantisation curves including a comparison against Lloyd-Max, which is trained against
transformed samples from D to optimise RMS error.

Absmax scaling Linear scaling with norm(θ) = maxi |θi| gives absolute-maximum scaling, a
popular block quantisation scheme. In this case Delem has support −1 ≤ θi ≤ 1. Following Yoshida
(2023), we consider Delem as a mixture of two components: (1) the normalised maximum value,
which is a transformed Bernoulli distribution and (2) the normalised distribution of everything else
in the block, which was not the maximum. To approximate (2), we observe empirically that the
marginal distribution of θi̸=argmaxj |θj | is a good match to a truncated D, where the truncation
point is the block maximum (Figure 14). We then use a closed form approximation to E [maxi |θi|]
(Table 4) to calculate the truncation points. To construct Qelem, we always include ±1, then use the
inverse cdf of the truncated-and-scaled D to distribute the rest of Qelem according to the cube root
rule. Example quantisation curves are shown in Figure 2.

Signmax scaling Observing that the distribution of block-scaled data is well-approximated by
a mixture of the maximum and non-maxima, it seems natural to also try signmax scaling. In
this scheme, the block scale is set to the signed absolute maximum, norm(θ) = θî where
î = argmaxi |θi|. The element format can then assume that the maximum is always at +1 (not
±1) and allocate a pair of special codepoints {0, 1} with the rest specified according to 3

√
p (see

Figure 3). This comes at the cost of requiring a sign bit for the block scale, i.e. 1
B bits per element.

Symmetric/Asymmetric variants One important detail is the representation of zero. Practical
implementations prefer an even number of codepoints, so allocating a codepoint for zero mandates
asymmetry or waste. However, exact zero has been shown empirically to be valuable (Liu et al.,
2025). The 3

√
p scheme is easily adapted to provide symmetric and asymmetric variants for both

RMS and absmax scaling (Figure 3). For block scaling the asymmetry is purely in resolution, while
for RMS it provides both additional resolution and range on one side.

2.2 UNKNOWN DISTRIBUTIONS

Since the underlying distribution of parameters of neural networks after training is unknown, we
cannot apply the techniques described in Section 2.1 directly. One way forward is to assume a
distribution family and select scale and shape (e.g. Student-t ν) distribution parameters to fit the
data. The scale can be fit using moment-matching (absmax or RMS) between the quantiser and
parameters, or by explicit search to minimise E2 (see Figure 22 for an example). We find explicit

4
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Figure 3: 3-bit 3
√
p codepoint distributions for normally distributed data, illustrating RMS, absmax

and signmax scaling methods and symmetric/asymmetric variants (with B = 64 for block formats).
The principal benefit of asymmetric variants is that they have an encoding for 0. INT formats are
asymmetric, while most floating-point formats are symmetric but represent zero twice (±0).

search for scale and shape to be more reliable than moment-matching. An alternative approach is
to directly optimise a non-uniform format against the parameters to solve Equation (4). A standard
solution is the Lloyd-Max algorithm (Lloyd, 1982; Max, 1960), i.e. 1D k-means. Both distribution
parameter search and Lloyd-Max can solve a weighted objective, so we can drop the scaled-identity
approximation to the Fisher information, using diag(F ) as a weight on the importance of each
parameter, as proposed by Kim et al. (2024).

2.3 OPTIMAL TENSOR FORMATS WITH COMPRESSION

An alternative approach is to first use a (lossy) quantiser such as those described in Section 2.1 then
follow it with a lossless compressor, operating on quantised data in Q. In this case we can optimise
the quantiser according to Equation (4), replacing the last line with an entropy constraint:

. . . such that: E [I(quantise(θ))] ≤ B · b

where: I(q) = −
∑

i∈[1..B]

log2 p
Q(qi) .

I.e. I(q) computes the information content of a quantised block under a model of their values given
by pQ and we assume an optimal compressor approaching the Shannon (1948) limit.

Compressed grid Under this new constraint if B = 1 the optimal distribution of elementwise
codepoints, assuming “high rate”, is a uniform grid i.e. density(Qelem) = const (Gish & Pierce
(1968), see also Section B.3). The probability model pQ for compression can either be estimated
based on samples or derived by transforming D by quantise(θ), which in the case of elementwise
quantisers is trivial: via the cdf or approximately via the pdf of D.

2.4 OPTIMAL BIT-WIDTH ALLOCATION

We have seen that Fisher information can predict KL divergence due to quantisation and further
observe that the average Fisher information varies substantially across tensors (see Figure 12). This
suggests that there may be an optimal variable allocation of bits across parameter tensors, while
respecting the average bit-width constraint at the model level. This scheme should allocate more
bits to tensors that are more “sensitive”, i.e., having higher Fisher information. Using the asymptotic
optimal quantisation error of Zador (1982), we derive the following variable bit allocation scheme:

b⋆t := b0 + log2 RMS(θTt
) +

1

2
log2 f̄t, (5)

where b⋆t is the bit width of tensor t, f̄t is the average of the Fisher matrix diagonal and b0 is chosen
to satisfy the overall size constraint. Intuitively, if tensor a has 4× the Fisher information of tensor
b then a uses 1 more bit than b. See Figure 16 for an example and Section B.5 for the derivation.

3 ANALYSIS — SIMULATED DATA

Motivated by the parameter statistics of Figure 24, we consider D ∈ {Normal,Laplace, Student-t}
in turn. Using the methods described above, we compare optimal formats with block absmax or
tensor RMS scaling on iid data from each distribution. Our aim is to establish whether there are
benefits to block absmax formats for iid data, and where those benefits come from. Unless noted, all

5
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Figure 4: The error/size tradeoff for different data distributions (column) and optimal quantisers
(hue). Surprisingly, block absmax quantisers can outperform tensor RMS formats for iid data, even
though there is no inherent block structure. However this situation is reversed when adding optimal
compression, implying that block absmax quantisers exploit some form of variable-length coding.

experiments in this section use bfloat16 block scale and symmetric codepoint distributions. We
report R, the ratio of RMS error to parameter RMS and often plot R · 2b to make diagonal error/bits
trade-off lines horizontal. See Section C for further details.

Preliminaries To validate the cube root rule, we test a generalised quantiser with pdf exponent
α in Figure 21, finding that the cube root setting (α = 1

3 ) performs best and similarly to Lloyd-
Max, outperforming quantile quantisation (α = 1). For block scaled formats, we must choose an
appropriate block size. Smaller blocks have lower error from a tighter block range but incur greater
space overhead from storing the block scale. Figure 20 shows that B = 128 is a good choice for
these distributions. The figure also validates our default choice of bfloat16 over E8M0.

Block formats exploit variable-length encoding. Our main result is the tradeoff between error
and bit width for various scaling strategies with optimal quantisers, Figure 4. We were surprised to
find that block absmax formats can outperform tensor RMS formats that use optimal element quan-
tisers, even for iid simulated data. However when adding compression, using a variable number
of bits to encode each value, the advantage of block formats disappears and tensor RMS scaling
performs best. This suggests a perspective on the benefit of block absmax formats — instead of
viewing them as a way to avoid clipping, we can view them as a variable-length code, using ad-
ditional (scale) bits to encode the block maximum. Since they outperform optimal fixed-length
codes, they must somehow exploit variable-length coding. While the exact mechanism isn’t clear,
we provide an illustrative depiction of the effective code length in Figure 5.

Additional observations We compare standard formats against optimal block element formats in
Figure 17. Here we see that NF4 (Dettmers et al., 2023) is not optimal for RMS error across different
block sizes, and that E2M1 is consistently better than INT4 and E3M0. For floating-point formats,
Figure 18 shows that the optimal number of exponent bits generally doesn’t change as the total
bit allocation grows. This is expected, since exponent bits govern the shape of the quantisation
density function while mantissa bits govern the resolution, and the optimal shape should remain
fixed. Figure 19 shows the benefit of using 4-10 scale mantissa bits over E8M0. In Figure 23, we see
that an elementwise Huffman code approaches the theoretical compression performance.

4 EXPERIMENTS

We evaluate a wide variety of weight formats described above for quantisation of pretrained language
models from the Llama 3, Qwen 2.5, Gemma 3 and Phi 4 families. To enable a broad evaluation,
most results use direct-cast quantisation, sometimes called round-to-nearest, which is a simple quan-
tisation technique that performs one-shot conversion, without using data or fine-tuning. The primary
comparison is an efficiency trade-off between top-k KL-divergence of quantised and original model
predictions, DKL, against average bits per parameter, b. We also use ρ := DKL · 22b as a measure of
inefficiency of representation. See Section D for further details of our methodology.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

−0.1 0.0 0.1

θi

0
8

16

32

48

β
i

b≈4

Sparse Outliers

−0.1 0.0 0.1

θi

0
8

16

32

48

b≈4

Block Absmax

−0.1 0.0 0.1

θi

0
8

16

32

48

b≈4

Compression

20

24

28

212

C
ou

n
t

Figure 5: A 2D histogram of bits βi used to encode parameter i from the first MLP down-projection
from Llama 3.1 8B, illustrating how different schemes achieve variable-length encoding. (Left)
sparse outliers create a distinct step between regular values and the 0.1% largest absolute values.
(Center) block absmax can be seen as using the bfloat16 scale to represent the block maximum
and fewer bits for everything else. The histogram has an overlap, since the maximum is per-block
not global. (Right) lossless compression on a uniform grid with βi = − log2 pi, where pi is the
proportion of parameters assigned to that quantisation bucket.

Uniform quantisation with compression is efficient. Figures 1 and 8 show that a uniform
grid quantiser followed by optimal lossless compression consistently outperforms other approaches.
With compression, tensor RMS scaling is sufficient and can be folded into the grid resolution. Huff-
man coding achieves near-optimal compression, as shown in Figure 8.

Variable-length encoding is necessary for good performance. Figures 1 and 8 also demonstrate
the characteristics of near-optimal formats without lossless compression. All employ block or chan-
nel absmax scaling and/or separate storage of sparse outliers (Kim et al., 2024). Our search over
a wide range of element formats was unable to find fixed-length schemes that can reach the same
performance as block or sparse formats. Consistent with our observations of Section 3, this indi-
cates that they exploit variable-length encoding. We also observe that there is no benefit in adding
block absmax scaling or sparse outlier removal to lossless compression (see Figure 27), indicating
that their benefit comes from the same source. Alternatively, random rotations can mitigate the
poor performance of fixed-length codes Figure 28, but cannot match the performance of optimal
variable-length codes.

Variable bit allocation improves efficiency. The variable bit allocation scheme promises to reach
the same overall compression level for a model with less degradation by allocating more bits to
parameters with higher Fisher information. Figure 6 shows that this is indeed the case, with a strong
improvement across 8 of 11 models and different formats. The exception is Gemma models, where
our prediction of KL based on Fisher information also breaks down (Figure 10).

Downstream tasks & QAT are consistent with KL divergence & direct-cast. As direct-cast
quantisation is known to be suboptimal, we confirm that the ranking of headline formats is broadly
consistent after quantisation-aware training (QAT) and when evaluating on a suite of downstream
tasks in Figure 7, with a side-by-side comparison against direct-cast results in Figure 9. Downstream
performance saturates, so that QAT has the largest advantage at b ≤ 4 and format selection is most
important at b ≈ 3 bits. See Tables 1 and 2 for results on individual tasks.

Additional observations In Figure 30, we compare element formats against a Student-t baseline
over b ∈ [3..5], indicating the Student-t format performs best in almost all cases. Figure 31 compares
4-bit 3

√
p formats against NF4 and SF4 baselines: 3

√
p Normal and NF4 show similar performance,

but 3
√
p Student-t outperforms SF4. For block absmax scaling, Figure 32 confirms the results from

simulated data — a block size near 128 and 4-7 scale mantissa bits perform best. We compare
symmetric, asymmetric and signmax variants for block scaling with integer or Student-t element
formats in Figure 33, finding that signmax delivers a consistent improvement across models and
particularly for small b ≈ 3. The performance of symmetric vs asymmetric variants is inconsistent
across models. In Figure 34 we evaluate different ways to choose the quantiser scale. Search to
minimise R is better than moment matching when using RMS scaling, but can be harmful for absmax
scaling unless weighted by the per-parameter Fisher information.
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Figure 6: The performance of the Fisher-based variable bit allocation scheme of Equation (5).
(Left) the tradeoff curve for Llama 3.1 8B, showing a general shift to the left, although some settings
for absmax scaling are degraded. (Right) the average scaled KL of different bit allocation schemes
compared with flat allocation, for all models except for Qwen 2.5 3B using Block Absmax. See
Figure 29 for a cross-domain result and an explanation of heuristic bit allocation.

5 RELATED WORK

We separate the research of weight quantisation into two broad categories: the design of numerical
formats with which to represent the model parameters, and quantisation techniques for adapting the
parameters in order to minimise the quantisation error.

Numerical formats Low-precision formats have been widely utilised for training and inference of
models, with the half-precision bfloat16 format (Wang & Kanwar, 2019) becoming the de facto
standard. Modern accelerator hardware offers further support for lower-precision floating point for-
mats, such as fp8 (Wang et al., 2018; Noune et al., 2022), fp4 (Sun et al., 2020) and fp6 (Gernigon
et al., 2023). Dettmers & Zettlemoyer (2023) compare the effectiveness of different formats for
inference, showing that 4-bit precision can be optimal on the accuracy/size trade-off. Similarly,
Liu et al. (2025) show that optimising the training scheme further highlights the potential of even
lower bit widths, such as 2-bit quantisation. Low-precision formats are often accompanied with
block scaling techniques to improve the accuracy, such as in the proposed MX formats (Rouhani
et al., 2023), where blocks of integer or floating point elements are combined with a per-block scale
element. As transformer inference is often bottlenecked by memory transfers, formats without hard-
ware arithmetic support can be useful for compression, for example using a look-up table (LUT)
for dequantisation. Dettmers et al. (2023) introduce NF4, aimed to be the theoretically optimal 4-bit
format under the assumption of normally-distributed parameters; similarly, Dotzel et al. (2024) in-
troduce SF4, assuming a Student-t distribution. In both approaches, the authors derive the codebook
so that each quantisation bin is equally populated under the assumed distribution. However, this
does not lead to optimal codes in terms of the RMS error, which we instead motivate and pursue
in our current work. Yoshida (2023) identifies that block size can have a significant impact on the
scaled distribution, and derives AF4 assuming a normal distribution. AF4 is similar to our proposed
block absmax 3

√
p Normal format, but optimises for absolute rather than squared error and uses a

different approximation for the block maximum. Alternatively, a format’s codebook can be fitted
to a parameter tensor or a sub-tensor, typically by applying the Lloyd-Max algorithm (Lloyd, 1982;
Max, 1960) to find the optimal codepoints (Zhang et al., 2018; Kim et al., 2024).

Outliers, Rotations & Compression In addition to choosing the appropriate numerical format, many
techniques also handle outlier values separately, by storing them in higher precision. In LLM.int8()
(Dettmers et al., 2022a), the authors identify outlier feature dimensions which they keep in higher
precision, while storing the rest of the values in int8. Similarly, in SpQR (Dettmers et al., 2024)
and SqueezeLLM, outlier parameter values are separately stored in higher precision. Alternatively,
random or trained rotations can be used to suppress outliers and aid quantisation (Tseng et al., 2024a;
Ashkboos et al., 2024; Liu et al., 2024b). Lossless compression has also been incorporated in Deep
Compression and DFloat11 (Han et al., 2016; Zhang et al., 2025), which use Huffman codes to
improve compression after quantisation.

8
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Figure 7: The trade-off between average bits per parameter and average downstream task perfor-
mance for Llama 3.1 8B after QAT. Shaded lines show ±2 standard error over the evaluation data.
Compared against Figure 1, the ranking of formats is broadly preserved at b= 3, but performance
quickly saturates with b ≥ 4. See also Figure 9 and Table 2.

Vector Quantisation (VQ) Instead of quantising each parameter independently, VQ (Linde et al.,
1980) considers a block of parameters together. This can bring the benefits of a variable-length scalar
code with a fixed-length vector code. VQ can also reduce bit-alignment overhead versus scalar codes
and exploit correlations, but require careful design to constrain the size of the codebook. VQ has
been successfully applied to parameter quantisation (Egiazarian et al., 2024; Tseng et al., 2024a;b).

Sensitivity-aware formats SqueezeLLM (Kim et al., 2024) uses Fisher information “FI” with
weighted Lloyd-Max to select quantisation centroids. CherryQ (Cui & Wang, 2024) use FI to se-
lect a sparse set of parameters to retain in high-precision. Radio (Young, 2025) uses FI to select
a bit-width per tensor or block of parameters, differing from our proposal by using an iterative
scheme that does not assume locally constant FI. Choi et al. (2017) combine many of the ideas dis-
cussed here, using Hessian-weighted entropy-constrained scalar quantisation (ECSQ) to optimise
codebooks before compressing with Huffman codes.

Quantisation techniques These can be divided into two categories: quantisation-aware training
(QAT) and post-training quantisation (PTQ). In QAT, the model is trained using backpropagation
to optimise the quantised parameters for minimal end-to-end degradation (Yin et al., 2019; Liu
et al., 2024a). Alternatively, PTQ techniques optimise the parameters without additional end-to-end
training (Frantar et al., 2022). Such techniques are generally applicable to any chosen format, so can
be used in with the approach presented in our work to further improve the accuracy of the model.

6 LIMITATIONS

Our study focuses on quantisation under a compression constraint, without directly addressing com-
pute efficiency. While non-linear formats such as the 3

√
p Student-t quantiser offer improved model

fidelity, they provide fewer opportunities for hardware acceleration than standard integer or floating-
point formats. In practice, fast decoding of novel formats depends on optimised implementations as
well as hardware support, which are promising directions for future work. Our framework is based
on minimising the error under direct-cast quantisation. Although we have verified that insights from
direct-cast results carry through to QAT for headline formats, interactions with finer-grained design
choices (e.g. symmetric vs. asymmetric formats) may require further evaluation. Finally, our empir-
ical evaluations are restricted to transformer LLMs in the 0.5–14B parameter range. However, the
framework itself is more general, and can be applied to other architectures and model sizes.

7 CONCLUSIONS

Framing weight quantisation as an optimisation problem highlights the importance of choosing the
right compression constraint. Under a codebook length constraint, 3

√
p and Lloyd-Max quantisers

are optimal. Under an entropy constraint, uniform quantisation followed by lossless compression is
optimal. We have shown that both block absmax and sparse outlier formats can be viewed as forms
of variable-length encoding, exploiting the advantage of the entropy constraint. For the format
designer, this suggests opportunities to develop practical formats that further close the gap with
lossless compression. For the format user, it suggests coherent constructions to use, for example,
block absmax formats or tensor RMS formats with sparse outliers.
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REPRODUCIBILITY STATEMENT

We describe our experimental setup in detail in Section D, with code provided in supplementary
materials and outlined in Section E. The code relies only on public model checkpoints and datasets
available on HuggingFace (Wolf et al., 2020), ensuring reproducibility.
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Figure 8: The trade-off between average bits per element and scaled top-k KL divergence over
different block scaling schemes (RMS, absmax), sparse outlier removal (on, off) and optimal lossless
compression (on, off). This is similar to Figure 1, but on the vertical axis we show ρ := DKL · 22b
to flatten the curve based on the error scaling limit of Zador (1982). We also show that simple
per-element Huffman coding performs very close to the optimal compression which assumes the
Shannon limit (Llama 3.1 8B only). Results are highly consistent across model families and sizes.
Note: shaded lines show ±2 standard error over the evaluation data. Where trends appear noisy but
error bars are tight (especially in Figure 1), this is due to the model itself — we are unable to quantify
uncertainty due to model parameters, since there is only one independent fully-trained checkpoint
for each family & size.
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Figure 9: Comparison of formats using direct-cast (Left) and quantisation-aware-training (Right),
evaluated on validation KL divergence (Top) and downstream task average accuracy (Bottom). QAT
improves all results, as expected, but broadly preserves the ranking between the different formats.
The ranking between formats on KL divergence and on downstream tasks is generally consistent,
except for Tensor RMS scaling which is able to achieve good KL divergence after QAT, while
remaining broken on downstream tasks. Downstream task performance saturates at large b, making
format selection and QAT most impactful for b = 3.

Table 1: Downstream task results for headline formats with direct-cast quantisation at b ≈ 3.
Downstream tasks generally follow the KL divergence ranking.

Format b DKL ARC-c ARC-e BoolQ CSQA HS OBQA PIQA SIQA WG

Baseline 16.00 0.001 79.6 90.0 82.2 70.2 80.8 76.0 81.8 64.8 73.7
Tensor RMS + C 3.00 0.205 71.6 84.4 73.8 65.4 79.2 63.8 80.7 58.6 72.2
Tensor RMS + Sp 3.05 0.503 47.2 71.6 63.7 53.9 72.2 50.2 77.1 53.6 68.8
Channel Absmax 3.00 1.075 27.1 37.5 69.2 24.8 65.3 31.8 73.9 35.3 62.5
Block Absmax 3.25 1.264 24.4 33.0 62.0 21.9 46.1 27.0 70.4 37.1 59.2
Tensor Absmax 3.00 4.577 21.1 24.6 51.0 19.9 37.4 27.0 60.5 32.2 51.7
Tensor RMS 3.00 9.115 26.8 27.2 41.7 19.1 26.4 24.4 50.5 32.9 49.4

Table 2: Downstream task results using QAT at b ≈ 3. There is a strong correlation between final
validation KL and downstream task performance. Although QAT has improved all formats relative
to direct-cast (Table 1), the ranking is consistent. The results are comparable to those of ParetoQ
(Liu et al. (2025), Table 4). Note that baseline performance is different for our results under OLMES
and that ParetoQ retains the embedding and final projection matrices in bfloat16.

Format b DKL ARC-c ARC-e BoolQ CSQA HS OBQA PIQA SIQA WG

Baseline 16.00 0.001 79.6 90.0 82.2 70.2 80.8 76.0 81.8 64.8 73.7
Tensor RMS + C 3.00 0.090 75.9 90.2 79.4 67.7 79.8 72.8 80.6 61.5 72.8
Tensor RMS + Sp 3.05 0.129 73.9 86.5 76.5 66.3 78.6 70.6 79.8 61.4 71.6
Block Absmax 3.25 0.132 64.9 84.2 79.4 63.3 78.2 65.4 80.0 59.5 72.7
Channel Absmax 3.00 0.152 64.5 80.0 79.7 58.8 75.5 62.2 78.2 56.5 69.3
Tensor RMS 3.00 0.169 20.1 27.2 61.1 19.1 35.0 26.6 56.2 32.8 51.4
Tensor Absmax 3.00 0.286 46.8 65.4 69.8 41.1 70.4 43.4 75.7 49.9 66.5
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Table 3: Glossary of terms.
Symbol Definition

θ Parameter vector (whole model or block of parameters)
θ̃ Reconstructed quantised parameters θ̃ = dequantise(quantise(θ))

Θ̃ Set of reconstructed quantised parameters
F Fisher information matrix of the model pθ(y | x)
b Bit width; the average number of bits to represent a parameter
DKL

(
pθ∥pθ̃

)
KL divergence between the predictions of reference and quantised models

Tt Tensor parameter indices; θTt
are the parameters of tensor t

B Block size; number of scalar elements in a block
Q Set of quantised representations
b⋆t Bit width of tensor t under the variable bit allocation scheme
βi Bit width of parameter i in a variable-length code

ρ Scaled KL divergence, ρ := DKL · 22b
R Root mean square (RMS) error divided by tensor RMS; note signal-to-noise

ratio SNR = 1/R2

A FISHER APPROXIMATION TO KL DIVERGENCE

In this section, we derive the 2nd order approximation of KL divergence in Equation (2) from the
definition of KL divergence in Equation (1) and Fisher information F ∈ R|θ|×|θ|,

F := E
x∼X

[
E

pθ(y|x)

[
(∇θ log pθ(y | x))(∇θ log pθ(y | x))⊤

]]
. (6)

We start by performing a Taylor expansion of DKL

(
pθ∥pθ̃

)
around θ̃ = θ,

DKL

(
pθ∥pθ̃

)
≈ DKL (pθ∥pθ)
+ (θ̃ − θ)⊤

(
∇θ̃ DKL

(
pθ∥pθ̃

))
θ̃=θ

+
1

2
· (θ̃ − θ)⊤

(
∇2

θ̃
DKL

(
pθ∥pθ̃

))
θ̃=θ

(θ̃ − θ),

and observe that the first two terms = 0, since θ̃ = θ is a minimum. Now we expand the second
derivative

∇2
θ̃
DKL

(
pθ∥pθ̃

)
= − E

x∼X

[
E

pθ(y|x)

[
∇2

θ̃
log pθ̃(y | x)

]]
,

= E
x∼X

[
E

pθ(y|x)

[
−
∇2

θ̃
pθ̃(y | x)

pθ̃(y | x) +
∇θ̃ pθ̃(y | x)(∇θ̃ pθ̃(y | x))⊤

pθ̃(y | x)2

]]
,

= E
x∼X

[∑

y

−∇2
θ̃
pθ̃(y | x)

]
+ E

x∼X

[
E

pθ(y|x)

[∇θ̃ pθ̃(y | x)(∇θ̃ pθ̃(y | x))⊤
pθ̃(y | x)2

]]
.

The first term = 0, since the second derivative can be moved outside the sum, and the second
term is equal F as defined in Equation (6), if we expand both logarithmic derivatives. Therefore,(
∇2

θ̃
DKL

(
pθ∥pθ̃

))
θ̃=θ

= F , and

DKL

(
pθ∥pθ̃

)
≈ 1

2
· (θ̃ − θ)⊤F (θ̃ − θ). (2)

Diagonal approximation As a further simplification, we assume the cross terms are small, Fij ≈
0 ∀ i ̸= j, so we can simplify the approximate KL divergence to

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

i

Fii · (θ̃i − θi)
2. (7)
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Figure 10: How Fisher information predicts KL divergence given a single-tensor iid random per-
turbation (as per Figure 11). Most models show a clear trend following the prediction rule, with
some outliers. For the Gemma 3 family, there are a set of tensors in early layers for which the
Fisher-based prediction overestimates the error. We have found that the flattening of the curve for
small noise levels (where the measured KL is higher than predicted) is due to a small bias in top-k
KL divergence, compared with true KL divergence.
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Figure 11: The KL divergence from modifying each parameter tensor in turn with iid noise, com-
pared against (Left) the predicted KL divergence from Equation (7), and (Right) the scale of pertur-
bation without using Fisher information. For each parameter tensor of Llama 3.1 8B, we perturb
θ̃Tt

= θTt
+ σt · ϵ, for a range of σt and with ϵ ∼ N|Tt|(0, 1), and measure the top-k KL divergence

of outputs against the original model. This result indicates that Fisher information is able to predict
KL divergence — tensors with higher Fisher information are more sensitive to perturbation.
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Figure 12: An exploration of the variation in the diagonal of the Fisher information. (Left)
across different tensors and (Right) within each tensor, for Llama 3.1 8B. With the exception of
embed tokens, there is a similar level of variation in the Fisher information across tensors as within
a tensor. This indicates that the Fisher information may prove useful for both inter and intra -tensor
weighted optimisation. Note: the least sensitive tensor is layers.0.self attn.q proj with mean
Fisher of 2.0 · 10−7, and the most sensitive is layers.0.self attn.v proj with 1.2 · 10−3.

The scaled-identity per-tensor approximation Further to the diagonal approximation, for many
of our results we assume that the Fisher information is constant within each parameter tensor, i.e.,
Fii = f̄t, for i ∈ Tt. With this assumption, the approximate KL divergence simplifies further to

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2. (3)

To justify this assumption, we investigated the structure of the diagonal Fisher information in Fig-
ure 12, finding that there is similar or greater variation across tensors than within a tensor. This
doesn’t discount the value of per-element Fisher statistics, but it indicates that the average Fisher
information over a tensor is a quantity of interest, and can vary significantly across tensors.
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Table 4: Statistics required for deriving optimal RMS and absmax scaled 3
√
p quantisers. See Sec-

tion B.4 for a derivation of parameters of D′. The expected absmax is taken from extreme value
theory (Leadbetter et al., 2012), or in the case of Student-t from our empirical approximation (see
Figure 13). Note that γ is the Euler–Mascheroni constant.

Value Normal (s) Laplace (s) Student-t (s, ν)

RMS
√
E [θ2i ] s

√
2 · s

√
ν

ν−2 · s

E
[
maxi∈[1..B] |θi|

]
≈

√
2 log B

π · s (γ + logB) · s
(
2 log B

π

) ν−3
2ν ·B 1

ν ·
√

ν
ν−2 · s

D′ params s′ =
√
3 · s s′ = 3 · s ν′ = ν−2

3 , s′ =
√

ν
ν′ · s
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B
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Normal√
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Figure 13: Approximations (dashed) to the expected block absmax value for Normal, Laplace and
Student-t distributions with scale s = 1, versus simulation (solid) with 220

B samples. (Left) Normal
and Laplace distributions. The fit for Normal at small B ≤ 8 is poor, but typical block sizes are
larger than this. (Right) Student-t for various degree-of-freedom ν ≥ 3, showing good fit across a
range of sizes, converging to the Normal approximation as ν → ∞.

B OPTIMAL QUANTISERS

In this section, we present step-by-step recipes for constructing cube root density quantisers (B.1),
sketch derivations of the cube root rule (B.2) and uniform density rule (B.3), and derivations for the
parameters of D′ (used to apply the cube root rule to Normal, Laplace and Student-t distributions,
B.4) and the variable bit allocation scheme (B.5).

B.1 RECIPES

Recipe for a 3
√
p quantiser

1. Compute parameters of the target distribution D.

• For RMS scaling, set RMS = 1 and use Table 4 to calculate s.

• For Absmax scaling, set E
[
maxi∈[1..B] |θi|

]
= 1 and use Table 4 to calculate s.

2. Compute parameters of D′, which has pdf pD
′ ∝ 3

√
pD from Table 4.

3. Use the inverse cdf to select quantisation codepoints with density given by D′.

Code examples are given in Section E.
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Figure 14: An example of block-scaled Normal data, B = 64, using (left) absmax and (right)
signmax scaling: an empirical histogram from sampled data (filled colour) and our mixture model
(dashed), using the approximate maximum from Table 4. The empirical marginal distribution is a
good fit to our mixture of ±1 (signmax +1) maximum and truncated-Normal non-maxima.
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Figure 15: An example of the cube root density rule. Left: The density of a standard Normal and
3
√ of that density, which is a scaled normal pdf. Right: The quantisation curves and error for 4-
bit formats derived from the cube root rule, a naive “proportional rule” and a Lloyd-Max quantiser
trained on standard Normal samples, showing good match between cube root density and Lloyd-
Max.

Recipe for a uniform grid quantiser with compression

1. Choose a resolution for the grid, δ, so that the quantisation codepoints are {δ · k | k ∈ N}.

2. Either compute the density of values mapped to each codepoint analytically, or via samples.

3. Build an entropy code from this distribution, e.g. using Huffman coding.

To reach a target b, this procedure can be wrapped in a search to find an appropriate δ.

B.2 WITH AN NUMBER OF CODEPOINTS CONSTRAINT — THE CUBE ROOT RULE

The cube root rule states that, under some assumptions, the optimal quantiser for distribution D
should have a codepoint density proportional to the cube root of the pdf of D. This is contrasted with
quantile quantisation (Gersho & Gray, 1991; Dettmers et al., 2022b), which attempts to distribute
quantised values evenly, where the density is proportional to the pdf directly. See Figure 15 for an
illustration.

Derivation For a sketch derivation of the cube root rule (Panter & Dite, 1951), consider a
piecewise-uniform probability distribution {pi} and a piecewise-uniform quantiser with ni code-
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points in section i. Then for a single piece of width w, the RMS error is

Ei = 2ni · pi ·
∫ w

2ni

0

x2

w
dx =

pi · w2

12n2
i

.

So, with a constraint on number of codepoints i.e.,
∑

i ni = 2b, we use the Lagrange multiplier λ to
optimise

E′ =
∑

i

pi · w2

12n2
i

+ λ ·
(∑

i

ni − 2b

)
.

This gives the gradients
dE′

dni
= −pi · w2

6n3
i

+ λ,

therefore with dE′

dni

∣∣
ni=n⋆

i

= 0, we see that n⋆
i ∝ 3

√
pi.

B.3 WITH AN ENTROPY CONSTRAINT — THE UNIFORM DENSITY RULE

The previous method constrained the total number of codepoints, which is appropriate for an un-
compressed data stream. If the quantiser is followed by an optimal lossless compressor, we should
instead use an entropy constraint:

H = −
∑

i

ni ·
pi
ni

log
pi
ni

= b

This gives the optimisation objective

E′′ =
∑

i

pi · w2

12n2
i

+ λ ·
(∑

i

pi log
pi
ni

+ b

)
,

and gradients
dE′′

dni
= −pi · w2

6n3
i

− λ · pi
ni

,

and when dE′′

dni

∣∣
ni=n⋆

i

= 0, pi cancels and n⋆
i = const.

Somewhat surprisingly, the RMS-optimal quantiser when followed by a perfect lossless compressor
is a uniform grid (lattice), where the tradeoff between b and E is made by varying the resolution of
the grid.

B.4 DERIVING PARAMETERS OF D′

In this section, we derive the rules for s′ and ν′ for the Normal, Laplace and Student-t distributions
given in Table 4. For all of these distributions, there is a distribution of the same family, but with
different parameters such that the new distribution’s pdf is proportional to the cube root of the
original pdf.

Normal For a Normal distribution N(0, s2),

p(x|s) = 1√
2π · s2

· e− x2

2 s2 .

If we set p(x|s′) ∝ 3
√
p(x|s), we see that for some constant C

1
6
√
2π · s2

· e− x2

6 s2 =
C√

2π · s′2
· e− x2

2 s′2 ,

therefore s′ =
√
3 s.

Laplace For a Laplace distribution,

p(x|s) = 1

2 s
· e− |x|

s .
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Figure 16: Variable allocation of bits across tensors in Llama 3.1 8B using Equation (5) with a
target of 4 bits per parameter. For many element formats, b⋆t would need to be rounded to the nearest
integer. Other members of the Llama 3 and Qwen 2.5 families show a similar trend of requiring
additional bits for the attention key and value projections. We suspect this is due to grouped query
attention (Ainslie et al., 2023), where the outputs of key and value projections are reused across a
group of multiple attention heads.

If we set p(x|s′) ∝ 3
√
p(x|s), we see that for some constant C

1
3
√
2 s

· e− |x|
3 s =

C

2 s′
· e− |x|

s′ ,

therefore s′ = 3 s.

Student-t For a Student-t distribution,

p(x | ν, s) = 1

s · √ν · B( 12 , ν
2 )

·
(
1 +

x2

s2 · ν

)− ν+1
2

.

If we set p(x | ν′, s′) ∝ 3
√
p(x | ν, s), we see that for some constant C

1

6

√
s2 · ν · B( 12 , ν

2 )
2
·
(
1 +

x2

s2 · ν

)− ν+1
6

=
C

s′ ·
√
ν′ · B( 12 , ν

2 )
·
(
1 +

x2

s′ 2 · ν′
)− ν′+1

2

,

therefore ν′ = ν−2
3 and s′ =

√
ν
ν′ · s.

B.5 VARIABLE BIT-WIDTH ALLOCATION

In this section, we derive the variable bit-width allocation scheme of Equation (5). We start from the
constant-per-tensor Fisher approximation to KL divergence of Equation (3), repeated here:

DKL

(
pθ∥pθ̃

)
≈ 1

2

∑

t

f̄t ·
∑

i∈Tt

(θ̃i − θi)
2.

Now, to forecast how the squared error term depends on bit width, we use the asymptotic limit of
Zador (1982), which can be stated as

E
[
(θ̃i − θi)

2
]
= ϵ2t · σ̂2

t · 2−2·b′t ,

where b′t is the bit width used for tensor t, ϵt depends on the distribution of θ and σ̂2
t :=∑

i∈Tt
E[θ2

i ]
Nt

≈ RMS2(θTt) with Nt := |Tt|. This gives the optimisation

minimise J :=
1

2

∑

t

Nt · f̄t · ϵ2t · σ̂2
t · 2−2·b′t ,

subject to
∑

t

b′t ·Nt ≤ b ·
∑

t

Nt.
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Using the Lagrange multiplier λ, and removing constant factors, we pursue the constrained optimi-
sation,

J ′ =
∑

t

Nt · f̄t · ϵ2t · σ̂2
t · 2−2·b′t + λ ·Nt · (b′t − b),

dJ ′

db⋆t
= −2 · ln 2 ·Nt · f̄t · ϵ2t · σ̂2

t · 2−2·b⋆t + λ ·Nt = 0,

b⋆t = b0 + log2 σ̂t +
1

2
log2 f̄t + log2 ϵt,

for some constant b0. As a final approximation, we assume that ϵt = const across t, so it can be
folded into b0 (see Table 5 for justification).

We show an example variable bit allocation computed from this procedure in Figure 16. Most
tensors are ±1 bit from the average, and there is a general trend toward representing some groups of
tensors more accurately, e.g. attn.v.

Table 5: The variation across tensors of terms that contribute to optimal bit count, for Llama 3.1 8B.
Note that ϵ is estimated based on observed quantisation error R, and as such depends on the format
used, in this case b = 4, Lloyd-Max, Absmax scaling with B = 64.

std q90% − q10%
1
2 log2 f̄t 0.88 2.04
log2 σ̂t 0.465 1.33
log2 ϵt 0.0302 0.0643

C ANALYSIS DETAILS (SIMULATED DATA)

For our analysis on simulated data, we draw data iid from Normal, Laplace or Student-t distributions
and measure the quantisation error. Since the scale of a distribution is easily absorbed in the formats
we consider, our primary evaluation metric is the ratio of RMS error to data RMS,

R :=

√√√√√
(∑

i

[E]2i

)
/


∑

i

∑

j∈[1..B]

θ2B·i+j


,

where i is a block index. We often report R · 2b for legibility when b varies across an experiment, as
R tends to scale as 2−b.

Unless noted, we sample |θ| = 224 scalar values for each experiment, and use float32 compute
precision throughout. For compression results, we use a sampling-based method to calculate the
model pQ with a fresh set of samples from the target distribution, and use +1 smoothing of the
counts (within the training sample range) to avoid zeros.

C.1 RESULTS

Question Figures

How to choose between compression & scaling schemes? 4
How to choose an element format? 17, 18
How to choose a scale format? 19, 20
How to choose block size? 20

Does the cube-root rule work? 21
Is moment matching sufficient for choosing quantiser scale? 22
How well does practical compression approach the optimal
limit?

23

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

16 64 256 1024

B

1.5

2.0

2.5

3.0

3.5

R
·2

b

θi ∼ Normal

16 64 256 1024

B

θi ∼ Laplace

16 64 256 1024

B

θi ∼ t[ν = 5] Element
3
√

p

NF4

SF4[ν=5]
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Scaling

Absmax
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Figure 17: The performance of optimal and extant 4-bit element formats as block size B varies.
Note that the total bit width varies with B, but is consistent across element formats. We see that
the 3

√
p formats are marginally better than NF4 and SF4, which don’t optimise for RMS error. Of

the floating-point and integer formats, E2M1 is generally the best. Signmax quantisation improves
INT4 considerably and makes it competitive for Normal data, although performance is still poor for
heavier-tailed distributions.
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θi ∼ Normal
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Figure 18: Floating-point element format performance as the total bit width b varies. In general,
the optimal number of exponent bits doesn’t depend on total bit width. The exception is for RMS
scaling, where low-exponent formats eventually stop improving with more mantissa bits (so R · 2b
starts increasing). This is due to the error in quantising the distribution tails, which lie outside the
format’s range — increasing the number of mantissa bits has negligible effect on range, so this
source of error eventually dominates. Note that for this plot, it was important that the bfloat16
scaling factor used round-away rather than round-to-nearest, to avoid range issues from rounding
the scale down.
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Figure 19: The performance advantage of scale mantissa bits, keeping average bit width b approx-
imately constant by varying the element bit width, for Student-t (ν=5) data. Both 3

√
p and integer

formats benefit from 4-10 scale exponent bits, and integers show greater benefit. Note the jumps in
the b ≈ 4 plot are due to a discrete number of codepoints in the element format.
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Figure 20: Absmax-scaled format error versus block size B, for different approximate bit widths,
data distributions and scale format. As B decreases, the element bit width is reduced to keep b =

belement + bscale

B approximately constant. bfloat16 (or E8M7) outperforms the mantissa-less E8M0
format. The optimum for Normal data is generally slightly to the right of that for heavy-tailed
Laplace and Student-t distributions, generally in the range 64–256.
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Figure 21: Validation of optimal 4-bit 3
√
p quantisers via simulation. We generalise the 3

√
p rule

to a pα rule for various α (horizontal axis) and try quantisers derived from different distributions
(hue) using moment-matching. (Top) RMS scaling. (Bottom) Absmax scaling, B = 64. We find
that the best quantiser is consistently the matching 3

√
p (α = 1

3 ), which performs comparably to a
Lloyd-Max trained quantiser. We also show the curve for a compressed quantiser with b ≈ 4, which
has optimum at α = 0, i.e. a uniform grid that is independent of the pdf.
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Figure 22: Search to find the best 5-bit quantiser parameters after RMS scaling of data generated
from a Student-t (ν = 5) distribution. (Left) search over the scale applied to the quantiser, such
that θ̃i = n′ · dequantise

(
quantise

(
θi
n′
))

. Note that each quantiser (Normal, Laplace, etc) is
optimal for data of their matching distribution, with RMS=1. For the correct Student-t quantiser,
RMS moment matching (n′ =1) works well, but moment matching performance is suboptimal for
mismatched quantisers. (Right) search to find the correct Student-t quantiser ν. For each ν, we
search for the scale n′ that minimises R.
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Figure 23: The performance of practical compressors using RMS scaling and 3
√
p element formats,

compared with the theoretical limit, over |θ| = 220 samples. An elementwise Huffman code (Huff-
man, 1952) using dahuffman (Lippens, 2017) performs close to optimal. Bzip2 doesn’t reach the
same compression ratio, however it still outperforms an uncompressed block format.
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Figure 24: A histogram of absolute parameter values for various models. Each line corresponds to
a parameter tensor in the model. As we care about tails not scales (the overall scale of a tensor is
easily absorbed into a scaling factor), we divide each parameter value by the RMS of the tensor. We
note that different models show the same general trends: heavy tails that seem closest to a Student-t
distribution in shape, with some variability across tensors in the model.
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D EXPERIMENTAL DETAILS

Our language modelling experiments use the WikiText-103 (Merity et al., 2017) combined validation
and test sets. For each sequence in the dataset, we generate full sequence (teacher-forcing) logits
from the reference model and test model for evaluation using cross entropy and top-k KL divergence,
which is described below. Hyperparameters are given in Table 6. The 11 models evaluated are:
Llama 3.1 8B, Llama 3.2 1B, Llama 3.2 3B, Phi 4 (14B), Qwen 2.5 {0.5B, 1.5B, 3B, 7B} and
Gemma 3 {1B, 4B, 12B} (Dubey et al., 2024; Yang et al., 2024; Kamath et al., 2025; Abdin et al.,
2024). Where multiple variants exist, we use the bare pretrained model.

The division of parameters into tensors follows the Huggingface transformers (Wolf et al., 2020)
checkpoints, which differ slightly between models. For example, Phi-4 contains a single “stacked”
projection matrix for query-key-value, while the other models tested store them separately.

Our k-means results use a custom implementation which iterates until the proportion of cluster
assignments that change drops below 10−4 and uses k-means++ (Arthur & Vassilvitskii, 2007) ini-
tialisation for RMS-scaled data and uniform (−1, 1) initialisation for absmax-scaled data — settings
which we found to be robust during early testing.

Table 6: Experimental settings.
Hyperparameter Value

Eval Sequence length 4096
Eval KL top-k 128
Eval tokens ≈ 5 · 105
Fisher estimation tokens 4 · 106
Reference parameter format bfloat16
transformers version 4.51.3
Scale search range [2−2, 2−1.75, . . . , 22] (17 steps)
Student-t ν search range logspace(log2 3, log2 100, steps=12, base=2)

QAT

Batch · Sequence length 64 · 1024
Steps 8192
Optimiser Adam β1,2 = (0.9, 0.95)

LR Cosine, η = 2−14−belem

Top-k KL divergence Our comparison metric is top-k KL divergence, defined for a single pair of
logits that specify pθ(yi | x) and pθ̃(yi | x) as

DKL
top-k(pθ, pθ̃) :=


 ∑

y∈argtopk(p)

py · log
py
qy


+ ptail · log ptail

qtail

where py := pθ(y | x) and qy := pθ̃(y | x) ,
ptail :=

∑

y/∈argtopk(p)

py ,

qtail :=
∑

y/∈argtopk(p)

qy .

Note that the top-k always applies to the reference model, never the target model. The tail term is
required to ensure that the KL divergence is ≥ 0. The logic is equivalent to creating a modified
distribution where the non-top-k classes are collapsed into a single output class, followed by regular
KL divergence over k + 1 classes.

We use top-k KL divergence rather than full KL divergence because the vocabulary size of language
models (typically > 105) makes it prohibitive to store a dataset of reference logits. Top-k KL
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Figure 25: The correlation of top-k KL divergence with change in cross entropy, L(θ̃) − L(θ), for
a wide sweep of runs on Llama 3.1 8B. (Left) mean KL versus change in cross entropy where each
point is a quantisation experiment, showing excellent agreement. (Center) histogram of sample KL
(individual sequence results) versus mean change in cross entropy for the run, and (Right) histogram
of mean KL for the run versus change in sample cross entropy. These show that top-k KL divergence
provides a much tighter error estimate than cross entropy when the degradation is small, however it
is likely that a per-sequence version of the cross entropy increase (i.e. L(m)(θ̃) − L(m)(θ)) would
give a similar benefit.
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Figure 26: A comparison of the estimated Fisher from Equation (8), which uses a sampled to-
ken from the model versus empirical Fisher using the target from the dataset, for each tensor in
Llama 3.1 8B. The empirical Fisher is generally a little larger, due to a mismatch between the
model’s predictive distribution and the data distribution.
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divergence stores 2·k scalar values per token, an index and a log-probability, versus a log-probability
per vocabulary term for full KL divergence.

In Figure 25 we investigate the benefit of using KL divergence over cross entropy. Since the two
metrics are extremely well correlated, we would expect no difference in the outcomes. However the
KL divergence gives tighter error bounds on the estimate, since the quantised and original models
are compared for each token rather than once for the aggregate statistic.

Fisher estimation To estimate the diagonal of the Fisher information defined in Equation (6) for the
reference model, we sample text sequences from the WikiText-103 training set. For each sequence,
we generate logits from the model, sample a single output token per position in the sequence from
the predicted distribution and backpropagate the cross entropy loss of the sampled token to get the
gradient with respect to activations. We replace the calculation of parameter gradients with a custom
version, which squares the gradients before accumulation (see Section E.3). That is, we calculate

Fii ≈
1

M · L
∑

m∈[1..M ]

∑

p∈[1..L]

(
∇θi log pθ(ŷ

(m)
p | x(m)

<p )
)2

where ŷ(m)
p ∼ pθ(y | x(m)

<p ). (8)

over M = 1024 sequences of length L = 4096. Note that we use a sampled target label rather than
the ground truth from WikiText in order to be closer to estimating the Fisher rather than empirical
Fisher, a difference explored by Kunstner et al. (2019), at the cost of increased variance of our
estimator. We explore the correlation between these in Figure 26. Despite this effort, since we use
“teacher forcing” of inputs in an autoregressive setting, the method remains somewhat empirical.

Since this method accumulates the diagonal Fisher, it stores |θ| additional values, a similar amount
of memory to training with SGD. Although the parameters may be represented in bfloat16, it
is important to accumulate the Fisher statistics in a format with more mantissa bits, as bfloat16
updates will be swamped after O(28) steps. To support Fisher estimation with limited accelerator
memory, we implement a 2-stage accumulator that accumulates 64 steps in bfloat16 on device,
then accumulates these batched updates in float32 on the host CPU.

Moment matching baselines For RMS scaling with 3
√
p formats, the moment matching baseline

sets the RMS of the quantiser to match that of the data. For standard formats it scales such that data
RMS = 1 in the case of E2M* and 2b−1−1√

3
(to match the RMS of a uniform distribution) in the case

of INT. With Absmax scaling, the moment matching baseline sets the scale such that the minimum
of the positive and negative range of the quantiser matches that of the normalised data, i.e. to cover
(−1, 1).

Quantisation aware training We initialise two copies of the pretrained checkpoint of a given
model: one to serve as a reference model to produce target logits, and one for quantising using
QAT. We replace each parameter in the quantised model with a compute graph which performs the
following:

1. Calculate block, channel or tensor scale from the master parameter tensor.
2. Divide the master by the scale.
3. Round to nearest quantisation centroid, with a straight-through estimator (identity gradient

operator) in the backwards pass.
4. Multiply by the scale.
5. (If applicable), replace parameters at sparse indices with sparse values.

Note that quantisation centroids are computed when converting the model, based on the format under
test, and are not updated during training. Only master parameters and sparse values are updated
during training, as the scale is calculated based on the master parameter, using absmax or RMS as
appropriate.

After conversion, we train the quantised model on batches sampled from SlimPajama (Soboleva
et al., 2023), with a full KL divergence loss against the reference model output. Early learning rate
sweeps indicated that the best learning rate depended on the target bit width b, and that η ∝ 2−b was
a reasonable heuristic. Key training hyperparameters are given in Table 6.

Downstream tasks We use OLMES (Gu et al., 2025) for downstream evaluation over the following
tasks: ARC Challenge “ARC-c” (MC), ARC Easy “ARC-e” (MC), BoolQ (Cloze), CSQA (MC),
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HellaSwag “HS” (Cloze, limit to 1000 examples), PIQA (Cloze), SocialiQA “SIQA” (MC) and
Winogrande “WG” (Cloze). Note: MC = Multiple Choice.

Our summary metric downstream mean accuracy ratio is computed by taking the ratio of down-
stream task accuracy to the unquantised baseline accuracy, then clipping to the range [0, 1], before
averaging across tasks.

D.1 RESULTS

Question Figures

How to choose between (compression, scaling, outlier) schemes? 1, 8, 27
Does Downstream/QAT change this? 7, 9; Tables 1, 2
How do random rotations help? 28
Does variable bit allocation help? 6, 29
How to choose an element format 30, 31
How to choose a scale format? 32
How to choose block size? 32
Signmax, Asymmetric or Symmetric scaling? 33
Moment matching or scale search? 34
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Figure 27: The average change in scaled KL for various scaling schemes and sparsity, when com-
bined with optimal lossless compression. Note that each point is the scaled KL for a model, averaged
over bit widths, and divided by the tensor RMS baseline. In the presence of lossless compression,
there is no benefit to block scaling or separating sparse outliers, consistent with our claim that they
exploit the same variable-length encoding benefit offered by compression. The only scaling mode
that outperforms simple tensor RMS scaling when combined with compression is channel RMS
scaling, which exploits structure in the tensor data.
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Figure 28: An evaluation of random rotations, where the rotations V and W are applied
before quantising the rows and columns respectively of a 2D parameter tensor, i.e. θ̃ =
V ⊤dequantise(quantise(V θW ))W⊤. Since we expect rotated parameters to be roughly nor-
mally distributed, we use the 3

√
p normal quantiser, optionally with a block scaling scheme, sparse

outliers or compression. Our results show that random rotations are useful for fixed-length schemes
such as tensor scaling without sparse outliers, but unnecessary for schemes that employ variable-
length coding. This is what we’d expect: rotations transform heavy-tailed marginal distribu-
tions, where fixed-length quantisation performs much worse than variable-length quantisation (Fig-
ure 4 (right)), towards the Normal distribution, for which fixed-length quantisation performs better
(Figure 4 (left)).
Note that the outlier point for Tensor RMS scaling with rotation corresponds to the Phi-4 model,
which is likely an experimental issue — for sake of memory, we skip rotations where the dimension
is too large (e.g. embedding vocabulary dimension), and with the large hidden size of Phi-4, our
code also skipped rotating the output dimension of the stacked MLP up-and-gate projection.
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Figure 29: The performance of the Fisher-based variable bit allocation scheme of Equation (5)
for codeparrot/github-code (Tunstall et al., 2022), when the Fisher information was calculated
over WikiText, a substantially different dataset. (Left) the tradeoff curve for Llama 3.1 8B, showing a
general shift to the left, although some settings for absmax scaling are degraded. (Right) the average
scaled KL of different bit allocation schemes compared against flat allocation, for all models. Much
of the in-domain improvement is retained, indicating that the Fisher information can generalise
across datasets. Note that the heuristic bit allocation scheme allocates +2 bits to all parameters
in the first 2 and last 2 transformer layers, and to embedding and final projection parameters; this
performs poorly.
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Figure 30: A comparison of different element formats, each point the best setting for a given model,
over {moment matching/search/Fisher-weighted search, symmetric/asymmetric variant}, compared
with Student-t with RMS scaling and sparse outliers. No setting consistently beats this baseline
across models; surprisingly, this includes Lloyd-Max with Fisher weighting.
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Figure 31: A comparison of 3
√
p against extant formats with block absmax scaling, 4-bit elements

and bfloat16 scale, i.e. b = 4 + 16
B . (Left) Llama 3.1 8B performance as B varies. We see that

the 3
√
p formats and NF4 perform similarly. Note that 3

√
p Normal is different from NF4, since 3

√
p

formats optimise for RMS not incompressibility and use a model of the block-maximum, meaning
that the curve depends on B. (Right) average performance across different models, where each point
gives the average ρ across block size, divided by the performance of (model, 3

√
p Student-t). We see

that 3
√
p Laplace and Student-t perform best in general, and there is little to choose between 3

√
p

Normal and NF4. Surprisingly, SF4 is worse, at odds with the findings of Dotzel et al. (2024). One
possible explanation for the difference is our use of a bfloat16 scale, which provides a tighter
bound on the block maximum, compared with an E8M0 exponent.
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Figure 32: Hyperparameter sweep for block absmax formats using the Student-t element quantiser
and b ≈ 4. (Left) block size sweep, showing that almost all models agree on B = 128, given a
bfloat16 scale, consistent with our simulations in Figure 20. (Right) scale mantissa bits sweep
with round-away, showing that most models benefit from 4-6 scale mantissa bits, given B = 128,
consistent with Figure 19. For both sweeps, a fair comparison is made by adjusting the element
width to account for the different scale overhead. For example, for B=64 with a bfloat16 scale,
the element bit width is set as close to 4− 16

64 as possible.
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Figure 33: A comparison of scaling variants (see Figure 3) for INT and 3
√
p Student-t element

formats, using block scaling with B=128. (Left) the tradeoff curve for Llama 3.1 8B, showing that
signmax outperforms regular absmax scaling at small b. Symmetric scaling, which does not include
a representation for 0 does not perform consistently for this model. (Right) scaled KL over all
models, relative to the absmax + asymmetric variant. The improvement from signmax is consistent.
The symmetric format is sometimes better and sometimes worse than asymmetric.
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Figure 34: Moment matching vs search over quantiser scale to optimise R and Fisher-weighted
search. Each point corresponds to the average ρ over bit width for one of the 11 models tested. The
results suggest that search is helpful for RMS scaling, but not reliable for absmax scaling, although
Fisher weighting seems to help here. Note that all formats for Qwen2.5-3B perform very badly
using Fisher-weighted search, with a ratio ρ(Fisher)

ρ(Moment) > 2. Only one of these results is visible in-range.
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E CODE EXAMPLES

This section provides illustrative implementations that compute optimal quantisation curves for
RMS and block absmax Normal, Laplace and Student-t distributions as well as code to estimate
the diagonal of the Fisher information matrix. For the full implementation used for our experiments,
please see the supplementary material.

E.1 CUBE ROOT DENSITY (RMS SCALING)

Illustrative implementations of 4-bit cube root density quantisation of different distributions (sym-
metric variant).

Normal

b = 4
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.norm.ppf(p[1:-1], scale=sqrt(3)))

def quantise(x): return torch.bucketize(x, (Q[1:] + Q[:-1]) / 2)
def dequantise(i): return Q[i]

Note the scale for the ppf (inverse cdf) is set to
√
3, according to the rule from Table 4.

Laplace (RMS=1):

b = 4
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.laplace.ppf(p[1:-1], scale=3/sqrt(2)))

Student-t (ν = df, RMS=1):

b, df = 4, 7
p = torch.linspace(0, 1, 2**b + 2)
Q = torch.tensor(scipy.stats.t.ppf(p[1:-1], (df-2)/3, scale=sqrt(3)))

E.2 CUBE ROOT DENSITY (BLOCK ABSMAX SCALING)

Illustrative implementations of 4-bit cube root density quantisation of different distributions, scaled
by their block absmax (symmetric variant).

Normal

b, block_size = 4, 64
p = torch.linspace(0, 1, 2**b)
scale = sqrt(3 / (2 * log(block_size/pi)))
Q = torch.tensor(scipy.stats.truncnorm.ppf(p, -1/scale, 1/scale, scale=scale))

Note the scale for the inverse cdf is s′

E[maxi θi]
from Table 4.

Laplace

def trunclaplace_ppf(q, x0, x1, scale):
c0, c1 = scipy.stats.laplace.cdf([x0*scale, x1*scale], scale=scale)
return scipy.stats.laplace.ppf(c0 + (c1-c0)*q, scale=scale)

b, block_size = 4, 64
p = torch.linspace(0, 1, 2**b)
scale = 3 / (0.57721566 + log(block_size))
Q = torch.tensor(trunclaplace_ppf(p, -1/scale, 1/scale, scale=scale))

Student-t (ν = df)

def trunct_ppf(q, df, x0, x1, scale):
c0, c1 = scipy.stats.t.cdf([x0*scale, x1*scale], df, scale=scale)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

return scipy.stats.t.ppf(c0 + (c1-c0)*q, df, scale=scale)

b, block_size, df = 4, 64, 7
p = torch.linspace(0, 1, 2**b)
scale = (2*log(block_size/pi))**((3-df)/(2*df)) * block_size**(-1/df) * sqrt(3)
Q = torch.tensor(trunct_ppf(p, (df-2)/3, -1/scale, 1/scale, scale=scale))

E.3 FISHER ESTIMATION

Illustrative code for wrapping a torch.nn.Linear layer with logic to compute the sum of squared
gradients in order to estimate the diagonal of the Fisher information matrix.

class FisherWrappedLinear(torch.nn.Module):
def __init__(self, m: torch.nn.Linear):

super().__init__()
self.m = m
self.gW2 = torch.zeros_like(self.m.weight, dtype=torch.float32)

def forward(self, x):
y = self.m(x)
y.requires_grad_(True).register_hook(

lambda gy: self.gW2.addmm_(
gy.detach().flatten(0, -2).float().square().T,
x.detach().flatten(0, -2).float().square(),

) is None or None
)
return y
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