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Abstract
Generalized Category Discovery (GCD) aims to
identify unlabeled samples by leveraging the base
knowledge from labeled ones, where the unla-
beled set consists of both base and novel classes.
Since clustering methods are time-consuming at
inference, parametric-based approaches have be-
come more popular. However, recent parametric-
based methods suffer from inferior base discrimi-
nation due to unreliable self-supervision. To ad-
dress this issue, we propose a Reciprocal Learn-
ing Framework (RLF) that introduces an auxil-
iary branch devoted to base classification. During
training, the main branch filters the pseudo-base
samples to the auxiliary branch. In response, the
auxiliary branch provides more reliable soft labels
for the main branch, leading to a virtuous cycle.
Furthermore, we introduce Class-wise Distribu-
tion Regularization (CDR) to mitigate the learn-
ing bias towards base classes. CDR essentially
increases the prediction confidence of the unla-
beled data and boosts the novel class performance.
Combined with both components, our proposed
method, RLCD, achieves superior performance
in all classes with negligible extra computation.
Comprehensive experiments across seven GCD
datasets validate its superiority. Our codes are
available at https://github.com/APORduo/RLCD.

1. Introduction
With the development of deep learning in recent years, mod-
els can perform well in traditional tasks such as image
recognition (He et al., 2016; 2017; Vaswani et al., 2017;
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Figure 1. (a) Parametric Generalized Category Discovery (GCD)
methods rely on self-supervision for clustering unlabeled data but
exhibit weak base class discrimination. (b) Our approach intro-
duces an auxiliary branch specialized in base class classification,
providing more reliable base logits to the main branch and thereby
significantly improving base discrimination.

Dosovitskiy, 2021). Generally, the models rely on abundant
annotated data in a closed scenario where the unlabeled
data share the same classes with the labeled training data.
However, these models have limitations in the real-world
scenario where unlabeled data comes from unknown classes.
In this way, Category Discovery (CD) has garnered atten-
tion in the machine learning community. Initially, Han et al.
(2019) propose Novel Class Discovery (NCD), which is
designed to cluster novel class data with the assistance of
labeled data exclusively. However, NCD assumes that the
unlabeled data all belong to novel classes, which is unrealis-
tic in practical scenarios. Recently, Generalized Category
Discovery (GCD) (Vaze et al., 2022b) has emerged and it
allows the unlabeled data spanning both base and novel cat-
egories. Compared to the NCD task, GCD is more practical
and challenging in real-world scenarios.

Vaze et al. (2022b) first define the GCD problem and tackle
it using contrastive learning along with the semi-supervised
k-means clustering method. Wen et al. (2023)further pro-
pose an effective parametric framework, SimGCD, which
outperforms the clustering methods with reduced inference
time. Due to its effectiveness, the parametric framework
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Figure 2. Comparison of the oracle base class accuracy between
SimGCD, LegoGCD, and our method. SimGCD and LegoGCD
exhibit poor performance, falling behind the supervised reference
(SupRef). Contrarily, our method exhibits enhanced discrimination,
even surpassing SupRef.

has become popular in GCD research. Wang et al. (2024)
design a two-stage framework on the pre-trained SimGCD
model that introduces both global and spatial prompts to fine-
tune the model. LegoGCD(Cao et al., 2024) observes that
SimGCD suffers catastrophic forgetting of base classes, and
they propose a novel regularization to address it. Despite
the significant advancements in parametric methods, Fig. 1
reveals a key limitation: these methods rely exclusively on
self-supervision, leading to suboptimal base discrimination.

To quantitatively reveal the main limitation in existing
works, we define the oracle base accuracy (OB) for evalu-
ating base discrimination. OB solely considers base-class
prediction and calculates the accuracy of unlabeled base
data utilizing the prototype classifier. As shown in Fig. 2,
both SimGCD and LegoGCD lag behind the supervised-
only reference (SupRef), which exclusively utilizes labeled
data for training. This disparity primarily arises from the
unreliable soft labels in self-supervised learning.

To promote base discrimination, we design a Reciprocal
Learning Framework (RLF). In particular, we insert an aux-
iliary token named AUX in the model architecture. Then
AUX is concatenated with the CLS token and image feature
tokens to form the input of the final block. Subsequently,
the corresponding AUX output is dedicated to a base-only
classifier while the CLS output is designated for the all-class
classifier. During training, the main branch filters pseudo-
base samples, which are predicted to the base classes, and
directs them to the auxiliary branch. In feedback, the auxil-
iary branch provides reliable base class distribution to the
main branch. This collaboration between the two branches
contributes to more robust base predictions, improving base-
class discrimination and overall accuracy. Benefiting from
parallel computation between tokens, the extra computation
cost is negligible.

However, the reciprocal framework may incur learning bias
toward base classes that more novel samples are misclassi-
fied into the base classes. To alleviate the above bias, we

propose a Class-wise Distribution Regularization (CDR)
technique. Specifically, CDR involves calculating the ex-
pected distribution for each category based on mini-batch
predictions. Then, CDR loss promotes expectation consis-
tency between two views of the mini-batch and boosts pre-
diction confidence. Since each class can be treated equally,
CDR effectively mitigates the bias and boosts novel class
performance. By integrating CDR into the RLF, our method,
named RLCD, obtains substantial improvements.

Our key contributions can be summarized as follows:

• We define the oracle base class accuracy (OB) as a
metric to assess the base class discrimination of GCD
models, revealing the inferior discrimination of para-
metric GCD methods.

• We design a novel reciprocal learning framework to
promote base class discrimination and a class-wise
distribution regularization loss to improve novel class
performance.

• Experimental results on seven GCD datasets show that
the proposed method consistently outperforms state-of-
the-art approaches in most scenarios.

2. Related Works
Semi-Supervised Learning (SSL) is a prominent area
in machine learning that addresses the challenge of train-
ing models with limited labeled data. Pseudo Label (Lee
et al., 2013) iteratively assigns pseudo labels for unlabeled
data, which join the labeled set for further training. Mean-
teacher (Tarvainen & Valpola, 2017), UDA (Xie et al., 2020),
Fixmatch (Sohn et al., 2020) adopt confidence threshold to
generate pseudo labels on weak augmented samples and
utilize it to supervise strongly augmented samples, and
DST (Chen et al., 2022) proposes an adversary framework to
refine pseudo labels. ConMatch (Kim et al., 2022) adds self-
supervised features regularization, while SimMatch (Zheng
et al., 2022) extends consistency to the semantic and in-
stance levels. Prevailing semi-supervised methods widely
adopt threshold-based pseudo-label learning during training.
However, this mechanism faces significant limitations when
unlabeled data includes samples from unknown classes.

Novel Class Discovery (NCD) aims to recognize novel
classes in unlabeled data by exploiting knowledge from
known classes. (Han et al., 2019) first proposes the NCD
problem and addresses it utilizing a two-stage training strat-
egy. (Han et al., 2020) employ rank statistics to find posi-
tive data pairs and pull them closer. OpenMix (Zhu et al.,
2023) generates virtual samples by MixUp between labeled
and unlabeled data, guiding the model to resist noisy la-
beled data. (Zhong et al., 2021) proposes neighborhood con-
trastive learning to aggregate pseudo-positive pairs. (Fini
et al., 2021) introduces a unified objective framework with
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Figure 3. Overview of our method. We insert an auxiliary token AUX before the last block of the ViT backbone. The final AUX feature is
utilized for the base-only classifier while the CLS feature is assigned to the all-class classifier. The main branch filters the pseudo-base
samples to the aux branch for better base class learning. In response, the auxiliary branch provides the main branch with the refined
base class distribution. Class-wise Distribution Regularization (CDR) boosts novel performance by maximizing the similarity between
class-wise probability matrices m from two views.

the Sinkhorn-Knopp algorithm, allowing cross-entropy to
operate on both labeled and unlabeled sets. CRNCD (Gu
et al., 2023) conducts a class-relationship distillation ap-
proach to improve novel-class performance. However, this
distillation shows inferior performance on GCD. Unlike
CRNCD, we propose a novel one-stage distillation method
tailored for GCD.

Generalized Category Discovery (GCD) is to cluster unla-
beled images by leveraging the base knowledge from labeled
images, where the unlabeled set comprises both base and
novel classes. (Vaze et al., 2022b) formulates the GCD
problem and conducts contrastive training on a pre-trained
ViT model (Dosovitskiy, 2021) with DINO (Caron et al.,
2021), followed by semi-supervised k-means clustering. Re-
cent works have extended GCD to settings such as active
learning (Ma et al., 2024b) and continual learning (Ma et al.,
2024a). CiPR (Hao et al., 2024) designs a novel contrastive
learning method by exploiting cross-instance positive rela-
tions in labeled data and introducing a hierarchical cluster-
ing algorithm. GPC (Zhao et al., 2023a) applies Gaussian
mixture models that learn robust representation and estimate
the novel class number. Wen et al. (2023) propose a para-
metric framework that trains a prototype classifier to fit all
categories. SimGCD utilizes mean-entropy regularization to
automatically find novel classes. As SimGCD boots GCD
performance with lower inference latency, the parametric
framework becomes popular. SPTNet (Wang et al., 2024)

introduces a two-stage strategy that combines the global and
spatial prompts to further finetune the SimGCD model. Lin
et al. (2024) design a teacher-student attention alignment
strategy to promote GCD performance. LegoGCD (Cao
et al., 2024) finds that SimGCD suffers from catastrophic
forgetting in training and solves it by adding regularization
to potential known class samples. While parametric-based
methods achieve great GCD performance, they often expe-
rience degraded base discrimination. To address this issue,
we propose a Reciprocal Learning Framework (RLF) that
provides more reliable base pseudo-labels and effectively
strengthens base performance.

3. Method
3.1. Preliminaries

Problem formulation. Generalized Category Discovery
(GCD) aims to adaptively cluster unlabeled data utilizing the
knowledge from labeled data. GCD is built upon the open-
world dataset, which compromises two subsets: labeled
dataset Dl = {(xi, yi)} ∈ X × Y l and unlabeled dataset
Du = {(xi, yi)} ∈ X ×Yu. Formally, Y l is a subset of Yu,
and Yu spans all categories. Following previous research,
the number of |Yu| is assumed as the prior. GCD adopts a
transductive training strategy in which all the samples are
involved in the training process.

Parametric clustering. (Wen et al., 2023) proposes an effi-
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cient parametric framework that builds a prototype classifier
for clustering. Specifically, the classifier weight is the set of
prototypes C = {c1, . . . , cK}, where K is the total number
of prototypes. Given an image xi, the model correspond-
ingly output feature f(xi), and the probability of category
k is denoted as:

p
(k)
i =

exp (cos (f (xi) , ck) /τs)∑
k′ exp (cos (f (xi) , ck′) /τs)

, (1)

where cos denotes the cosine similarity between two vectors
and τs is the temperature scalar. Similarly, the shrink prob-
ability qi can be derived by substituting τs with a smaller
τt. Subsequently, SimGCD adopts the cross entropy loss
Lce(q,p) = −

∑
k q

(k) log p(k) to regularize the probabil-
ity self-consistency between two views of an image. For
i-th image, the loss is formulated as:

L(i)
self =

1

2
Lce (q

′
i,pi) +

1

2
Lce (qi,p

′
i) , (2)

where p′
i and q′

i are the prototype probabilities of an-
other view. Additionally, SimGCD employs a mean-
entropy maximization regulariser for clustering: H(p) =
−
∑

k p
(k) log p(k) where p is the mean predicted probabil-

ity of all the samples. The supervised loss for the labeled
data is the sum of cross-entropy and supervised contrastive
learning losses (Khosla et al., 2020):

L(i)
con =

1

|Pi|
∑
q∈Pi

− log
exp

(
cos(f

(
xi), f(x

′
q)
)
/τc
)∑

n ̸=i exp ((f (xi) , f (x′
n)) /τc)

,

L(i)
sup = Lce (yi,pi) + L(i)

con,
(3)

where yi is the one-hot distribution associated with yi, τc
denotes the temperature scalar for supervised contrastive
learning and the Pi is the positive index set sharing the same
label as xi. While SimGCD applies InfoNCE (Oord et al.,
2018) loss in the training, we found the loss tends to push
apart same-class features, which conflicts with the SupCon
loss and impairs feature discrimination. Consequently, we
chose to remove InfoNCE in our approach for better dis-
crimination. Overall, the parametric clustering loss Lcls
is the average per-sample combination of supervised loss,
self-consistency loss, and entropy regularization loss:

Lcls = λLsup + (1− λ)(Lself − ϵH(p)), (4)

where λ is the balance weight belonging to [0,1] and ϵ is the
scalar to control entropy regularization.

3.2. Reciprocal Learning Framework

Motivation. While SimGCD demonstrates greater ef-
fectiveness than clustering methods, it falls short in
base class discrimination. Specifically, when focusing

on base classification, the unlabeled base data is de-
fined as Du

base = {(xi, yi)|(xi, yi) ∈ Du, yi ∈ Y l}.
The oracle base accuracy is defined as ACCOB =

1
|Du

base|
∑

xi,yi∈Du
base
1 (ỹi = yi), where ỹi is the predicted

base class result. As depicted in Fig. 2, prevailing para-
metric methods exhibit unsatisfactory oracle base accuracy,
falling behind the supervised-only reference.

To this end, we propose a one-stage Reciprocal Learning
Framework (RLF). As shown in Fig. 3, we insert the auxil-
iary token AUX before the last block, concatenating it with
CLS and feature tokens to form the input. The final AUX
feature is utilized for the base-only classification, while the
CLS feature is assigned to the all-class classifier. Different
from the CLS feature, which is unique to each image, the
AUX token is a trainable parameter shared across all training
samples.

During the training procedure, the main branch is akin to
generic parametric clustering. Besides, the main branch
filters the pseudo-base class samples to the auxiliary branch
according to the prediction result, i.e., if a sample is pre-
dicted to belong to the base classes, it will also be involved
in the auxiliary branch. In response, the auxiliary branch dis-
tills the base class prediction of pseudo-base samples to the
main branch. The collaboration between the two branches
effectively enhances base discrimination, mitigates the influ-
ence of noise labels, and facilitates the model in acquiring
improved representations.

Note that most of the training samples will be predicted
as the base classes initially, and the auxiliary branch also
incorporates abundant novel samples at the same time. To
this end, the auxiliary branch adopts self-supervised learning
and supervised learning, rather than threshold-based semi-
supervised methods. Furthermore, we utilize the maximum
probability as the uncertainty weight for each pseudo-base
sample in the cross-branch distillation. The distillation loss
for a pseudo-base sample i is denoted as:

L(i)
dis = max(paux

b,i ) · LKL(p
aux
b,i ,pb,i), (5)

where paux
b , pb is the base class distribution from the auxil-

iary and main branch, LKL is the standard KL-divergence
loss, and the auxiliary probability is detached in the distilla-
tion. Consequently, the loss functions of the two branches
can be presented as:

Lmain = Lcls + αLdis, Laux = Lsup + Lself, (6)

where α controls the distillation strength.

3.3. Class-Wise Distribution Regularization.

While the proposed reciprocal framework can effectively
improve base class discrimination, it still shows inferior
performance in the novel classes. This is primarily due to
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Figure 4. The efficacy of CDR is evident in two aspects. Left:
CDR induces more predicted novel class samples. Right: CDR
contributes to higher prediction confidence.

the cross-branch distillation being confined to base class
distributions, resulting in a learning bias where training
samples are more likely to be recognized as base classes.
Fig. 4 (a) shows that the predicted novel samples lag behind
the ground truth number. To mitigate the learning bias,
we propose a novel Class-wise Distribution Regularization
(CDR) shown in the bottom right of Fig. 3.

Adopted by (Zhang et al., 2024), the class-wise expected
distribution m for category k is defined as:

mk =
1∑N

i=1 p
(k)
i

(
N∑
i=1

p
(k)
i pi

)
, (7)

where N is the batch size, and m has a dimension of K×K.
For the main branch, Kmainis the number of all classes,
while Kaux denotes the number of base classes in the auxil-
iary branch. Intuitively, the k-th probability of mk, denoted
as m(k, k), reflects the confidence that “the mini-batch con-
tains at least one sample belonging to category k.”

Theorem 3.1. The sum of all elements in mk equals 1, i.e.,
1Tmk = 1 (Zhang et al., 2024).
Theorem 3.1 shows that mk conforms to the standard prob-
ability distribution. Intuitively, the class-wise prediction
should be consistent between the two views of the images
and close to the one-hot distribution. To this end, for class
k, the CDR loss is formulated as

L(k)
CDR = 1− ⟨mk,m

′
k⟩, (8)

where ⟨·, ·⟩ denotes the inner product calculation, represent-
ing the similarity between two distributions, and m′

k is the
expectation from another view. Since each class is treated
equally, CDR effectively alleviates the bias towards the base
classes in the main branch.

Theorem 3.2. L(k)
CDR equals to zero ⇐⇒ mk equals m′

k

and is a one-hot distribution.

Proof. Please refer to the Appendix A.

Theorem 3.2 indicates that CDR essentially increases the
prediction confidence, approaching the one-hot distribution.

The effectiveness of CDR is evidenced in Fig. 4, as it leads to
a higher number of predicted novel class samples, reducing
learning bias and boosting prediction confidence. Further-
more, the CDR loss operates independently of ground-truth
labels and is compatible with both branches. When applied
to the auxiliary branch, CDR also benefits base class learn-
ing with minimal impact on the novel class performance
of the main branch. By integrating the CDR loss into the
reciprocal framework, the overall loss is summarized as:

L = Lmain + Laux + βLCDR, (9)

where β controls the regularization weight. After the train-
ing procedure, we abandon the auxiliary classifier and only
keep the main branch for evaluation. As a result, the infer-
ence latency difference from SimGCD is negligible.

4. Experiments
4.1. Experimental Setup

Datasets. Following previous works, we evaluate
our method on seven different GCD datasets. Those
consist of generic image recognition datasets CI-
FAR10/100 (Krizhevsky et al., 2009) and ImageNet-
100 (Tian et al., 2020); Semantic Shit Benchmark
(SSB) (Vaze et al., 2022a) datasets: CUB200 (Wah et al.,
2011), Stanford Cars (Krause et al., 2013), and FGVC-
Aircraft (Maji et al., 2013); large-scale fine-grained dataset:
Herbarium-19 (Tan et al., 2019). Formally, each dataset is
partitioned into base and novel subsets. The novel subset
data is entirely unlabeled, while half of the base data is la-
beled during training, with the remaining half left unlabeled.
For a fair comparison, we adopt the same random seed in
the data split with (Vaze et al., 2022b).

Evaluation metric. We adopt cluster accuracy (ACC) to
evaluate the performance of our method. More specifically,
given the samples’ prediction ŷ and ground-truth labels y,
the Hungarian optimal assignment algorithm (Kuhn, 1955)
allocates the clustering result and calculates the accuracy.
ACC = 1

|Du|
∑|Du|

i=1 1 (yi = G (ŷi)), where G denotes the
optimal permutation function.

Implementation details. In alignment with prevailing GCD
methods, we conduct our experiments using the pre-trained
DINO (Caron et al., 2021) ViT-B/16 and DINOv2 (Oquab
et al., 2024) ViT-B/14 backbones. Unless otherwise speci-
fied, we adopt ViT-B/16 for experimental analysis. Training
parameters involve the last block and the auxiliary token
across all datasets. The final output retains the features
from the CLS and AUX tokens for classification. The default
learning rate is set to 0.1, following a cosine annealing decay
schedule. Our model is trained for 200 epochs with a batch
size of 128. Following (Wen et al., 2023), the temperature
scalars are τc = 0.1, τs = 0.07, while τt scales from 0.07
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Table 1. Comparative results on the Semantic Shift Benchmark and Herbarium-19.

Method Backbone
CUB200 Stanford Cars FGVC-Aircraft Herbarium-19

All Base Novel All Base Novel All Base Novel All Base Novel Avg.

k-means (Macqueen, 1967) DINO 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 13.0 12.2 13.4 19.0
RS+ (Han et al., 2021) DINO 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 27.9 55.8 12.8 29.1
UNO+ (Fini et al., 2021) DINO 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 28.3 53.7 14.7 34.8
ORCA (Cao et al., 2022) DINO 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 20.9 30.9 15.5 25.4
∗CRNCD (Gu et al., 2023) DINO 62.7 71.6 58.2 54.1 75.7 43.7 54.4 59.5 51.8 41.3 60.7 30.9 53.1
GCD (Vaze et al., 2022b) DINO 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 35.4 51.0 27.0 42.7
DCCL (Pu et al., 2023) DINO 63.5 60.8 64.9 43.1 55.7 36.2 - - - - - - -
GPC (Zhao et al., 2023a) DINO 55.4 58.2 53.1 42.8 59.2 32.8 46.3 42.5 47.9 36.5 51.7 27.9 45.3
SimGCD (Wen et al., 2023) DINO 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 44.0 58.0 36.4 53.1
uGCD (Vaze et al., 2024) DINO 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 - - - -
CMS (Choi et al., 2024) DINO 68.2 76.5 64.0 56.9 76.1 47.6 56.0 63.4 52.3 36.4 54.9 26.4 54.4
InfoSeive (Rastegar et al., 2024) DINO 69.4 77.9 65.2 55.7 74.8 46.4 56.3 63.7 52.5 41.0 55.4 33.2 55.6
SPTNet (Wang et al., 2024) DINO 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 43.4 58.7 35.2 56.9
LegoGCD (Cao et al., 2024) DINO 63.8 71.9 59.8 57.3 75.7 48.4 55.0 61.5 51.7 45.1 57.4 38.4 55.3
RLCD (Ours) DINO 70.0 79.1 65.4 64.9 79.3 58.0 60.6 62.2 59.8 46.4 61.2 38.4 60.5

SimGCD (Wen et al., 2023) DINOv2 74.9 78.5 73.1 71.3 81.6 66.4 63.9 69.9 60.9 58.7 63.8 56.2 67.2
uGCD (Vaze et al., 2024) DINOv2 74.0 75.9 73.1 76.1 91.0 68.9 66.3 68.7 65.1 - - - -
CiPR (Hao et al., 2024) DINOv2 78.3 73.4 80.8 66.7 77.0 61.8 - - - 59.2 65.0 56.3 -
RLCD (Ours) DINOv2 78.7 79.5 78.3 79.5 91.8 73.5 72.6 77.3 70.3 60.2 71.9 54.0 72.8

to 0.04 within 30 epochs, and the balance weight λ = 0.35.
The default hyper-parameters in our method are specified
as α = 0.5, β = 0.5. The augmentation includes Resize,
RandomCrop, Random Horizontal Flip, Color Jittering, and
Image Normalization. All experiments are conducted on a
single NVIDIA GeForce 3090 GPU based on PyTorch.

4.2. Main Results

We compare our approach with SOTA methods includ-
ing clustering-based methods: k-means (Macqueen, 1967),
GCD (Vaze et al., 2022b), GPC (Zhao et al., 2023a),
DCCL (Pu et al., 2023), uGCD (Vaze et al., 2024) In-
foSieve (Rastegar et al., 2024), CMS (Choi et al., 2024);
parametric-based methods: SimGCD (Wen et al., 2023),
SPTNet (Wang et al., 2024), LegoGCD (Cao et al., 2024)
and strong baseline derived from NCD: RS+ (Han et al.,
2021), UNO+ (Fini et al., 2021), ORCA (Cao et al., 2022),
CRNCD (Gu et al., 2023). The best results are highlighted
in bold and ∗ denotes reproduced results.

Evaluation on fine-grained datasets. Table 1 shows the
comparative results on four fine-grained datasets which are
more challenging than the generic. Clustering methods
demonstrate inadequate performance, falling far behind the
parametric methods on average. The proposed RLCD con-
sistently outperforms the others across all four datasets and
two backbones, with a notable 3.6% average improvement
on DINO. Its strong base performance is attributed to reli-
able base logits from the auxiliary branch, while its superior
novel class accuracy results benefit from the effective regu-
larization loss.

Evaluation on generic datasets. As shown in Table 2,

we present the comparison on generic datasets including
CIFAR10/100 and ImageNet-100. While RLCD performs
on par with existing methods on CIFAR10, it achieves the
best results on CIFAR100 and ImageNet-100. As a result,
RLCD attains the highest average accuracy, improving by
0.8% and 1.6% on DINO and DINOv2, respectively. No-
tably, our method surpasses the two-stage SPTNet while
utilizing fewer parameters during training. Note that the
backbone is pre-trained on the extensive generic dataset like
ImageNet-1k (Deng et al., 2009). Leveraging the strong fea-
ture representation of pretrained backbones, existing meth-
ods perform comparably on datasets such as CIFAR10 and
ImageNet-100. Additionally, the abundance of labeled data
in these three datasets minimizes discrimination degradation
in parametric methods.

Comparison of OB performance. As defined in Sec-
tion 3.2, OB serves as a metric to evaluate the base class
discrimination capability of GCD models. As depicted in
Fig. 5, the proposed RLCD method achieves the best OB
performance across all seven GCD datasets, with particu-
larly significant improvements on fine-grained datasets. The
comparison further highlights the great discrimination of
our method.

4.3. Ablation Study

Effect of different loss components. As previously out-
lined, our approach mainly has four loss components: main
branch loss (Main), auxiliary branch loss (AUX), cross-
branch distillation (Distill), and class-wise distribution regu-
larization (CDR). Here we demonstrate their effectiveness
on CIFAR100 and CUB200 datasets. Additionally, we in-
troduce the oracle base class accuracy (OB) as an additional
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Table 2. Comparative results on generic image recognition datasets.

Methods Backbone CIFAR10 CIFAR100 ImageNet-100

All Base Novel All Base Novel All Base Novel Avg.

k-means (Macqueen, 1967) DINO 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3 69.4
RS+ (Han et al., 2021) DINO 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8 47.4
UNO+ (Fini et al., 2021) DINO 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9 69.5
ORCA (Cao et al., 2022) DINO 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9 74.8
∗CRNCD (Gu et al., 2023) DINO 96.9 97.5 96.6 80.3 84.7 71.5 81.4 94.4 74.8 86.2
GCD (Vaze et al., 2022b) DINO 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3 79.5
DCCL (Pu et al., 2023) DINO 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2 84.0
GPC (Zhao et al., 2023a) DINO 92.2 98.2 89.1 77.9 85.0 63.0 76.9 94.3 71.0 82.3
SimGCD (Wen et al., 2023) DINO 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9 86.7
InfoSieve (Rastegar et al., 2024) DINO 94.8 97.7 93.4 78.3 82.2 70.5 80.5 93.8 73.8 84.5
CiPR (Hao et al., 2024) DINO 97.7 97.5 97.7 81.5 82.4 79.7 80.5 84.9 78.3 86.6
CMS (Choi et al., 2024) DINO - - - 82.3 85.7 75.5 84.7 95.6 79.2 -
SPTNet (Wang et al., 2024) DINO 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4 88.0
LegoGCD (Cao et al., 2024) DINO 97.1 94.3 98.5 81.8 81.4 82.5 86.3 94.5 82.1 88.4
RLCD (Ours) DINO 97.4 96.4 97.9 83.4 84.2 81.9 86.9 94.2 83.2 89.2

SimGCD (Wen et al., 2023) DINOv2 98.8 96.9 99.7 88.5 89.3 86.9 88.5 96.2 84.6 91.9
CiPR (Hao et al., 2024) DINOv2 99.0 98.7 99.2 90.3 89.0 93.1 88.2 87.6 88.5 92.5
RLCD (Ours) DINOv2 99.0 98.9 99.1 91.2 91.2 91.2 92.1 96.2 90.0 94.1
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Figure 5. Comparison of oracle base accuracy among SimGCD,
LegoGCD, and our RLCD.

metric for evaluation.

Table 3 shows the GCD performance with different loss
configurations. Specifically, using only the Main loss in
(a) serves as the baseline, while (f) represents our complete
method. The comparison of (a) with (b) indicates that CDR
enhances overall performance with minimal influence on
OB, contributing a substantial 5.3% novel class improve-
ment on CUB200. The addition of the AUX loss in (c)
leads to comprehensive performance gains and improved
discrimination. Since the final block is shared between the
two branches, the model learns more robust parameters to fit
different tasks, resulting in enhanced feature representation.
Comparing (c) with (d) validates that distillation further
strengthens performance, improving base accuracy by 2.2%.

Table 3. Ablation experiments on different configurations of loss
components: Main, AUX, Distill, and CDR. OB denotes the Oracle
base class accuracy and M represents only on main branch.

Main AUX Distill CDR CUB200

ID All Base Novel OB

(a) ✓ 62.1 70.8 57.7 83.9
(b) ✓ M 65.7 71.1 63.0 83.7
(c) ✓ ✓ 64.3 73.7 59.7 85.9
(d) ✓ ✓ ✓ 66.6 76.4 61.7 86.4
(e) ✓ ✓ ✓ M 69.5 78.1 65.2 86.7
(f) ✓ ✓ ✓ ✓ 70.0 79.1 65.4 86.9

(g) ✓ ✓ ✓ 67.6 71.7 65.6 85.8
(h) ✓ ✓ M 65.9 73.8 61.9 84.6

Building on (d), applying CDR to the main branch in (e)
improves novel class performance, while applying it to both
branches in (f) slightly enhances base class discrimination,
yielding the best overall results. It turns out that CDR helps
improve base class performance without exacerbating the
base class learning bias. When either the Distill (g) or the
AUX (h) is exclusively removed, our model suffers a signifi-
cant drop in base performance. This outcome highlights the
necessity of both components in our approach.

Hyper-parameter sensitivity analysis. As indicated in
Equations (6) and (9), we utilize α and β to control the
distillation and regularization strength. Fig. 6 (a) illustrates
the GCD performance curves with varying values of α. As
α increases, we observe a significant improvement in base
class accuracy, aligning with the intuition that stronger dis-
tillation enhances base class dissemination. However, when
α becomes excessively large, it leads to degradation in novel
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Figure 6. Effect of different weights of α and β on CUB200.

class performance, ultimately harming overall accuracy. As
shown in Fig. 6 (b), we see that increasing the weight of β
notably impacts novel class performance. However, overly
large β shows a negative effect on base class accuracy. Our
analysis indicates that the optimal values for α and β are ap-
proximately 0.5, which yields the best overall performance.

Effect of different regularization. We here present the
GCD performance across different probability regularized
methods. The baseline is our reciprocal learning frame-
work (None) along with the comparative methods, including
entropy minimization(ENT) (Grandvalet & Bengio, 2004),
minimum class confusion (MCC) (Jin et al., 2020), and
label-encoding risk minimization (LERM) (Zhang et al.,
2024). Besides, we modify the CDR loss into pair-wise
distribution regularization (PDR) that directly maximizes
the probability similarity between two views of a sample.
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Figure 7. Comparison of various regularization methods on CI-
FAR100 and CUB200, where CDR achieves the best results.

Fig. 7 indicates that prevailing regularization methods are
not competitive in the GCD task. ENT shows a serious nega-
tive effect, leading to considerable degradation in both base
and novel classes. MCC effectively improves the base per-
formance yet harms the novel performance in both datasets.

LERM shows marginal effects as its performance remains
close to the baseline. While PDR provides benefits on both
datasets, the improvements are limited and exacerbate the
performance gap between base and novel classes. In con-
trast, our proposed CDR effectively boosts novel class ac-
curacy while maintaining base performance. Overall, the
comparison demonstrates our proposed CDR is more appro-
priate for GCD tasks.

4.4. Further Analysis

AUX branch is a good teacher. We conduct a compre-
hensive analysis of base-class pseudo-label accuracy across
all datasets, comparing our auxiliary branch (AUX), main
branch (CLS), and the SimGCD baseline. The dataset names
are the abbreviations according to all seven GCD datasets.

Table 4. Comparison of base-class pseudo-label accuracy.
C10 C100 IN100 CUB Scars Aircraft Her19

SimGCD 98.4 83.6 95.4 80.5 80.7 72.8 68.6
RLCD (CLS) 98.4 86.3 95.6 86.9 90.2 75.5 76.3
RLCD (AUX) 98.6 87.1 96.2 88.3 91.4 75.9 76.4

From Table 4, the auxiliary branch shows the best pseudo-
label accuracy across all datasets. The superior performance
of AUX can be attributed to its specialized focus on base
class discrimination, which leads to more reliable pseudo-
labels. Consequently, this enhanced reliability directly con-
tributes to the main branch’s ability to maintain strong base
class performance during training.

Performance under estimated category number. As the
previous evaluation is built on the known category num-
bers K, we here report the results with estimated categories
borrowed from off-the-shelf methods GCD (Vaze et al.,
2022b) and GPC (Zhao et al., 2023a). As shown in Table 5,
our method demonstrates slightly reduced performance on
ImageNet-100, CUB200, and Stanford Cars when using
GCD’s estimation, yet still outperforms other methods. This
performance drop can be attributed to the overestimation of
K, which leads to unlabeled samples being clustered into a
larger number of clusters. Notably, the impact on CUB200
is minimal, with only a 1.6% degradation. By leveraging the
advanced estimation algorithm from GPC, which exhibits
more accurate estimation, the performance gap is signifi-
cantly reduced across all datasets. The differences are only
0.6%, 0.4%, and 2.5% compared to the ground-truth refer-
ence. The result indicates that our approach is not reliant on
exact category numbers.

Effect of varying ratios of labeled samples. In the default
experiment, 50% samples are labeled following the main-
stream GCD setting. Here we explore the effect of various
ratios of labeled samples on model performance.
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Table 5. Comparison of estimated category numbers on ImageNet-100, CUB200, and Stanford Cars.

Methods K
ImageNet-100 CUB200 Stanford Cars

All Base Novel All Base Novel All Base Novel

RLCD (Ours) 100 / 200 / 196 86.9 94.2 83.2 70.0 79.1 65.4 64.9 79.3 58.0

GCD (Vaze et al., 2022b)

109 / 231 / 230

73.8 92.1 64.6 49.2 56.2 46.3 36.3 56.6 25.9
SimGCD (Wen et al., 2023) 81.1 90.9 76.1 61.0 66.0 58.6 49.1 65.1 41.3
SPTNet (Wang et al., 2024) 83.4 91.8 74.6 65.2 71.0 62.3 - - -
RLCD (Ours) 84.4 93.2 80.0 68.4 77.1 64.1 58.6 76.4 50.8

GPC (Zhao et al., 2023a) 103 / 212 / 201 75.3 93.4 66.7 52.0 55.5 47.5 38.2 58.9 27.4
RLCD (Ours) 86.3 94.1 82.4 69.6 78.3 65.2 62.4 78.1 54.8

Table 6. Performance comparison of RLCD and SimGCD under
varying labeled sample proportions on CUB200.

Label Ratio (%) All Base Novel

SimGCD 50 60.3 65.6 57.7
RLCD (Ours) 70.0 79.1 65.4

SimGCD 25 51.0 52.8 49.7
RLCD (Ours) 63.8 67.5 61.1

SimGCD 10 34.6 31.8 37.3
RLCD (Ours) 46.7 45.3 48.0

Table 6 reveals a clear performance degradation pattern
as the labeled data ratio decreases. However, our RLCD
maintains a significant performance advantage even with
severely limited labeled data. The performance gap between
RLCD and SimGCD widens in the low-resource scenario,
demonstrating our method’s superior capability in leverag-
ing limited supervision.

Effect of varying novel class numbers. By default, 50%
categories are selected as the novel class, following the
standard GCD experiment setting. Here, we investigate
the impact of varying the proportion of novel classes on
model effectiveness, using SimGCD as the baseline for
comparison.

Table 7. Performance comparison of RLCD and SimGCD with
different novel class proportions on CUB200.

Novel Ratio(%) All Base Novel

SimGCD 50 60.3 65.6 57.7
RLCD (Ours) 70.0 79.1 65.4

SimGCD 60 56.2 65.1 53.3
RLCD (Ours) 62.5 75.6 58.1

SimGCD 75 51.8 68.3 49.1
RLCD (Ours) 56.8 78.1 53.2

Seen from Table 7, our method consistently outperforms
SimGCD across all metrics as the proportion of novel
classes increases. The narrowing gap in novel class results

is expected, given the increased difficulty of clustering with
more novel categories. Meanwhile, the strong results on
base classes are largely maintained due to the reduced num-
ber of base categories. These results highlight the robustness
of our approach under varying class distributions.

5. Conclusion
In this paper, we propose a novel approach for promoting
generalized category discovery performance. To enhance
base class discrimination in parametric clustering, we in-
troduce the Reciprocal Learning Framework (RLF), which
consists of two collaborative branches: an auxiliary branch
that provides reliable soft labels, and a main branch that
filters pseudo-base samples using an all-class classifier. Ad-
ditionally, to mitigate the learning bias towards base classes,
we further present Class-wise Distribution Regularization
(CDR), which significantly boosts the prediction confidence
of unlabeled data and strengthens the discovery of novel
classes. The two components are complementary and to-
gether constitute our RLCD method. Extensive experiments
confirm the effectiveness of RLCD, achieving great perfor-
mance on both base and novel classes.
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Appendix

A. Theoretical Support
Proof of Theorem 3.1

Proof. 1Tmk = 1T∑N
i=1 p

(k)
i

(∑N
i=1 p

(k)
i pi

)
=

(∑N
i=1 p

(k)
i (1Tpi)

)
∑N

i=1 p
(k)
i

=
∑N

i=1 p
(k)
i∑N

i=1 p
(k)
i

= 1.

Proof of Theorem 3.2

Proof. Let a and b be two probability distribution vectors in Rn to present mk and m′
k :

a = [a1, a2, . . . , an], b = [b1, b2, . . . , bn]

subject to the constraints:

n∑
i=1

ai = 1,

n∑
i=1

bi = 1, ai ≥ 0, bi ≥ 0 for i = 1, 2, . . . , n.

The inner product is given by:

a · b =

n∑
i=1

aibi.

By the Cauchy-Schwarz inequality, we have:(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Since
∑n

i=1 ai = 1 and
∑n

i=1 bi = 1, we can observe:

n∑
i=1

a2i ≤
n∑

i=1

ai = 1,

n∑
i=1

b2i ≤
n∑

i=1

bi = 1.

Thus, we have: (
n∑

i=1

aibi

)2

≤ 1 · 1 = 1 =⇒
n∑

i=1

aibi ≤ 1.

For equality
∑n

i=1 aibi = 1 to hold, the Cauchy-Schwarz inequality must achieve equality, which occurs if and only if ai
and bi are linearly dependent:

ai = cbi for some constant c for all i.

Given the constraints
∑n

i=1 ai = 1 and
∑n

i=1 bi = 1, it follows that:

1 = c

n∑
i=1

bi = c · 1 =⇒ c = 1.

Therefore, we have:
ai = bi for all i.

Besides,
n∑

i=1

a2i ≤
n∑

i=1

ai = 1 =⇒ ai ∈ {0, 1}

which means:
aj = 1 for some j and ai = 0 for i ̸= j.
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Thus, we conclude that:

a = b and both are one-hot distributions.

B. Dataset Split
As shown in Fig. 8, we illustrate the dataset split of Generalized Category Discovery(GCD) and compare it with Semi-
Supervised Learning (SSL) and Novel Class Discovery (NCD). SSL assumes the labeled and unlabeled data share the same
classes, NCD suggests unlabeled data all form the novel classes, while GCD allows the unlabeled data to belong to all
classes. The comparison indicates GCD task is more challenging and practical in real-world scenarios.

ladybugbird dog fish

Labeled Unlabeled

ladybugbird dog fish
Semi-Supervised Learning Novel Class Discovery Generalized Category Discovery

fishladybugbird dog

Figure 8. Difference in dataset split among SSL, NCD, and GCD.

C. Loss Analysis
Fig. 9 shows SimGCD retains a high supervised cross-entropy (SupCE) loss during training, which indicates the noise labels
in SimGCD. In contrast, our model achieves a near-zero SupCE loss. Since we introduce an auxiliary branch, it can provide
more reliable soft labels to the main branch. This effectively eliminates noisy information and enhances discrimination
capabilities.
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Figure 9. Supervised cross-entropy descent loss curves on CIFAR100 and CUB200.
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D. Quantitative Parameter Analysis
We provide an overview of the parameter quantities in parametric models in Table 8. Despite incorporating an additional
base classifier in the auxiliary branch, our method excludes the projector, resulting in significant parameter savings. The
token’s contribution to the overall model size is minimal, enabling us to utilize the fewest parameters during training. During
the evaluation, we abandon the base classifier and retain the extra token with the backbone, which has a negligible parameter
overhead.

Table 8. Parameter quantity statistics among parametric models.

Methods Backbone Classifier Projector Extra TotalName #Param. Name #Param. Name #Param. Name #Param.

SimGCD ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 None 0 92,248,064
LegoGCD ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 None 0 92,248,064
SPTNet ViT-B/16 85,798,656 All 153,600 MLP 6,295,808 Prompts 105,120 92,353,184
RLCD (Ours) ViT-B/16 85,798,656 All+Base 230,400 None 0 Token 768 86,029,824

E. Comparison with Different Uncertainty Weights.
As depicted in Equation (5), we adopt the maximum probability in the auxiliary branch max (paux

b )to denote the uncertainty
weight of the pseudo-base samples. Here we make a comparison with different uncertainty weights. cmax is the prototype
associated with the maximum probability. When the uncertainty weight is set to 0, distillation is excluded, resulting in
reduced base accuracy. Conversely, the weight of 1 biases the model towards base classes, impairing novel class performance.
Using the maximum cosine similarity for uncertainty yields similar results to using the maximum probability. Additionally,
the uncertainty weight in the auxiliary branch obtains better performance, suggesting its greater reliability compared to the
main branch.

Table 9. Comparison of different uncertainty weights.

Uncertainty weight
CIFAR100 CUB200

All Base Novel All Base Novel

0 82.3 83.1 80.7 67.6 71.7 65.6
1 81.6 85.0 75.0 66.5 78.7 60.4
cos (f (xi) , cmax) 82.0 83.6 78.9 68.6 76.9 64.5
cos (f aux (xi) , c

aux
max) 82.8 83.4 81.6 69.4 78.7 64.8

max (pb) 82.6 83.8 79.9 68.3 76.6 64.2
max (paux

b ) 83.4 84.2 81.9 70.0 79.1 65.4

F. Discussion with CRNCD
As CRNCD (Gu et al., 2023) and our approach both involve distillation, there are several key differences, listed below.

• Different tasks. CRNCD aims to deal with novel class discovery (NCD), where all unlabeled data belong to novel
classes. In contrast, our focus is on GCD, where unlabeled data comprises both novel and base classes. Due to the
intrinsic difference between these two tasks, CRNCD demonstrates unsatisfactory performance in GCD.

• Different motivations for using distillation. The distillation in CRNCD aims to improve novel class performance,
whereas our distillation is intended to promote base class discrimination.

• Different training paradigms. CRNCD adopts a two-stage training procedure that first trains a supervised model and
then freezes it in the second stage. Contrarily, our framework adopts one-stage training in which the main and auxiliary
branches help each other simultaneously.

• Different distilled data. While CRNCD distills all unlabeled data, our approach focuses on pseudo-base data. Here,
pseudo-base refers to predictions belonging to the base classes within the main branch.
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• Different distillation weights. CRNCD adopts a learnable weight function to control the distillation strength. We
utilize the maximum auxiliary probability as an uncertainty-based weight, which provides a simpler yet effective
mechanism for regulating distillation.

Besides the above statement, we conduct a thorough experiment to compare the different distillation strategies. Table 10
shows that distilling across all unlabeled data reduces novel-class performance, as novel data increases the likelihood of
incorrect base-class prediction. Additionally, the learnable distillation weight in CRNCD performs poorly for GCD, causing
a significant drop in performance. These results highlight the effectiveness of our proposed design.

Table 10. Comparison of different distillation strategies.

Distillation strategy
CIFAR100 CUB200

All Base Novel All Base Novel

Distill on all unlabeled data 81.8 83.8 77.8 66.4 75.4 61.8
Learnable weight 80.9 82.6 77.5 65.0 74.5 60.2
RLCD (Ours) 83.4 84.2 81.9 70.0 79.1 65.4

G. Extended Experiment on Estimated Category Numbers.
Since the estimated category numbers from GCP (Zhao et al., 2023a) cover the partial datasets, we conduct extra comparisons
on other datasets under CMS (Choi et al., 2024) estimation. Table 11 shows that our method delivers better performance
than CMS.

Table 11. Comparison of estimated category numbers on CIFAR100, FGVC-Aircraft, Herbarium-19 and Stanford Cars datasets.

Methods K
CIFAR100 FGVC-Aircraft Herbarium-19 Standford Cars

All Base Novel All Base Novel All Base Novel All Base Novel

CMS (Choi et al., 2024) 97/98/666/152 79.6 83.2 72.3 55.2 60.6 52.4 37.4 56.5 27.1 51.7 68.9 43.4
RLCD (Ours) 97/98/666/152 80.0 84.3 71.4 69.4 78.5 64.8 46.0 62.3 37.2 56.6 73.7 48.4

H. Qualitative Visualization
As shown in Fig. 10, we utilize t-SNE (Van der Maaten & Hinton, 2008) to visualize the feature distribution between
DINO, SimGCD, LegoGCD, and our model on the FGVC-Aircraft dataset. The t-SNE results for DINO demonstrate poor
clustering performance, primarily due to the significant domain gap between the ImageNet and Aircraft datasets, which
hinders effective feature learning. Meanwhile, SimGCD and LegoGCD achieve unsatisfactory feature clustering. It is
observed that “Class 3” features of SimGCD spread out in the feature space, while LegoGCD forms two clusters of “Class
3”. In contrast, our model reveals distinct clusters corresponding to different categories. The visualization comparison
validates the superior feature representation of our model.

(a) DINO (b) SimGCD (c) LegoGCD (d) Ours

Figure 10. t-SNE visualization comparing DINO, SimGCD, LegoGCD, and our method on the FGVC-Aircraft dataset, with samples
randomly selected from 10 classes.
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I. Further Analysis on H

By definition, H encourages more diverse predictions in the mini-batch. In fact, H plays an important role in balancing base
and novel class performance in the parametric-based method. However, H would hurt base class discrimination, resulting in
degraded oracle base class accuracy. Here, we conduct a deep analysis of the effect of H utilizing class-wise prediction
distribution (CPD). Root Mean Squared Error (RMSE) is to quantify the class prediction distribution deviation from the
Ground Truth.

0 20 40 60 80 100

0

50

100

150

200

# 
In

st
an

ce
 / 

C
la

ss

Sorted Class Index

 Ground Truth
 Baseline w/o H (RMSE = 45.87) 

CUB200 Base

4496

1499

0 20 40 60 80 100

0

10

20

30

40

#I
ns

ta
nc

e 
/ C

la
ss

Sorted Class Index

 Ground Truth
 Baseline w/o H (RMSE = 29.97)

CUB200 Novel

0

2997

0 20 40 60 80 100
0

10

20

30

40

1346

#I
ns

ta
nc

e 
/ C

la
ss

Sorted Class Index

 Ground Truth
 Baseline (RMSE = 3.24)
 Ours (RMSE = 1.76)

CUB200 Base

1499
1480

0 20 40 60 80 100

0

10

20

30

40

50

60

70

# 
In

st
an

ce
 / 

C
la

ss

Sorted Class Index

 Ground Truth 
 Baseline (RMSE = 12.19)
 Ours (RMSE = 8.21)

CUB200 Novel

2997

3016

3150

(a) (b)

(c) (d)

Figure 11. Class-wise prediction distributions on different methods. Concretely, Root Mean Squared Error (RMSE) is to measure the
prediction distribution deviation from Ground Truth, and the cumulative number is marked at the end of each curve.

As shown in Fig. 11, we compare several methods, including a parametric-based baseline with and without H , as well as our
proposed RLCD. When H is removed, all samples are predicted as the base class, resulting in a significantly large RMSE
for both base and novel CPDs, 45.87 and 29.97, respectively. From Fig. 11 (c) and (d), we observe that H effectively refines
the CPD, reducing the RMSE by 42.63 for base classes and 17.78 for novel classes. However, H also introduces the side
effect of misclassifying some base class samples. Specifically, the predicted base class samples are much lower than the
ground truth, dropping from 1499 to 1346, which introduces noisy label learning during training. To mitigate this noisy
learning, we propose a reciprocal learning framework, where the auxiliary branch provides more reliable pseudo labels to
the main branch. Through cross-branch distillation, our method increases the number of predicted base class samples from
1346 to 1480. Furthermore, our CPD is closer to the ground truth, outperforming the baseline with RMSE reductions of 1.48
and 3.98 for the base and novel classes, respectively.
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J. Future Work
Domain generalized category discovery. Extending GCD to handle domain shifts (Wang et al., 2025) between training
and testing data remains an open challenge. Future work could explore domain adaptation techniques to improve model
generalization across different domains while maintaining the ability to discover novel categories.

Continual generalized category discovery. The current GCD setting assumes a static set of novel classes. A promising
direction is to develop continual learning approaches (Zhao et al., 2023b; 2024) that can incrementally discover and learn
new categories over time, while preserving knowledge of previously seen classes.

Generalized category discovery with limited supervision. While current GCD methods require a substantial amount of
labeled base class data, real-world scenarios often have very limited labeled data. Future work could investigate transductive
few-shot learning approaches to reduce the dependency on labeled data while maintaining effective novel class discovery.
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