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ABSTRACT

Algorithmic reasoning is a fundamental cognitive ability that plays a pivotal role
in problem-solving and decision-making processes. Although Reinforcement
Learning (RL) has demonstrated remarkable proficiency in tasks such as motor
control, handling perceptual input, and managing stochastic environments, its
potential in learning generalizable and complex algorithms remains largely unex-
plored. To evaluate the current state of algorithmic reasoning in RL, we introduce
an RL benchmark based on Simon Tatham’s Portable Puzzle Collection. This
benchmark contains 40 diverse logic puzzles of varying complexity levels, which
serve as captivating challenges that test cognitive abilities, particularly in neu-
ral algorithmic reasoning. Our findings demonstrate that current RL approaches
struggle with neural algorithmic reasoning, emphasizing the need for further re-
search in this area. All of the software, including the environment, is available at
https://github.com/rlppaper/rlp.

1 INTRODUCTION

Reinforcement learning (RL) has made remarkable progress in various domains, showcasing its
capabilities in tasks such as game playing (Mnih et al., 2013; Tang et al., 2017; Silver et al., 2018;
Badia et al., 2020; Wurman et al., 2022) , robotics (Kalashnikov et al., 2018; Kiran et al., 2021; Rudin
et al., 2022; Rana et al., 2023) and control systems (Wang & Hong, 2020; Wu et al., 2022; Brunke
et al., 2022). To evaluate the progress in the field, various benchmarks have been proposed (Todorov
et al., 2012; Mnih et al., 2013; Brockman et al., 2016; Duan et al., 2016; Tassa et al., 2018; Côté et al.,
2018; Lanctot et al., 2019). However, these benchmarks primarily focus on perceptual input, motor
control, and raw decision-making, mostly overlooking a crucial aspect of human intelligence: logical
and algorithmic reasoning.

Logical and algorithmic reasoning play a pivotal role in human intelligence and have been the subject
of significant research in classical machine learning (Serafini & Garcez, 2016; Dai et al., 2019; Li
et al., 2020; Veličković & Blundell, 2021; Masry et al., 2022; Jiao et al., 2022; Veličković et al., 2022;
Bardin et al., 2023). Understanding and advancing the reasoning capabilities of RL agents is crucial
to achieving more human-like artificial general intelligence and enabling AI systems to effectively
tackle real-world problems that require complex reasoning and generalization.

While previous work has emphasized the importance of logical and algorithmic reasoning in the
classical machine learning setting, there has been a notable absence of research in the RL setting.
Although a limited number of studies have ventured into this territory, most of them are either
problem-specific and lack generalizability (Kusumoto et al., 2018; Wang et al., 2022), or they do not
address the complexities associated with more advanced algorithmic problems (Dasgupta et al., 2019;
Jiang & Luo, 2019; Deac et al., 2021; He et al., 2022).

Logic puzzles have long been a playful challenge for humans, and they are the ideal testing ground for
evaluating the algorithmic and logical reasoning capabilities of artificial intelligence. Conventional
RL approaches that rely solely on reward optimization, trial-and-error learning, and traditional neural
network architectures may encounter significant obstacles when applied to logic puzzles. Unlike tasks
with fixed input size, logic puzzles are characterized by the fact that once an algorithmic solution is
found, puzzles of any size can be solved iteratively. Furthermore, compared to games such as chess
and go, logic puzzles have a known solution. This optimal solution can be computed in polynomial
time, and therefore the optimal strategy must not be determined approximately by a tree search (Silver
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Figure 1: All puzzle classes of Simon Tatham’s Portable Puzzle Collection.

et al., 2017). In that regard, logic puzzles require an algorithmic understanding of the problem beyond
what traditional RL benchmarks assess.

In this paper, we introduce RLP, the first comprehensive RL benchmark specifically designed to
evaluate RL agents’ algorithmic reasoning and problem-solving abilities in the realm of logic puzzles.
Simon Tatham’s Puzzle Collection (Tatham, 2004b), curated by the respected computer programmer
and puzzle enthusiast Simon Tatham, serves as the foundation of RLP. This collection encompasses a
wide array of 40 logic puzzles, shown in Figure 1, each presenting distinct challenges with various
dimensions of adjustable complexity. They range from more well-known puzzles, such as Solo or
Mines (commonly known as Sudoku and Minesweeper, respectively) to lesser-known puzzles such
as Cube or Slant. RLP includes all 40 puzzles, each playable with a visual or discrete input and a
discrete action space. The versatility and popularity of Tathams’s Puzzle Collection make it an ideal
choice for constructing an RL benchmark that pushes the boundaries of an agent’s capabilities.

By incorporating algorithmic reasoning into the evaluation of RL agents, we aim to push the bound-
aries of AI capabilities and pave the way for the development of more intelligent and versatile systems.
Our benchmark also introduces a new challenge to the formative “reward is enough” hypothesis (Sil-
ver et al., 2021; Vamplew et al., 2022). This hypothesis proposes that intelligence, and therefore
logical reasoning, can be understood as subservient to the maximization of reward by an agent acting
in its environment.

Contributions We evaluate the current state of Reinforcement Learning in algorithmic reasoning
through an assessment of commonly employed model-free, on-policy, and off-policy RL algorithms.
This evaluation is conducted using RLP, our newly introduced benchmark. RLP stands as a compre-
hensive and dynamic evaluation framework that scales in difficulty and diversity, thereby guiding
the future development of more advanced approaches. Our RLP framework is constructed on top of
Simon Tatham’s Puzzle Collection, comprising a collection of 40 distinct logic puzzles. To ensure
compatibility, we have extended the original C source code to adhere to the standards of the Pygame
library. Subsequently, we integrated RLP into the Gymnasium framework API, providing a straight-
forward, standardized, and widely-used interface for RL applications. In summary, our assessment of
RL algorithms on logic puzzles using the RLP benchmark reveals the necessity for further research
in this field. Current RL methodologies demonstrate subpar performance, except in the case of the
most elementary puzzles. This underscores the potential for advancements in algorithmic reasoning
within the domain of RL.
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2 RELATED WORK

We provide an overview of recent advances in the broader field of logical and algorithmic reasoning
within RL. Our review is an attempt to cover significant research efforts, but it may not be exhaus-
tive. Notable research in RL on logical reasoning includes automated theorem proving using deep
RL (Kalashnikov et al., 2018) or RL-based logic synthesis (Wang et al., 2022). Dasgupta et al. (2019)
find that RL agents can perform a certain degree of causal reasoning in a meta-reinforcement learning
setting. The work by Jiang & Luo (2019) introduces Neural Logic RL, which improves interpretability
and generalization of learned policies. Eppe et al. (2022) provide steps to advance problem-solving
as part of hierarchical RL. Fawzi et al. (2022) and Mankowitz et al. (2023) demonstrate that RL can
be used to discover novel and more efficient algorithms for well-known problems such as matrix
multiplication and sorting. Neural algorithmic reasoning has also been used as a method to improve
low-data performance in classical RL control environments (Deac et al., 2021; He et al., 2022).
Logical reasoning might be required to compete in certain types of games such as chess, shogi and
Go (Lai, 2015; Silver et al., 2017; 2018), Poker (Dahl, 2001; Heinrich & Silver, 2016; Steinberger,
2019; Zhao et al., 2022) or board games (Ghory, 2004; Szita, 2012; Xenou et al., 2019; Perolat et al.,
2022). However, these are usually multi-agent games, with some also featuring imperfect information
and stochasticity.

Various benchmarks have been proposed in the field of RL. Bellemare et al. (2013) introduced
the influential Atari-2600 benchmark, on which Mnih et al. (2013) trained RL agents to play the
games directly from pixel inputs. This benchmark demonstrated the potential of RL in complex,
high-dimensional environments. RLP allows the use of a similar approach where only pixel inputs
are provided to the agent. Todorov et al. (2012) presented MuJoCo which provides a diverse
set of continuous control tasks based on a physics engine for robotic systems. Another control
benchmark is the DeepMind Control Suite by Duan et al. (2016), featuring continuous actions spaces
and complex control problems. The work by Côté et al. (2018) emphasized the importance of
natural language understanding in RL and proposed a benchmark for evaluating RL methods in
text-based domains. Lanctot et al. (2019) introduced OpenSpiel, encompassing a wide range of
games, enabling researchers to evaluate and compare RL algorithms’ performance in game-playing
scenarios. OpenAI Gym by Brockman et al. (2016), and its successor Gymnasium by the Farama
Foundation (Foundation, 2022) helped by providing a standardized interface for many benchmarks.
As such, Gym and Gymnasium have played an important role in facilitating reproducibility and
benchmarking in reinforcement learning research. Therefore, we provide RLP as a Gymnasium
environment to enable ease of use.

These benchmarks and frameworks have contributed significantly to the development and evaluation
of RL algorithms. In the realm of classical machine learning, various benchmarks have been
introduced to assess certain kinds of reasoning capabilities. IsarStep, proposed by Li et al. (2021),
specifically designed to evaluate high-level mathematical reasoning necessary for proof-writing
tasks. Another significant benchmark in the field of reasoning is the CLRS Algorithmic Reasoning
Benchmark, introduced by Veličković et al. (2022). This benchmark emphasizes the importance of
algorithmic reasoning in machine learning research. It consists of 30 different types of algorithms
sourced from the renowned textbook “Introduction to Algorithms” by Cormen et al. (2022). The
CLRS benchmark serves as a means to evaluate models’ understanding and proficiency in learning
various algorithms. In the domain of large language models (LLMs), BIG-bench has been introduced
by Srivastava et al. (2022). BIG-bench incorporates tasks that assess the reasoning capabilities of
LLMs, including logical reasoning.

Despite these valuable contributions, a suitable and unified benchmark for evaluating logical and
algorithmic reasoning abilities in single-agent perfect-information RL has yet to be established.
Recognizing this gap, we propose RLP as a relevant and necessary benchmark with the potential
to drive advancements and provide a standardized evaluation platform for RL methods that enable
agents to acquire algorithmic and logical reasoning abilities.

3 THE RLP ENVIRONMENT

In the following section we give a detailed overview of the RLP environment. We describe the
features of the environment, discuss their implementations, and how an RL agent can interact with the
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Figure 2: Code and library landscape around the rlp package. The figure shows how the RLP envi-
ronment presented in this paper fits within Tathams’s Puzzle Collection1code, the Pygame package,
and a user’s Gymnasium reinforcement learning code. The different parts are also categorized as
Python language and C language.

environment. We provide a summary of how RLP interfaces with the underlying code of Tathams’s
puzzle collection in Figure 2. For technical implementation details, see Appendix B.

Within this RL environment, we encapsulate the tasks presented by each logic puzzle by defining
consistent state, action, and observation spaces. To accommodate the inherent difficulty and the need
for proper algorithmic reasoning in solving these puzzles, the environment allows users to implement
their own reward structures, facilitating the training of successful RL agents. All puzzles are played
in a two-dimensional play area with deterministic state transitions, where a transition only occurs
after a valid user input.

Furthermore, the scalability of the puzzles in our environment offers a unique opportunity to design
increasingly complex puzzle configurations, presenting a challenging landscape for RL agents to
navigate. This dynamic nature of the benchmark serves two important purposes. Firstly, it enables
the benchmark to remain adaptable to the continuous advancements in RL methodologies. As RL
algorithms evolve and become more capable, the puzzle configurations can be adjusted accordingly
to maintain the desired level of difficulty. This ensures that the benchmark continues to effectively
assess the capabilities of the latest RL methods. Secondly, the scalability of the puzzles facilitates the
evaluation of an agent’s generalization capabilities. In the RLP environment, it is possible to train an
agent in an easy puzzle setting and subsequently evaluate its performance in progressively harder
puzzle configurations. This approach allows us to assess whether an agent has learned the correct
underlying algorithm and therefore generalizes to out-of-distribution scenarios.

3.1 ENVIRONMENT FEATURES

Episode Definition An episode is played with the intention of solving a given puzzle. The episode
begins with a newly generated puzzle and terminates in one of two states. The puzzle is either solved
completely or the agent has failed irreversibly. The latter state is unlikely to occur, as only a few
games, for example pegs or minesweeper, are able to terminate in a failed state. Starting a new
episode generates a new puzzle of the same kind, with the same parameters such as size or grid type.
However, if the random seed is not fixed, the puzzle is likely to have a different layout from the
puzzle in the previous episode.

Observation Space There are two kinds of observations which can be used by the agent. The first
observation type is a representation of the discrete internal game state of the puzzle, consisting of a

1The puzzles are available to play at https://www.chiark.greenend.org.uk/~sgtatham/
puzzles/
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combination of arrays and scalars. This observation is provided by the underlying code of Tathams’s
puzzle collection. The composition and shape of the internal game state is different for each puzzle,
which, in turn, requires the agent architecture to be adapted.

The second type of observation is a representation of the pixel screen, given as an integer matrix of
shape (3×width×height). The environment deals with different aspect ratios by adding padding. The
advantage of the pixel representation is a consistent representation for all puzzles, similar to the Atari
RL Benchmark (Mnih et al., 2013). It could even allow for a single agent to be trained on different
puzzles. On the other hand, it forces the agent to learn to solve the puzzles only based on the visual
representation of the puzzles, analogous to human players. This might increase difficulty as the agent
has to learn the task representation implicitly.

Action Space Natively, the puzzles support two types of input, mouse and keyboard. Agents in
RLP play the puzzles only through keyboard input. This is due to our decision to provide the discrete
internal game state of the puzzle as an observation, for which mouse input would not be useful.

The action space for each puzzle is restricted to actions that can actively contribute to changing the
logical state of a puzzle. This excludes “memory aides” such as markers that signify the absence of a
certain connection in Bridges or adding candidate digits in cells in Sudoku. The action space also
includes possibly rule-breaking actions, as long as the game can represent the effect of the action
correctly.

The largest action space has a cardinality of 14, but most puzzles only have five to six valid actions
which the agent can choose from. Generally, an action is in one of two categories: selector movement
or game state change. Selector movement is a mechanism that allows the agent to select game objects
during play. This includes for example grid cells, edges, or screen regions. The selector can be
moved to the next object by four discrete directional inputs and as such represents an alternative to
continuous mouse input. A game state change action ideally follows a selector movement action. The
game state change action will then be applied to the selected object. The environment responds by
updating the game state, for example by entering a digit or inserting a grid edge at the current selector
position.

Action Masking The fixed-size action space allows an agent to execute actions that may not result
in any change in game state. For example, the action of moving the selector to the right if the selector
is already placed at the right border. The RLP environment provides an action mask that marks all
actions that change the state of the game. Such an action mask can be used to improve performance
of model-based and even some model-free RL approaches. The action masking provided by RLP
does not ensure adherence to game rules, rule-breaking actions can most often still be represented as
a change in the game state.

Reward Structure In the default implementation, the agent only receives a reward for completing
an episode. Rewards consist of a fixed positive value for successful completion and a fixed negative
value otherwise. This reward structure encourages an agent to solve a given puzzle in the least amount
of steps possible. The RLP environment provides the option to define intermediate rewards tailored to
specific puzzles, which could help improve training progress. This could be, for example, a negative
reward if the agent breaks the rules of the game, or a positive reward if the agent correctly achieves a
part of the final solution.

3.2 DIFFICULTY PROGRESSION AND GENERALIZATION

The RLP environment puts a strong emphasis on giving users control over the difficulty exhibited
by the environment. For each puzzle, the problem size and difficulty can be adjusted individually.
The difficulty affects the complexity of strategies that an agent needs to learn to solve a puzzle. As
an example, Sudoku has tangible difficulty options: harder difficulties may require the use of new
strategies such as forcing chains2 to find a solution, whereas easy difficulties only need the single
position strategy.3

2Forcing chains works by following linked cells to evaluate possible candidates, usually starting with a
two-candidate cell.

3The single position strategy involves identifying cells which have only a single possible value.
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Adapting the size of a puzzle has multiple benefits. Firstly, it allows some control over the sparsity
of the completion reward, where large puzzle sizes require more intermediate guidance. Secondly,
it gives the option to evaluate whether the strategies learned by the agent on one size of a puzzle
generalize to another size.

4 EXPERIMENTAL EVALUATION

We evaluate the performance of many commonly used RL algorithms on our RLP environment. Our
metric of interest is the number of steps required on average by a policy to successfully complete a
puzzle. We refer to the term successful episode to denote the successful completion of a single puzzle
instance.

We include two baselines to judge the difficulty of each puzzle. To measure the worst-case perfor-
mance, we include the number of steps required to solve a puzzle when choosing actions uniformly
at random. We denote this policy as Random. To indicate the best-case performance, we include an
upper-bound estimate on the minimal number of steps required to correctly solve the puzzle. We
denote this policy as #Optimal Steps. We run experiments based on all RL algorithms presented
in Table 1. Where possible, we used the implementations available in the RL library Stable Base-
lines 3 (Raffin et al., 2021), utilizing the default hyper-parameters. For MuZero and DreamerV3, we
utilized the code available at (Werner Duvaud, 2019) and (Hafner et al., 2023a), respectively.

Table 1: Summary of all evaluated RL algorithms.

Algorithm Policy Type Action Masking

Proximal Policy Optimization (PPO) Schulman et al. (2017) On-Policy No
Recurrent PPO (Huang et al., 2022) On-Policy No
Advantage Actor Critic (A2C) (Mnih et al., 2016) On-Policy No
Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016) On-Policy No
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) On-Policy No
Deep Q-Network (DQN) (Mnih et al., 2013) Off-Policy No
Quantile Regression DQN (QRDQN) (Dabney et al., 2017) Off-Policy No
MuZero (Schrittwieser et al., 2020) Off-Policy Yes
DreamerV3 (Hafner et al., 2023b) Off-Policy No

All selected algorithms are compatible with the discrete action space required by our environment.
This circumstance prohibits the use of certain other common RL algorithms such as Soft-Actor Critic
(SAC) (Haarnoja et al., 2018) or Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto
et al., 2018).

4.1 BASELINE EXPERIMENTS

For each puzzle, we trained agents using the RL algorithms listed in Table 1. Every agent was trained
on the discrete internal state observation using five different seeds.

We trained all agents by providing rewards only at the end of each episode. To provide a broad
overview of the tasks, we run our baseline experiments in the easiest non-trivial difficulty setting,
where non-trivial difficulty refers to a puzzle that cannot be solved in one single move. For computa-
tional reasons, we truncated all episodes during training and testing at 10,000 steps. We observe that
even in the simplest settings, some puzzles are intractable. These intractable puzzles (i.e., Loopy,
Pearl, Pegs, Solo, and Unruly) were excluded from further study. We provide all experimental
parameters, including the parameters supplied for each puzzle in Appendix C.3.

To track an agent’s progress, we use episode lengths, i.e., how many actions an agent needs to solve a
puzzle, where a lower number indicates a stronger policy. To obtain the final evaluation, we run each
policy on 1000 random episodes of the respective puzzle. All experiments were conducted on NVIDIA
3090 GPUs. The training time for a single agent with 2 million PPO steps was puzzle-dependent and
ranged from roughly 1.75 to 2.5 hours.

Figure 3 provides the average successful episode length for all algorithms. It is evident that Dream-
erV3 performs best, with an average of 1334 steps for a successful episode. PPO also achieves good
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Figure 3: Average episode length of successful episodes for all evaluated algoritms on the 35 tractable
puzzles in the easiest setting (lower is better). Standard deviation is computed with respect to the
performance over all evaluated instances for all trained seeds, aggregated for the total number of
puzzles. Optimal denotes the upper bound of the performance of an optimal algorithm, it therefore
does not include a standard deviation.

performance, closely followed by TRPO and MuZero. The high variance of MuZero might indicate
some instabilities during training or the requirement for puzzle-specific hyperparamter tuning. The
algorithms A2C, RecurrentPPO and QRDQN achieve worse performance than a random policy.
Overall, while DreamerV3 outperforms all other algorithms, it is still far from the optimal number
of steps achievable by the optimal solution. DreamerV3 only manages to solve 62.7% of all puzzle
instances, with only 14 out of 35 puzzles being solved with within the optimal bound of number of
steps. It is also important to note that all logic puzzles are designed so that they can be solved without
requiring any guesswork. These results indicate that the simplest possible setting already poses a
strong challenge to current state-of-the-art reinforcement learning.

4.2 DIFFICULTY

We further evaluate the performance of all puzzles on the easiest preset difficulty level for humans.
We notice that in these settings, for most (i.e., 30 out of 40) puzzles, a random policy was unable
to achieve any successful episode among 1000 evaluations (see corresponding results in Appendix
Table 7). For puzzles where a random policy was able to solve them with a probability of at least 10%,
we also trained the approaches listed in Table 1. We provide results for the two strongest algorithms,
PPO and DreamerV3 in Table 2, with complete results available in Appendix Table 7.

Table 2: Comparison of how many steps agents trained with PPO and DreamerV3 need on average
to solve puzzles of two difficulty levels. In brackets, the percentage of successful episodes is reported.
The difficulty levels correspond to the overall easiest and the easiest-for-humans settings. We also
give the upper bound of optimal steps needed for each configuration.

Puzzle Parameters PPO DreamerV3 # Optimal Steps

Netslide 2x3b1 35.3± 0.7 (100.0%) 12.0± 0.4 (100.0%) 48
3x3b1 4742.1± 2960.1 (9.2%) 3586.5± 676.9 (22.4%) 90

Same Game 2x3c3s2 11.5± 0.1 (100.0%) 7.3± 0.2 (100.0%) 42
5x5c3s2 1009.3± 1089.4 (30.5%) 527.0± 162.0 (30.2%) 300

Untangle 4 34.9± 10.8 (100.0%) 6.3± 0.4 (100.0%) 80
6 2294.7± 2121.2 (96.2%) 1683.3± 73.7 (82.0%) 150

For both PPO and DreamerV3, the percentage of successful episodes decreases, with a large increase
in steps required. Our results show that even for the small number of puzzles with relatively high
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reward density at human difficulty levels, not even the best-performing algorithms are able to learn
an optimal solution.

We propose to use the easiest human difficulty level as a first measure to evaluate future algorithms.
The details of the easiest human difficulty setting can be found in Appendix Table 6. If this level is
achieved, difficulty can be further scaled up by increasing the size of the puzzles. Some puzzles also
allow for an increase in difficulty with fixed size.

4.3 EFFECT OF ACTION MASKING AND OBSERVATION REPRESENTATION

We evaluate the effect of action masking, as well as observation type, on training performance. Firstly,
we analyze whether action masking, as described in paragraph “Action Masking” in Section 3.1, can
positively affect training performance. Secondly, we want to see if agents are still capable of solving
puzzles while relying on pixel observations. We compare MaskablePPO to the default PPO without
action masking on both types of observations. We summarize the results in Figure 4. Detailed results
for masked RL agents on the pixel observations are provided in Appendix Table 9.

Figure 4: (Left) We demonstrate the effect of action masking in both RGB observation and internal
game state. By masking moves that do not change the current state, the agent requires less actions to
explore, and therefore, on average solves a puzzle using less steps. (Right) Moving average episode
length during training for the Flood puzzle. Lower episode length is better, as the episode gets
terminated as soon as the agent has solved a puzzle. Different colors describe different algorithms,
where different shades of a color indicate different random seeds. Sparse dots indicate that an agent
only occasionally managed to find a policy that solves a puzzle. It can be seen that both the use of
discrete internal state observations and action masking have a positive effect on the training, leading
to faster convergence and a stronger overall performance.

As we can observe in Figure 4, action masking has a strongly positive effect on training performance.
This benefit is observed both in the discrete internal game state observations and on the pixel
observations. This can be explained by the more efficient exploration, as actions without effect are
not allowed. As a result, the reward density during training is increased, and agents are able to
learn a better policy. Particularly noteworthy are the outcomes related to Pegs. They show that an
agent with action masking can effectively learn a successful policy, while a random policy without
action masking consistently fails to solve any instance. As expected, training RL agents on pixel
observations increases the difficulty of the task at hand. The agent must first understand how the pixel
observation relates to the internal state of the game before it is able to solve the puzzle. Nevertheless,
many agents, mostly with the help of action masking, still manage to solve some puzzles.

Furthermore, Figure 4 shows the performance during training on the puzzle Flood. It can be seen that
RL agents using action masking and the discrete internal game state observation converge significantly
faster and to better policies compared to the baselines. The agents using pixel observations and no
action masking struggle to converge to any reasonable policy.

4.4 DISCUSSION

Our extensive experimental analysis shows how challenging logic puzzles are for current reinforce-
ment learning approaches. It is important to note that all puzzles examined in our study are assessed
on relatively small sizes. This decision arises from the fact that rewards are solely granted upon
episode completion, leading to fairly sparse rewards. In scenarios where a randomly initialized agent
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fails to complete an episode, there exists no signal for the agent to improve. For certain puzzles,
even the smallest possible setting proved intractable for a random policy. Among puzzles with a
tractable random policy, for example Tracks, Map or Flip, none of our evaluated RL agents were
able to solve these puzzles, or only with performance similar to a random policy. These findings
indicate that model-free approaches struggle with the sparse reward structure and relatively large
action spaces. This points towards the potential of intermediate rewards, better game rule-specific
action masking, or model-based approaches. Additionally, in light of the strong results of DreamerV3,
the improvement of agents that have certain reasoning capabilities by design is an important direction
for future research.

The experimental results presented in Section 4.1 and Section 4.3 underscore the positive impact
of action masking and the correct observation type on performance. Our findings indicate that
incorporating action masking significantly improves the training efficiency of reinforcement learning
algorithms. This enhancement was observed in both discrete internal game state observations and
pixel observations. The mechanism for this improvement can be attributed to enhanced exploration.
Action masking narrows down the choices of actions to only those that are meaningful in a given
state, effectively increasing the reward density during training. This results in agents being able to
learn more robust and effective policies. This was especially evident in puzzles where unmasked
agents had considerable difficulty, thus showcasing the tangible advantages of implementing action
masking for these puzzles.

Our evaluation at the easiest human difficulty level revealed that most puzzles presented substantial
challenges, even to state-of-the-art RL approaches. Notably, a random policy was unable to solve
the majority of puzzles, posing a problem for the current reward structure. The best-performing
algorithms PPO and DreamerV3 also struggled, requiring more steps and achieving lower success
rates compared to simpler settings and the optimal baseline. These findings highlight the inherent
complexity of these puzzles and suggest that even basic human levels of difficulty are significant
hurdles for current RL methods.

In summary, the different challenges imposed by the logic-requiring nature of these puzzles necessi-
tates a good reward system, strong guidance of agents, and an agent design more focused on logical
reasoning capabilities. While the notion that “reward is enough” might still hold true, our results
indicate that not just any form of correct reward will suffice.

4.5 LIMITATIONS

While the RLP framework provides the ability to gain comprehensive insights into the performance of
various RL algorithms on logic puzzles, it is crucial to recognize certain limitations when interpreting
results. The sparse rewards used in this baseline evaluation add to the complexity of the task.
Moreover, all algorithms were evaluated with their default hyper-parameters. Additionally, the
constraint of discrete action spaces excludes the application of certain RL algorithms.

5 FUTURE WORK AND CONCLUSION

In this work, we shed light on the current state of RL on solving logic puzzles that require logical
and algorithmic reasoning. We highlight that while some puzzles have been successfully solved in
their easiest setting, further research is required to extend this success to more challenging puzzles of
larger sizes. Algorithm design that focuses on enhanced reasoning abilities may benefit other domains
as well. In the process, we have developed RLP, a novel RL environment that allows training RL
agents on logic puzzles. With the release of RLP we present an environment that bridges the gap
between algorithmic reasoning and RL. In addition to containing a rich diversity of puzzles, RLP also
offers an adjustable difficulty progression for each puzzle, making it a useful tool for benchmarking
and evaluating RL algorithms. Furthermore, RLP provides the ability of configuring custom reward
functions based on internal puzzle game states. We are excited to share RLP with the broader research
community and hope that RLP will foster further research in RL and algorithmic reasoning abilities
of machines.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Sébastien Bardin, Somesh Jha, and Vijay Ganesh. Machine learning and logical reasoning: The new
frontier (dagstuhl seminar 22291). In Dagstuhl Reports, volume 12. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2023.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013. doi: 10.1613/jair.3912. URL https://doi.org/10.1613%2Fjair.3912.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

Pygame Community. Pygame github repository, 2000. URL https://github.com/pygame/
pygame/. Accessed: 2023-05-12.

Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 4th edition, 2022.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and
Adam Trischler. Textworld: A learning environment for text-based games. CoRR, abs/1806.11532,
2018.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. CoRR, abs/1710.10044, 2017. URL http://arxiv.org/
abs/1710.10044.

Fredrik A Dahl. A reinforcement learning algorithm applied to simplified two-player texas hold’em
poker. In European Conference on Machine Learning, pp. 85–96. Springer, 2001.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. Advances in Neural Information Processing Systems, 32, 2019.

Ishita Dasgupta, Jane Wang, Silvia Chiappa, Jovana Mitrovic, Pedro Ortega, David Raposo, Edward
Hughes, Peter Battaglia, Matthew Botvinick, and Zeb Kurth-Nelson. Causal reasoning from
meta-reinforcement learning. arXiv preprint arXiv:1901.08162, 2019.
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