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Abstract. Semi-supervised learning has attracted extensive attention
in the field of medical image analysis. However, as a fundamental task,
semi-supervised segmentation has not been investigated sufficiently in
the field of multi-organ segmentation from abdominal CT. Therefore,
we propose a novel uncertainty-aware mean teacher framework with in-
ception and squeeze-and-excitation block (UMT-ISE). Specifically, the
UMT-ISE consists of a teacher model and a student model, in which the
student model learns from the teacher model by minimizing segmentation
loss and consistency loss. Additionaly, we adopt an uncertainty-aware al-
gorithm to make the student model learn accurate and reliable targets
by making full use of uncertainty information. To capture multi-scale
features, the inception and squeeze-and-excitation block are incoporated
into the UMT-ISE. It is worth noting that abdominal CT of test cases are
first extracted before multi-organ segmentation in the inference phase,
which significantly improves segmentation accuracy.

Keywords: semi-supervised learning, multi-organ segmentation, uncer-
tainty estimation, multi-scale features

1 Introduction

Accurate segmentation of medical images is essential for many clinical applica-
tions, such as disease diagnosis and tumor localization [3]. Nowadays, manual
segmentaion results given by radiologists are widely regarded as gold standards.
However, manual segmentation is tedious and time consuming. Additionally,
manual segmentation heavily depends on radiologists’ experience and suffers
from intra- and inter-observer variabilities. Therefore, many researchers have
developed different automatic segmentation methods [12], which are supposed
to assist radiologists to make accurate diagnosis.

For abdominal organ segmentation, most research work focus on single organ
segmentation, such as kidney [6] or blood vessels [9]. Compared with single-organ
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segmentation, multi-organ segmentation faces two major challenges. The first one
is that large morphological differences between multiple organs limits accurate
segmentation of all organs. The second one is that it’s difficult to obtain large
dataset with accurate annotations for multi-organ segmentation. Therefore, it is
necessary to make full use of unlabeled medical images to improve the multi-
organ segmentation accuracy [4].

To utilize unlabeled medical images effectively, we propose a novel uncertainty-
aware mean teacher framework with inception and squeeze-and-excitation block
(UMT-ISE) for segmenting multiple organs from 3D abdominal CT. The UMT-
ISE is constructed based on conventional teacher-student model [2], which con-
sists of a teacher model and a student model. For the same unlabeled data under
different perturbations, the segmentation predictions of the teacher model and
the student model are constrained to be consistent [13]. Different from the con-
ventional teacher-student model, the UMT-ISE adopts framework of uncertainty-
aware mean teacher. The teacher model in the UMT-ISE generates multiple
predictions for each target under Monte Carlo sampling and gives uncertainty
evaluation. The predictions with high uncertainty are filtered out and the pre-
dictions with low uncertainty are retained to compute consistency loss. Based
on the design of the uncertainty evaluation, the teacher model tends to gener-
ate high-quality predictions and the student model can be constantly optimized.
Considering multiple organs have different sizes, the inception and squeeze-and-
excitation (ISE) block are incoporated into the UMT-ISE to capture multi-scale
features.

2 Method

2.1 Preprocessing

The following preprocessing techniques were utilized in this work:

– Cropping strategy:
The range of CT scans varies depending on the situation. For example, some
patients may have CT scans not only of the abdominal area, but of the entire
chest, lower abdomen and even the legs. In some cases, only the abdominal
region containing the target organs is present. Therefore, it is necessary to
filter out some irrelevant and redundant slices.We train a UA-MT network
to perform a rough abdominal segmentation to extract abdominal regions
For training data with labels, we tailor them according to the range of target
organs in annotations. For training data without labels, validation data and
test data, we first implement rough segmentation of target organs and then
crop CT scans according to the scope of target organs.

– Clipping in the x and y directions:
Because different images occupy different fields of vision in the x and y di-
rections, some of which occupy very small proportion, part of the redundant
parts in the x and y directions should be deleted to make the abdominal
area occupy a larger proportion in the whole picture. For images with a
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large proportion, organs are often attached to the edge of the image, re-
sulting in missegmentation. For such images, some redundancy should be
added in the x and y directions, so as to make the abdominal region in an
appropriate range of image proportion.

– Adjusting window level and window width:
In order to have a good contrast between the organ and the background area,
it is of great significance to adjust the window width and window level of
the original image. According to the doctor’s observation, the window width
and window level of the image are respectively adjusted to 40 and 255 in
this paper.

– Resampling method for anisotropic data:
In this paper, the model uses the whole CT image as the network input.
In order to match the input size of the model, the size of all and images is
uniformly adjusted to 192×192×96.

– Intensity normalization method:
A z-score normalization is applied based on the mean and standard deviation
of the intensity values.

– Data augmentation method:
Data enhancement operations such as random clipping to 112×112×80 size
and horizontal flipping are performed on the training set

2.2 Proposed Method
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Fig. 1. Network architecture

Strategies to use the unlabelled cases:
The inputs of teacher model and student model are added to the same image

with different noises, and the two outputs are constrained by unsupervised loss
function calculation
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Fig. 3. The detailed architecture of the ISE block.
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Fig. 4. The detailed architecture of the Inception block.
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Fig. 5. The detailed architecture of the SE block.

Network architecture details :
The network architecture is shown in Fig.1.
The whole network model is composed of two V-Net models, teacher model

and student model, and the two models share the weight. In order to ensure
the accuracy of multi-organ segmentation and considering the problem of small
organ segmentation, we design to add ISE block in V-Net network. Not only
multi-scale problem is considered, but also channel attention is added to improve
segmentation accuracy. The network structure is shown in Fig.2.

The structure of the proposed ISE block in Fig.3., which integrates the
residual block, Inception block, and a squeeze-and-excitation block (SE block)
block.The convolution kernels of different sizes are used in the Inception block to
obtaint the receptive fields of different sizes. Then, features from different kernels
are fused to get multi scale features to reduce the impact of different resolutions
of anisotropic CT images on organ segmentation. The Inception block for this
work is shown in Fig.4.

Although abundant features are obtained, a deal of redundant features are
collected, which weaken the important and target-related features and can reduce
the discriminability of the network. Thus, a squeeze-and-excitation block (SE
block) is employed here to recalibrate the importance of the multi scale features
obtained by the Inception block. The specific components and structure of the
SE block is illustrated in Fig.5. In the SE block, a global average pooling layer is
used to aggregate the global information, which is followed by two full connection
layers to capture the channel-wise relationships. Then, the features obtained by
the Inception block is recalibrated by the channel-wise relationships through
point-wise multiply operation.

Loss function:
We use the summation between Dice loss and cross entropy loss because

compound loss functions have been proved to be robust in various medical image
segmentation tasks.

2.3 Post-processing

The post-processing operations used in the work include removing small con-
nected areas and filling the holes to reduce false positive islands. For the CT
whose z-axis direction is restored to spacing 1 and greater than 800, we believe
that it may contain the whole sequence from head to foot. Even the crude seg-
mentation model is difficult to effectively segment the abdominal region. There-
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fore, we divide the whole sequence into three equal parts, predict the three parts
separately, and finally put the three parts together. Reserving the maximum
number of z-direction pieces containing the foreground region can effectively
reduce missegmentation

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [11], KiTS [7,8], AbdomenCT-1K [10],
and TCIA [1]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The environments and requirements are presented in
Table 1.

Table 1. Environments and requirements.

Windows/Ubuntu version Windows 10
CPU Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
RAM 16×2GB;
GPU (number and type) NVIDIA Tesla V100 GPU
CUDA version 11.1
Programming language Python 3.6
Deep learning framework Pytorch (Torch 1.7.0, torchvision 0.8.0)
Specification of dependencies None
(Optional) Link to code

Training protocols
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Table 2. Training protocols.

Network initialization “he" normal initialization
Batch size 16
Patch size 192×192×96
Total epochs 2000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.05
Lr decay schedule halved by 1000 epochs
Training time 48 hours
Number of model parameters 9.44M3

Number of flops 41.40G4

CO2eq 1 Kg5

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 and Table 4 illustrates the results on the validation cases.

Table 3. Quantitative results on validation set(with unlabel data).

Organ DSC (%)
Mean DSC 0.7458
Liver 0.9547
RK 0.8500
Spleen 0.8885
Pancreas 0.7143
Aorta 0.8497
IVC 0.7650
RAG 0.6116
LAG 0.5108
Gallbladder 0.6429
Esophagus 0.6825
Stomach 0.8169
Duodenum 0.5471
LK 0.8608

4.2 Segmentation efficiency results

Fig.6. and Fig.7. show two examples with good segmentation results and two
examples with bad segmentation examples. We think there are two reasons for
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Table 4. Quantitative results on validation set(only label data).

Organ DSC (%)
Mean DSC 0.7193
Liver 0.9221
RK 0.8280
Spleen 0.8118
Pancreas 0.7148
Aorta 0.8020
IVC 0.7331
RAG 0.6158
LAG 0.5473.
Gallbladder 0.5677
Esophagus 0.6548
Stomach 0.7629
Duodenum 0.5748
LK 0.8164

(a) image (b) ground truth (c) segmentation

Fig. 6. Well-segmented examples from validation sets

(a) image (b) ground truth (c) segmentation

Fig. 7. Challenging examples from validation sets
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this problem. One is that the image has a large void, which leads to poor seg-
mentation accuracy, the other is that the model has a poor segmentation effect
on small organs.

5 Conclusion

This method has better results for large organ segmentation, smaller number of
model parameters and faster operation. In addition, our method can be tested
in CPU, which is more convenient to complete some clinical tasks. However, the
method in this paper still has some limitations. For some small organs, their
shapes and positions are easily affected by tumors and edema, so the segmenta-
tion results are not good. Similarly, in the case of CT with too many sections,
such as head to foot, the segmentation effect is poor and it is difficult to extract
abdominal organs. How to make the segmentation method more robust is still a
problem worthy of further discussion.
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