
Quantifying the Limits of Segment Anything Model: Analyzing Challenges in
Segmenting Tree-Like and Low-Contrast Structures

Yixin Zhang1* Nicholas Konz1∗ Kevin Kramer5 Maciej A. Mazurowski1,2,3,4
1 Department of Electrical and Computer Engineering, 2 Department of Computer Science,

3 Department of Radiology, 4 Department of Biostatistics & Bioinformatics,
Duke University, NC, USA

5 Minnesota Health Solutions
{yixin.zhang7, nicholas.konz, maciej.mazurowski}@duke.edu, kevin@minnhealth.com

Code: https://github.com/mazurowski-lab/SAM-TexturalConfusion-Metrics

Abstract

Segment Anything Model (SAM) has shown impressive per-
formance in interactive and zero-shot segmentation across
diverse domains, suggesting that they have learned a gen-
eral concept of “objects” from their large-scale training.
However, we observed that SAM struggles with certain
types of objects, particularly those featuring dense, tree-like
structures and low textural contrast from their surround-
ings. These failure modes are critical for understanding its
limitations in real-world use. In order to systematically ex-
amine this issue, we propose metrics to quantify two key
object characteristics: tree-likeness and textural separabil-
ity. Through extensive controlled synthetic experiments and
testing on real datasets, we demonstrate that SAM’s perfor-
mance is noticeably correlated with these factors. We link
these behaviors under the concept of “textural confusion”,
where SAM misinterprets local structure as global texture,
leading to over-segmentation, or struggles to differentiate
objects from similarly textured backgrounds. These findings
offer the first quantitative framework to model SAM’s chal-
lenges, providing valuable insights into its limitations and
guiding future improvements for vision foundation models.

Introduction

Segment Anything Model (SAM) [27], the most widely-
used foundation model for image segmentation, has demon-
strated promising zero-shot and fine-tuned segmentation
ability for objects not seen in training, within a wide range
of domains since its release, such as biomedical images
[10, 22, 30], remote sensing [6, 35], etc. However, cer-

*Equal contribution.

Increasing
tree-

likeness

Decreasing
textural

separability

CPR = 0.092, IoU = 0.91

CPR = 0.36, IoU = 0.82

CPR = 0.58, IoU = 0.62

separability = 0.98, IoU = 0.97

separability = 0.84, IoU = 0.32

separability = 0.89, IoU = 0.54

Figure 1. SAM’s segmentation performance tends to drop no-
ticeably when the object has high tree-likeness (left, on DIS)
or low textural separability (right, on iShape)–even with heavy
prompting–which we investigate in this work. From left to right:
input images, object annotations, and their SAM segmentations.

tain failure modes for SAM have been found empirically,
where SAM produces surprisingly underwhelming perfor-
mance on datasets with specific uncommon objects or atyp-
ical contexts, such as those with dense, branching struc-
tures (e.g., retinal blood vessels) [11, 36], concealed/low-
contrast objects [7, 24, 39], small or irregular objects, and
others [24]1. A solution to this problem could simply be
fine-tuning the model on such challenging examples using
various strategies [17, 29, 32], but this would still lack an
understanding of the underlying causes of the issues, and so
may not result in the best solution. As such, it is important
to develop a better theory for why these failures happen,
in order to better understand (and potentially mitigate) the
limitations of SAM for new applications.

In this paper, we propose that several of these failure
modes can be explained as SAM misinterpreting textural
cues for how it disambiguates an object from its surround-

1We focus on “unintentional” failure modes of SAM, as opposed to
intentional adversarial attacks/examples [45, 47].

1

ar
X

iv
:2

41
2.

04
24

3v
1

 [
cs

.C
V

]
 5

 D
ec

 2
02

4

https://github.com/mazurowski-lab/SAM-TexturalConfusion-Metrics

ings: it typically confuses objects with irregular, dense tree-
like local structure as large-scale textures (resulting in over-
segmentation), and similarly is generally challenged by ob-
jects that have similar textures to their surroundings. We
propose metrics developed from first principles for quan-
tifying the characteristics of (1) object tree-likeness and
(2) textual separability. Objects tree-likeness (Sec. 2.2) is
based on concepts such as spatial contour frequency and the
difference in typical object variability between global and
local scales. Textural separability (Sec. 3.1) is based on the
detectability of differences in textural features of an object
compared to its surroundings. We designed these metrics
to be simple and interpretable, such that they can be ap-
plied to any dataset or object type. We also present them in
quickly-computable PyTorch-like algorithmic form that can
be applied to any masks.

Next, we begin to probe the effect that these character-
istics have on SAM’s segmentation ability through experi-
ments on synthetic data which are designed to cover a range
of object tree-likeness (Sec. 2.3.1) and textural separability
(Sec. 3.2.1). These experiments are carefully controlled to
disentangle the effects of object shape and texture on perfor-
mance, as well as mitigate any other potential confounding
factors. We then continue with similar experiments on real
datasets (Secs. 2.3.2 and 3.2.2) that represent a wide range
of objects to segment. In all experiments, we find both the
exact measured tree-likeness and the textural separability of
objects are noticeably correlated with SAM’s performance
(IoU) in segmenting it, over a wide range of object and im-
age types. Our findings are the first to quantitatively model
and experimentally verify how the performance of segmen-
tation foundation models is affected by certain measurable
object characteristics, providing an explanation for prior
findings of SAM’s unexpected failures on new datasets.

Our overall contributions are as follows:

1. Based on first principles, we propose quantitative met-
rics for object tree-likeness of Contour Pixel Rate (CPR)
and Difference of Gini Impurity Deviation (DoGD), as
well as a metric for object textural separability.

2. We present carefully-designed experiments for the seg-
mentation of synthetic images which cover a range of
tree-likeness and textural separability, where important
factors such as object shape and texture are controlled.

3. We show that SAM’s segmentation performance tends to
negatively correlate with an object’s tree-likeness, and
positively correlate with it’s textural separability, on a
variety of experiments on both synthetic and real images.

We hope that this inspires future work in understand-
ing the limitations of vision foundation models. We
release easy-to-use code for our proposed metrics at
https://github.com/mazurowski-lab/SAM-
TexturalConfusion-Metrics.

Related Works

In addition to the various “failure modes” and biases of seg-
mentation foundation models discussed in the introduction
which motivated this work, various works have also studied
the same for general vision models. Central to these is the
goal of understanding the visual features that networks use
to make predictions from images, and whether object shape
or texture is more important. This is important to study be-
cause any unexpected failure of such models will depend on
the features used for inference.

Zhang et al. [46] posited that objects within images can
be described by three characteristics: shape, texture, and the
composition of textures within shapes, and analyzed how
these characteristics may affect the challenge of segment-
ing such objects. It is well known that convolutional neural
networks’ (CNNs’) predictions are typically biased towards
the texture of objects rather than their shape, for both clas-
sification [3, 16, 21, 38] and segmentation [46], resulting in
curious examples where network predictions are based on
texture even when the shape clearly defines a different ob-
ject. For example, [28] found that when a CNN is presented
with images of objects with only their shape visible, not
texture (silhouettes), performance was greatly worsened.

It has also been found that the shape-learning behav-
ior of neural networks can differ noticeably depending on
the particular training dataset and objective [20, 21], mo-
tivating us to study the specific behavior of SAM (given
its’ unique training dataset and pipeline) in detail. Interest-
ingly, there has been some evidence that vision transformers
(like SAM’s image encoder) may instead be biased towards
shape, rather than texture for classification tasks [40]. Here,
we study segmentation rather than classification, where it is
unclear if those results extend, as our results generally point
to SAM focusing on texture over shape (to the point of even
confusing complex, locally-varying shape itself as texture).

1. Methods: SAM Usage and Prompting

We experiment with both the ViT-H (default) and ViT-
B standard pretrained SAM models [27]. As is default
for SAM, all input images are resized to a resolution of
1024 × 1024, and normalized to [0, 255]. All images that
possess instance segmentations for multiple objects (e.g.,
iShape and Plittersdorf) will be evaluated by SAM segment-
ing each of the images’ objects one at a time (guided by
clear prompting), with all other mask pixels set as back-
ground. In all experiments, we use the oracle-chosen mask
out of SAM’s three outputted predictions.

For all experiments on the synthetic images of Sec. 2.3.1,
we provide a tight bounding box about the object of interest
as the prompt. For all experiments on real images as well
as the style-transferred images of Sec. 3.2.1, we provide
the same bounding box as well as a certain number of posi-

2

https://github.com/mazurowski-lab/SAM-TexturalConfusion-Metrics
https://github.com/mazurowski-lab/SAM-TexturalConfusion-Metrics

tive and/or negative point prompts randomly sampled from
the object foreground and background within the bounding
box, respectively, depending on the dataset (full details in
Appendix C.1). We use this relatively heavy prompting
strategy in order to minimize the ambiguity of instructions
provided to SAM, which will also help to minimize any dif-
ferences of the oracle prediction from the other two.

2. The Challenge of Tree-Like Structures

2.1. Motivation

We first wished to understand SAM’s challenges in seg-
menting certain objects with dense, tree-like structures, fol-
lowing our observation of a trend of SAM having difficulty
with such objects including retinal blood vessels [29, 34] or
satellite road images [14, 42] (see e.g., Fig. 2). Interest-
ingly, while both of these object types have branching fea-
tures, a characteristic which naively could relate to SAM’s
failure, SAM’s performance on retinal vessel images is no-
ticeably worse (avg. IoU ≃ 0.05 [34]) compared to on
satellite road structures (avg. IoU ≃ 0.2 [14]), which was
reproduced in our own experiments (Fig. 4).

Figure 2. Example retinal blood vessel (top) and satellite road
(bottom) images and accompanying object segmentation masks.

This motivated us to quantify the features of these types
of objects that relate to SAM’s failure. We hypothesize
that such objects become more challenging to segment
when their branching structures are dense and irregularly-
spaced, which we refer to as “tree-like”. We will show
that SAM considers such structures as textures rather than
shapes, resulting in significant over-segmentation. In the
following section we propose how to characterize the tree-
likeness of objects using two new quantitative metrics: CPR
(Contour Pixel Rate) and DoGD (Difference of Gini Impu-
rity Deviation).

2.2. Quantifying Tree-Like Structures

2.2.1. Contour Pixel Rate
Consider some image x ∈ RC×H×W with a “ground truth”
binary segmentation mask for some object within it, m ∈
{0, 1}H×W (in general, this could also be just one class of
some multi-class segmentation mask). We first propose to
measure the degree of tree-like structure of the object m

according to the percentage of the object’s pixels which lie
on it’s contour, which are defined as follows.

Definition 1 (Contour Pixels). Given some mask m, a pixel
mij is a contour pixel if mij = 1 and there exists a different
pixel mkl such that mkl ̸= mij and ||(k, l)− (i, j)||1 < R,
given some small contour width threshold R > 0.

In other words, contour pixels have at least one pixel of
a different class within a small neighborhood. Taking F to
be the set of foreground pixels F := {(i, j) : mij = 1},
the set of contour pixels of m is then C = {(i, j) ∈ F :
∃(k, l) ∈ F c such that ||(k, l) − (i, j)||1 < R}, which we
use to define the Contour Pixel Rate (CPR) of the object as

CPR(m) :=
|C|
|F |

. (1)

Intuitively, tree-like objects will have a higher percentage of
contour pixels, resulting in higher CPRs. We demonstrate
fast computation of CPR in full detail in Algorithm 1, via
vectorized PyTorch-like pseudocode.

Algorithm 1 Contour Pixel Rate (CPR) of an object
(PyTorch-like pseudocode).
Input: Object mask (H × W tensor), contour width
threshold R (int).

from skimage.morphology import diamond

def CPR(mask, R):
neighb_kernel = diamond(R)
neighb_counts = conv2d(mask,

neighb_kernel, padding=R)
contour_pix = logical_and(mask>0,

neighb_counts <= (neighb_kernel.sum()-1))
cpr = contour_pix.sum()/mask.sum()
return cpr.item()

2.2.2. Difference of Gini-impurity Deviation (DoGD)
We alternatively propose to measure the tree-likeness of
some object according to how the variability of object pres-
ence across different locations in the image differs between
global and local scales. Intuitively, irregularly-spaced tree-
like structures have high variability at small scales due to
alternating frequently between areas of mixed and uniform
pixel classes, but low variability at large scales due to the
repetitive nature of the structure becoming more homoge-
neous, which we propose to quantify as follows.

First, we quantify the object presence within some k× k
square window of the mask anchored at some coordinates
h0 < H , w0 < W via the Gini impurity:

Gini(m; k, h0, w0) := 1−
∑

j
[pj(Wk

h0,w0
(m))]2 (2)

where we denote the k × k square window of the mask an-
chored at h0, w0 as Wk

h0,w0
(m) := m[h0 : h0 + k,w0 :

3

w0 + k]. Here, pj(Wk
h0,w0

(m)) denotes the probability of
the object of class j being in some pixel within the win-
dow, which is computed simply as nj/k

2, where nj is the
number of pixels in the window of class j. In our binary
segmentation case, the Gini impurity simplifies to

Gini(m; k, h0, w0) := (3)

1− [p(Wk
h0,w0

(m))]2 − [1− p(Wk
h0,w0

(m))]2,

where we write p := p1. The Gini impurity measures
the degree of uncertainty (ranging from 0 to 1) of whether
an object is present in the given window. For example,
mask windows containing pixels of mostly one class will
have Gini ≃ 1, while having similar pixel amounts of both
classes will result in Gini ≃ 02.

Next, we compute the variability of object presence at
a given scale/window size across the entire mask by sam-
pling all possible k × k windows with anchors (h0, w0),
and computing the standard deviation of the Gini impurity
across these windows, as

σGini
k (m) :=

√
Varh0,w0

[Gini(m; k, h0, w0)]. (4)

Finally, we define the Difference of Gini Impurity Deviation
(DoGD) between global and local scales as

DoGD(m) := σGini
a (m)− σGini

b (m), (5)

where the global and local window sizes k = a and k = b
are chosen such that a ≫ b. We present DoGD in optimized
PyTorch-like form in Algorithm 2.

Algorithm 2 Difference of Gini Impurity Deviation
(DoGD) of an object (PyTorch-like pseudocode).
Input: Object mask (H × W tensor), global and local
window sizes a, b (ints).

def DoGD(mask, a, b):
gini_std = {}
for k in [a,b]:

avg_kernel = ones(k,k)
p = conv2d(mask, avg_kernel)
gini = 1 - p**2. - (1-p)**2.
gini_std[k] = gini.std().item()

return gini_std[a] - gini_std[b]

Intuitively, objects with significant tree-like or fractal-
like structure will exhibit relatively large values of
σGini
b (m) due to high variability in pixel composition at

small scales (frequently alternating between areas of mixed
classes and areas of a single class), yet small σGini

a (m) due

2The Gini impurity is closely related to the entropy 1 −∑
j [pj(Wk

h0,w0
(m)) log pj(Wk

h0,w0
(m))] (multiplied by 1/2), which

we use instead of entropy due to it being symmetric and faster to compute,
following practices in decision tree learning [4].

to structures with high uniformity and/or repetitions at large
scales, altogether increasing the DoGD.

We perform all experiments with the hyperparameters
for CPR and DoGD set to R = 5, a = 127, and b = 3,
which we found via grid search for the values which re-
sulted in the Kendall’s τ between IoU and DoGD with the
lowest p-value on the held-out DIS training set using ViT-
H SAM. We show results using a wide range of other val-
ues for these hyperparameters in Appendix B.1, where we
found our findings to be consistent for most other settings.
Moreover, we note that CPR and DoGD are correlated with
each other (Pearson |r| = 0.83 on average; Appendix D.1),
showing their consistency in how they quantify different as-
pects of tree-likeness.

2.3. The Relationship between Object Tree-likeness
and Segmentation Performance

2.3.1. Experiments on Synthetic Data
In this section, we will first carefully probe the effect of ob-
ject tree-likeness on SAM’s segmentation performance by
testing it on synthetic images which solely possess objects
of varying tree-likeness, with different independently cho-
sen, uniform foreground and background textures. These
objects are contiguous components samples from retinal
blood vessel and satellite road masks, with the full proce-
dure of generating these images detailed in Appendix A.2.
Example generated images, masks and SAM segmentation
predictions for them are shown in Fig. 3. As shown (as well
in Fig. 4), the objects cover a wide range of tree-likeness as
measured by these quantities.

In order to mitigate any confounding on SAM perfor-
mance due to an object’s textural contrast from its surround-
ings (which we study in Sec. 3), for each mask mc gener-
ated by our procedure, we apply SAM to K = 7 images
created by applying K different randomly-sampled pairs
of textures to the object’s foreground (mc = 1) and back-
ground (mc = 0). We then obtain SAM’s final prediction
for this object via pixel-wise majority voting over its pre-
dictions on these K images.

In Fig. 4 we show the relationship between an object’s
tree-likeness (as measured by CPR or DoGD) with SAM’s
performance (IoU) in segmenting the object, for all gener-
ated synthetic objects. We quantify the strength of this rela-
tion via rank/non-linear correlation, measured by Kendall’s
tau (τ) [25] and Spearman’s rho (ρ) [37], shown in Table 13.
Intriguingly, we see that object tree-likeness is quite predic-
tive of SAM’s performance, with average absolute correla-
tions of |τ | = 0.76 and |ρ| = 0.93 for CPR and |τ | = 0.64
and |ρ| = 0.82 for DoGD; i.e., more prevalent dense tree-
like structures corresponding to worse performance.

While this relationship is certainly strong, it is still on
synthetic, controlled data. In the following section, we will

3We evaluate τ in addition to ρ due to it being more robust to outliers.

4

Figure 3. Left: Example synthetic tree-like images and ob-
ject masks. Right: Trend of increasing tree-likeness (increasing
CPR/decreasing DoGD) of these objects resulting in worse SAM
segmentation predictions (to the right of each object mask).

CPR DoGD
SAM Encoder τ ρ τ ρ

ViT-H -0.77 -0.93 0.61 0.80
ViT-B -0.75 -0.93 0.66 0.84

Table 1. Rank correlation between SAM segmentation IoU and
object tree-likeness (CPR and DoGD), on the synthetic dataset.

0.0 0.2 0.4 0.6 0.8 1.0
CPR

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

satellite
vessel

0.10
0.05

0.00
0.05

0.10
0.15

DoGD

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

satellite
vessel

Figure 4. SAM segmentation IoU vs. object tree-likeness (CPR,
left; DoGD, right) on the synthetic dataset.

show that this finding is also present for real data which is
subject to noise from a variety of uncontrollable factors.

2.3.2. Experiments on Real Data
We will now perform the same analysis on two real datasets
which contain objects which cover a spectrum of tree-
likeness, DIS5k and iShape. DIS5k [33] (or “DIS” for
short) is a dataset that contains extremely detailed segmen-
tation masks of objects with varying degrees of hollowness,
and both regular and irregular tree-like structures. All DIS
experiments will be reported on its validation set unless oth-
erwise stated. We show example images with objects with
varying degrees of tree-likeness (by CPR) in Fig. 1 left.

iShape [43] consists of six sub-datasets of real and
realistic-appearing synthetic images for instance segmenta-
tion of different objects: antenna, branches, fences, logs,
hangers, and wires (see e.g. Fig. 9). We analyze these
classes individually to mitigate potential confounding/noise
factors due to inter-class variations; we do not do this for

DIS due to the larger number of classes which are much
more fine-grained in their differences, additionally because
there are few images per class for DIS.

Results. In Fig. 5 we show how SAM’s performance
(IoU) on these images relates to the tree-likeness of the ob-
jects which it is segmenting, with accompanying quantita-
tive correlation results shown in Table 2. In order to reduce
the noise incurred by the large variety of segmented objects
in the dataset and nuisance confounding factors in the im-
ages, we analyze results with aggregated objects: we clus-
ter groups of 5 objects/images with similar IoU and tree-
likeness (CPR or DoGD) into single datapoints of the av-
erage value of these metrics, and similar for the IoU vs.
textural separability experiments of Sec. 3.

0.0 0.2 0.4 0.6 0.8 1.0
CPR

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

0.0 0.2 0.4 0.6 0.8 1.0
CPR

0.0

0.2

0.4

0.6

0.8

1.0

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

antenna
branch
fence
hanger
log
wire

0.15
0.10

0.05
0.00

0.05
0.10

0.15

DoGD

0.5

0.6

0.7

0.8

0.9

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

0.025
0.000

0.025
0.050

0.075
0.100

0.125
0.150

0.175

DoGD

0.2

0.4

0.6

0.8

1.0

SA
M

 p
er

fo
rm

an
ce

 (I
oU

) antenna
branch
fence
hanger
log
wire

Figure 5. SAM segmentation IoU vs. object tree-likeness (CPR,
top; DoGD, bottom) on DIS (left) and iShape (right).

We see that despite the many potential confounding fac-
tors in real data, there is still a clear correlation between ob-
ject tree-likeness as measured by the proposed metrics and
SAM segmentation performance. In particular, we see an
average absolute correlations of |τ | = 0.56 and |ρ| = 0.74
for CPR and |τ | = 0.44 and |ρ| = 0.62 for DoGD, exclud-
ing the antenna and wire objects of iShape which had out-
lying correlations, likely because those two object classes
cover only small ranges of tree-likeness as opposed to the
other iShape classes (Fig. 5), such that noise from other
confounding factors obscures any dependence of perfor-
mance on tree-likeness.

3. The Challenge of Textural Separability

In the previous section, we demonstrated that SAM strug-
gles with segmenting non-conventional shapes, in particu-
lar, dense tree-like structures, which we hypothesize is due

5

iShape
DIS antenna branch fence hanger log wire

SAM Enc. τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ

CPR: ViT-H -0.59 -0.76 -0.13 -0.21 -0.61 -0.81 -0.61 -0.81 -0.25 -0.37 -0.60 -0.77 -0.06 -0.10
ViT-B -0.63 -0.81 -0.18 -0.27 -0.63 -0.82 -0.63 -0.83 -0.44 -0.62 -0.62 -0.80 -0.12 -0.17

DoGD: ViT-H 0.58 0.77 0.23 0.30 0.52 0.70 0.46 0.65 0.52 0.72 0.30 0.46 0.08 0.11
ViT-B 0.45 0.64 0.12 0.14 0.51 0.69 0.45 0.64 0.50 0.70 0.13 0.22 0.06 0.08

Table 2. Rank correlation between SAM prediction IoU and object tree-likeness (CPR, upper table) and DoGD, lower table), on DIS and
iShape.

to the model confusing the dense structure as the texture of
a non-treelike, more regular shape, rather than a shape it-
self (see e.g. Fig. 1 left). Similar to this behavior is that
even for objects with simpler shapes, SAM can still be con-
fused if the object’s texture is even somewhat similar to its
surroundings, which we will study in this section.

3.1. Measuring Textural Separability
We will define the textural contrast or separability be-
tween some object mask and its surroundings by how eas-
ily their textures can be distinguished from one another.
Motivated by findings that early layers of classification-
pretrained CNNs primarily capture low-level features in-
volving edges and textures [44], we will characterize an
image’s textures using the first convolutional layer of a
ResNet-18 [19] pretrained on ImageNet [9]. Denoted by
f1 : RC×H×W → RC′×H′×W ′

, this outputs a textural fea-
ture map corresponding to all 7× 7 windows in the image.

We then measure the textural separability of an object ac-
cording to if a simple classifier g can be trained to discrim-
inate between (a) the activations for the pixels of the object
foreground and (b) the activations right outside of the object
boundary4. We define this explicitly in Algorithm 3, where
Dilate and Disk refer to scikit-image.morphology
functions [41]. We use simple logistic regression for g with
inverse regularization parameter C = 2 [31]. We also eval-
uate using other hyperparameter settings, as well as a ran-
dom forest classifier for g instead, in Appendix B.2, where
we found similar results.

3.2. The Effect of Textural Separability on Segmen-
tation Performance

3.2.1. Style Transfer for Controlled Textural Contrast
Similar to Sec. 2.3, in studying the effects of textural sep-
arability on SAM’s performance, we also wish to perform
experiments on well-controlled synthetic images in order
to more carefully disentangle the effects of textural separa-
bility shape on performance from the effects due to object

4This procedure is somewhat similar to the probing of hidden activation
concepts [2, 26], although these works detected concepts (such as textures)
at the image level, not at the single activation level as we do here.

Algorithm 3 Textural separability of an object.

Require: Image x ∈ RC×H×W with mask m ∈ {0, 1}H×W ,
first convolutional layer of pretrained CNN f1, simple classi-
fier g.

1: h = f1(x) ∈ RC′×H′×W ′
(Get textural features.)

2: m = Resize(m) to H ′ ×W ′ via NN interpolation.
3: m′ := Dilate(m,Disk(5)) (Expand boundary.)
4: m′ = m′ −m (Extract boundary only.)
5: hobj := h[:,m ̸= 0]
6: hbdry := h[:,m′ ̸= 0]
7: Train g to classify between activations in hobj vs. hbdry.
8: return Training classification accuracy of g.

shape, before evaluating on real data (in the following sec-
tion). Here, we will do so using neural style transfer [15]
to precisely modify the textural contrast of real objects/im-
ages. This will involve (1) modifying objects’ shape with-
out altering their background using an inpainting model,
followed by (2) applying neural style transfer (NST) to the
composite image to adjust the textural contrast of the object
with the surrounding image.

We begin with images sampled from the VOC2012
dataset [13] accompanied by objects (instance masks), ac-
cording to certain criteria. Namely, we pick objects which
take up between 5% and 25% of the entire image’s area (to
have large enough objects while still maintaining sufficient
background), sampling 484 objects total (with accompany-
ing background) for study. For each object, we use a Stable
Diffusion-based inpainting model (details in Appendix C.2)
to remove the object from its corresponding image and fill
in it’s mask area with the background. This creates a pair of
a background image and a separate object (mask), allowing
us to have careful control of modifying the object (and its
mask accordingly) before placing it back into the inpainted
background. For a given object, we then create three types
of composite images with varying degrees of changes to the
object’s shape (without modifying the background):

1. Controlled: the object is not modified.
2. Altered: the object undergoes major non-affine geomet-

ric transformations (see App. C.2), resulting in shape
modification and its texture being squeezed or expanded.

6

3. Mixed: this variant uses pixels from the altered image
where the original and altered masks overlap, and pixels
from the original object where they do not overlap.
After one of these three composite image types is cre-

ated, we use neural style transfer (NST) to apply a texture
to the image (similar to experiments in [16]) randomly sam-
pled from Colored Brodatz [1], via an implementation of the
NST model of Gatys et al. [15] (details in Appendix C.2).
We illustrate an example of this entire procedure in Fig. 6.

source mask inpainted

altered mixed controlled

Figure 6. Example images from each component of the synthetic
textural separability dataset creation pipeline.

We adjust textural separability by performing the style
transfer at eight different degrees of severity using different
settings for the weighting hyperparameters that control the
balance between content preservation and style transfer (de-
tails in Appendix C.2), with example styled images shown
in Fig. 7 (more in Appendix. A.3). In Fig. 8 left, we vali-
date this scheme by showing that indeed, steadily increasing
the NST intensity results in decreasing textural separability.

Figure 7. Using style transfer with different intensities to adjust the
textural separability of an object (highlighted in red), on controlled
(upper row) and altered (lower row) versions of the object.

In Fig. 8 right, we show how SAM’s segmentation per-
formance changes with respect to style transfer intensity on
the test set, for each of the three types of object transforma-
tions. We first see that SAM’s performance decreases with

01234567 01234567 01234567
Neural Style Transfer Intensity

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
xt

ur
e

Se
pa

ra
bi

lit
y

(a
cc

)

altered
mixed
controlled

01234567 01234567 01234567
Neural Style Transfer Intensity

0.4
0.5
0.6
0.7
0.8
0.9
1.0

SA
M

 p
er

fo
rm

an
ce

(Io
U)

altered
mixed
controlled

Figure 8. Left: Increasing NST intensity results in decreased tex-
tural separability. Right: SAM segmentation IoU vs. NST inten-
sity, on the three composite image types.

lower textural separability/higher NST intensity. Second,
there is an interesting pattern of clear gaps in segmenta-
tion performance between the three object transformation
types. SAM performs best on the altered objects/fore-
grounds, which have both distorted shape and texture, com-
pared to the un-altered/controlled objects, with the mixed
objects in-between. This further demonstrates the effect of
textural contrast on segmentation performance, as the al-
tered objects have additional textural contrast to their back-
grounds due to the transformations which were applied to
their shape, boundary and texture.

3.2.2. Experiments on Real Data
We will now evaluate datasets of real images; iShape (Sec.
2.3.2) and Plittersdorf [18], both of which were used in the
original SAM paper [27], and possess objects with a wide
range of textural separability from their surroundings. Plit-
tersdorf consists of camera trap video frames of wild deer
recorded in a wildlife park. These frames often have low
contrast objects due to frequent low-light conditions, mak-
ing it a useful dataset for this analysis. Example images and
objects from both datasets are shown in Fig. 9.

Figure 9. Example images and object masks from Plittersdorf (left
group) and iShape (right group).

In Fig. 10, we show how the textural separability (Algo-
rithm 3) of these objects relates to SAM’s segmentation per-
formance on them, with correlation results shown in Table

7

3. Overall, across all datasets we see a fairly strong correla-
tion between textural separability and segmentation perfor-
mance (average correlation of τ = 0.49 and ρ = 0.66), es-
pecially considering the variety of objects and backgrounds,
with objects with low separability resulting in especially
poor segmentation (IoU ∼ 0.3). In these cases, SAM was
confused by objects close to the object of interest which
also have similar textures (see e.g., Fig. 10, right).

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Textural Separability (acc)

0.2

0.4

0.6

0.8

1.0

SA
M

 p
er

fo
rm

an
ce

 (I
oU

) antenna
branch
fence
hanger
log
wire

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Texture Separability (acc)

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

SA
M

 p
er

fo
rm

an
ce

 (I
oU

)

Figure 10. SAM prediction IoU vs. object textural separability
(Algorithm 3), for iShape (left) and Plittersdorf (right).

Discussion

Understanding and Interpreting SAM’s Failure Modes.
First, we see that SAM’s performance issues on cases of
high tree-likeness (Sec. 2.3) were primarily due to over-
segmentation, rather than under-segmentation; the model
would frequently generate large false-positive regions in
the empty space of densely packed, thin tree-like structures
(e.g., Figs. 3, right and 1, left). This could not simply be
due to image resolution/downsampling blurring the thin ob-
jects, as for structures which are also thin but more sparsely
packed, the over-segmentation is reduced (see e.g., Fig. 3,
center rightmost). We therefore hypothesize that the root of
SAM’s failure on these objects may lie in the highly repeti-
tive yet irregular, dense patterns inherent to tree-like struc-
tures in particular: SAM confuses these patterns of shape as
the texture of a more regularly-shaped object.

In the cases of both tree-like and low-textural contrast
objects, SAM either has trouble with correctly delineating
an object’s shape when faced with a “confusing” textural
cue, be it either a dense, irregular shape which appears to
instead be a texture, or an object texture that is similar to
its surroundings. One explanation for this is that SAM’s
training set SA-1B [27] possessed few objects with these
qualities. This seems likely for tree-like objects, given the
typically low concavity of objects in SA-1B (Fig. 6, right in
[27]), which were captured in photographic contexts where
such objects are uncommon. Low-textural contrast objects
are similarly uncommon in most photographs, and further-
more, segmenting objects is generally more challenging if
they are harder to pick out from their surroundings.

Applications of Our Findings and Metrics. A simple
application of our findings and proposed metrics for the
tree-likeness and textural separability of objects would be
to predict if SAM is expected to perform underwhelmingly
on new data, according to if the objects’ measured tree-
likeness is high or the textural separability is low. Similarly,
the general diversity of objects in a segmentation foundation
model’s training/fine-tuning dataset could be measured ac-
cording to the dataset’s distribution of these metrics, which
could inform whether additional training data is needed to
be acquired/annotated to develop a better generalist model.

Limitations and Future Work. For our findings of the
correlations between the object characteristics measured by
our metrics and SAM’s performance in segmenting such
objects, we attempted to minimize the influence of other
confounding factors which could effect segmentation per-
formance by first establishing a baseline with our carefully-
controlled synthetic data experiments. We then chose real
evaluation datasets which covered a wide range of object
types according to these metrics in order to gain a bet-
ter “signal-to-noise ratio” for the studied trends. However,
it is impossible to mitigate all potential confounding fac-
tors which could affect performance in real data, which is
why our correlation findings are still noticeable for the real
datasets, yet not quite as tight as on the synthetic data.

We do not evaluate the 2D version of the recently re-
leased SAM 2 model due to it likely resulting in similar
behavior as SAM 1, along with evidence that oracle predic-
tions of SAM and SAM 2 are typically similar in perfor-
mance to within ≲ 0.1 IoU [12].

Another future direction would be to explore the specific
component(s) of SAM which can be most attributed to these
failures (in a mechanistic sense), which could guide further
model development. We deem it likely that the susceptible
component of SAM is the image encoder, simply because it
is the main backbone of the model which extracts features
to be used by the lightweight mask decoder, but obtaining a
more fine-grained answer would require a careful treatment.

Conclusion
In this paper, we quantitatively modeled how the segmen-
tation performance of SAM relates to certain measurable
object characteristics: tree-likeness and textural separabil-
ity. We find SAM’s performance to typically be noticeably
correlated with these factors, showing the need for further
work in understanding and potentially mitigating such “fail-
ure modes” of vision foundation models.

Acknowledgements
Research reported in this publication was supported by the
National Heart, Lung, and Blood Institute of the National

8

iShape
antenna branch fence hanger log wire Plittersdorf

SAM Enc. τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ

ViT-H 0.44 0.59 0.50 0.68 0.65 0.85 0.63 0.83 0.33 0.48 0.49 0.67 0.26 0.38
ViT-B 0.46 0.61 0.56 0.75 0.67 0.86 0.65 0.84 0.36 0.52 0.55 0.73 0.36 0.50

Table 3. Rank correlation between SAM prediction IoU and object textural separability, on iShape and Plittersdorf.

Institutes of Health under Award Number R44HL152825.
The content is solely the responsibility of the authors and
does not necessarily represent the official views of the Na-
tional Institutes of Health.

References
[1] Safia Abdelmounaime and He Dong-Chen. New brodatz-

based image databases for grayscale color and multiband
texture analysis. International Scholarly Research Notices,
2013(1):876386, 2013. 7, 1

[2] Guillaume Alain and Yoshua Bengio. Understanding inter-
mediate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016. 6

[3] Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and
Philip J Kellman. Deep convolutional networks do not clas-
sify based on global object shape. PLoS computational biol-
ogy, 14(12):e1006613, 2018. 2

[4] Leo Breiman. Classification and regression trees. Routledge,
1984. 4

[5] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-
chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. 3

[6] Keyan Chen, Chenyang Liu, Hao Chen, Haotian Zhang,
Wenyuan Li, Zhengxia Zou, and Zhenwei Shi. Rsprompter:
Learning to prompt for remote sensing instance segmenta-
tion based on visual foundation model. IEEE Transactions
on Geoscience and Remote Sensing, 2024. 1

[7] Tianrun Chen, Lanyun Zhu, Chaotao Deng, Runlong Cao,
Yan Wang, Shangzhan Zhang, Zejian Li, Lingyun Sun, Ying
Zang, and Papa Mao. Sam-adapter: Adapting segment
anything in underperformed scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pages 3367–3375, 2023. 1

[8] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan
Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia,
and Ramesh Raskar. Deepglobe 2018: A challenge to parse
the earth through satellite images. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, 2018. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[10] Ruining Deng, Can Cui, Quan Liu, Tianyuan Yao, Lu-
cas Walker Remedios, Shunxing Bao, Bennett A Landman,
Yucheng Tang, Lee E Wheless, Lori A Coburn, et al. Seg-
ment anything model (sam) for digital pathology: Assess

zero-shot segmentation on whole slide imaging. In Medi-
cal Imaging with Deep Learning, short paper track, 2023.
1

[11] Guanliang Dong, Zhangquan Wang, Yourong Chen, Yuliang
Sun, Hongbo Song, Liyuan Liu, and Haidong Cui. An effi-
cient segment anything model for the segmentation of medi-
cal images. Scientific Reports, 14(1):19425, 2024. 1

[12] Haoyu Dong, Hanxue Gu, Yaqian Chen, Jichen Yang, and
Maciej A Mazurowski. Segment anything model 2: an
application to 2d and 3d medical images. arXiv preprint
arXiv:2408.00756, 2024. 8

[13] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Vi-
sual Object Classes Challenge 2012 (VOC2012) Results.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/, 2012. 6

[14] Wenqing Feng, Fangli Guan, Chenhao Sun, and Wei Xu.
Road-sam: Adapting the segment anything model to road ex-
traction from large very-high-resolution optical remote sens-
ing images. IEEE Geoscience and Remote Sensing Letters,
21:1–5, 2024. 3

[15] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 6, 7, 2

[16] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. In Interna-
tional Conference on Learning Representations, 2019. 2, 7

[17] Hanxue Gu, Haoyu Dong, Jichen Yang, and Maciej A
Mazurowski. How to build the best medical image segmen-
tation algorithm using foundation models: a comprehensive
empirical study with segment anything model. arXiv preprint
arXiv:2404.09957, 2024. 1

[18] Timm Haucke, Hjalmar S. Kühl, and Volker Steinhage.
Socrates: Introducing depth in visual wildlife monitoring us-
ing stereo vision. Sensors, 22(23), 2022. 7

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[20] Katherine Hermann and Andrew Lampinen. What shapes
feature representations? exploring datasets, architectures,
and training. Advances in Neural Information Processing
Systems, 33:9995–10006, 2020. 2

[21] Katherine Hermann, Ting Chen, and Simon Kornblith. The
origins and prevalence of texture bias in convolutional neu-
ral networks. Advances in Neural Information Processing
Systems, 33:19000–19015, 2020. 2

9

[22] Yuhao Huang, Xin Yang, Lian Liu, Han Zhou, Ao Chang,
Xinrui Zhou, Rusi Chen, Junxuan Yu, Jiongquan Chen,
Chaoyu Chen, et al. Segment anything model for medical
images? Medical Image Analysis, 92:103061, 2024. 1

[23] Abdallah Wagih Ibrahim. Retina Blood Vessel, 2023. 1
[24] Wei Ji, Jingjing Li, Qi Bi, Tingwei Liu, Wenbo Li, and Li

Cheng. Segment Anything Is Not Always Perfect: An In-
vestigation of SAM on Different Real-world Applications.
Machine Intelligence Research, 21(4):617–630, 2024. 1

[25] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1-2):81–93, 1938. 4

[26] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,
James Wexler, Fernanda Viegas, et al. Interpretability be-
yond feature attribution: Quantitative testing with concept
activation vectors (tcav). In International conference on ma-
chine learning, pages 2668–2677. PMLR, 2018. 6

[27] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 1, 2,
7, 8

[28] Jonas Kubilius, Stefania Bracci, and Hans P Op de Beeck.
Deep neural networks as a computational model for hu-
man shape sensitivity. PLoS computational biology, 12(4):
e1004896, 2016. 2

[29] Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and
Bo Wang. Segment anything in medical images. Nature
Communications, 15(1):654, 2024. 1, 3

[30] Maciej A. Mazurowski, Haoyu Dong, Hanxue Gu, Jichen
Yang, Nicholas Konz, and Yixin Zhang. Segment anything
model for medical image analysis: An experimental study.
Medical Image Analysis, 89:102918, 2023. 1

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 6

[32] Zelin Peng, Zhengqin Xu, Zhilin Zeng, Xiaokang Yang,
and Wei Shen. Sam-parser: Fine-tuning sam efficiently
by parameter space reconstruction. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 4515–
4523, 2024. 1

[33] Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling
Shao, and Luc Van Gool. Highly accurate dichotomous im-
age segmentation. In European Conference on Computer Vi-
sion, pages 38–56. Springer, 2022. 5

[34] Zhongxi Qiu, Yan Hu, Heng Li, and Jiang Liu. Learn-
able ophthalmology sam. arXiv preprint arXiv:2304.13425,
2023. 3

[35] Simiao Ren, Francesco Luzi, Saad Lahrichi, Kaleb Kas-
saw, Leslie M Collins, Kyle Bradbury, and Jordan M Malof.
Segment anything, from space? In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 8355–8365, 2024. 1

[36] Peilun Shi, Jianing Qiu, Sai Mu Dalike Abaxi, Hao Wei,
Frank P-W Lo, and Wu Yuan. Generalist vision foundation

models for medical imaging: A case study of segment any-
thing model on zero-shot medical segmentation. Diagnos-
tics, 13(11):1947, 2023. 1

[37] C. Spearman. The proof and measurement of association
between two things. The American Journal of Psychology,
15(1):72–101, 1904. Place: US Publisher: Univ of Illinois
Press. 4

[38] Ajay Subramanian, Elena Sizikova, Najib Majaj, and Denis
Pelli. Spatial-frequency channels, shape bias, and adversar-
ial robustness. Advances in Neural Information Processing
Systems, 36, 2024. 2

[39] Lv Tang, Haoke Xiao, and Bo Li. Can sam segment any-
thing? when sam meets camouflaged object detection. arXiv
preprint arXiv:2304.04709, 2023. 1

[40] Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L
Griffiths. Are convolutional neural networks or transformers
more like human vision? arXiv preprint arXiv:2105.07197,
2021. 2

[41] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-
Iglesias, François Boulogne, Joshua D. Warner, Neil Yager,
Emmanuelle Gouillart, Tony Yu, and the scikit-image con-
tributors. scikit-image: image processing in Python. PeerJ,
2:e453, 2014. 6

[42] Nan Xu, Kerry Nice, Sachith Seneviratne, and Mark Steven-
son. Leveraging segment-anything model for automated
zero-shot road width extraction from aerial imagery. In
2023 International Conference on Digital Image Comput-
ing: Techniques and Applications (DICTA), pages 176–183.
IEEE, 2023. 3

[43] Lei Yang, Yan Zi Wei, Yisheng He, Wei Sun, Zhenhang
Huang, Haibin Huang, and Haoqiang Fan. ishape: A first
step towards irregular shape instance segmentation. arXiv
preprint arXiv:2109.15068, 2021. 5

[44] Matthew D Zeiler and Rob Fergus. Visualizing and un-
derstanding convolutional networks. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages
818–833. Springer, 2014. 6

[45] Chenshuang Zhang, Chaoning Zhang, Taegoo Kang,
Donghun Kim, Sung-Ho Bae, and In So Kweon. Attack-sam:
Towards attacking segment anything model with adversarial
examples. arXiv preprint arXiv:2305.00866, 2023. 1

[46] Yixin Zhang and Maciej A Mazurowski. Convolutional neu-
ral networks rarely learn shape for semantic segmentation.
Pattern Recognition, 146:110018, 2024. 2

[47] Sheng Zheng, Chaoning Zhang, and Xinhong Hao. Black-
box targeted adversarial attack on segment anything (sam).
arXiv preprint arXiv:2310.10010, 2023. 1

10

Quantifying the Limits of Segment Anything Model: Analyzing Challenges in
Segmenting Tree-Like and Low-Contrast Structures

Supplementary Material

A. Additional Dataset Details
A.1. Retinal Blood Vessel and Road Satellite Images
The retinal blood vessel and road satellite image object
masks which we use to generate the synthetic images for the
experiments in Sec. 2.3.1, are from the Retina Blood Ves-
sel [23] and the Road Extraction Challenge data of Deep-
Globe18 [8]. For our retinal vessel mask set, we use the
vessel masks from the training set of 80 image/mask pairs,
and for our road mask set, we randomly sample the same
number of masks from the split-merged full dataset, in or-
der to ensure that these two object types appear equally in
the synthetic dataset of Sec. 2.3.1.

A.2. Synthetic Tree-like Object Images
Our algorithm for creating synthetic images of tree-like ob-
jects (used in Sec. 2.3.1) is shown as follows.
1. Sample object mask m from either retinal blood vessel or

satellite road image datasets (details in Appendix A.1).
2. Randomly select one of the contiguous components of

m, denoted mc, and enclose it with a tight bounding box.
3. Resize mc such that its bounding box is 512× 512, and

randomly place it in a blank 1024× 1024 image.
4. Apply two different textures randomly sampled from

Colored Brodatz [1] to the foreground (mc = 1) and
background (mc = 0), resulting in the final image.

In Fig. 12 we show example images generated with dif-
ferent foreground and background texture combinations for
various objects.

A.3. Neural Style Transfer (NST) Generated Images
In Fig. 11 we provide additional example images generated
via inpainting and neural style transfer for the textural sep-
arability experiments of Sec. 3.2.1.

B. Hyperparameter/Ablation Studies
B.1. Object Tree-likeness Experiments
B.1.1. Synthetic Data Experiments
Tables 4 and 5 show results on the synthetic tree-like dataset
using a wide range of CPR and DoGD hyperparameters (R
and a, b, respectively).

B.1.2. Real Data Experiments
Tables 6, 7, 8, and 9 show results on DIS and iShape using
a wide range of CPR and DoGD hyperparameters (R and
a, b, respectively).

ViT-H ViT-B
R τ ρ τ ρ

1 −0.82 −0.96 −0.79 −0.94
3 −0.80 −0.95 −0.76 −0.94
5 −0.77 −0.93 −0.75 −0.93
7 −0.74 −0.92 −0.73 −0.91
9 −0.72 −0.91 −0.70 −0.90
11 −0.71 −0.90 −0.70 −0.89

Table 4. Rank correlation (Kendall τ and Spearman ρ) between
SAM prediction IoU and object tree-likeness as measured by CPR
with different hyperparameter values R on the synthetic dataset,
to supplement Table 1.

ViT-H ViT-B
a b τ ρ τ ρ

63 3 0.42 0.60 0.48 0.66
63 7 0.45 0.63 0.49 0.68
63 15 0.44 0.64 0.48 0.68
63 31 0.45 0.66 0.49 0.71
127 3 0.61 0.80 0.66 0.84
127 7 0.63 0.81 0.67 0.84
127 15 0.62 0.81 0.66 0.84
127 31 0.60 0.80 0.64 0.83
255 3 0.66 0.84 0.68 0.85
255 7 0.66 0.84 0.68 0.86
255 15 0.65 0.84 0.67 0.85
255 31 0.59 0.79 0.60 0.80

Table 5. Rank correlation (Kendall τ and Spearman ρ) between
SAM prediction IoU and object tree-likeness as measured by
DoGD with different hyperparameter values a, b on the synthetic
dataset, to supplement Table 1.

B.2. Object Textural Separability Experiments

Table 10 show the textural separability experiment results
on real data (iShape and Plittersdorf) using various hyper-
parameters and models for the classifier g.

C. Additional Experimental Details

C.1. SAM Prompting Strategies

In addition to the SAM prompting details presented in Sec.
1, all real and style-transferred (NST) images are prompted
with (1) a tight bounding-box and (2) several positive and/or

1

Figure 11. Additional examples of inpainting+neural style transfer-generated images to supplement Fig. 6.

negative prompts randomly sampled from either the fore-
ground or background of the object mask, respectively,
with respective counts npos and nneg . For iShape, we use
npos = nneg = 5; for DIS, we use npos = 5 and nneg = 10
due to the complexity of the objects. For Plittersdorf and
NST images, we simply use npos = 0 and nneg = 2, due to
the objects typically possessing simple shapes.

C.2. Neural Style Transfer Experiments
Models. For the NST experiments (Sec. 3.2.1), the
inpainting model used is Runway’s stable diffusion in-

painting pipeline, fp16 variant. The NST model it-
self is an implementation of [15] based on https://
github.com/pytorch/tutorials/blob/main/
advanced_source/neural_style_tutorial.
py, using typical settings of a standard VGG19 CNN with
content layer of conv 4, style layers of conv i for i =
1, 2, 3, 4, 5, and ImageNet normalization.

Style transfer intensity. As mentioned in Sec. 3.2.1,
we perform style transfer experiments for a monotonically-

2

https://github.com/pytorch/tutorials/blob/main/advanced_source/neural_style_tutorial.py
https://github.com/pytorch/tutorials/blob/main/advanced_source/neural_style_tutorial.py
https://github.com/pytorch/tutorials/blob/main/advanced_source/neural_style_tutorial.py
https://github.com/pytorch/tutorials/blob/main/advanced_source/neural_style_tutorial.py

Figure 12. Examples of synthetic tree-like object images. Object
masks shown in the right-most column, with images created us-
ing randomly chosen different foreground and background texture
combinations in the left columns (before the majority-voting pro-
cedure described in Sec. 2.3.1).

ViT-H ViT-B
R τ ρ τ ρ

1 −0.56 −0.73 −0.61 −0.79
3 −0.55 −0.72 −0.61 −0.79
5 −0.59 −0.76 −0.63 −0.81
7 −0.53 −0.7 −0.59 −0.77
9 −0.53 −0.71 −0.57 −0.75
11 −0.51 −0.69 −0.56 −0.74

Table 6. Rank correlation (Kendall τ and Spearman ρ) between
SAM prediction IoU and object tree-likeness as measured by CPR
with different hyperparameter values R on DIS, to supplement Ta-
ble 2.

increasing range of eight degrees of style transfer intensity.
This is created by defining content and style weights λc and
λs, respectively for the NST algorithm according to

λc =
1

1 + α
and λs =

α

1 + α
, (6)

where α ranges linearly from α = 1 to α = 4, 000 with
eight equally-spaced values, representing the degree of style
transfer intensity.

Object/image altering procedure. The procedure that
creates the “altered” version of objects via non-affine trans-

formations is detailed as follows.
1. Apply a non-affine transformation created using the

albumentations Python library [5] to both the im-
age and the object/mask, defined shortly.

2. Clean up unexpected obsolete regions.
3. Properly align the location of the distorted object.
4. Remove small isolated regions of the object.

In Python code, this is implemented as follows, given an
input image NumPy array raw img arr and correspond-
ing binary object mask raw msk arr:
import torch
import numpy as np
from PIL import Image
import albumentations as A
import torchvision.transforms as transforms
from skimage.morphology import dilation,label, \
disk, remove_small_holes, remove_small_objects, \
opening, closing

shape_transformation = A.Compose([
A.ElasticTransform(

alpha=2500, sigma=24, alpha_affine=0,
interpolation=1, border_mode=0, value=0,
mask_value=0, always_apply=True,
approximate=False, same_dxdy=False, p=1.0),

A.GridDistortion(
num_steps=20, distort_limit=.99,
interpolation=1, border_mode=0, value=0,
mask_value=0, normalized=False,
always_apply=False, p=1.0)]

)

imsize = 512
loader = transforms.Compose([

transforms.Resize(imsize), # scale imported image
transforms.CenterCrop(imsize),
transforms.ToTensor()])

unloader = transforms.ToPILImage()

def shift_array(array, shift_spec):
assert len(shift_spec) == 2 and \

isinstance(array,np.ndarray)

shift_corrected_arr = array.copy()
if shift_spec[0] != 0:

shift = shift_spec[0]
shift_corrected_arr = np.concatenate(

[shift_corrected_arr[shift:],
shift_corrected_arr[:shift]],
axis=0)

if shift_spec[1] != 0:
shift = shift_spec[1]
shift_corrected_arr = np.concatenate(

[shift_corrected_arr[:,shift:],
shift_corrected_arr[:,:shift]],
axis=1)

return shift_corrected_arr

def center_correction(raw_msk, distorted_msk):
assert raw_msk.ndim == 4 and \

distorted_msk.ndim == 3
pos_idx = torch.argwhere(raw_msk[0,0])
_raw_msk_center = (pos_idx.min(dim=0).values + \

pos_idx.max(dim=0).values)//2
pos_idx = torch.argwhere(distorted_msk[0])
_distorted_msk_center = (pos_idx.min(dim=0).values + \

pos_idx.max(dim=0).values)//2

position_correction = _distorted_msk_center -_raw_msk_center
corrected_distorted_msk = distorted_msk.squeeze()
print(corrected_distorted_msk.shape)
assert position_correction.ndim == 1 and len(position_correction) == 2

if position_correction[0] !=0:
shift = position_correction[0]

corrected_distorted_msk = torch.cat(
[corrected_distorted_msk[shift:],
corrected_distorted_msk[:shift]],
dim=0)

if position_correction[1] !=0:
shift = position_correction[1]
corrected_distorted_msk = torch.cat(

[corrected_distorted_msk[:,shift:],
corrected_distorted_msk[:,:shift]],
dim=1)

return corrected_distorted_msk

def get_distorted_ImageAndMask(trans, img, *msks):

format check
assert all([msk.ndim == 2 for msk in msks])

3

antenna branch fence hanger log wire

R SAM Enc. τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ

1
ViT-H −0.18 −0.25 −0.63 −0.83 −0.68 −0.88 −0.30 −0.43 −0.60 −0.78 −0.08 −0.12
ViT-B −0.19 −0.29 −0.64 −0.83 −0.68 −0.88 −0.47 −0.66 −0.61 −0.79 −0.12 −0.18

3
ViT-H −0.20 −0.30 −0.63 −0.83 −0.65 −0.85 −0.28 −0.40 −0.61 −0.79 −0.07 −0.10
ViT-B −0.17 −0.26 −0.64 −0.83 −0.65 −0.85 −0.48 −0.66 −0.61 −0.79 −0.13 −0.19

5
ViT-H −0.13 −0.21 −0.61 −0.81 −0.61 −0.81 −0.25 −0.37 −0.60 −0.79 −0.06 −0.10
ViT-B −0.18 −0.27 −0.63 −0.82 −0.63 −0.83 −0.44 −0.62 −0.62 −0.80 −0.12 −0.17

7
ViT-H −0.16 −0.23 −0.57 −0.77 −0.54 −0.74 −0.20 −0.29 −0.60 −0.79 −0.06 −0.10
ViT-B −0.15 −0.24 −0.59 −0.77 −0.55 −0.75 −0.39 −0.55 −0.62 −0.81 −0.10 −0.15

9
ViT-H −0.16 −0.23 −0.52 −0.72 −0.47 −0.65 −0.13 −0.19 −0.59 −0.78 −0.05 −0.08
ViT-B −0.16 −0.22 −0.57 −0.76 −0.49 −0.67 −0.29 −0.42 −0.62 −0.81 −0.10 −0.15

11
ViT-H −0.08 −0.13 −0.49 −0.67 −0.51 −0.70 −0.02 −0.03 −0.60 −0.78 −0.03 −0.04
ViT-B −0.12 −0.16 −0.54 −0.73 −0.55 −0.75 −0.21 −0.28 −0.64 −0.82 −0.07 −0.11

Table 7. Rank correlation (Kendall τ and Spearman ρ) between SAM prediction IoU and object tree-likeness as measured by CPR with
different hyperparameter values R on iShape, to supplement Table 2.

ViT-H ViT-B
a b τ ρ τ ρ

63 3 0.63 0.83 0.57 0.78
63 7 0.59 0.79 0.57 0.77
63 15 0.54 0.72 0.50 0.67
63 31 0.45 0.62 0.39 0.56
127 3 0.58 0.77 0.45 0.64
127 7 0.58 0.77 0.49 0.66
127 15 0.51 0.67 0.42 0.57
127 31 0.36 0.50 0.26 0.39
255 3 0.53 0.71 0.42 0.59
255 7 0.53 0.71 0.42 0.59
255 15 0.47 0.66 0.36 0.52
255 31 0.29 0.43 0.19 0.29

Table 8. Rank correlation (Kendall τ and Spearman ρ) between
SAM prediction IoU and object tree-likeness as measured by
DoGD with different hyperparameter values a, b on DIS, to sup-
plement Table 2.

apply transformation to both image and msk
transformed = trans(image=img, masks = msks)
distorted_img_shifted = transformed[’image’]
distorted_msks_shifted = transformed[’masks’]

#clean up the unexpected obsolete regions
get area excluding border
positive_region_map = label(distorted_msks_shifted[1])
label_ids, label_cnts = np.unique(positive_region_map,return_counts=True)
max_id = label_ids[1:][np.argmax(label_cnts[1:])]
eligible_region_map = np.where(positive_region_map==max_id, 1, 0)

distorted_msk_shifted = distorted_msks_shifted[0]*eligible_region_map
distorted_msk_shifted = remove_small_objects(remove_small_holes(

closing(opening(distorted_msk_shifted>0, disk(2)),disk(2))
))

#find center shift as a results of transformation
pos_idx = np.argwhere(msks[0]).squeeze()
_raw_msk_center = (pos_idx.min(0)+pos_idx.max(0))//2
pos_idx = np.argwhere(distorted_msk_shifted).squeeze()
_distorted_msk_center = (pos_idx.min(0)+pos_idx.max(0))//2
shift_spec = _distorted_msk_center -_raw_msk_center

#shift the arrays so that the obj location aligns
distorted_img = shift_array(distorted_img_shifted,shift_spec)
distorted_msk = shift_array(distorted_msk_shifted,shift_spec)

remove relatively small regions
distorted_msk_labeled = label(distorted_msk)
unique_ids, id_cnts = np.unique(

distorted_msk_labeled, return_counts = True)
area_distribution = id_cnts[1:].astype(’float’)/id_cnts[1:].sum()

for area_id, area_rate in zip(unique_ids[1:], area_distribution):
if area_rate < 0.125:

distorted_msk_labeled[distorted_msk_labeled==area_id] = 0

distorted_msk_arr = distorted_msk_labeled>0

return distorted_img, distorted_msk_arr

distorted_img_arr, distorted_msk_arr = get_distorted_ImageAndMask(
shape_transformation,raw_img_arr,raw_msk_arr,raw_msk_arr.copy())

D. Additional Results
D.1. Correlation Between Metrics
In Fig. D.1, we show the relationship between our proposed
tree-likeness metrics CPR and DoGD on all three datasets
(with default hyperparameters and ViT-H SAM), quantified
by correlations shown in Table 11.

4

antenna branch fence hanger log wire

a b SAM Enc. τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ

63 3
ViT-H 0.39 0.55 0.62 0.82 0.65 0.85 −0.15 −0.23 0.23 0.35 0.35 0.50
ViT-B 0.25 0.35 0.62 0.81 0.60 0.81 −0.07 −0.11 0.17 0.25 0.36 0.51

63 7
ViT-H 0.28 0.38 0.61 0.81 0.62 0.83 −0.13 −0.21 0.22 0.33 0.34 0.49
ViT-B 0.13 0.18 0.61 0.81 0.60 0.80 −0.07 −0.11 0.14 0.22 0.33 0.48

63 15
ViT-H 0.10 0.12 0.59 0.78 0.59 0.80 −0.05 −0.07 0.19 0.30 0.29 0.43
ViT-B 0.04 0.03 0.59 0.77 0.56 0.77 −0.01 −0.01 0.09 0.16 0.25 0.36

63 31
ViT-H 0.06 0.04 0.55 0.74 0.46 0.65 0.07 0.10 0.14 0.26 0.09 0.13
ViT-B −0.11 −0.17 0.56 0.74 0.45 0.64 0.07 0.11 0.02 0.08 0.02 0.03

127 3
ViT-H 0.23 0.30 0.52 0.70 0.46 0.65 0.52 0.72 0.30 0.46 0.08 0.11
ViT-B 0.12 0.14 0.51 0.69 0.45 0.64 0.50 0.70 0.13 0.22 0.06 0.08

127 7
ViT-H 0.23 0.26 0.48 0.65 0.41 0.59 0.51 0.70 0.29 0.46 −0.01 −0.01
ViT-B 0.10 0.09 0.51 0.68 0.41 0.59 0.49 0.68 0.13 0.22 −0.03 −0.05

127 15
ViT-H 0.14 0.17 0.43 0.59 0.38 0.55 0.50 0.69 0.28 0.43 −0.09 −0.12
ViT-B 0.07 0.03 0.45 0.62 0.36 0.52 0.48 0.67 0.12 0.20 −0.14 −0.20

127 31
ViT-H 0.05 0.05 0.36 0.50 0.08 0.12 0.48 0.67 0.30 0.45 −0.15 −0.22
ViT-B 0.04 0.00 0.38 0.52 0.12 0.18 0.46 0.65 0.12 0.20 −0.21 −0.31

255 3
ViT-H 0.04 0.06 0.33 0.46 −0.20 −0.30 0.44 0.61 0.52 0.72 −0.17 −0.25
ViT-B 0.21 0.31 0.30 0.42 −0.13 −0.20 0.42 0.59 0.42 0.60 −0.23 −0.34

255 7
ViT-H 0.02 0.02 0.29 0.41 −0.25 −0.35 0.43 0.60 0.51 0.71 −0.20 −0.29
ViT-B 0.19 0.27 0.26 0.36 −0.18 −0.26 0.42 0.58 0.41 0.59 −0.25 −0.36

255 15
ViT-H −0.04 −0.06 0.24 0.34 −0.31 −0.45 0.43 0.61 0.50 0.70 −0.20 −0.30
ViT-B 0.21 0.29 0.20 0.28 −0.26 −0.39 0.40 0.56 0.40 0.58 −0.28 −0.40

255 31
ViT-H −0.11 −0.14 0.11 0.16 −0.47 −0.65 0.43 0.59 0.46 0.66 −0.23 −0.33
ViT-B 0.13 0.20 0.07 0.09 −0.42 −0.60 0.39 0.55 0.38 0.55 −0.30 −0.44

Table 9. Rank correlation (Kendall τ and Spearman ρ) between SAM prediction IoU and object tree-likeness as measured by DoGD with
different hyperparameter values R on iShape, to supplement Table 2.

iShape
antenna branch fence hanger log wire Plittersdorf

Weak Classifier
Model SAM Enc. τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ

Logistic,
C = 2

ViT-H 0.44 0.59 0.50 0.68 0.65 0.85 0.63 0.83 0.33 0.48 0.49 0.67 0.26 0.38
ViT-B 0.46 0.61 0.56 0.75 0.67 0.86 0.65 0.84 0.36 0.52 0.55 0.73 0.36 0.50

Logistic,
C = 1

ViT-H 0.42 0.58 0.49 0.67 0.64 0.84 0.62 0.81 0.31 0.46 0.49 0.67 0.34 0.49
ViT-B 0.44 0.60 0.55 0.75 0.66 0.85 0.63 0.82 0.35 0.50 0.55 0.72 0.39 0.55

Logistic,
C = 0.5

ViT-H 0.39 0.53 0.49 0.67 0.65 0.85 0.60 0.80 0.30 0.43 0.48 0.65 0.33 0.47
ViT-B 0.48 0.65 0.57 0.76 0.66 0.86 0.62 0.81 0.33 0.48 0.52 0.69 0.41 0.56

Random Forest,
nestimators = 2

ViT-H 0.48 0.66 0.45 0.63 0.46 0.64 0.45 0.64 0.19 0.27 0.25 0.36 0.35 0.50
ViT-B 0.50 0.67 0.49 0.68 0.47 0.65 0.50 0.69 0.24 0.34 0.31 0.45 0.41 0.56

Random Forest,
nestimators = 4

ViT-H 0.51 0.69 0.42 0.60 0.54 0.73 0.48 0.67 0.21 0.30 0.30 0.43 0.22 0.31
ViT-B 0.51 0.70 0.48 0.66 0.53 0.72 0.51 0.70 0.22 0.32 0.37 0.52 0.32 0.45

Random Forest,
nestimators = 8

ViT-H 0.48 0.65 0.46 0.63 0.56 0.75 0.50 0.69 0.19 0.28 0.35 0.50 0.22 0.31
ViT-B 0.49 0.67 0.49 0.68 0.55 0.74 0.54 0.73 0.21 0.31 0.40 0.57 0.25 0.35

Random Forest,
nestimators = 16

ViT-H 0.45 0.62 0.48 0.66 0.57 0.77 0.52 0.72 0.20 0.29 0.38 0.53 0.08 0.12
ViT-B 0.58 0.77 0.52 0.70 0.54 0.74 0.54 0.74 0.23 0.33 0.41 0.57 0.15 0.23

Table 10. Rank correlation (Kendall τ and Spearman ρ) between SAM prediction IoU and object textural separability (Algorithm 3), on
real datasets (iShape and Plittersdorf), using different weak classifier models g and hyperparameters to measure textural separability (to
supplement Table 3).

5

0.10
0.05

0.00
0.05

0.10
0.15

DoGD

0.0

0.2

0.4

0.6

0.8

1.0

CP
R

satellite
vessel

0.15
0.10

0.05
0.00

0.05
0.10

0.15

DoGD

0.0

0.2

0.4

0.6

0.8

1.0

CP
R

0.025
0.000

0.025
0.050

0.075
0.100

0.125
0.150

DoGD

0.2

0.4

0.6

0.8

1.0

CP
R

antenna
branch
fence
hanger
log
wire

Figure 13. Relationship between tree-likeness metrics CPR and DoGD. From left to right, on synthetic data (Fig. 4), DIS, and iShape (Fig.
5).

iShape
Synth. DIS antenna branch fence hanger log wire all Avg.

Pearson r −0.94 −0.67 −0.92 −0.93 −0.82 −0.81 −0.90 −0.66 −0.79 −0.83
Spearman ρ −0.82 −0.70 −0.91 −0.93 −0.86 −0.76 −0.94 −0.79 −0.76 −0.83
Kendall τ −0.62 −0.51 −0.75 −0.78 −0.68 −0.58 −0.79 −0.61 −0.57 −0.65

Table 11. Linear (Pearson r) and nonlinear (Spearman ρ, Kendall τ) correlations between CPR and DoGD on all evaluated datasets.

6

	Methods: SAM Usage and Prompting
	The Challenge of Tree-Like Structures
	Motivation
	Quantifying Tree-Like Structures
	Contour Pixel Rate
	Difference of Gini-impurity Deviation (DoGD)

	The Relationship between Object Tree-likeness and Segmentation Performance
	Experiments on Synthetic Data
	Experiments on Real Data

	The Challenge of Textural Separability
	Measuring Textural Separability
	The Effect of Textural Separability on Segmentation Performance
	Style Transfer for Controlled Textural Contrast
	Experiments on Real Data

	Additional Dataset Details
	Retinal Blood Vessel and Road Satellite Images
	Synthetic Tree-like Object Images
	Neural Style Transfer (NST) Generated Images

	Hyperparameter/Ablation Studies
	Object Tree-likeness Experiments
	Synthetic Data Experiments
	Real Data Experiments

	Object Textural Separability Experiments

	Additional Experimental Details
	SAM Prompting Strategies
	Neural Style Transfer Experiments

	Additional Results
	Correlation Between Metrics

