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Abstract

Improving performance on complex tasks and enabling interpretable decision
making in large language models (LLMs), especially for clinical applications, re-
quires effective reasoning. Yet this remains challenging without supervised fine-
tuning (SFT) on costly chain-of-thought (CoT) data distilled from closed-source
models (e.g., GPT-4o). In this work, we present AlphaMed, the first medical
LLM to show that reasoning capability can emerge purely through reinforcement
learning (RL), using minimalist rule-based rewards on public multiple-choice QA
datasets, without relying on SFT or distilled CoT data. AlphaMed achieves state-
of-the-art results on six medical QA benchmarks, outperforming models trained
with conventional SFT+RL pipelines. On challenging benchmarks (e.g., MedX-
pert), AlphaMed even surpasses larger or closed-source models such as DeepSeek-
V3-671B and Claude-3.5-Sonnet. To understand the factors behind this success,
we conduct a comprehensive data-centric analysis guided by three questions: (i)
Can minimalist rule-based RL incentivize reasoning without distilled CoT super-
vision? (ii) How do dataset quantity and diversity impact reasoning? (iii) How
does question difficulty shape the emergence and generalization of reasoning?
Our findings show that dataset informativeness is a key driver of reasoning per-
formance, and that minimalist RL on informative, multiple-choice QA data is ef-
fective at inducing reasoning without CoT supervision. We also observe divergent
trends across benchmarks, underscoring limitations in current evaluation and the
need for more challenging, reasoning-oriented medical QA benchmarks. The code
and pretrained model weights will be publicly released upon acceptance.

1 Introduction

Recently, the reasoning capabilities of large language models (LLMs) have advanced significantly,
achieving impressive results in tasks requiring complex reasoning, such as mathematical problem
solving, code generation, and general-purpose benchmarks [1–4]. These developments highlight the
potential of LLMs to generalize and perform multi-step reasoning across domains. In the medical
domain, reasoning is particularly crucial. Clinical natural language processing (NLP) tasks often
require interpreting nuanced patient information, integrating knowledge from diverse sources, and
making informed decisions [5–7]. More importantly, reasoning provides a valuable lens into the

∗Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The Second Workshop
on GenAI for Health: Potential, Trust, and Policy Compliance.

https://cheliu-computation.github.io/AlphaM/


model’s decision-making process, allowing researchers and clinicians to examine how conclusions
are derived. This improves the interpretability and transparency of AI outputs, which are essential
for clinical trust [8, 9].

Currently, most medical LLMs acquire reasoning capabilities through supervised fine-tuning (SFT)
on chain-of-thought (CoT) datasets, often followed by reinforcement learning (RL) for further re-
finement. However, this pipeline heavily relies on an initial SFT stage using costly CoT data,
which are either manually crafted or distilled from closed-source commercial models such as GPT-
4o [10, 11]. This dependence not only incurs substantial annotation and distillation costs but also
introduces scalability and accessibility challenges, as it ties model development to expensive and
external resources. These limitations motivate a critical question:

Can we achieve medical reasoning through minimalist rule-based RL
without relying on distilled CoT data?

To address this question, we propose AlphaMed, the first work designed to incentivize reasoning
capability solely through minimalist rule-based RL, going beyond conventional approaches that rely
on SFT with CoT data. Instead of depending on distilled CoT data supervision, AlphaMed is trained
directly via simple rule-based rewards derived from multiple-choice QA datasets. Our key contribu-
tions are as follows:

• We show that minimalist rule-based RL can incentivize reasoning ability in medical LLMs
without relying on distilled CoT data, achieving superior performance. We further analyze
how dataset quantity, diversity, and especially informativeness impact reasoning perfor-
mance. We empirically find that higher informativeness enhances reasoning performance,
while less-informative data limits gains.

• We show that reasoning can be incentivized even with lower-difficulty data and further
enhanced by harder examples. While high-difficulty samples benefit challenging bench-
marks like MedXpert, a mix of difficulty levels is essential for robust generalization. Non-
monotonic trends across benchmarks suggest that current evaluations may be insufficient
to assess medical LLM reasoning.

• Building on these insights, we introduce AlphaMed, a medical LLM trained solely via
minimalist rule-based RL without any SFT on distilled CoT data, and demonstrate that it
achieves state-of-the-art performance across six mainstream medical QA benchmarks, out-
performing models that use complex training strategies with CoT data and even surpassing
larger or closed-source models such as DeepSeek-V3-671B and GPT-4o.

2 Related Work

Supervised Fine-Tuning for Reasoning in LLMs. Large language models can acquire complex
reasoning skills through SFT on CoT data. For example, [12] showed that training models to gen-
erate step-by-step reasoning paths significantly improves performance on math and logic problems.
[13] scaled this approach by incorporating a broad range of CoT examples into instruction tun-
ing across diverse tasks. [14] proposed STaR, where a model bootstraps its own reasoning traces
to reduce reliance on human-annotated CoT. However, recent work [15] suggests that SFT often
encourages memorization of training rationales rather than true reasoning generalization, limiting
robustness in out-of-distribution or unfamiliar tasks. Moreover, obtaining high-quality CoT data is
costly, requiring either expert annotations or distillation from proprietary models, posing significant
challenges to scalability and adaptability [16, 17].

Reinforcement Learning with Preference Data after SFT. InstructGPT [18] introduced rein-
forcement learning with human preferences (RLHF) to align model behavior with user intent. Sub-
sequent research has shown that RL can enhance generalization [16, 19] and better capture nuanced
human preferences beyond rote memorization [15]. Among RL algorithms, Proximal Policy Opti-
mization (PPO) is widely used, but it is highly resource-intensive—requiring learned reward models
that are often sensitive to noise, difficult to interpret, and occasionally misaligned with intended
objectives [20]. To address these limitations, Direct Preference Optimization (DPO) [20] eliminates
the need for an explicit reward model by directly optimizing over preference pairs. However, DPO

2



still relies on high-quality preference annotations, which are particularly challenging to construct in
the medical domain due to clinical ambiguity and a lack of universal agreement on what constitutes
a “better” response [21]. Recently, DeepSeek-R1-Zero [22] demonstrated that reasoning behavior
can be effectively elicited without CoT supervision or preference annotations, instead by leveraging
final answers (e.g., multiple-choice accuracy) as rule-based supervision signals [16, 19, 23, 24].

Open-Source Medical LLMs. Open-source medical LLMs have emerged as promising tools for
domain-specific clinical reasoning, yet most remain heavily dependent on supervised data or hand-
crafted feedback. HuatuoGPT [25] was instruction-tuned on ChatGPT-distilled medical dialogues.
BioMistral [26] adapted the Mistral architecture to biomedical question answering through contin-
ued pretraining [27] and domain-specific instruction tuning. OpenBioLLM [21] and UltraMedical
[28] utilized DPO-based preference optimization, but their preference pairs were directly distilled
from closed-source models, making supervision ambiguous and potentially inconsistent with expert
clinical reasoning. Since human verification of each distilled example is prohibitively costly and
impractical, there is no guarantee that the reasoning process reflected in the supervision is valid.
HuatuoGPT-o1 [29] further incorporated PPO using a self-trained 3B reward model and relied on
CoT data distilled from OpenAI o1. However, this approach is resource-intensive and tightly cou-
pled to the quality and coverage of proprietary data, limiting its scalability and generalizability.
m1 [30] also adopts SFT on distilled chain-of-thought data, where step-by-step reasoning traces are
generated by external large reasoning model, thus still relying on distilled CoT data.

3 Preliminaries

Group Relative Policy Optimization (GRPO) Given a question-answer pair (q, a), the behaviour
policy πold generates a set of G candidate completions {oi}Gi=1 for each question q. Each response
receives a scalar reward ri, which may be derived from human preference comparisons or automated
scoring heuristics; in this work, we use a rule-based reward. The relative quality of each response is
assessed within the group through normalization. The training objective is:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πold(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

))] (1)

where the group-normalized advantage Âi,t and the token-level importance weight ri,t(θ) are de-
fined as:

Âi,t =
ri − mean({rj}Gj=1)

std({rj}Gj=1)
, ri,t(θ) =

πθ(oi,t | q, oi, < t)

πold(oi,t | q, oi, < t)
.

Here, ϵ is a hyperparameter controlling the tolerance for policy deviation. The clip function pre-
vents large updates by ensuring that the ratio between the current and reference policy stays within
a predefined range. Specifically, it clips the importance weight ri,t(θ) to the interval [1 − ϵ, 1 + ϵ],
thereby stabilizing training and mitigating the risk of policy collapse. This objective encourages the
model to improve token probabilities for completions with above-average rewards, while stabilizing
updates via a clipped importance weight similar to PPO [31].

Rule-based Reward Modelling To enable minimalist RL without relying on external verifiers or
human-provided rewards, we adopt a simple rule-based approach consistent with [22]. This method
directly evaluates the correctness of the model’s output using binary feedback, eliminating the need
for a separate reward model:

ri =

{
1, if is_answer_correct(ŷi, y)
0, otherwise

(2)

Here, y is the ground-truth answer and ŷi denotes the model-generated prediction from the i-th
output oi. This straightforward reward mechanism provides a clear supervision signal grounded in
task accuracy. By leveraging structured outputs (e.g., multiple-choice answers), we enable effective
RL without manually written rationales or preference annotations.

3



4 AlphaMed

4.1 Training Configuration

We aim to elicit medical reasoning behavior purely through rule-based RL, without relying on
SFT with CoT data or RL with rewards from external verifiers. To ensure a fair comparison with
HuatuoGPT-o1 [29], we adopt Llama3.1-8B-Instruct and Llama3.1-70B-Instruct as back-
bone models. All experiments are conducted under full parameter tuning with a batch size of 512,
meaning each batch contains 64 QA pairs and each question generates 8 candidate answers, trained
for 300 steps. We use verl2 [32], a framework designed for rule-based RL. A simple binary reward
function, defined in Eq. 2, assigns 1 if the model’s response ends with a correctly formatted boxed
answer matching the ground truth (e.g., \boxed{C}), and 0 otherwise. The model is optimized us-
ing the GRPO objective described in Eq. 1. We train the 8B model on 8 Nvidia A800-80G GPUs
and the 70B model on 64 A800-80G GPUs.

4.2 Evaluation Configuration

Datasets. We evaluate our models on six medical QA benchmarks, using accuracy as the evalu-
ation metric across all datasets. These include MedQA-USMLE [33] (MedQA), MedMCQA [34]
(MedMCQA), PubMedQA [35] (PubMedQA), MMLU-Pro medical subsets [36] (MMLU-ProM),
GPQA medical subsets [37] (GPQA-M), and the most recent and challenging large-scale dataset,
MedXpertQA [38] (MedXpert). Details are provided in Sec. A.2.

Based on their levels of challenge [39], we categorize MedQA, MedMCQA, and PubMedQA [33–
35] as normal, while MMLU-ProM and GPQA-M [40, 37] are classified as hard, as they primarily
target advanced expert-level knowledge. Finally, MedXpert [38] is designated as hard+, as the
original work explicitly highlights its focus on complex clinical reasoning and expert-level decision
making, positioning it as one of the most challenging benchmarks to date.

Baseline Methods. We compare against a broad range of general and medical-specific
LLM baselines. General-purpose base instruct models include Qwen2.5-7B/32B/72B and
Llama3.1-8B/70B. Medical-specific models cover MedLlama3, OpenBioLLM [41], MMed and
MMed-S [42], Med42 [43], and UltraMedical [28], which leverage distilled preference data and
RL following SFT. HuatuoGPT-o1 [29] is trained on CoT data distilled from GPT-4o using model-
based RL with a large (3B) reward model. m1 [30] is similarly trained with extensive CoT distilled
from DeepSeekR1 [22] via SFT.

5 Experiments

5.1 Data Curation

Initial Data Collection. Following [30], we collect the training splits of three large-scale pub-
lic multiple-choice medical QA datasets: MedQA [44], MedMCQA [45], and PubMedQA [35]34.
MedQA [44] contains expert-level clinical questions from the USMLE. MedMCQA [45] in-
cludes factoid and reasoning questions from Indian medical entrance exams (AIIMS, NEET). Pub-
MedQA [35] focuses on biomedical research question answering. Notably, its training split is au-
tomatically generated by a machine learning model that heuristically converts biomedical research
article abstract into yes/no questions and assigns answers based on negation cues. The dataset statis-
tics are summarized in Sec. A.1.
Quantifying Data Difficulty. To quantify question difficulty, we perform inference using
Llama3.1-8B-Instruct [46]. For each question, we generate five reasoning completions
with the following prompt: “Please reason step by step, and put the final answer
in \boxed{}". We then calculate the proportion of correct predictions among the five outputs,
which serves as a proxy for the question’s difficulty. Based on this proportion, we categorize ques-
tions into six difficulty levels (L1–L6). Specifically, L1 includes questions where all five comple-

2https://github.com/volcengine/verl
3We use the official training splits of all three datasets.
4For PubMedQA [35], only questions with definitive answer labels (i.e., A/B/C) are retained.

4



Figure 1: Performance comparison on six medical QA benchmarks. Our models are initialized
with Llama3.1-8B-Instruct [46] and trained using minimalist rule-based RL on one of three
balanced subsets: MedQA-Sub, MedMCQA-Sub, or PubMedQA-Sub (shown as blue, green, and
orange bars, respectively). Despite using only 1,200 examples per subset, all variants of our model
achieve substantial improvements over the base Llama3.1-8B-Instruct and match or surpass the
strong baseline HuatuoGPT-o1-8B across all benchmarks.

tions are correct, L2 where four are correct, and so on, with L6 representing questions where all five
completions are incorrect. The difficulty level distribution of each train set as shown in Tab. 2

Figure 2: Dataset analysis and training dynamics. Left: Ratio of effective queries over training
steps; each curve corresponds to models trained on a specific subset. Middle: Training reward per
step for models trained on each subset. Right: Distribution of question lengths (number of tokens)
in MedQA, MedMCQA, and PubMedQA [44, 45, 35].
5.2 RQ1: Can Minimalist RL Incentivize Medical Reasoning Without Distilled-CoT SFT?

To investigate whether minimalist rule-based RL can incentivize medical reasoning in LLMs with-
out relying on SFT with distilled CoT data, we conduct a pilot study by sampling 200 exam-
ples from each difficulty level to construct three balanced subsets (1,200 samples each) from
three public medical QA datasets: MedQA-Sub, MedMCQA-Sub, and PubMedQA-Sub. We use
Llama3.1-8B-Instruct as the backbone model and train it separately on each subset using min-
imalist RL. As shown in Fig. 1, all models trained on these subsets achieve substantial gains over
the original backbone across all six benchmarks (e.g., +15.5% on MedQA, +8.8% on MedX-
pert). Remarkably, all variants trained on different subsets perform comparably to or even sur-
pass HuatuoGPT-o1-8B [47], a strong baseline trained via SFT on CoT data distilled from GPT-
4o [48] and further fine-tuned with RL using a 3B reward model. Notably, on MedXpert [38],
the most challenging benchmark, all three variants outperform HuatuoGPT-o1-8B [47]. These re-
sults demonstrate that reasoning capability can be effectively incentivized through minimalist RL on
small-scale, low-cost multiple-choice QA data, without relying on SFT with distilled CoT data, and
can even outperform models trained with more complex strategies.

Surprisingly, multistep reasoning (e.g., Step 1..., Step 2...; see Fig. 11, 12, 13) sponta-
neously emerges in the model’s output, which derives the final answer through sequential analysis,
despite being supervised only on the final choice, without intermediate reasoning traces like dis-
tilled CoT data [30, 47]. This emergent behavior shows that minimalist rule-based RL not only
boosts performance but also encourages structured reasoning, offering valuable interpretability into
the model’s decision-making.

Performance Variation and Training Dynamics Across Subsets. We observe clear performance
differences among training subsets, consistently ranking as MedQA-Sub > MedMCQA-Sub >
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Figure 3: Effect of data quantity. Average ac-
curacy across six medical QA benchmarks as
the number of samples per level increases from
200 to 400, resulting in the total subset size
growing from 1,200 to 2,400 examples. Scaling
MedQA-Sub and MedMCQA-Sub leads to con-
sistent performance gains, highlighting the value
of informative data. In contrast, PubMedQA-Sub
shows no improvement, reflecting the limitations
of low-informative data sources.

Figure 4: Effect of data diversity. Aver-
age accuracy across six medical QA bench-
marks when models are trained individu-
ally on single or combined subsets. Adding
MedMCQA-Sub to MedQA-Sub boosts perfor-
mance, while further adding PubMedQA-Sub
reduces it, suggesting that less informative
data can negate the benefits of increased di-
versity.

PubMedQA-Sub. To understand this variation, we explore the training dynamics of models trained
on each subset. As depicted in Fig. 2 (left), following [16], the ratio of effective queries is computed
as 1 − #solved all+#solved none

#unique queries , where “solved all” and “solved none” denote batches in which all re-
sponses are either correct or incorrect. Models trained on PubMedQA-Sub exhibit a rapid decline in
the effective query ratio, indicating premature saturation and a reduction in effective samples from
the batch. The training reward in Fig. 2 (middle) further supports this: the PubMedQA-Sub variant
starts with a higher initial reward and increases rapidly, suggesting that the data is easy to learn at
the start, but quickly saturates after about 20 steps. In contrast, the MedQA-Sub and MedMCQA-Sub
models improve steadily throughout training.

Dataset Informativeness as a Key Driver. To further investigate these dynamics, we analyze the
question length distributions in the source datasets of each subset, as shown in Fig. 2 (right). No-
tably, MedQA [44] exhibits a significantly longer question length distribution compared to MedM-
CQA [45] and PubMedQA [35], this ordering closely matches the observed performance of model
variants trained on the respective subsets. These differences are linked to dataset construction mech-
anisms: PubMedQA [35] is automatically curated from biomedical literature, often resulting in
noisier and less informative questions; MedMCQA [45] is based on human-authored medical school
entrance exams, providing more reliable and informative samples; MedQA [44] is sourced from the
USMLE, a challenging licensing exam, and thus contains the most informative and well-structured
questions. Altogether, our findings suggest that question length serves as a practical proxy for dataset
informativeness in medical QA. High-informativeness, exam-certified data provide more stable and
effective learning signals for minimalist RL, whereas noisy, automatically curated data may offer
lower informativeness and thus hinder the acquisition of reasoning ability.

Finding 1.1: Minimalist rule-based RL enables medical reasoning in LLM beyond reliance on
SFT with distilled CoT data.
Finding 1.2: Dataset informativeness is critical for training success. LLM trained on low
informative or noisy data exhibit degraded performance. Question length serves as a practical
proxy for informativeness in medical QA.

5.3 RQ2: Impact of Dataset Quantity and Diversity

Effect of Dataset Quantity. To investigate the effect of training data size, we increase the number
of samples per difficulty level from 200 to 400 for each of the three subsets, resulting in the total
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Figure 5: Performance on six benchmarks when training on subsets with increasing difficulty levels
(L1 to L6). Each blue dot represents a separately trained model on a subset that includes all data
up to the indicated difficulty level; new data are incorporated only through separate training runs,
not incrementally during training. While performance on MedXpert [38] increases consistently,
trends on other benchmarks vary. Final models trained on the full set (L1–L6) generally achieve
comparable or superior performance to HuatuoGPT-o1-8B [47].

Figure 6: Performance on six benchmarks when training with distinct difficulty groups: easy
(L1+L2), medium (L3+L4), and hard (L5+L6). While harder training data improves MedXpert [38]
accuracy, performance on other benchmarks declines, suggesting that relying solely on difficult sam-
ples may impair general reasoning ability.

number of samples in each subset increasing from 1,200 to 2,400. As shown in Fig. 3, we report
the average accuracy across six benchmarks. Scaling MedQA-Sub improves accuracy from 58.96%
to 59.88%, and MedMCQA-Sub improves from 57.41% to 58.76%, demonstrating that increasing
high-informative data benefits model performance. In contrast, scaling PubMedQA-Sub yields no
improvement (55.71% → 55.58%), suggesting that adding more low-informative or noisy samples
may degrade performance rather than enhance it.

Effect of Dataset Diversity. We further examine the effect of dataset diversity by progressively
combining subsets. As shown in Fig. 4, adding MedMCQA-Sub to MedQA-Sub further improves
performance, highlighting the benefit of combining diverse and informative datasets. However,
incorporating PubMedQA-Sub reverses the upward trend and leads to a decline in performance,
indicating that noisy and less informative data not only fail to contribute but may also harm reasoning
ability.
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Figure 7: Comparison of AlphaMed(8B)
with prior models on MMLU-ProM [36] and
MedXpert [38]. Despite its smaller scale and
use of minimalist RL, AlphaMed(8B) outper-
forms the larger model QwQ-32B [49] and
other baselines.

Figure 8: AlphaMed(70B) achieves supe-
rior performance over Claude-3.5-Sonnet [50],
GPT-4o [48], and DeepSeek-V3 (671B) [51]
on MMLU-ProM [36] and MedXpert [38],
showcasing its strong reasoning ability.

Finding 2: Performance improves with increased data quantity and diversity only when the
additional samples are informative; low-quality data harms the learning of reasoning ability.

5.4 RQ3: Impact of Dataset Quality

We analyze how increasing training difficulty affects performance across six benchmarks, as shown
in Fig. 5. MedQA, MedMCQA, and PubMedQA [44, 45, 35] exhibit inverse U-shaped trends, per-
formance peaks with moderate difficulty (L1–L4) and declines with harder samples (L5–L6), sug-
gesting diminishing returns from high-difficulty data. In contrast, MMLU-ProM [40] and GPQA-
M [37] show oscillating patterns, while MedXpert [38] improves steadily with increasing difficulty,
highlighting the value of harder samples for complex tasks. To validate this, we train models on
three difficulty groups (easy: L1+L2, medium: L3+L4, hard: L5+L6; Fig. 6). On MedXpert [38],
models trained on hard samples perform best, confirming their role in promoting advanced reason-
ing. For other benchmarks, training on easy and medium levels yields better generalization, while
hard-only training underperforms.

Emerging Reasoning Capability from Simple Data, Indicating Benchmark Limits. Inter-
estingly, models trained only on L1+L2 (a total of 2,400 samples) already match or surpass
HuatuoGPT-o1-8B [47] on several benchmarks. As shown in Fig. 5, even on MedXpert, only train-
ing with L1 data exceeds HuatuoGPT-o1-8B [47], with further gains from adding more levels, in-
dicating that reasoning can emerge from simple data. These findings underscore the importance of
balanced training difficulty to support broad generalization. They also reveal a potential pitfall: if
high benchmark scores can be achieved without exposure to difficult samples, such scores may not
reflect genuine reasoning ability, raising concerns about the adequacy of current benchmark designs.

Finding 3.1: Mixed difficulty training is crucial for generalizable reasoning.
Finding 3.2: Current benchmarks may insufficient to capture true reasoning progress.

5.5 Main Results

Building on the above findings which highlight the importance of dataset quantity, diversity, in-
formativeness, and mixed difficulty for incentivizing reasoning, we construct our final training set
accordingly. Specifically, we include all samples from MedQA [44] due to its high informativeness,
and sample 1,600 QA pairs from each difficulty level of MedMCQA [45] to match the overall scale
of MedQA [44]. PubMedQA [35] is excluded due to its limited informativeness and the perfor-
mance degradation observed when it is included, as discussed in RQ1 and RQ2. The final training
set comprises 19,178 QA pairs. This dataset is used to train our final models: AlphaMed(8B),
based on Llama3.1-8B-Instruct, and AlphaMed(70B), based on Llama3.1-70B-Instruct,
both optimized using minimalist rule-based RL. Since MedQA [44] and MedMCQA [45] are used
for training, we treat PubMedQA [35], MMLU-ProM [40], GPQA-M [52], and MedXpert [38] as
out-of-domain (OOD) benchmarks.

We present the full results in Tab. 1. Across both model scales, AlphaMed consistently outperforms
all compared methods on both in-domain and OOD benchmarks, using only minimalist rule-based
RL and multiple-choice QA supervision. Remarkably, this advantage holds even against models
trained with more complex strategies [47, 28], including SFT on distilled CoT data [47, 28, 30]

8



Model MedQA MedMCQA PubMedQA MMLU-ProM GPQA-M MedXpert
In-Domain Out-of-Domain

Challenge Level Normal Normal Normal Hard Hard Hard+

< 10B LLMs

Llama-3.1-8B-Instruct 58.72 56.21 75.21 58.74 42.73 13.02
Qwen2.5-7B-Instruct 61.51 56.56 71.30 61.17 42.56 12.15
Qwen2.5-7B-Instruct+ 64.49 56.11 72.60 62.15 52.56 13.18
MedLlama3-8B-v1 55.07 34.74 52.70 27.43 30.77 11.04
MedLlama3-8B-v2 59.39 59.34 75.50 55.11 36.41 13.46
MMed-8B†‡ 54.28 52.71 63.40 48.27 34.87 13.73
MMedS-8B†‡ 57.19 47.29 77.50 33.55 22.05 17.39
MMed-8B-EnIns†‡ 60.33 58.09 63.80 51.60 45.90 18.56
Med42-8B‡ 59.78 56.35 76.00 55.64 48.21 14.63
OpenBioLLM-8B†‡♢ 55.30 54.63 70.10 49.32 41.03 14.29
UltraMedical-8B-3†‡♢ 71.09 59.22 71.00 61.50 50.00 15.25
UltraMedical-8B-3.1†‡♢ 75.73 63.78 79.20 64.30 48.72 17.39
HuatuoGPT-o1-8B†‡♢ 72.60 60.40 79.20 63.71 55.38 16.84
m1-7B†‡ 75.81 62.54 75.80 65.86 53.08 19.81
AlphaMed(8B) 76.19 64.47 80.40 66.67 58.44 22.14

> 10B LLMs

Llama-3.1-70B-Instruct 78.42 72.53 78.52 74.50 55.73 21.32
QwQ-32B 78.62 69.71 77.85 65.23 56.92 21.05
Qwen2.5-32B-Instruct 75.26 64.83 68.00 74.72 63.85 13.87
Qwen2.5-32B-Instruct+ 74.86 64.33 68.90 74.72 64.87 14.56
Qwen2.5-72B-Instruct 74.55 66.60 70.80 66.06 62.05 14.91
Qwen2.5-72B-Instruct+ 76.43 66.15 71.30 69.77 63.85 19.65
Med42-70B‡ 51.14 62.28 78.10 54.53 50.77 16.29
OpenBioLLM-70B†‡♢ 75.10 74.23 79.30 71.92 50.77 21.33
UltraMedical-70B-3†‡♢ 83.90 72.94 80.00 73.94 58.72 21.67
HuatuoGPT-o1-70B†‡♢ 83.30 73.60 80.60 76.09 66.67 26.36
m1-32B†‡ 83.50 67.34 77.60 77.94 66.67 25.53
AlphaMed(70B) 87.52 75.09 80.90 79.56 77.46 32.56

Table 1: Combined performance of models on six medical QA benchmarks with varying levels of
challenge. In-domain and out-of-domain tasks, as well as challenge levels (Normal, Hard, Hard+),
are indicated below the task names. m1 denotes models that use test-time scaling during inference.
+: using CoT prompting during inference; †: trained with distilled CoT data from stronger models
(e.g., GPT-4o); ‡: trained with external datasets beyond MedQA and MedMCQA; ♢: trained via
RL with verifier reward models or distilled preference data from powerful models (e.g., GPT-4o).
AlphaMed (Ours) is trained solely with minimalist rule-based RL on multi-choice QA, without any
SFT on distilled CoT data, preference data, or rewards from verifiers.

and methods enhanced with test-time scaling [30]. Notably, AlphaMed(8B) surpasses the larger
reasoning model QwQ-32B [49] on challenging OOD benchmarks, as shown in Fig. 7. At the
70B scale, AlphaMed(70B) outperforms even closed-source models such as GPT-4o [48] and
Claude-3.5-Sonnet [50], as well as the open-source DeepSeek-V3 (671B parameters) [51], as
shown in Fig. 8. These results show that minimalist rule-based RL, trained with a well-constructed
multiple-choice QA dataset, enables effective and scalable medical reasoning in LLMs without re-
lying on distilled CoT supervision.

6 Conclusion

We present AlphaMed, the first work to demonstrate that reasoning capabilities can emerge solely
through minimalist rule-based RL, without relying on SFT with distilled CoT data. By lever-
aging only multiple-choice QA datasets, AlphaMed achieves state-of-the-art performance across
six diverse and challenging medical QA benchmarks, surpassing models trained with conventional
SFT+RL pipelines, and even outperforming closed-source models (e.g., GPT-4o [48]. Through
comprehensive data-centric analyses, we show that reasoning ability can be effectively incentivized
by selecting data based on informativeness. We further find that increasing the number of informa-
tive training samples improves performance, and that varying difficulty levels contribute differently
across benchmarks, underscoring the importance of mixing difficulty to promote generalizable rea-
soning. A well-curated dataset with high informativeness and diverse difficulty levels is key to
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advancing reasoning, without requiring handcrafted rationales or distilled data from closed models.
Our findings also reveal a critical caveat: while challenging benchmarks benefit from harder train-
ing samples, others exhibit mixed or plateauing trends, suggesting that existing benchmarks may be
insufficient to evaluate progress of reasoning ability. This highlights the need for more challeng-
ing, reasoning-oriented benchmarks. Altogether, AlphaMed not only establishes a strong medical
LLM, but also offers insights into how models reach final predictions through emergent reasoning,
encouraging further exploration of interpretable systems in medical NLP.
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Limitations and Future Work

Although AlphaMed achieves impressive results on multiple-choice QA tasks, its capabilities remain
constrained by the closed-form nature of these benchmarks. Our evaluations are primarily conducted
on existing mainstream medical QA datasets, all of which are close-ended and may not fully capture
the spectrum of real-world clinical reasoning. Due to limitations in the current research landscape,
it is challenging to systematically assess our model’s performance on open-ended QA tasks, which
not only lack well-established benchmarks but are also inherently subjective, often requiring human
evaluation for meaningful assessment. In future work, we aim to design and release open-ended
benchmarks that involve human-in-the-loop evaluation, enabling more comprehensive and nuanced
assessments of reasoning and decision-making in medical LLMs.

Broader Impact

This work demonstrates that the reasoning capability of medical LLMs can be effectively incen-
tivized using only multiple-choice QA data with minimalist rule-based RL, removing the need for
SFT on costly distilled CoT data. By eliminating reliance on manual annotation and closed-source
supervision, our approach substantially reduces the human effort and resources required for devel-
oping high-performing clinical models. However, the emerging reasoning processes in LLMs are
inherently difficult to evaluate, as there is often no single “ground truth” reasoning path—especially
in medicine, where multiple valid clinical justifications may exist for a single decision. Nonethe-
less, exposing these intermediate reasoning steps provides an important opportunity to observe and
audit model behavior, ultimately encouraging the development of more transparent and trustworthy
medical LLMs.

A Appendix

A.1 Difficulty Level Distribution

To explore how the difficulty level of training data affects model performance, we annotate each
sample by its response consistency across five inference passes of Llama3.1-8B-Instruct [46].
Specifically, L1 denotes samples where the model answers all attempts correctly (easy), while L6 in-
cludes those where all predictions are incorrect (hard). Intermediate levels (L2–L5) indicate varying
degrees of partial correctness. Tab. A.1 summarizes the distribution across MedQA5, MedMCQA6,
and PubMedQA7.

Table 2: Difficulty Level Distribution. L1 indicates samples where Llama3.1-8B-Instruct [46]
predicts correctly in all 5 inference attempts (easiest), while L6 corresponds to samples where all
predictions are incorrect (hardest). Intermediate levels (L2–L5) reflect partial correctness across
attempts.

Dataset Total L1 L2 L3 L4 L5 L6
MedQA 10,178 1,970 1,471 934 697 713 4,393
MedMCQA 182,822 63,292 25,736 14,498 9,922 10,088 59,286
PubMedQA 211,268 97,790 41,604 18,596 10,759 9,217 33,303

A.2 Details of Evaluation Datasets

To thoroughly assess performance across varying levels of challenge, we evaluate on six medical
QA benchmarks, grouped by challenge level:

Normal challenge level

5https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options-hf
6https://huggingface.co/datasets/openlifescienceai/medmcqa
7https://huggingface.co/datasets/qiaojin/PubMedQA
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• MedQA [44]: A benchmark derived from US medical licensing exam questions, assessing
clinical knowledge across a wide range of topics. Evaluation is based on the standard test
split.

• MedMCQA [45]: A medical QA dataset based on entrance exams, designed to test foun-
dational medical knowledge through multiple-choice questions. The official test split is
used.

• PubMedQA [35]: A biomedical question answering dataset where models choose from
three fixed options, yes, no, or maybe, based on associated research abstracts, emphasizing
factual understanding in biomedical literature. The official test split is used.

Hard challenge level

• MMLU-ProM [40]: MMLU-ProM is the medical category subset of a broad multitask
benchmark, focusing on professional-level medicine and related domains. Evaluation is
conducted using the standard split established in [47].

• GPQA-M [37]: It represents the biomedical subset of a graduate-level QA benchmark,
featuring expert-curated questions intentionally designed to resist superficial retrieval and
demand deep analytical reasoning. The evaluation follows the split from [47].

Hard+ challenge level

• MedXpert [38]: A challenging benchmark designed to assess expert-level medical knowl-
edge, clinical understanding, and complex reasoning. It covers diverse specialties and body
systems, incorporates board-style exam questions, and is curated through expert review to
ensure high difficulty, accuracy, and relevance to real-world medical decision-making.

A.3 Effect of LLM Backbones

To assess the generality of our proposed training pipeline and data design, we further apply
the same minimalist rule-based RL approach, originally used for Llama3.1-8B-Instruct, to
Qwen2.5-7B-Instruct [53]. After training, the resulting AlphaMed(7B) model achieves con-
sistent improvements across all six benchmarks, as shown in Fig. 9. Notably, the gains are particu-
larly substantial on the more challenging datasets, MMLU-ProM [36], GPQA-M [37], and MedX-
pert [38], demonstrating the robustness of our training strategy in enhancing medical reasoning.
These results demonstrate that minimalist rule-based RL can incentivize reasoning capabilities and
boost performance, exhibiting robustness across different backbone models.

Figure 9: Performance comparison across six medical QA benchmarks. AlphaMed(7B) is initialized
from Qwen2.5-7B-Instruct [53] and trained using our constructed training set and minimalist
rule-based RL pipeline. It achieves consistent improvements over the base model on all benchmarks.

A.4 Success on Small LLM

To further evaluate the effectiveness of our minimalist RL pipeline, we apply it to a small language
model, Qwen2.5-3B-Instruct [53]. As shown in Fig. 10, our approach consistently improves
performance across all six medical benchmarks, including substantial gains on MedQA (+11.55%),
GPQA-M (+19.19%), and MedXpert (+4.10%). These results demonstrate that our RL framework
can effectively incentivize reasoning capabilities even in smaller-scale models, and is not limited to
large foundation models.
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Figure 10: Performance comparison across six medical QA benchmarks. AlphaMed(3B) is initial-
ized from Qwen2.5-3B-Instruct [53] and trained with our constructed dataset using a minimalist
rule-based RL pipeline. It achieves consistent gains over the base model.

A.5 Qualitative Results

We present three examples predicted by our model trained with minimalist RL, demonstrating in-
terpretable step by step clinical reasoning across diverse case types. In Fig. 11, the model correctly
identifies inappropriate and potentially harmful options (e.g., use of NOACs in patients with me-
chanical heart valves) and adheres to guidelines by recommending bridging strategies based on
patient risk factors and procedural context. In Fig. 12, it performs multi step numerical reasoning to
derive absolute risk reduction (ARR) and relative risk (RR), showcasing its ability to integrate clini-
cal knowledge with quantitative interpretation. In Fig. 13, the model applies structured reasoning to
diagnose croup in a pediatric patient, identifying clinical features, linking them to pathophysiology,
and reviewing radiographic findings, despite being supervised only on the final answer choice. This
highlights the model’s capacity for guideline aligned reasoning and emergent interpretability, even
without supervision on intermediate reasoning traces.
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Figure 11: Question and answer pair for Case 1. Cyan text highlights the final predicted choices.
Green highlight are used to emphasize reasoning steps and key clinically key information.
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Figure 12: Question and answer pair for Case 2. Cyan text highlights the final predicted choices.
Green highlight are used to emphasize reasoning steps and key clinically key information.
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Figure 13: Question and answer pair for Case 3. Cyan text highlights the final predicted choices.
Green highlight are used to emphasize reasoning steps and key clinically key information.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately repre-
sent the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Refer to the start of Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work mainly includes empirical contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental configurations in Sections 4 and 5, and
Appendix. Our code and pretrained weight will be released after acceptance.
Guidelines:

21



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our experiments are all conducted on publicly accessible datasets and models,
and all experiment details are illustrated in Sections 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are illustrated in Sections 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Following prior works, we report performance generated with temperature 0
and greedy sampling during LLM inference to ensure deterministic outputs across runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to the first part of Sections 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: Replace by [Yes]

Justification: This work is conducted in accordance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the second section of Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This work uses only verified datasets and does not directly involve patient-
related scenarios.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use all public datasets as mentioned in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: There is no new assets released in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This work has no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work has no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We perform reinforcement learning-based post-training to directly optimize
the reasoning capabilities of LLMs without relying on supervised fine-tuning or chain-of-
thought annotations.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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