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ABSTRACT

While large language models (LLMs) are widely studied, the mechanisms by
which they internalize knowledge from specialized domains remain poorly under-
stood. To investigate this, we analyze the continual pre-training (CPT) paradigm,
where a base model is further pre-trained on a curated, domain-specific corpus.
Through a study on diverse domains, including mathematics, instruction, code,
and text data, we uncover novel properties of this process. By analyzing SVD de-
compositions of model weights we determine that the difference before and after
CPT can be attributed predominantly to changes in singular vectors. We identify
head heterogeneity in the behavior of attention weight matrices. We investigate
the effect of rewinding attention heads on model quality by ordering them ac-
cording to various scalar criteria. Based on our analysis we propose a novel head
importance criterion which allows to either truncate up to 60% heads in the model
increment or to achieve up to 4% quality increase upon partial head rewinding to
the pre-train state. Further, we discover domain connectivity — i.e., the abil-
ity to linearly interpolate between CPT checkpoints on different domains without
significant quality loss, and discuss key quality drivers of this phenomenon. To
foster further research, we provide an open-source scalable toolkit for performing
spectral analysis on models with billions of parameters - NetInspect. The code is
available at https://anonymous.4open.science/r/netinspect-EF67

1 INTRODUCTION

Continual pre-training (CPT) is now a standard component of modern LLM training pipelines;
in many contemporary multi-stage workflows — including recent state-of-the-art models such as
Llama 3 (Dubey et al., 2024) and OLMo 2 (OLMo et al., 2024) — the final pre-train stage uses cu-
rated, domain-specific data mixtures while the learning rate is linearly annealed to zero. Empirical
evidence suggests that this late-stage focus on cleaner, domain-relevant data improves mathemat-
ical and coding abilities without degrading general-language performance (Blakeney et al., 2024).
Moreover, CPT is central to producing domain-specialized models, such as Code Llama (Roziere
et al., 2023) and DeepSeekMath (Shao et al., 2024); applying CPT to a general-purpose model yields
better performance than training a specialized model from scratch under the same compute budget.

However, the CPT stage of the LLM training pipeline is significantly less studied compared to
the supervised fine-tuning (SFT) stage, where a rich set of phenomena has been documented —
including linear mode connectivity (Frankle et al., 2020), task arithmetic (Ilharco et al., 2023), model
soups (Wortsman et al., 2022), ability transfer (Yu et al., 2024) and low-rank subspace modification
(Hu et al., 2022). To investigate whether similar phenomena exist for CPT, we conduct a series
of pre-train and continual pre-training experiments on 1B and 7B language models with OLMo
2 architecture for several domains: math, instruction, code, and text. We analyze the CPT delta
∆W = W domain −W pre-train, characterize its sparsity, and assess the ability to interpolate between
checkpoints adapted to different domains.

Additionally, we investigate the singular spectra of weight matrices for checkpoints along the pre-
train trajectory and for weight increments after CPT, and uncover several novel phenomena. Prior
random matrix theory-based work suggests that heavy-tailed singular value distributions are closely
connected to the generalization ability (Martin & Mahoney, 2019; 2021; Yang et al., 2022). In our
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analysis, we consider singular spectra of weight matrices as well as the dynamics of singular vectors,
which were earlier shown to play an important role in the model training process (Yunis et al., 2024).

In summary, we highlight our key contributions:

1. Investigation of the dynamics of weight matrix singular values spectra, and identify the
development of complex spectral structure in attention heads matrices along the pre-train
stage, which can not be described by heavy-tailed self-regularization theory (Martin &
Mahoney, 2019). This is associated with an increase in quality on language tasks and faster
domain adaptation on CPT. Moreover, we find that the spectra during CPT remain almost
stable, and the domain adaptation is driven by singular vector changes localized near the
peaks in the SVD spectra.

2. Identification of head heterogeneity, namely, of the varying behavior of attention heads
during CPT stages on different domains, which becomes more pronounced with increasing
the pre-train token budget. More specifically, we observe some heads demonstrating sig-
nificant changes regardless of CPT domain nature, and some heads changing in a domain-
specific manner. We use this information to put forward a criterion for ordering heads
according to their effect on CPT quality, which enables us to achieve a quality increase of
up to 4% for math CPT of 7B model. Additionally, we discover that CPT deltas have re-
dundancy in parameters, which increases with model size: up to 60% of attention heads or
up to 50% smallest singular values in CPT delta can be dropped without significant changes
to model quality.

3. Identification of the ability to linearly interpolate between checkpoints after CPT on differ-
ent domains without quality decrease, for which we coin the term domain connectivity;
we find that interpolated model quality improves with the increase in pre-train stage length.

4. Implementation of an open-source tool for matrix spectra analysis — NetInspect package
— in order to ensure the reproducibility of our findings and to facilitate future research.

2 METHODOLOGY

In order to investigate the properties of model weight matrices, we employ several analytical meth-
ods centered on singular value decomposition (SVD) (Golub & Reinsch, 1970). For a weight matrix
from the i-th layer W i, with dimensions m × n (m ≥ n) and hard rank r = R(W ), its thin SVD
is W = UΣV ⊤, where U = [u1(W ), . . . ,ur(W ) ] ∈ Rm×r, V = [v1(W ), . . . ,vr(W ) ] ∈
Rn×r, and Σ = diag(σ1(W ), . . . , σr(W )) with σ1(W ) ≥ · · · ≥ σr(W ) > 0. This notation is
used consistently throughout our analysis.

Norms and Ranks. We characterize singular spectra Σ(W ) through established spectral measures:
the Frobenius norm ∥W∥F , spectral norm ∥W ∥2, stable rank Rs(W ), and effective rank Re(W ).
Complete definitions are provided in Appendices A.1 and A.2.

Singular Vector Agreement. SVD provides both spectral magnitudes and directional information
through singular vectors. To analyze directional changes during training, we measure agreement be-
tween singular vectors of a given weight matrix along the training trajectory. Further implementation
details are presented in Appendix A.3.

Fitting Model Distributions. We model the empirical spectral density (ESD) using two comple-
mentary approaches: the Marchenko–Pastur distribution (Marčenko & Pastur, 1967) for the bulk
spectrum and power-law models for heavy-tailed spectral regions. Estimation procedures and diag-
nostic methods are detailed in Appendix A.4.

3 EXPERIMENTAL SETUP

3.1 TRAINING SETUP

We initialize all models using the OLMo 2 architecture and training stack (OLMo et al., 2024),
training 1B and 7B models. Our experimental pipeline consists of two sequential stages:
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Figure 1: Math–language quality trade-off with continual pre-training on the OLMo 2 1B backbone.
The y-axis reports the average accuracy on WinoGrande, ARC-Easy, and HellaSwag. Hollow circles
denote pre-train checkpoints; filled circles denote continual pre-training runs initialized from the
corresponding pre-train checkpoints. Marker size encodes the CPT token budget (10B, 20B, 50B)
on a mixture of math and text data; marker fill encodes the math proportion in the data (0%, 40%,
80%, 100%). Points with the same CPT token budget are connected. a) Overview across pre-train
sizes (20B, 100B, 400B, 4T). For each pre-train checkpoint, we plot CPT runs with a fixed 20B-
token budget (equal marker sizes) and varying math proportions; the leftmost hollow marker in
each connected series is the corresponding pre-train checkpoint. b) Quality of CPT runs starting
from 4T pre-train checkpoint (leftmost hollow marker). CPT runs vary both the token budget and
the math proportion; the star marks the original OLMo 2 0425 1B CPT model (50B tokens with
10B math, i.e., 20%). Larger pre-train token budgets yield better results overall. Increasing the
math proportion moves models rightward while typically lowering language-task accuracy, whereas
larger token budgets shift the trade-off frontier outward.

Stage 1: Pre-train. We pre-train models from scratch on mixtures sampled from DCLM (Li et al.,
2024), using token budgets ranging from 20B to 400B. Training follows a cosine learning rate sched-
ule with a warm-up phase; for each pre-train dataset size we use a full scheduling cycle. Due to
computational constraints, this stage is conducted only for the 1B model; we also use 1B and 7B
checkpoints pre-trained for 4T tokens by OLMo team.

Stage 2: Continual pre-training (CPT). Starting from the pre-trained checkpoints listed above,
we further train the models on several data mixtures to study domain shift and replay effects. We
vary the CPT data composition to emphasize (i) DolminoMath-only data (MATH) (OLMo et al.,
2024), (ii) balanced DCLM+DolminoMath mixtures, (iii) DCLM-heavy replay mixtures (TEXT),
(iv) instruction data from FLAN (Wei et al.) and Stack Exchange 1 (INST), and (v) instruction data
combined with DolminoMath and (vi) source code from StarCoder (CODE) (Li et al., 2023). The
learning rate is initialized to the final value used in Stage 1 and is annealed to zero throughout this
phase. Complete reproducibility details, including hyperparameters, training configurations, and
data splits, are provided in Appendix B.2. The code can be found in Appendix B.3.

3.2 EVALUATION PROTOCOL

The quality of the model is evaluated using the OLMES framework (Gu et al., 2025). Language
accuracy is measured as the average performance across three datasets: ARC-Easy (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2019). Each of these
language tasks is evaluated in a 5-shot setting, where answer choices are scored individually using
LLM token probabilities in a cloze-style format.

1https://archive.org/details/stackexchange_20240930
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For math accuracy, we use an 8-shot evaluation on GSM8K (Cobbe et al., 2021), computing exact-
match accuracy between model predictions and the gold answers. To assess instruction following
and reading comprehension, we evaluate on the DROP dataset (Dua et al., 2019). Finally, code
generation capabilities are measured using HumanEval (Chen et al., 2021).

4 MAIN RESULTS

4.1 CPT QUALITY DYNAMICS

First, we focus on identifying trends in the CPT quality as a function of token budget and CPT
dataset composition. To that end, we study continual pre-training on the DolminoMath mathematics
corpus, which demonstrates pronounced quality gains in GSM8K accuracy (OLMo et al., 2024).
We run experiments on a 1B model with pre-train token budgets of 20B, 100B, 400B and 4T, and
CPT token budgets of 10B, 20B, and 50B for CPT mixtures of DolminoMath and DCLM data.

Our analysis reveals two key findings. First, we consider CPT runs starting from the 4T pre-train
checkpoint, and find that the math performance plateaus at 20B (Fig. 1(b)). GSM8K accuracy for
our 20B CPT run is higher than that of the OLMo 2 0425 1B checkpoint. Therefore, in further
experiments with other pre-train token budgets, other domains, and the 7B model, we focus on a
20B-token CPT. Second, for 20B CPT runs starting from different pre-train budgets, we find that
while math performance after pre-train is similarly low — consistent with the absence of domain
knowledge in the pre-train dataset mix — models with a longer pre-train stage achieve better final
math quality metrics after the CPT stage (Fig. 1(a)). Similar results hold for 10B and 50B CPT
lengths, as we demonstrate in Appendix Fig. 8. In the next section, we propose a hypothesis for
such behavior based on spectral analysis of model weight matrices.

4.2 SPECTRAL EVOLUTION ALONG THE PRE-TRAIN STAGE

To gain insight into pre-train dynamics, we first consider weight matrix norms and ranks (Fig. 2(a)).
We highlight the non-monotonic behavior of Frobenius and spectral norms, which reach maxi-
mum values at around 100B tokens of pre-train. Effective rank also demonstrates an inflection
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Figure 2: Spectral shape and metrics evolution during pre-train. a) Rows (top to bottom) correspond
to W Q, W V, and W FC2 weight matrices, while columns (left to right) report the Frobenius norm
and the effective rank. Each subplot overlays jittered per-matrix values with box plots summarizing
the distributions for models pre-trained on 20B, 100B, 400B, and 4T tokens. Points denote indi-
vidual matrices and are color-coded by the corresponding layer index. b) Singular-value spectra for
W Q (layer 6, heads 8, 9, 13, 15) at 20B, 100B, and 400B tokens. Jitter points represent singular
values and are colored by the left singular vector agreement between each pre-train checkpoint and
the corresponding CPT endpoint on math domain. Note the increasingly complex spectral shape that
poorly conforms to MP and PL models. Starting at 100B the singular vectors that change during the
CPT stage are increasingly localized in narrow spectral bands.
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point around 100B tokens: a substantial number of layer-level outliers with significantly lower rank
emerge.

We go beyond basic statistics and perform a detailed examination of the shape of singular spectra
for attention weights of 1B and 7B models. For 1B we consider pre-train budgets from 20B to
400B (Fig. 2(b)). At initialization, weight matrices are random, and their singular spectra follow the
Marchenko-Pastur law (Marčenko & Pastur, 1967). After 20B pre-train, the power-law tail starts
to form in the spectra of the heads (Fig. 2(b), top panel), in accordance with heavy-tailed self-
regularization theory (HTSR) (Martin & Mahoney, 2021). However, at 100B and larger pre-train
budgets the complexity of attention heads spectra increases — namely, the appearance of outliers and
multiple narrow peaks. The same holds for both 7B and 1B models after a 4T pre-train (Appendix
Fig. 9(b)). These empirical distributions deviate significantly from HTSR models. We hypothesize
that such complex structure is a prerequisite for faster domain adaptation of models with larger pre-
train token budgets and note that these findings call for the development of more complex models
for the singular spectra of attention heads.

The spectral structure of MLP blocks stays close to the HTSR model with power-law tail — re-
sembling the spectra of attention heads at 20B (Fig. 2(b), top panel, Appendix Fig. 10) — for any
pre-train token budget. However, we note that the power-law (PL) tail already forms after 20B pre-
train, as determined by goodness-of-fit — Kolmogorov-Smirnov (KS) distance (Clauset et al., 2009)
(Appendix Fig. 11, bottom panels), and the agreement with this model deteriorates with the increase
in pre-train tokens and with the increase in model quality (Fig. 1). From these observations, we
can conclude that the formation of a power-law tail in the singular spectra is a necessary but not
sufficient prerequisite for the model performance increase.

4.3 SPECTRAL EVOLUTION ALONG THE CPT STAGE — HEAD HETEROGENEITY

First, we highlight that the CPT stage does not induce significant changes in the singular spectra of
model weight matrices. Apart from the similarity of matrix properties, we confirm this experimen-

Figure 3: Head heterogeneity — the effect of CPT data domain on vector agreement with the pre-
trained model as a function of the pre-train budget: 4T tokens (top row) and 20B tokens (bottom
row). a) Heatmaps show the average vector agreement between CPT and pre-train for individ-
ual heads of W Q across different CPT domains (left to right: math, instruct, text). Lower vector
agreement values correspond to larger changes of the corresponding weight matrices relative to the
pre-trained model. b) Difference in vector agreement between the math and text domains. Blue and
red colors indicate larger changes under math and text CPT, respectively. As the pre-train budget
increases, outlier heads emerge (a) and become specialized to particular domains (b). Furthermore,
the domains exhibit a clear ordering: CPT on text preserves the strongest vector agreement, whereas
math and instruct CPT induce substantially larger rotations.
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Figure 4: Layer-wise Frobenius norm of CPT deltas for W Q and W FC2 for 1B model across (a)
CPT domains and (b) pre-train budgets. Statistics are aggregated per head (mean: solid line, median:
dashed line; shaded region: mean ± std). a) Effect of CPT domain for 4T tokens pre-train: deltas
for the text domain (green) are smallest in magnitude, indicating less incremental change compared
to math (blue) or instruct (red) domains. b) Effect of pre-train budget on math domain: deltas from
100B-token models (blue) exhibit simpler layer-wise shape compared to 4T-token models (red).

tally — namely, the model quality after CPT does not change after inserting singular spectra from
W pre-train into W domain (see Appendix Fig. 14). This allows us to investigate the effects of CPT by
considering only row-maximum singular vector agreement (Appendix A.3).

Vector agreement analysis can be carried out in two ways, supported by the NetInspect package.
First, for each singular value in the spectrum one can consider the agreement of the corresponding
vector in W pre-train and W domain (Fig. 2(b)). This mode allows us to infer that the most signifi-
cantly changing vectors are associated with peaks in singular value spectra. Next, one can consider
agreement in an aggregated mode over all vectors in a matrix — this enables the quantification of
the degree of change for each attention head or MLP layer in the model (Fig. 3(a)). We apply this
analysis to study the behavior of attention heads after CPT on the domains of math, instruct, and
text, and establish the head heterogeneity effect. Namely, for the longer 4T pre-train, attention
heads change differently during CPT: some heads exhibit substantial changes during CPT across all
domains, while others change in a domain-specific manner. This is shown in Fig. 3(a) for 1B model
and Appendix Fig. 12(a) for 7B model. In contrast, for the shorter 20B pre-train, the changes are
more uniformly distributed across heads. The onset of head heterogeneity occurs simultaneously
with the increase in complexity of attention heads singular spectra; we hypothesize that both phe-
nomena are related to the increase in CPT quality and more rapid improvement with CPT token
budget.

In order to further quantify the dynamics induced by CPT we consider Frobenius norm of the CPT
delta ∆W = W domain−W pre-train. A comparative analysis of CPT deltas across the same domains of
math, instruct, and text reveals highly consistent behavior of Frobenius norms for both 1B (Fig. 4(a))
and 7B models (Appendix Fig. 13). For MLP layers, we observe larger changes in later layers — a
trend consistent across domains. We note that such layer specialization arises with the increase in
pre-train budget (Fig. 4(b)). For attention matrices, we note the high within-layer variance of CPT
delta, consistent with the head heterogeneity observation above. Next, we turn to quantifying the
effect of head heterogeneity on model quality after CPT.

4.4 DRIVERS OF DOMAIN QUALITY IN CPT DELTAS

In order to quantify the effect of head heterogeneity on model quality after CPT, we carry out head-
wise rewind analysis and investigate CPT delta compressibility by truncating its singular spectrum.

Head-wise rewind. We assess the importance of individual attention heads for CPT quality as
follows — we order all heads by one of the scalar importance criteria defined below and then incre-
mentally rewind the heads in that order to the pre-train state.

We evaluate the following types of ordering criteria. As a simple baseline, we rewind heads several
times in different random orders. Next, we use the decrease in CPT quality upon the single-head
rewind as a “greedy” ordering criterion. We treat this ranking as a “ground truth” reference measure
of head importance. Additionally, we consider head orderings based on spectral properties of the
corresponding weight matrices of model checkpoints and CPT deltas. For pre-train checkpoints, we
use PL–KS distance and the PL exponent α; for CPT deltas, we use the Frobenius norm and the
singular vector agreement between W pre-train and W domain.
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Figure 5: CPT delta head-wise rewind results. a) GSM8K accuracy versus fraction of heads rewound
for the 1B model. Greedy ordering (green for descending and purple for ascending) strongly out-
performs simple heuristic proxies: random (red dashed line with std band), PL-KS distance (blue),
and average singular vector agreement between CPT and pre-train (solid red). b) GSM8K accu-
racy versus fraction of heads rewound for the 7B model. The difference-in-scaled-Frobenius-norms
metric, highlighted in orange (ascending) and light green (descending), demonstrates significantly
improved ordering.

We study CPT on math domain for 1B and 7B models after 4T pre-train, shown in Fig. 5 for 1B-
and 7B-parameter models, and also instruct CPT for 7B model and math CPT for 1B model from
a much smaller 20B pre-train, shown in Appendix Fig. 15. This multi-domain analysis reveals
three main observations. First, rewinding any single head changes CPT quality by less than two
percentage points on average, and for some heads even improves it (see Appendix Fig. 16). Second,
among the simple matrix properties, performance is largely comparable to the random baseline and is
outmatched by the “greedy” strategy, suggesting that head-wise spectral metrics are not very useful
for assessing head importance. Finally, we demonstrate additional evidence for the emergence of
head heterogeneity along the pre-train stage. Rewinding the heads of a model with much smaller
20B pre-train budget results in a rapid decline in quality (Appendix Fig. 15(b)), consistent with the
homogeneous pattern of head-wise changes during CPT (Fig. 3(a), lower panel).

Motivated by the head heterogeneity concept introduced in the previous section (Fig. 3), we propose
a novel head ordering criterion that allows: 1) to achieve a quality increase — of up to +4% for math
CPT of a 7B model upon rewinding around 15% of heads, and 2) to rewind up to 60% of heads
without a significant quality drop. Specifically, we define the text CPT as a reference domain, since
it is carried out on a similar text data to the pre-train stage, while other CPTs are considered as target
domains that focus on specialized knowledge. For each target domain, we order heads by the amount
of change during its CPT compared to the reference CPT — such as the quantity demonstrated in
Fig. 3(b). However, for 7B models, we find that a similar metric based on Frobenius norms of CPT
deltas, per the equation below, performs better:

scale[0,1]
({
∥W domain −W pre-train∥F

}
(l,h)

)
− scale[0,1]

({
∥W reference −W pre-train∥F

}
(l,h)

)
(1)

where “l” and “h” index layer and head respectively, and scale[0,1] denotes matrix min–max normal-
ization, scale[0,1](X) = (X −Xmin)/(Xmax −Xmin).

Empirically, this novel methodology helps elucidate domain-specific changes via a comparison with
a reference text domain, and outperforms not only standard spectral heuristics, but also the greedy
ranking strategy (see Appendix Table 4). We hypothesize that further research of more complex
models for singular spectra reflective of the rich structure observed in Fig. 2(b), will enable the
development of more powerful head ranking criteria.

SVD truncation of CPT delta.

To assess CPT parameter redundancy, we analyze the low-rank structure of the CPT delta. For each
matrix, we compute an SVD of ∆W , zero out the smallest singular values, reconstruct a truncated
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Figure 6: CPT delta SVD redundancy analysis. GSM8K (a) absolute and (b) relative accuracy as a
function of the fraction of singular values retained after SVD truncation of the CPT delta. Curves
show models with different scales and pre-train budgets: 7B/4T tokens (blue), 1B/4T tokens (red),
1B/400B tokens (green), 1B/100B tokens (purple), 1B/20B tokens (orange). The 7B model main-
tains performance with aggressive truncation (50% of singular values removed), while 1B models
degrade more rapidly, suggesting the larger model learns more redundant representations during
CPT.

∆W̃ , and evaluate W pre-train +∆W̃ . Truncation is applied only to attention (head-wise) and MLP
matrices; all other matrices are taken directly from W domain.

For the 1B model, CPT deltas remain high-rank, and truncation tolerance does not improve mono-
tonically with the pre-train token budget. More concretely, truncating 30% of the CPT delta leads
to a relative drop of ≈ 10% in GSM8K accuracy for both the 100B-token and 4T-token pre-trained
models. In contrast to the token budget, model scale has a substantial effect on truncation toler-
ance, suggesting that larger architectures accommodate more redundant task directions. As shown
in Fig. 6, for the 7B model one can remove up to 50% of singular values without a measurable drop
in GSM8K accuracy, while pronounced degradation begins once more than 80% of singular values
are removed. We confirm these findings for the instruct CPT, see Appendix Fig. 17(b).

4.5 DOMAIN CONNECTIVITY

Inspired by linear mode connectivity (Frankle et al., 2020) in fine-tuning of large language and
vision models, we observe a similar phenomenon for continual pre-training. We study domain
connectivity between pairs of models initialized from the same W pre-train checkpoint and continually
pre-trained on different domains: math, text, code, and instruct for 20B tokens, considering both 1B
and 7B models. Specifically, we form interpolants:

W interp(ω) = (1− ω)W domain1 + ωW domain2 ω ∈ [0, 1] (2)

which we refer to as “model soups”. Additionally, we evaluate models trained on different domain
mixtures (see Appendix Table 2). We present results for math – instruct and math – text interpolation
for both 1B and 7B models in Fig. 7; additionally, we report results for instruct – text in Appendix
Fig. 17(a) and instruct – code and math – code in Appendix Fig. 18(a, b).

For the math domain (Fig. 7), for all interpolation pairs, the model soup quality lies below the chord
connecting the endpoints (i.e., is concave) at 20B, is approximately linear at 400B, becomes mildly
convex at 4T for the 1B model, and is clearly convex at 4T for the 7B model. This trend indicates
that interpolation quality improves with both the pre-train token budget and model size.

We hypothesize that the transition from concave to convex behavior may be related to the devel-
opment of complex spectral structure in attention heads. Additionally, across pre-train budgets and
model sizes, linear interpolation underperforms CPT trained directly on dataset mixtures. This, in
turn, may limit the applicability of simple task-vector-style linear combinations, but a more system-
atic study is left for future work.
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Figure 7: Domain connectivity. – linear interpolation quality, step size ω = 0.1. a) DROP F1 score
vs. GSM8K accuracy for different pre-train token budgets and model sizes. The cyan pentagon
marker denotes a model trained on 10B DolminoMath + 10B FLAN. b) Average language-task
accuracy vs. GSM8K accuracy for different pre-train token budgets and model sizes. Yellow markers
correspond to 80% Math / 20% filtered DCLM; blue markers correspond to 40% Math / 60% filtered
DCLM. As the pre-train token budget and model size increase, both interpolation quality and the
performance of models trained on data mixtures improve.

5 RELATED WORK

Continual pre-training. A primary challenge in CPT is mitigating catastrophic forgetting while
efficiently adapting models to new domains. To combat forgetting directly, interleaving a small
fraction of replay data from the original pre-train distribution during CPT is a simple yet powerful
method to anchor the model’s general representations (Wang et al., 2023; Qi et al., 2025; Hickok,
2025). The optimization process itself is crucial, as empirical findings demonstrate that learning
rate re-warming and re-decaying is necessary to overcome initial instability and adapt optimization
dynamics to the new data, even in the absence of a distribution shift (Gupta et al., 2023; Ibrahim
et al., 2024). Furthermore, data selection strategies that choose samples based on their similarity to
the target task or their novelty and diversity are highly effective for adaptation (Xie et al., 2023; Que
et al., 2024).

Model weight spectrum interventions. Weight matrices are often approximately low rank, en-
abling selective removal of higher-order components (small singular values) to denoise networks and
enhance reasoning performance (Sharma et al., 2023). This low-rank property underpins parameter-
efficient fine-tuning methods like LoRA (Hu et al., 2022). However, optimal rank is highly layer-
dependent, and smaller residual singular values are not mere noise—they maintain connectivity to
good loss basins and preserve performance on difficult tasks (Yin et al., 2023).

Model averaging and task arithmetic. Model merging is rooted in linear mode connectivity (Fran-
kle et al., 2020), which posits that independently trained networks can lie in a shared low-error basin,
enabling weight interpolation without catastrophic loss (Ainsworth et al., 2022). Model souping
averages weights of models fine-tuned from a common checkpoint (Wortsman et al., 2022), and
merging models from diverse training runs boosts out-of-distribution generalization (Rame et al.,
2022). Task arithmetic (Ilharco et al., 2023) reframes fine-tuning as additive task vectors in nearly
orthogonal directions, with TIES-Merging mitigating interference by pruning small updates and en-
forcing consensus signs (Yadav et al., 2023). Complementary approaches are based on the exclusion
of a large proportion of delta entries from merging to confine task deltas (Yu et al., 2024; He et al.,
2024), and compressing per-layer deltas via SVD with Procrustes alignment to reduce subspace
overlap (Gargiulo et al., 2025).

Spectral analysis and model performance. RMT studies identify heavy-tailed self-regularization
(HTSR) as a key feature of well-trained models, where lower power-law exponents correlate with
superior generalization in Transformers, serving as data-free quality predictors (Yang et al., 2022;
Martin & Mahoney, 2019; 2021; Kothapalli et al., 2024). Training yields HTSR shaped by the dy-
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namics of the optimizer and consistently decreasing effective rank during training across architec-
tures, with better generalizing solutions exhibiting lower effective rank (Yunis et al., 2024; Thamm
et al., 2022; Staats et al., 2024). The Marchenko–Pastur (MP) law helps distinguish bulk eigenvec-
tors—which are largely random—from the top singular components, which encode learned signal
(Thamm et al., 2022; Staats et al., 2024).

6 DISCUSSION AND DIRECTIONS FOR FURTHER WORK

Our analysis allowed us to unveil several novel observations about continual pre-training (CPT)
mechanisms in large language models. The properties we establish generalize across model scale,
as demonstrated on OLMo 1B and 7B parameter models, and diverse CPT domains, including math,
instruct, code, and text.

Leveraging our NetInspect framework for spectral analysis, we observe that pre-train stage induces
complex spectral structures in attention-related weight matrices. While MLP layer characteristics
align partially with heavy-tailed self-regularization (HTSR) theory, attention matrices display multi-
peak distributions with outliers that substantially diverge from HTSR model. We hypothesize that
this intricate spectral organization acquired during pre-train stage is essential for efficient domain
adaptation during CPT. Support for this hypothesis arises from our finding that CPT largely pre-
serves the singular value spectra and the adaptation takes place primarily via modifiying the singular
vectors, with the most pronounced changes occurring for vectors associated with the spectral peaks.

Our findings regarding CPT adaptation reveal a novel phenomenon in attention weight matrices
which we term head heterogeneity. This phenomenon appears as the emergence of a small number
of outlier heads in terms of CPT delta characteristics, and we identify heads whose changes are
domain-specific. This feature becomes more pronounced with the increase of pre-train token budget.
Based on this observation, we propose a principled criterion for ranking attention heads, identifying
those that can be rewound with quality improvements of up to 4%. Additionally, we demonstrate
that CPT delta can be sparsified by up to 60% over attention heads without significant quality loss.

Moreover, we identify another novel phenomenon — CPT domain connectivity, namely, the ability
to average checkpoints after CPT on different domains, with interpolated model quality increasing
as a function of the pre-train token budget and model size. However, we note that the mixture of
CPT checkpoints performs worse compared to training on dataset mixture; these results suggest that
task vector merging approaches such as DARE (Yu et al., 2024) would face significant challenges.

Our results suggest several avenues for future research. First, we highlight the necessity of devel-
oping more complex models for singular value spectral of modern large language models. Based
on that, a more detailed analysis of head heterogeneity and head influence on CPT quality can be
carried out. Finally, we suggest further investigation into the origins of domain connectivity and its
quality drivers in order to enable more efficient CPT methodology.
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A NETINSPECT METHODOLOGY AND TECHNICAL DETAILS

To systematically analyze the spectral characteristics and singular vector agreement adjustments
in continual pre-training, we developed NetInspect, an open-source library designed for granular,
architectural-component-level analysis of neural networks. The main text of the paper contains our
key findings. This appendix provides a brief, practical overview of how to use our library to perform
similar analyses.

A.1 NORMS

Our investigation includes the Frobenius (∥W ∥F ) and spectral (∥W ∥2) norms:

∥W ∥F =

√∑
i

σi(W )2, (3)

∥W ∥2 = max
i

σi(W ). (4)

A.2 RANKS

We track the following structure-aware ranks:

Stable Rank:

Rs(W ) =
∥W ∥2F
∥W ∥22

. (5)

Effective Rank:

Re(W ) = −
R(W )∑
i=1

σi(W )∑
j σj(W )

log

(
σi(W )∑
j σj(W )

)
, (6)

where hard rank R(W ) is the number of nonzero singular values (or a chosen truncation).

A.3 SINGULAR VECTOR AGREEMENT

Let W i = U iΣi
(
V i
)⊤

and W j = U jΣj
(
V j
)⊤

. In this work we consider the cosine similarities
between left singular vectors via the vector agreement matrix

Au(W i,W j) = |
(
U i
)⊤

U j |, (7)

where the absolute value is taken element-wise. We report two levels: per-vector (diagonal and
row-maximum agreements) and a global average given by the mean of diagonal agreements across
the matrix.

A.4 RANDOM MATRIX THEORY FITS

The HTSR (Heavy-Tailed Self-Regularization) theory originally emerged as a semi-empirical the-
ory, and early seminal works (Martin & Mahoney, 2019; 2021) studied the empirical spectral density
of weight matrices given by

µ(λ;Xi) =
1

n

n∑
j=1

δ
(
λ− λj(X

i)
)
. (8)

Here Xi is a correlation matrix, defined as Xi = 1
m

(
W i

)⊤
W i. The eigenvalues of Xi provide

insight into the distribution of information across different directions in the feature space. This
is captured by the Empirical Spectral Density (ESD), where λ1(X

i) ≤ . . . ≤ λn(X
i) are the

eigenvalues of Xi, and δ denotes the Dirac delta function. The ESD thus represents a probability
measure describing how the eigenvalues are distributed. Note the relation between singular values
and correlation eigenvalues: λi(X) = 1

m σi(W )2.
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At random initialization weights are modeled as entries drawn from a Gaussian Orthogonal Ensem-
ble (GOE)

Wi,j ∼ N (x; 0,Var(W )). (9)
One of the key observations in modern DNNs is the deviation of ESDs from classical RMT predic-
tions for such matrices, such as the Marchenko–Pastur (MP) distribution

ρMP(λ;X) =


n

2πm ·Var(W )

√
(λmax − λ)(λ− λmin)

λ
, λ ∈ [λmin, λmax],

0, otherwise,
(10)

with
λmax /min(X) = Var(W )

(
1±

√
n/m

)2
. (11)

While random GOE matrices follow the classical MP distribution, trained neural network weight
matrices deviate significantly from this behavior (Martin & Mahoney, 2019; 2021). During training,
a non-random (signal) component typically emerges outside the MP bulk. We delineate bulk versus
outliers by estimating an upper edge λ̂max via a rescaled MP heuristic (Martin & Mahoney, 2021).
To be more precise, for a particular matrix W we:

1. Randomise W by permuting its elements.
2. Compute the empirical scale s(W ) from the randomized matrix.
3. Find λmax based on the MP prediction with s(W ).
4. Correct the scale

ŝ2 = s(W )2 − 1

n

n∑
i=1

1{λi>λmax} λi, (12)

then find λ̂max based on ŝ.

Well-trained models further develop heavy tails with ρPL(λ;X) = c · λ−α with normalization
constant c and scaling exponent α ∈ (1.5, 5) (Clauset et al., 2009); smaller α indicates stronger
correlations and, empirically, higher model quality (Martin & Mahoney, 2021).

We estimate α by Maximum Likelihood Estimation (MLE) estimator (Clauset et al., 2009); em-
pirical evidence shows MLE performs well for α ∈ [1.5, 3.5] (Martin & Mahoney, 2021), a typical
range for DNN weight matrices. Fit quality is checked with the Kolmogorov–Smirnov (KS) distance
between the empirical spectrum CDF S(λ) and the fitted PL CDF Ŝ(λ)

KS = sup
λ∈{λi(W )}

∣∣S(λ)− Ŝ(λ)
∣∣. (13)
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B TRAINING AND REPRODUCIBILITY DETAILS

B.1 DATA

For pre-train, we use DCLM (Li et al., 2024) sample with 100B tokens in 4 mixes: 20B DCLM
sample, 100B DCLM, 200B DCLM (oversampled), and 400B DCLM (oversampled).

Table 1: Dataset composition for Dolmino High Quality Subset and Dolmino Math Mix.

Source Type Tokens Words Bytes Docs

Mid-Training Dolmino High Quality Subset

DCLM-Baseline High quality web 752B 670B 4.56T 606M
FastText top 7%
FineWeb > 2

FLAN Instruction data 17.0B 14.4B 98.2B 57.3M
from Dolma 1.7 decontaminated

High quality total 832.6B 739.8B 5.09T 710.8M

Mid-Training Dolmino Math Mix

TuluMath Synthetic math 230M 222M 1.03B 220K
Dolmino SynthMath Synthetic math 28.7M 35.1M 163M 725K
TinyGSM-MIND Synthetic math 6.48B 5.68B 25.52B 17M
MathCoder2 Synthetic Synthetic math 3.87B 3.71B 18.4B 2.83M

Ajibwa-2023 M-A-P Matrix
Metamath Math 84.2M 76.6M 741M 383K

OWM-filtered
CodeSearchNet Code 1.78M 1.41M 29.8M 7.27K

OWM-filtered
GSM8K Math 2.74M 2.00M 25.3M 17.6K

Train split

Math total 10.7B 9.73B 45.9B 21.37M

For CPT we use data from FLAN decontaminated dataset, Dolmino High Quality Subset and Dolmi-
noMath Mix, as proposed in OLMo 2 (OLMo et al., 2024), this data consists of language presented
in the DCLM baseline. This is filtered by FastText and the FineWeb version of the original DCLM
(Li et al., 2024). For code dataset we use StarCoder (Li et al., 2023). All mixes used in CPT are
presented in Table 2.

Table 2: Continual pre-training mixes. * — oversampled data

Mix Name Dolmino Math DCLM Filtered FLAN filtered StackExchange StarCoder
10B Mixes
4BDM 4B 6B - - -
8BDM 8B 2B - - -
MATH 10B - - - -
TEXT - 10B - - -

20B Mixes
8BDM 8B 12B - - -
16BDM 16B 4B - - -
MATH 20B* - - - -
TEXT - 20B - - -
INST - - 10B* 10B* -
10BInst 10BDM 10B - 10B* - -
CODE - - - - 20B*

50B Mixes
20BDM 20B* 30B* - - -
40BDM 40B* 10B - - -
MATH 50B* - - - -
TEXT - 41.5B 8.5B - -
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B.2 MODELS AND TRAINING CONFIGURATION

This study utilizes the OLMo 2 model architecture at two different scales: 1B and 7B (Table 3). The
architecture is based on the standard Transformer decoder Vaswani et al. (2023) and incorporates
several modern enhancements:

• Removal of bias terms
• SwiGLU activation function
• Rotary positional embeddings (RoPE) with θ = 500, 000

• QKV clipping
• RMSNorm normalization
• Reordered layer norm (post-norm configuration)
• QK normalization
• Z-loss for training stability

All models are trained in mixed precision bfloat16. A complete description of the architecture and
training methodology can be found in the original OLMo 2 paper OLMo et al. (2024).

Table 3: Model architecture and training hyperparameters.

OLMo 2 1B OLMo 2 7B
Model Architecture
Hidden Dimension 2048 4096
Number of Layers 16 32
Number of Attention Heads 16 32
MLP Ratio 8 5.375
Activation Function SwiGLU SwiGLU
Normalization Type RMS Norm RMS Norm
Positional Encoding RoPE (θ = 500, 000) RoPE (θ = 500, 000)
Max Sequence Length 4096 4096
Vocabulary Size 100,278 100,278
Training Configuration
Global Batch Size 512 1024

Pre-train stage. For our training setup, we adhere to the parameters proposed in the original OLMo
2 paper: a learning rate of 4 × 10−4 with a warmup phase over 0.7 billion tokens, followed by a
cosine learning rate scheduler that decays to 10% of the initial rate by the end of training. The opti-
mization is carried out using the AdamW optimizer Loshchilov & Hutter (2019) with the following
hyperparameters: β1 = 0.9, β2 = 0.95, and ϵ = 10−8 . A weight decay of 0.1 is applied to all
weights, including norms and biases, but not to embeddings.

Continual pre-training. The hyperparameters for continual pre-training remain consistent with
those from pre-train, with the exception of the learning rate. In this stage, we start with the final
learning rate from pre-train, which is 4 ∗ 10−5, and apply a linear annealing schedule that decreases
the learning rate to zero over the course of training.

B.3 LINKS TO CODE

We provide full source code to ensure all our experiments are reproducible. Our release includes
the code for pre-train, CPT runs and commands for the OLMEs framework evaluation. The code is
publicly available at: https://anonymous.4open.science/r/all-in-your-heads-CA28

We conduct a deep analysis of model weights using our open-source library, NetInspect
https://anonymous.4open.science/r/netinspect-EF67
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL RESULTS FOR PRE-TRAIN AND CPT SPECTRAL ANALYSIS

b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.58

0.59

0.6

0.61

0.62

0.63

GSM8K accuracy
A
vg
. l
an
gu
ag
e 
ta
sk
s 
ac
cu
ra
cy 100B pre-train

Math
0% Math 

40%

Math 

80%

Math 

100%

10B CPT

20B CPT

50B CPT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.62

0.63

0.64

0.65

0.66

0.67

0.68

GSM8K accuracy

A
vg
. l
an
gu
ag
e 
ta
sk
s 
ac
cu
ra
cy

400B pre-train

Math 0%
Math
40%

Math
80%

Math
100%

10B CPT

50B CPT20B CPT

10B CPT 20B CPT

0 0.05 0.1 0.15 0.2 0.25
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

GSM8K accuracy

A
vg
. l
an
gu
ag
e 
ta
sk
s 
ac
cu
ra
cy

Math
0%

Math
40%

Math
80%

Math 

100%

20B pre-train 50B CPT

c)a)

Figure 8: Analysis of CPT configurations varying in token budgets and math proportions. Panels (a)-
(c) show results for CPT initialized from the 20B, 100B and 400B pre-train checkpoints respectively.
Performance is evaluated as a function of the mathematical data proportion in the CPT mix.
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Figure 9: Comparison of spectral properties of 1B and 7B parameter models. a) Layer-wise spectral
norm and stable rank comparison for W Q, W V, and W FC2 matrices. The x-axis represents the
relative layer depth, normalized as a percentage of total layers to account for the differing total
counts (16 and 32 layers for the 1B and 7B models, respectively). Notably, the trends for both
model scales are qualitatively similar. b) Singular-value spectra for W Q (layer 15, heads 1, 5, 9,
12) for 1B and 7B model sizes for 4T tokens. The spectral structures for both model sizes exhibit
significant complexity and deviate from standard theoretical distributions such as MP or PL.
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Figure 10: The effect of CPT data domain on vector agreement with pre-train. Violin plots (with
jittered points colored by the left singular vector agreement between CPT and pre-train) display the
W GATE per layer for CPT a) on text, b) a math-text mix, c) or pure math (all pre-trained on 4T to-
kens). The results demonstrate a clear ordering: text CPT preserves the strongest vector agreement,
while math domain induces the largest rotation.
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Figure 11: Goodness-of-fit — layer-wise Kolmogorov–Smirnov distance between the weight matrix
ESD and Marchenko–Pastur model (left) and power-law (right) model for W Q, W V, and W FC2

matrices. The x-axis indexes layers; solid lines show the mean across attention heads, dashed lines
the median, and the shaded band denotes mean ± std. a) Blue denotes 20B-token pre-train and red
denotes 400B-token pre-train of 1B model. b) Blue denotes 4T-token pre-train of 1B model and red
denotes 4T-token pre-train of 7B model.

Figure 12: Effect of CPT data domain on vector agreement. a) Heatmaps show the average vector
agreement between CPT and pre-train for individual heads of W Q across different CPT domains
(left to right: math, instruct) on 7B model. Lower vector agreement values correspond to larger
changes of the corresponding weight matrices relative to the pre-trained model. b) Difference in
vector agreement between the math and instruct domains.
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Figure 13: Layer-wise Frobenius norm of CPT deltas for W Q and W FC2 for 7B model across CPT
domains. Statistics are aggregated per head (mean: solid line, median: dashed line; shaded region:
mean ± std). Effect of CPT domain for 4T tokens pre-train: deltas for the text domain (green) are
smallest in magnitude, indicating less incremental change compared to math (blue) or instruct (red)
domains.
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C.2 SINGULAR-VALUE TRANSPLANTATION

Given two checkpoints with per-layer weights W ckpt1 = U1 Σ1 V
⊤
1 and W ckpt2 = U2 Σ2 V

⊤
2

(SVD), the transplanted weight is

W̃ = U2 Σ1 V
⊤
2 . (14)

Unless otherwise stated, transplantation is applied head-wise to attention
(
W Q,W K,W V,W O

)
and MLP

(
W FC1 ,W Gate,W FC2

)
weight matrices only; all other parameters remain from the target

checkpoint.
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Figure 14: Singular-value transplantation results. Red circles denote CPT on DolminoMath, while
star–diamond markers denote CPT on DolminoMath with singular values transplanted from the
pre-train model. The results indicate that singular-value transplantation does not affect GSM8K
accuracy.

C.3 METHODOLOGY AND ADDITIONAL RESULTS FOR HEAD-WISE REWIND
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Figure 15: Head redundancy under CPT deltas. (a) DROP F1 score versus the fraction of heads
rewound for a 7B-parameter model with a 4T-token pre-train budget and a 20B-token instruct do-
main. Rewinding heads according to any heuristic has only a minor effect on CPT quality in the
instruct domain, while random rewind exhibits high variance across different random seeds. (b)
GSM8K accuracy versus the fraction of heads rewound for a 1B-parameter model with a 20B-token
pre-train budget and a 20B-token math domain. Here, head rewinding under all heuristics leads to
a rapid and substantial degradation in performance, indicating lack of head heterogeneity at small
pre-train token budgets. In both panels, our proposed difference-in-scaled-Frobenius-norms metric
(highlighted in orange) yields the most effective head ranking for preserving task performance.
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Figure 16: Head rewind heatmap (per-layer, per-head impact) for 20B Math CPT based on 4T pre-
train. Cells contain GSM8K accuracy change (%).

Let H be the number of heads and dhead the head dimension, so dmodel = H dhead. We split projec-
tions along the head-concatenated axis and operate per head:

WQ = [WQ
(0) | . . . |W

Q
(H−1) ], W

K = [WK
(0)| . . . |W

K
(H−1) ], W

V = [W V
(0)| . . . |W

V
(H−1) ]

(15)
where W

Q/K/V
(i) ∈ Rdmodel×dhead are column blocks. For the output projection WO ∈

R(H dhead)×dmodel , we split by rows into H blocks WO
(i) ∈ Rdhead×dmodel and reassemble by row con-

catenation. Single-head rewind at index i sets

{WQ
(i),W

K
(i),W

V
(i),W

O
(i)}

math ← {WQ
(i),W

K
(i),W

V
(i),W

O
(i)}

pre-train (16)

and replaces the corresponding QK-norm segments along the head axis with pre-train values.

AUC computation. Let {kt}Tt=1 be the discrete percentages of heads rewound (in [0, 100]), and let
C↓(kt) and C↑(kt) denote the metric at kt for descending and ascending greedy orders, respectively.
We first compute the discrete AUC of each curve using the trapezoidal rule:

AUC↓ =

T−1∑
t=1

C↓(kt) + C↓(kt+1)

2

(
kt+1 − kt

)
, AUC↑ =

T−1∑
t=1

C↑(kt) + C↑(kt+1)

2

(
kt+1 − kt

)
(17)

Our reported score is the absolute difference

AUC-diff =
∣∣AUC↓ −AUC↑

∣∣ (18)

When the grid is uniform, kt+1 − kt = ∆, this reduces to a constant ∆ times the sum of trapezoid
averages. Higher values indicate a greater separation between descending and ascending orders,
while values near zero indicate random-like behavior.
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Table 4: Absolute area between descending and ascending head-rewind curves for math domain
(AUC; higher is better). Smaller values indicate behavior closer to random, where ordering does not
matter.

Heuristic AUC-diff 1B AUC-diff 7B
greedy 19.1 5
difference in average singular vector agreement between math and text 11.7 5.1
difference in scaled Frobenius norms 11 6
agreement average 5.2 4.5
delta Frobenius norm 5.2 4.9
PL KS (pre-train) 0.9 1.1
random 0.0 0.0

C.4 CPT DELTA SVD TRUNCATION METHODOLOGY AND ADDITIONAL RESULTS

Given W = U ΣV ⊤ with r = min(m,n), setting k = ⌊(n/100) r⌋ yields the top-k truncation

W̃(n%) = U[:,1:k] Σ1:k,1:k (V
⊤)[1:k,:], (19)

where we keep the top-k singular directions and discard the rest. We report the kept fraction n%.
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Figure 17: Linear interpolation and CPD delta redundancy analysis on instruct domain. a) Linear
interpolation (step size ω = 0.1). Average language-task accuracy vs. DROP F1 score. As the pre-
train token budget and model size increase, interpolation quality improves. b) CPT delta spectral
redundancy analysis. DROP F1 score vs. fraction of singular values kept under CPT delta SVD
truncation. Curves show models with different scales and pre-train budgets: 7B/4T tokens (blue),
1B/4T tokens (red), 1B/20B tokens (orange). A substantially larger fraction of the CPT delta can be
truncated in the 7B model than in the 1B model.

C.5 RESULTS FOR CODE DOMAIN CPT

We conducted preliminary CPT experiments on code to assess domain generality, training on the
StarCoder corpus and evaluating on HumanEval. The 1B model achieved 0.04 pass@1 before code
CPT and only 0.09 pass@1 after code CPT — an absolute improvement of just 5 percentage points.
This limited improvement aligns with OLMo-2’s behavior, where competitive HumanEval perfor-
mance emerges only after supervised fine-tuning with chat templates, not from base or continual
pre-training.
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Figure 18: a) Interpolation between 1B/4T tokens Instruct CPT and 1B/4T tokens Code CPT. b)
Interpolation between 1B/4T tokens Math CPT and 1B/4T tokens Code CPT. c) Truncation of 1B/4T
tokens Code CPT delta with HumanEval pass@1 accuracy reported. d) Truncation of 1B/4T tokens
Code CPT delta with relative HumanEval pass@1 accuracy drop reported.
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D KEY NETINSPECT VISUALIZATION TOOLS

The pipeline consists of five sequential stages, each designed to probe different aspects of the net-
work’s weight matrices. We assume the user is comparing two model checkpoints, W ckpt1 and
W ckpt2, and checkpoint of their delta (W ckpt1 −W ckpt2).

BOX PLOTS: COMPONENT-WISE SPECTRAL METRICS DISTRIBUTION

The analysis employs comparative box plots generated for all weight matrices, which are organized
by matrix family — specifically, the Attention projections (W Q, W K, W V, W O) and the MLP
layers. To ensure a granular analysis, each attention matrix is first decomposed into its heads before
any metric computation.

The analysis itself is structured by distinct metric categories for precise comparison: one group
focuses on norms, including the Frobenius and Spectral norm, while another group concentrates on
rank measures, namely the Stable rank and Effective rank. For the MLP matrices exclusively, this
set of metrics is augmented with the Kolmogorov-Smirnov (KS) statistic, which quantifies the fit to
both a power-law (PL) and a Marchenko-Pastur (MP) distribution.

The visual encoding of the box plots is designed to convey multiple data dimensions simultaneously.
The fill color of each box plot signifies the specific matrix parameter. The outline color denotes
the checkpoint, where blue represents ckpt1, red represents ckpt2, and green represents the delta.
Furthermore, a jittered scatter plot is laid near each box; the individual data points are colored on
a continuous spectral scale from blue to red. This color mapping corresponds directly to the layer
index, with blue indicating layers near the model input and red indicating layers near the output. This
integrated approach allows for the immediate assessment of distributional properties — including
medians, quartiles, and outliers — across the two checkpoints, while preserving the crucial ability
to discern depth-dependent patterns within the metric distributions.

CLUSTER BAR CHARTS: SINGULAR VALUES DISTRIBUTION

The purpose of this stage is to visualize the entire distribution of singular values. The visualization
employs a cluster bar chart where the x-axis is exponential binning of the singular values, while the
y-axis represents the count of values falling into each bin.

To articulate the layer-by-layer evolution of the spectrum, the color of each bar corresponds to its
layer index. For attention matrices, the singular values are first averaged across all heads within a
given layer before the binning process.

SPARKLINES: SPECTRAL METRIC TRENDS

This stage aims to compactly visualize the trend of each metric across the network’s depth, enabling
a quick, at-a-glance assessment of layer-wise patterns. The procedure involves plotting the metric
value as a function of layer index for each matrix family. For attention matrices, the values are
aggregated across their heads: a solid line represents the mean, a dashed line represents the median,
and a shaded area delineates the band of mean ± one standard deviation. These resulting sparklines
provide a temporal view of metric evolution through the network’s layers. This visualization allows
for the immediate identification of critical patterns, where a sharp change in a metric at a specific
layer or a consistent divergence between the mean and median can signal important architectural
transitions or anomalies.

HEATMAPS: SPECTRAL METRIC HETEROGENEITY

The purpose of this stage is to expose fine-grained, head-specific and layer-specific variations in
metrics, providing a direct visual comparison of the differences between the two checkpoints. The
procedure involves creating a two-dimensional grid for each combination of attention matrix type
(W Q, W K, W V, W O) and metric, with the axes representing the layer index and head index. For
each such combination, a quartet of heatmaps is generated: the first visualizes the raw metric values
for W ckpt1 on a blue color scale; the second visualizes the raw values for W ckpt2 on a red scale;
the third shows the delta and the fourth displays a metric difference. This visualization allows for
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pinpointing the exact heads and layers that contribute most significantly to the overall divergence
between the two models, moving from a high-level summary to a precise diagnostic tool.

VIOLIN PLOTS: SINGULAR VALUE DISTRIBUTION AND SINGULAR VECTOR AGREEMENT

The final stage of our analysis is architected the most detailed view of the singular value distribution
for each individual head and layer, while simultaneously incorporating information about singular
vector agreement. This is achieved by generating a matrix of plots, where each cell corresponds
to a specific (layer, head) pair. Within a given cell, a violin plot is used to depict the density of
the singular values for that specific matrix. Overlaid onto this violin plot is a jittered scatter plot,
where the color of each point is determined by a vector agreement metric — overlap between the
corresponding singular vectors of W ckpt1 and W ckpt2. This powerful composite visualization syn-
ergistically combines the shape of the singular value spectrum, conveyed by the violin, with the
stability of the underlying directional components, indicated by the colored jitter, across the entire
model. It thereby enables the precise identification of nuanced scenarios, such as attention heads
that exhibit a similar spectral distribution but possess different singular vectors directions, or vice
versa, offering insight into the micro-dynamics of network evolution.
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