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ABSTRACT

While large language models (LLMs) are widely studied, the mechanisms by
which they internalize knowledge from specialized domains remain poorly un-
derstood. To investigate this, we analyze the Continual Pre-Training (CPT)
paradigm, where a base model is further pre-trained on a curated, domain-
specific corpus. Through a focused study on mathematical data, we uncover
two key properties of this process: (1) domain connectivity between checkpoints
trained on different CPT datasets, and (2) head-wise sparsity in the model incre-
ment that encodes new domain knowledge. We further support these findings
with a spectral analysis of weight matrices at different lengths of pre-training
stage before and after CPT, and investigate applicability of the heavy-tailed self-
regularization theory to modern large language models. To foster further re-
search, we provide an open-source scalable toolkit for performing spectral anal-
ysis on models with billions of parameters - NetInspect. The code is available at
https://anonymous.4open.science/r/netinspect-EF67

1 INTRODUCTION

Continual pre-training (CPT) is now a standard component of modern LLM training pipelines;
in many contemporary multi-stage workflows — including recent state-of-the-art models such as
Llama 3 (Dubey et al., 2024) and OLMo 2 (OLMo et al., 2024) — the final pre-training stage uses
curated, domain-specific data mixtures while the learning rate is linearly annealed to zero. Empirical
evidence suggests that this late-stage focus on cleaner, domain-relevant data improves mathemati-
cal and coding abilities without degrading general-language performance (Blakeney et al., 2024).
Moreover, CPT is central to producing domain-specialized models, such as Code Llama (Roziere
et al., 2023) and DeepSeekMath (Shao et al., 2024); applying CPT to a general-purpose model yields
better performance than training a specialized model from scratch under the same compute budget.

However, the CPT stage of the LLM training pipeline is significantly less studied compared to
the supervised fine-tuning (SFT) stage, where a rich set of phenomena has been documented —
including linear mode connectivity (Frankle et al., 2020), task arithmetic (Ilharco et al., 2023), model
soups (Wortsman et al., 2022), ability transfer (Yu et al., 2024) and low-rank subspace modification
(Hu et al., 2022). To investigate whether similar phenomena exist for CPT, we conduct a series of
pre-train and continual pre-training experiments on 1B-parameter language models with OLMo 2
architecture and analyze the weight delta ∆W = Wmath −W pre-train, characterizing its sparsity
and subspace geometry, and assessing its ability to interpolate between, and to merge, checkpoints
adapted to different domains.

Additionally, we investigate singular spectra of weight matrices: prior random matrix theory-based
work suggests that heavy-tailed singular value distributions are closely connected to generalization
ability (Martin & Mahoney, 2019; 2021; Yang et al., 2022). In our spectral analysis, we do not limit
ourselves to a single scalar metric, and we investigate the role of singular vectors, which were earlier
shown to play an important role in the model training process (Yunis et al., 2024).

In summary, our contributions include:

1. We investigate the dynamics of weight matrix singular values spectra, and identify the
development of complex spectral structure in attention head matrices along the pre-train
stage, which can not be described by heavy-tailed self-regularization theory (Martin &
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Mahoney, 2019). This is associated with an increase in quality on language tasks and faster
domain adaptation on CPT. For CPT we find that the spectra remain almost stable, and the
domain adaptation is driven by singular vector changes localized near the peaks in the SVD
spectrum.

2. We identify the ability to interpolate between checkpoints after CPT on different domains,
for which we coin the term domain connectivity; we find that interpolated model quality
improves with increase in pre-train stage length. Additionally, we discover that CPT deltas
have redundancy in parameters - we can drop up to 35% heads or 20% lowest singular
values without significant changes to model quality.

3. We provide an open-source implementation of our matrix spectra analysis tools –
NetInspect package – to ensure the reproducibility of our findings and to facilitate future
research.

2 METHODOLOGY

In order to investigate the properties of model weight matrices, we employ several analytical meth-
ods centered on singular value decomposition (SVD) (Golub & Reinsch, 1970). For a weight matrix
from the i-th layer W i, with dimensions m × n (m ≥ n) and hard rank r = R(W ), its thin SVD
is W = UΣV ⊤, where U = [u1(W ), . . . ,ur(W ) ] ∈ Rm×r, V = [v1(W ), . . . ,vr(W ) ] ∈
Rn×r, and Σ = diag(σ1(W ), . . . , σr(W )) with σ1(W ) ≥ · · · ≥ σr(W ) > 0. This notation is
used consistently throughout our analysis.

Norms and Ranks. We characterize singular spectra Σ(W ) through established spectral measures:
the Frobenius norm ∥W∥F , spectral norm ∥W ∥2, stable rank Rs(W ), and effective rank Re(W ).
Complete definitions are provided in Appendices F.1.1 and F.1.2.

Singular Vector Agreement. SVD provides both spectral magnitudes and directional information
through singular vectors. To analyze directional changes during training, we measure agreement be-
tween singular vectors of a given weight matrix along the training trajectory. Further implementation
details are presented in Appendix F.1.3.

Fitting Model Distributions. We model the empirical spectral density (ESD) using two comple-
mentary approaches: the Marchenko–Pastur distribution for the bulk spectrum and power-law mod-
els for heavy-tailed spectral regions. Estimation procedures and diagnostic methods are detailed in
Appendix F.1.4.

3 EXPERIMENTAL SETUP

3.1 TRAINING SETUP

We initialize all models using the OLMo 2 architecture and training stack (OLMo et al., 2024),
training 1B parameter model. Our experimental pipeline consists of two sequential stages:

1) Stage 1: Pre-training. Models are pre-trained from scratch on mixtures drawn from DCLM (Li
et al., 2024), with token budgets varying from 20B to 400B. Training uses a cosine learning rate
scheduler with a warm-up phase.

2) Stage 2: Continual pre-training (CPT). Starting from pre-trained checkpoints, we continue
training on alternative data mixtures to probe domain shift and replay effects. We systematically
vary the CPT data composition to emphasize: (i) DolminoMath-only data (OLMo et al., 2024),
(ii) balanced DCLM+DolminoMath mixtures, or (iii) DCLM-heavy replay. The learning rate is
initialized from the final value of Stage 1 and annealed to zero throughout this stage.

Complete reproducibility details, including hyperparameters, training configurations, and data splits,
are provided in Appendix A.2. The code can be found in Appendix B.

3.2 EVALUATION PROTOCOL

The quality of the model is evaluated using the OLMES framework (Gu et al., 2025). Language
accuracy is assessed by averaging results from three datasets: ARC-Easy (Clark et al., 2018), Hel-
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Figure 1: Math–language quality trade-off with continual pre-training on the OLMo 2 1B backbone.
Y-axis reports the average accuracy on WinoGrande, ARC-Easy, and HellaSwag. Hollow circles
denote pre-train checkpoints; filled circles denote continual pre-training runs initialized from the
corresponding pre-train checkpoints. Marker size encodes the CPT token budget (10B, 20B, 50B);
marker fill encodes the math proportion in CPT data (0%, 40%, 80%, 100%). Points with the same
CPT token budget are connected. a) Overview across pre-train sizes (20B, 100B, 400B, 4T). For
each pre-train checkpoint, we plot CPT runs with a fixed 20B-token budget (equal marker sizes) and
varying math proportions; the leftmost hollow marker in each connected series is the corresponding
pre-train checkpoint. b) Quality of CPT runs starting from 4T pre-train checkpoint (leftmost hollow
marker). CPT runs vary both the token budget and the math proportion; the star marks the original
OLMo 2 0425 1B CPT model (50B tokens with 10B math, i.e., 20%). Larger pre-train token budgets
yield better results overall. Increasing the math proportion moves models rightward while typically
lowering Language, whereas larger token budgets shift the trade-off frontier outward.

laSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2019). Each language dataset
measures 5-shot accuracy by scoring each answer choice individually based on LLM token proba-
bilities in a cloze format. For math accuracy, we use an 8-shot evaluation on GSM8k (Cobbe et al.,
2021), calculating exact matches between the LLM-generated answers and the gold standard.

4 MAIN RESULTS

4.1 QUALITY METRICS

When comparing quality after CPT for models pre-trained with different compute budgets, we find
that larger budgets enhance model flexibility (Figure 1 a). While initial math performance is sim-
ilar across budgets, models with higher pre-training budgets achieve better final math scores after
continual pre-training. These models also show faster increase in math performance as a function of
CPT token budget, but experience more rapid declines in language accuracy. For instance, maintain-
ing 80% math and 20% text token ratio with a 100B token budget preserves language performance,
whereas the same ratio at a 4T budget results in greater language decline. This indicates that larger
models adapt quickly in specialized tasks like math at the expense of general language skills, and
reveals a trade-off where higher pre-training budgets boost target domain performance while risking
broader language ability.

Panel (b) in Figure 1 illustrates that maintaining the same math-to-text token ratio while increasing
total tokens enhances math abilities. However, for fully math-focused samples at 20B and 50B, math
performance plateaus, yielding similar results. Notably, more math tokens lead to greater declines
in language performance, highlighting the risks of over-specialization.

3
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Figure 2: Pre-train evolution via spectral metrics. Rows (top to bottom) correspond to W Q, W V,
and W FC2 weight matrices, while columns (left to right) report the Frobenius norm, the spectral
norm, and the effective rank. Each subplot overlays jittered per-matrix values with box plots sum-
marizing the distributions for models pre-trained on 20B, 100B, 400B, and 4T tokens. Points denote
individual matrices and are color-coded by the corresponding layer index. Note non-monotonic
behavior of matrix norms and different trajectories of effective rank along pre-train.

4.2 SPECTRAL EVOLUTION ALONG THE PRE-TRAIN STAGE
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Figure 3: Spectral shape formation during pre-training. a) Goodness-of-fit - layer-wise Kol-
mogorov–Smirnov distance between the weight matrix ESD and Marchenko–Pastur model (left)
and power-law (right) model for W Q, W V, and W FC2 matrices. The x-axis indexes layers; solid
lines show the mean across attention heads, dashed lines the median, and the shaded band denotes
mean ± std; blue denotes 20B-token pre-train and red denotes 400B-token pre-train. b) Singular-
value spectra across pre-train for W Q layer 6, heads 8, 9, 13, 15; for 20B, 100B, and 400B pre-train
tokens. Jitter points represent singular values and are colored by the left singular vector agreement
between each pre-train checkpoint and the corresponding CPT endpoint on math domain. Note the
increasingly complex spectral shape that poorly conforms to MP and PL models. Starting at 100B
the singular vectors, that change direction during the CPT stage, are increasingly localized in narrow
spectral bands.

To gain insight into pre-train dynamics, we first consider weight matrix norms and ranks (Figure 2).
We highlight non-monotonic behavior of Frobenius and spectral norms, which reach maximum val-
ues at around 100B tokens of pre-train. Effective rank also demonstrates an inflection point around
100B tokens: a substantial number of layer-level outliers with significantly lower rank emerges.
However, its behavior differs for different matrix types: for W Q, W K the outliers are severe, the
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Figure 4: Layer-wise spectral analysis (Frobenius norm, spectral norm, stable rank and effective
rank) of CPT deltas for W Q, W V, and W FC2 . Deltas from models pre-trained on 100B tokens
(blue) exhibit higher Frobenius and spectral norms but lower stable and effective ranks compared to
those from 4T tokens (red). Statistics are aggregated per head (mean: solid line, median: dashed
line; shaded region: mean ± std).

amount of outliers increases, mean rank decreases, while for W V, W O and MLP matrices outliers
tend to recover rank after 100B tokens.

Next, we investigate the applicability of power law and Marchenko-Pastur model spectra, in ac-
cordance with heavy-tail self-regularization theory (Figure 3). We note that for weight matrices
after 20B and 400B tokens pre-train budget both model spectra exhibit poor fit quality for attention-
related matrices, while MLP-related matrices show decent accordance with power-law tail fit. To
investigate this further, we examine SVD spectra for several heads of W Q along the pre-train stage.
We note the increasing complexity of spectral shape from 20B to 400B tokens. We conjecture that
complex spectral structure is a prerequisite for fine-grained adjustments to matrix structure, and may
explain higher math accuracy after CPT for models with longer pre-train stages. We leave detailed
investigation for further work.

4.3 SPECTRAL EVOLUTION ALONG THE CPT STAGE

To understand the mechanisms of continual pre-training, we analyze how the spectral features of the
model evolve from pre-train to CPT.

Our analysis reveals that the CPT stage does not change matrix spectra appreciably, and the changes
associated with the increase in GSM8K accuracy are due to the changes in singular vectors (see
Appendix E). Analysis of vector agreement shows that it is the highest in early layers and de-
creases toward the output layers. The same dynamics applies to Frobenius norm of the CPT deltas
∆W = Wmath −W pre-train. Additionally, we find that CPT deltas are high-rank across all matrix
types.

While these structural patterns are consistent, the norm and rank of deltas vary with pre-training
budget. As illustrated in Figure 4, CPT starting from smaller pre-train budget of 100B tokens pro-
duces delta with substantially larger Frobenius and spectral norms than from 4T tokens, indicating
necessity of more extensive parameter adjustments. However, the stable and effective ranks of these
deltas are lower (can be twice lower for stable rank) indicating that updates from earlier checkpoints,
while larger in magnitude, are confined to narrower subspaces.

In order to validate singular vector agreement as a metric for assessing the change during CPT,
we consider CPT trajectories on 20B tokens datasets with varying composition: math, text, and a
mixture of 8B math and 12B text. Agreement for these trajectories is shown in Figure 5. We observe
a clear monotonic relationship: as the CPT domain shifts from text (aligned) to math (divergent),
overlap with pre-train decreases correspondingly. Vector agreement can serve as a more detailed

5
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Figure 5: The effect of CPT data domain on vector agreement with pre-train. Violin plots (with
jittered points colored by the left singular vector agreement between CPT and pre-train) display the
W GATE per layer for CPT a) on text, b) a math-text mix, c) or pure math (all pre-trained on 4T to-
kens). The results demonstrate a clear ordering: text CPT preserves the strongest vector agreement,
while math domain induces the largest rotate.

description of the induced changes compared to delta norms, since it highlights the position of
changing vectors in the singular spectrum.

4.4 DOMAIN CONNECTIVITY
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Figure 6: Interpolation quality: average language task accuracy vs. GSM8K accuracy for different
pre-train token budgets against a filtered DCLM+DolminoMath mixture, step size ω = 0.1. Yellow
markers correspond to 80% Math / 20% filtered DCLM; blue markers correspond to 40% Math /
60% filtered DCLM. As the pre-train token budget increases, the distance between the yellow circle
and yellow pentagon decreases, indicating that interpolation quality approaches that of joint training
on the mixture.

Inspired by linear mode connectivity for fine-tuning of large language models and vision models,
we observe a similar phenomenon for continual pre-training. We study domain connectivity be-
tween two models initialized from the same W pre-train checkpoint and trained on 20B CPT datasets:
DolminoMath Wmath and filtered DCLM W text. We form interpolants

W interp(ω) = (1− ω)W text + ωWmath, ω ∈ [0, 1], (1)

which we call ”model soups”, and compare their quality to models trained on 8BDM and 16BDM
data mixes (Table 2).

Across pre-train budgets, linear interpolation underperforms CPT trained on dataset mixtures, but
the performance gap shrinks consistently as the pre-training token budget increases (see 6). In the
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(GSM8K accuracy, mean accuracy across language tasks) space, the model soup quality curve lies
below the chord connecting the endpoints (i.e., is concave) for 20B, is approximately linear at 100B,
becomes slightly convex at 400B, and is clearly convex at 4T. This phenomenon might relate to the
decrease in Frobenius norm between math and text checkpoints with the pre-train budget (Appendix
Table 4) and more complex spectral structure of the attention heads of later checkpoints. We leave
detailed investigation of this effect to further work.

4.5 LOCALIZING SPECIALIZATION AND REDUNDANCY

Next, we investigate where domain specialization in Wmath resides and how redundant the updates
are. We study two complementary manipulations: (i) selectively rewinding attention heads to their
pre-train values, and (ii) truncating the singular spectrum of the CPT delta.

Head-level rewind. For 20B CPT on DolminoMath, we rewind parameters of a single attention
head (including the corresponding QK-norm components) back to the pre-train checkpoint while
leaving the rest of the network unchanged. We apply this procedure to both 100B- and 4T-long
pre-trains of the 1B-parameter model. Rewinding any single head changes GSM8K accuracy and
average language tasks accuracy by less than one percentage point on average, and for some heads
can improve GSM8K accuracy (see Fig. 12 in Appendix E). This supports the hypothesis that domain
adaptation is distributed across multiple heads rather than concentrated in a few.

We order each head by its single-head rewind impact and then rewind heads in descending (greedy)
order. The resulting curves dominate those produced by static heuristics based on spectral/RMT-
style proxies—delta Frobenius norm, delta stable rank, pre-train PL–KS, or W pre-train ↔ Wmath

singular-vector overlap—which perform near a random baseline. Thus, simple spectral scalars are
insufficient to predict a head’s causal importance for CPT quality gains (see Fig. 7 a). This is in
accordance with the complex shape of attention matrices spectra, and requires further research into
devising appropriate model distributions.
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Figure 7: a) GSM8K accuracy versus fraction of heads rewound. Greedy ordering strongly out-
performs heuristic proxies. b) GSM8K accuracy versus fraction of singular values kept under delta
SVD truncation.

SVD truncation of CPT delta. To assess redundancy, we analyze the low-rank structure of the
CPT delta ∆W = Wmath −W pre-train. For each matrix, we compute an SVD of ∆W , zero out the
smallest singular values, reconstruct a truncated ∆W̃ , and evaluate W pre-train +∆W̃ . Truncation is
applied only to Attention (head-wise) and MLP matrices; all other matrices remain from Wmath.

Deltas are high-rank, but allow removal of up to 20% of singular values yields no measurable
GSM8K accuracy drop, while pronounced degradation begins at≥ 70% removal. The same thresh-
olds hold qualitatively at 100B initialization.

We further study the effect of truncation in attention and MLP matrices. At 60% truncation within
Attention, GSM8K accuracy drops by only≈ 10%; MLP truncation decreases the quality more, and
truncating both attention and MLP hurts the most. In the extreme regime with only 10% singular
values kept in the difference, we observe the following decreases in quality: for attention matrices:
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−30%, MLP: −52%, and attention+MLP: −74%. Thus, the Wmath signal is more truncation-
tolerant in attention than in MLPs. The qualitative ordering also holds at 100B initialization.

With the above experiments, we find that domain knowledge is distributed across many singular
directions. Nevertheless, a meaningful fraction of the delta lies in a compressible tail, enabling
moderate rank reduction without quality loss — especially in attention matrices (see Fig. 7; Ap-
pendix Table 7).

5 RELATED WORK

Continual pre-training. A primary challenge in CPT is mitigating catastrophic forgetting while
efficiently adapting models to new domains. To combat forgetting directly, interleaving a small
fraction of replay data from the original pre-training distribution during CPT is a simple yet powerful
method to anchor the model’s general representations (Wang et al., 2023; Qi et al., 2025; Hickok,
2025). The optimization process itself is crucial, as empirical findings demonstrate that learning
rate re-warming and re-decaying is necessary to overcome initial instability and adapt optimization
dynamics to the new data, even in the absence of a distribution shift (Gupta et al., 2023; Ibrahim
et al., 2024). Furthermore, data selection strategies that choose samples based on their similarity to
the target task or their novelty and diversity are highly effective for adaptation (Xie et al., 2023; Que
et al., 2024).

Model weight spectrum interventions. Weight matrices are often approximately low rank, en-
abling selective removal of higher-order components (small singular values) to denoise networks and
enhance reasoning performance (Sharma et al., 2023). This low-rank property underpins parameter-
efficient fine-tuning methods like LoRA (Hu et al., 2022). However, optimal rank is highly layer-
dependent, and smaller residual singular values are not mere noise—they maintain connectivity to
good loss basins and preserve performance on difficult tasks (Yin et al., 2023).

Model averaging and task arithmetic. Model merging is rooted in linear mode connectivity
(Frankle et al., 2020), which posits that independently trained networks can lie in a shared low-error
basin, enabling weight interpolation without catastrophic loss (Ainsworth et al., 2022). Model soup-
ing averages weights of models fine-tuned from a common checkpoint (Wortsman et al., 2022), and
merging models from diverse training runs boosts out-of-distribution generalization (Rame et al.,
2022). Task arithmetic (Ilharco et al., 2023) reframes fine-tuning as additive task vectors in nearly
orthogonal directions, with TIES-Merging mitigating interference by pruning small updates and en-
forcing consensus signs (Yadav et al., 2023). Complementary approaches are based on the exclusion
of a large proportion of delta entries from merging to confine task deltas (Yu et al., 2024; He et al.,
2024), and compressing per-layer deltas via SVD with Procrustes alignment to reduce subspace
overlap (Gargiulo et al., 2025).

Spectral analysis and model performance. RMT studies identify heavy-tailed self-regularization
(HT-SR) as a key feature of well-trained models, where lower power-law exponents correlate with
superior generalization in Transformers, serving as data-free quality predictors (Yang et al., 2022;
Martin & Mahoney, 2019; 2021; Kothapalli et al., 2024). Training yields HT-SR shaped by the dy-
namics of the optimizer and consistently decreasing effective rank during training across architec-
tures, with better generalizing solutions exhibiting lower effective rank (Yunis et al., 2024; Thamm
et al., 2022; Staats et al., 2024). The Marchenko–Pastur (MP) law helps distinguish bulk eigenvec-
tors—which are largely random—from the top singular components, which encode learned signal
(Thamm et al., 2022; Staats et al., 2024).

6 DISCUSSION AND DIRECTIONS FOR FURTHER WORK

Our analysis allowed us to unveil several novel observations and to identify promising research
directions: for pre-train, we establish complex spectral structure for matrices in attention blocks,
which calls for developing a more complex theoretical model than the power-law tail extending from
near-random bulk. Furthermore, since our analysis is based on the OLMo 2 model, extrapolating
our findings to other architectures is an important future research direction.
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We establish that domain adaptation during CPT occurs mostly via singular vectors direction
changes, and those changes arise mainly for vectors associated with singular values near the peak
of the spectrum. We hypothesize that complex spectral structure arising during pre-train allows the
model weight matrices to accommodate more fine-grained changes and, accordingly, to better and
faster adapt to new domains.

For CPT, we establish novel properties, resembling those of SFT deltas; in particular, domain con-
nectivity, namely, the ability to interpolate after CPT on different domains, with interpolated model
quality increasing with the increase in the pre-train token budget. Identifying the causes for this
effect is an interesting research question. We further find that the CPT delta can be sparsified by up
to 35% over attention heads and 20% over lowest singular values. This amount of sparsity, while not
trivial, suggests that merging approaches such as DARE (Yu et al., 2024) would face significant chal-
lenges. Interestingly, relatively simple spectral metrics are poor predictors of an individual head’s
effect on model quality. This, coupled with the more complex spectral structures on later pre-train
stages, calls for developing more sophisticated approaches to describing the spectral dynamics.

Overall, we expect that a combination of our framework for weight matrix analysis with the analysis
of model activations can lead to significant advancements in model interpretability and presents an
exciting avenue for future research.
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A TRAINING DETAILS

A.1 DATA

For pre-training, we use DCLM (Li et al., 2024) sample with 100B tokens in 4 mixes: 20B DCLM
sample, 100B DCLM, 200B DCLM (oversampled), and 400B DCLM (oversampled).

For CPT we use data from FLAN decontaminated dataset, Dolmino High Quality Subset and
Dolmino Math Mix, as proposed in OLMo 2 (OLMo et al., 2024), this data consists of language
presented in the DCLM baseline. This is filtered by FastText and the FineWeb version of the origi-
nal DCLM (Li et al., 2024). All mixes used in CPT are presented in Table 2

Table 1: Dataset composition for Dolmino High Quality Subset and Dolmino Math Mix.
Source Type Tokens Words Bytes Docs

Mid-Training Dolmino High Quality Subset

DCLM-Baseline High quality web 752B 670B 4.56T 606M
FastText top 7%
FineWeb > 2

FLAN Instruction data 17.0B 14.4B 98.2B 57.3M
from Dolma 1.7 decontaminated

High quality total 832.6B 739.8B 5.09T 710.8M

Mid-Training Dolmino Math Mix

TuluMath Synthetic math 230M 222M 1.03B 220K
Dolmino SynthMath Synthetic math 28.7M 35.1M 163M 725K
TinyGSM-MIND Synthetic math 6.48B 5.68B 25.52B 17M
MathCoder2 Synthetic Synthetic math 3.87B 3.71B 18.4B 2.83M

Ajibwa-2023 M-A-P Matrix
Metamath Math 84.2M 76.6M 741M 383K

OWM-filtered
CodeSearchNet Code 1.78M 1.41M 29.8M 7.27K

OWM-filtered
GSM8K Math 2.74M 2.00M 25.3M 17.6K

Train split

Math total 10.7B 9.73B 45.9B 21.37M

Table 2: Continual pre-training mixes. * - oversampled data
Mix Name Dolmino Math DCLM Filtered FLAN filtered
10B Mixes
4BDM 4B 6B -
8BDM 8B 2B -
Math 10B - -
Text - 10B -

20B Mixes
8BDM 8B 12B -
16BDM 16B 4B -
Math 20B* - -
Text - 20B -

50B Mixes
20BDM 20B* 30B* -
40BDM 40B* 10B -
Math 50B* - -
Text - 41.5B 8.5B
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A.2 MODELS AND TRAINING CONFIGURATION

This study utilizes the OLMo 2 model architecture at two different scales: 1B. The architecture is
based on the standard Transformer decoder Vaswani et al. (2023) and incorporates several modern
enhancements:

• Removal of bias terms

• SwiGLU activation function

• Rotary positional embeddings (RoPE) with θ = 500, 000

• QKV clipping

• RMSNorm normalization

• Reordered layer norm (post-norm configuration)

• QK normalization

• Z-loss for training stability

All models are trained in mixed precision bfloat16. A complete description of the architecture and
training methodology can be found in the original OLMo 2 paper OLMo et al. (2024).

Table 3: Model architecture and training hyperparameters.
OLMo 2 1B

Model Architecture
Hidden Dimension 2048
Number of Layers 16
Number of Attention Heads 16
MLP Ratio 8
Activation Function SwiGLU
Normalization Type RMS Norm
Positional Encoding RoPE (θ = 500, 000)
Max Sequence Length 4096
Vocabulary Size 100,278
Training Configuration
Global Batch Size 512

Pre-training. For our training setup, we adhere to the parameters proposed in the original OLMo 2
paper: a learning rate of 4×10−4 with a warmup phase over 0.7 billion tokens, followed by a cosine
learning rate scheduler that decays to 10% of the initial rate by the end of training. The optimization
is carried out using the AdamW optimizer Loshchilov & Hutter (2019) with the following hyper-
parameters: β1 = 0.9, β2 = 0.95, and ϵ = 10−8 . A weight decay of 0.1 is applied to all weights,
including norms and biases, but not to embeddings.

Continual pre-training. The hyperparameters for continual pre-training remain consistent with
those from pre-training, with the exception of the learning rate. In this stage, we start with the
final learning rate from pre-training, which is 4 ∗ 10−4, and apply a linear annealing schedule that
decreases the learning rate to zero over the course of training.

B REPRODUCIBILITY

We provide full source code to ensure all our experiments are reproducible. Our release includes the
code for pre-training, CPT runs and commands for the OLMEs framework evaluation. The code is
publicly available at: https://anonymous.4open.science/r/all-in-your-heads-CA28

We conduct a deep analysis of model weights using our open-source library, NetInspect
https://anonymous.4open.science/r/netinspect-EF67
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C DEFINITIONS

SINGULAR-VALUE TRANSPLANTATION

Given two checkpoints with per-layer weights W ckpt1 = U1 Σ1 V
⊤
1 and W ckpt2 = U2 Σ2 V

⊤
2

(SVD), the transplanted weight is

W̃ = U2 Σ1 V
⊤
2 . (2)

Unless otherwise stated, transplantation is applied head-wise to Attention (Q,K, V,O) and MLP
(FC1, Gate, FC2) weight matrices only; all other parameters remain from the target checkpoint.

SINGLE-HEAD REWIND

Let H be the number of heads and dhead the head dimension, so dmodel = H dhead. We split projec-
tions along the head-concatenated axis and operate per head:

WQ = [WQ
(0) | . . . |W

Q
(H−1) ], W

K = [WK
(0)| . . . |W

K
(H−1) ], W

V = [W V
(0)| . . . |W

V
(H−1) ],

(3)
where W

Q/K/V
(i) ∈ Rdmodel×dhead are column blocks. For the output projection WO ∈

R(H dhead)×dmodel , we split by rows into H blocks WO
(i) ∈ Rdhead×dmodel and reassemble by row con-

catenation. Single-head rewind at index i sets

{WQ
(i),W

K
(i),W

V
(i),W

O
(i)}

math ← {WQ
(i),W

K
(i),W

V
(i),W

O
(i)}

pre-train, (4)

and replaces the corresponding QK-norm segments along the head axis with pre-train values.

AUC FOR REWIND CURVES

Let {kt}Tt=1 be the discrete percentages of heads rewound (in [0, 100]), and let C↓(kt) and C↑(kt)
denote the metric at kt for descending and ascending greedy orders, respectively. We first compute
the discrete AUC of each curve using the trapezoidal rule:

AUC↓ =

T−1∑
t=1

C↓(kt) + C↓(kt+1)

2

(
kt+1 − kt

)
, AUC↑ =

T−1∑
t=1

C↑(kt) + C↑(kt+1)

2

(
kt+1 − kt

)
.

(5)
Our reported score is the absolute difference

AUC-diff =
∣∣AUC↓ −AUC↑

∣∣. (6)

When the grid is uniform, kt+1 − kt = ∆, this reduces to a constant ∆ times the sum of trapezoid
averages. Higher values indicate a greater separation between descending and ascending orders,
while values near zero indicate random-like behavior.

DELTA TRUNCATION

Given W = U ΣV ⊤ with r = min(m,n), setting k = ⌊(n/100) r⌋ yields the top-k truncation

W̃(n%) = U[:,1:k] Σ1:k,1:k (V
⊤)[1:k,:], (7)

where we keep the top-k singular directions and discard the rest. We report the kept fraction n%.

D ADDITIONAL FIGURES ON MODEL-QUALITY METRICS

Included are figures for runs initialized from pre-train checkpoints at 20B, 100B, and 400B tokens,
complementing the 4T case. These additions enable comparison across initial pre-train scales under
identical continual pre-training setup, with model size held constant at 1B.
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Figure 8: Quality of CPT models initialized from the 20B pre-train checkpoint, providing a detailed
look at CPT configurations across token budgets and math proportions.
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Figure 9: Quality of CPT models initialized from the 100B pre-train checkpoint, providing a detailed
look at CPT configurations across token budgets and math proportions.

E CHECKPOINT MANIPULATIONS

Singular-vector adaptation. CPT updates are dominated by rotations of singular-vector subspaces,
while singular value spectra remain nearly invariant. Layer-wise singular-value transplantation
(for attention and MLP weights only) applies SVD to the pre-train checkpoint weights W pre-train =
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Figure 10: Quality of CPT models initialized from the 400B pre-train checkpoint, providing a de-
tailed look at CPT configurations across token budgets and math proportions.

U pre-train Σpre-train (V pre-train)⊤ and the math checkpoint weights as Wmath = Umath Σmath (V math)⊤.
We then form

W̃ = Umath Σpre-train (V math)⊤. (8)

The results show that downstream performance metrics are preserved, indicating that domain knowl-
edge acquired during CPT is encoded primarily in the geometry of singular vectors rather than in
the singular value spectrum itself (see Fig. 11).

SUPPLEMENTARY TABLES

Table 4: Frobenius norm of the difference between W text and Wmath endpoints versus pre-train
token budget. The distance decreases with longer pre-training.

Pre-train token budget ∥Wmath −W text∥F
4T 1150
400B 1202
200B 1297
100B 1367
20B 1400
init 1535

ADDITIONAL MANIPULATIONS

(i) Injecting a small fraction (0.05–0.3) of the text delta into the 4T CPT math model does not
improve Avg. language tasks accuracy and monotonically reduces GSM8K accuracy as the coef-
ficient grows. (ii) “Super Mario”-style sparse deltas—formed by zeroing 60–90% of neurons in
the 4T math delta and adding to pre-train—significantly degrade GSM8K accuracy. Finally, tar-
geted SVD transplantation within MLPs shows that upper-tail singular vectors dominate GSM8K
accuracy gains: we partition singular directions by magnitude as upper (top 25%), bulk (25–90%),
and lower (bottom 10%); keeping CPT upper while using pre-train lower/bulk yields substantially
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Figure 11: Singular-value transplantation results. Red circles denote CPT on DolminoMath, while
star–diamond markers denote CPT on DolminoMath with singular values transplanted from the
pre-train model. The results indicate that singular-value transplantation does not affect GSM8K
accuracy.

Table 5: Scaling of interpolation quality versus joint training on an 80% math mixture as pre-train
tokens increase. Relative increase is defined as (80% math mix GSM8K) divided by (80% math
interpolation GSM8K).

Pre-train tokens W interp(0.8) (GSM8K accuracy) Wmix(0.8) (GSM8K accuracy) Relative increase
4T 0.436 0.463 +6%
400B 0.268 0.324 +21%
100B 0.188 0.257 +37%
20B 0.054 0.100 +85%

Table 6: Absolute area between descending and ascending rewind curves (AUC; higher is better).
Smaller values indicate behavior closer to random, where ordering does not matter.

Heuristic AUC-diff
greedy 19.1
overlap 5.2
delta Frobenius norm 5.2
delta stable rank 1.1
PL KS (pre-train) 0.9
random 0.0

higher GSM8K accuracy than the converse, and preserving only the top-10 singular directions from
CPT is insufficient to recover the full improvement.

F NETINSPECT: UNDER THE HOOD

To systematically analyze the spectral characteristics and singular vector agreement adjustments
in continual pre-training, we developed NetInspect, an open-source library designed for granular,
architectural-component-level analysis of neural networks. The main text of the paper contains our
key findings. This appendix provides a brief, practical overview of how to use our library to perform
similar analyses.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 12: Head rewind heatmap (per-layer, per-head impact) for 20B Math CPT based on 4T pre-
train. Cells contain GSM8K accuracy change (%).

Table 7: Targeted MLP transplantation ablations (moved from main text). Groups: upper = top 25%,
bulk = 25–90%, lower = bottom 10%.

W pre-train components Wmath components GSM8K accuracy
lower, bulk upper 0.21
bulk, upper lower 0.07
upper lower, bulk 0.11
lower bulk, upper 0.48
lower, bulk, upper — 0.07
except top 10 leading top 10 leading 0.07
— lower, bulk, upper 0.53

F.1 SPECTRA-BASED LLM QUALITY METRICS

F.1.1 NORMS

Our investigation includes the Frobenius (∥W ∥F ) and spectral (∥W ∥2) norms:

∥W ∥F =

√∑
i

σi(W )2, (9)

∥W ∥2 = max
i

σi(W ). (10)

F.1.2 RANKS

We track the following structure-aware ranks:

Stable Rank:

Rs(W ) =
∥W ∥2F
∥W ∥22

. (11)
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Effective Rank:

Re(W ) = −
R(W )∑
i=1

σi(W )∑
j σj(W )

log

(
σi(W )∑
j σj(W )

)
, (12)

where hard rank R(W ) is the number of nonzero singular values (or a chosen truncation).

F.1.3 SINGULAR VECTOR AGREEMENT

Let W i = U iΣi
(
V i
)⊤

and W j = U jΣj
(
V j
)⊤

. We summarize cosine similarities between left
singular vectors via the vector agreement matrix

Au(W i,W j) = |
(
U i
)⊤

U j |, (13)

where the absolute value is taken element-wise. We report two levels: per-vector (diagonal and
row-maximum agreements) and a global average given by the mean of diagonal agreements across
the matrix.

F.1.4 RANDOM MATRIX THEORY FITS

The HT-SR (Heavy-Tailed Self-Regularization) theory originally emerged as a semi-empirical the-
ory, and early seminal works (Martin & Mahoney, 2019; 2021) studied the empirical spectral density
of weight matrices given by

µ(λ;Xi) =
1

n

n∑
j=1

δ
(
λ− λj(X

i)
)
. (14)

Here Xi is a correlation matrix, defined as Xi = 1
m

(
W i

)⊤
W i. The eigenvalues of Xi provide

insight into the distribution of information across different directions in the feature space. This is
captured by the Empirical Spectral Density (ESD),

where λ1(X
i) ≤ . . . ≤ λn(X

i) are the eigenvalues of Xi, and δ denotes the Dirac delta function.
The ESD thus represents a probability measure describing how the eigenvalues are distributed. Note
the relation between singular values and correlation eigenvalues: λi(X) = 1

m σi(W )2.

At random initialization weights are modeled as entries drawn from a Gaussian Orthogonal Ensem-
ble (GOE)

Wi,j ∼ N (x; 0,Var(W )). (15)

One of the key observations in modern DNNs is the deviation of ESDs from classical RMT predic-
tions for such matrices, such as the Marchenko–Pastur (MP) distribution

ρMP(λ;X) =


n

2πm ·Var(W )

√
(λmax − λ)(λ− λmin)

λ
, λ ∈ [λmin, λmax],

0, otherwise,
(16)

with
λmax /min(X) = Var(W )

(
1±

√
n/m

)2
. (17)

While random GOE matrices follow the classical MP distribution, trained neural network weight
matrices deviate significantly from this behavior (Martin & Mahoney, 2019; 2021). During training,
a non-random (signal) component typically emerges outside the MP bulk. We delineate bulk versus
outliers by estimating an upper edge λ̂max via a rescaled MP heuristic (Martin & Mahoney, 2021).
To be more precise, for a particular matrix W we:

1. Randomise W by permuting its elements.

2. Compute the empirical scale s(W ) from the randomized matrix.

3. Find λmax based on the MP prediction with s(W ).
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4. Correct the scale

ŝ2 = s(W )2 − 1

n

n∑
i=1

1{λi>λmax} λi, (18)

then find λ̂max based on ŝ.

Well-trained models further develop heavy tails with ρPL(λ;X) = c · λ−α with normalization
constant c and scaling exponent α ∈ (1.5, 5) (Clauset et al., 2009); smaller α indicates stronger
correlations and, empirically, higher model quality (Martin & Mahoney, 2021).

We estimate α by Maximum Likelihood Estimation (MLE) estimator (Clauset et al., 2009); em-
pirical evidence shows MLE performs well for α ∈ [1.5, 3.5] (Martin & Mahoney, 2021), a typical
range for DNN weight matrices. Fit quality is checked with the Kolmogorov–Smirnov (KS) distance
between the empirical spectrum CDF S(λ) and the fitted PL CDF Ŝ(λ)

KS = sup
λ∈{λi(W )}

∣∣S(λ)− Ŝ(λ)
∣∣. (19)

F.2 VISUALIZATIONS

The pipeline consists of five sequential stages, each designed to probe different aspects of the net-
work’s weight matrices. We assume the user is comparing two model checkpoints, W ckpt1 and
W ckpt2, and checkpoint of their delta (W ckpt1 −W ckpt1).

BOX PLOTS: COMPONENT WISE SPECTRAL METRICS DISTRIBUTION

The analysis employs comparative box plots generated for all weight matrices, which are organized
by matrix family—specifically, the Attention projections (W Q, W K, W V, W O) and the MLP lay-
ers. To ensure a granular analysis, each attention matrix is first decomposed into its heads before
any metric computation.

The analysis itself is structured by distinct metric categories for precise comparison: one group
focuses on norms, including the Frobenius and Spectral norm, while another group concentrates on
rank measures, namely the Stable rank and Effective rank. For the MLP matrices exclusively, this
set of metrics is augmented with the Kolmogorov-Smirnov (KS) statistic, which quantifies the fit to
both a Power Law (PL) and a Marchenko-Pastur (MP) distribution.

The visual encoding of the box plots is designed to convey multiple data dimensions simultaneously.
The fill color of each box plot signifies the specific matrix parameter. The outline color denotes
the checkpoint, where blue represents ckpt1, red represents ckpt2, and green represents the delta.
Furthermore, a jittered scatter plot is laid near each box; the individual data points are colored on
a continuous spectral scale from blue to red. This color mapping corresponds directly to the layer
index, with blue indicating layers near the model input and red indicating layers near the output. This
integrated approach allows for the immediate assessment of distributional properties—including
medians, quartiles, and outliers—across the two checkpoints, while preserving the crucial ability to
discern depth-dependent patterns within the metric distributions.

CLUSTER BAR CHARTS: SINGULAR VALUES DISTRIBUTION

The purpose of this stage is to visualize the entire distribution of singular values. The visualization
employs a cluster bar chart where the x-axis is exponential binning of the singular values, while the
y-axis represents the count of values falling into each bin.

To articulate the layer-by-layer evolution of the spectrum, the color of each bar corresponds to its
layer index. For attention matrices, the singular values are first averaged across all heads within a
given layer before the binning process.

SPARKLINES: SPECTRAL METRIC TRENDS

This stage aims to compactly visualize the trend of each metric across the network’s depth, enabling
a quick, at-a-glance assessment of layer-wise patterns. The procedure involves plotting the metric
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value as a function of layer index for each matrix family. For attention matrices, the values are
aggregated across their heads: a solid line represents the mean, a dashed line represents the median,
and a shaded area delineates the band of mean ± one standard deviation. These resulting sparklines
provide a temporal view of metric evolution through the network’s layers. This visualization allows
for the immediate identification of critical patterns, where a sharp change in a metric at a specific
layer or a consistent divergence between the mean and median can signal important architectural
transitions or anomalies.

HEATMAPS: SPECTRAL METRIC HETEROGENEITY

The purpose of this stage is to expose fine-grained, head-specific and layer-specific variations in
metrics, providing a direct visual comparison of the differences between the two checkpoints. The
procedure involves creating a two-dimensional grid for each combination of attention matrix type
(W Q, W K, W V, W O) and metric, with the axes representing the layer index and head index. For
each such combination, a quartet of heatmaps is generated: the first visualizes the raw metric values
for W ckpt1 on a blue color scale; the second visualizes the raw values for W ckpt2 on a red scale;
the third shows the delta and the fourth displays a metric difference. This visualization allows for
pinpointing the exact heads and layers that contribute most significantly to the overall divergence
between the two models, moving from a high-level summary to a precise diagnostic tool.

VIOLIN PLOTS: SINGULAR VALUE DISTRIBUTION AND SINGULAR VECTOR AGREEMENT

The final stage of our analysis is architected the most detailed view of the singular value distribution
for each individual head and layer, while simultaneously incorporating information about singular
vector agreement. This is achieved by generating a matrix of plots, where each cell corresponds to
a specific (layer, head) pair. Within a given cell, a violin plot is used to depict the density of the sin-
gular values for that specific matrix. Overlaid onto this violin plot is a jittered scatter plot, where the
color of each point is determined by a vector agreement metric—overlap between the correspond-
ing singular vectors of W ckpt1 and W ckpt2. This powerful composite visualization synergistically
combines the shape of the singular value spectrum, conveyed by the violin, with the stability of
the underlying directional components, indicated by the colored jitter, across the entire model. It
thereby enables the precise identification of nuanced scenarios, such as attention heads that exhibit a
similar spectral distribution but possess different singular vectors directions, or vice versa, offering
insight into the micro-dynamics of network evolution.
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