

000 IT'S ALL IN THE HEADS: AN INVESTIGATION OF DO- 001 002 MAIN KNOWLEDGE INFUSION INTO LLMS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 While large language models (LLMs) are widely studied, the mechanisms by
012 which they internalize knowledge from specialized domains remain poorly under-
013 stood. To investigate this, we analyze the continual pre-training (CPT) paradigm,
014 where a base model is further pre-trained on a curated, domain-specific corpus.
015 Through a study on diverse domains, including mathematics, instruction, code,
016 and text data, we uncover novel properties of this process. By analyzing SVD de-
017 compositions of model weights we determine that the difference before and after
018 CPT can be attributed predominantly to changes in singular vectors. We identify
019 **head heterogeneity** in the behavior of attention weight matrices. We investigate
020 the effect of rewinding attention heads on model quality by ordering them ac-
021 cording to various scalar criteria. Based on our analysis we propose a novel head
022 importance criterion which allows to either truncate up to **60%** heads in the model
023 increment or to achieve up to **4%** quality increase upon partial head rewinding to
024 the pre-train state. Further, we discover **domain connectivity** — *i.e.*, the abil-
025 ity to linearly interpolate between CPT checkpoints on different domains without
026 significant quality loss, and discuss key quality drivers of this phenomenon. To
027 foster further research, we provide an open-source scalable toolkit for performing
028 spectral analysis on models with billions of parameters - NetInspect. The code is
029 available at <https://anonymous.4open.science/r/netinspect-EF67>

031 1 INTRODUCTION 032

033 Continual pre-training (CPT) is now a standard component of modern LLM training pipelines;
034 in many contemporary multi-stage workflows — including recent state-of-the-art models such as
035 Llama 3 (Dubey et al., 2024) and OLMo 2 (OLMo et al., 2024) — the final pre-train stage uses cu-
036 rated, domain-specific data mixtures while the learning rate is linearly annealed to zero. Empirical
037 evidence suggests that this late-stage focus on cleaner, domain-relevant data improves mathemat-
038 ical and coding abilities without degrading general-language performance (Blakeney et al., 2024).
039 Moreover, CPT is central to producing domain-specialized models, such as Code Llama (Roziere
040 et al., 2023) and DeepSeekMath (Shao et al., 2024); applying CPT to a general-purpose model yields
041 better performance than training a specialized model from scratch under the same compute budget.

042 However, the CPT stage of the LLM training pipeline is significantly less studied compared to
043 the supervised fine-tuning (SFT) stage, where a rich set of phenomena has been documented —
044 including linear mode connectivity (Frankle et al., 2020), task arithmetic (Ilharco et al., 2023), model
045 soups (Wortsman et al., 2022), ability transfer (Yu et al., 2024) and low-rank subspace modification
046 (Hu et al., 2022). To investigate whether similar phenomena exist for CPT, we conduct a series
047 of pre-train and continual pre-training experiments on 1B and 7B language models with OLMo
048 2 architecture for several domains: math, instruction, code, and text. We analyze the CPT delta
049 $\Delta \mathbf{W} = \mathbf{W}^{\text{domain}} - \mathbf{W}^{\text{pre-train}}$, characterize its sparsity, and assess the ability to interpolate between
050 checkpoints adapted to different domains.

051 Additionally, we investigate the singular spectra of weight matrices for checkpoints along the pre-
052 train trajectory and for weight increments after CPT, and uncover several novel phenomena. Prior
053 random matrix theory-based work suggests that heavy-tailed singular value distributions are closely
connected to the generalization ability (Martin & Mahoney, 2019; 2021; Yang et al., 2022). In our

054 analysis, we consider singular spectra of weight matrices as well as the dynamics of singular vectors,
 055 which were earlier shown to play an important role in the model training process (Yunis et al., 2024).
 056

057 In summary, we highlight our key contributions:

- 059 1. Investigation of the dynamics of weight matrix singular values spectra, and identify the
 060 development of complex spectral structure in attention heads matrices along the pre-train
 061 stage, which can not be described by heavy-tailed self-regularization theory (Martin &
 062 Mahoney, 2019). This is associated with an increase in quality on language tasks and faster
 063 domain adaptation on CPT. Moreover, we find that the spectra during CPT remain almost
 064 stable, and the domain adaptation is driven by singular vector changes localized near the
 065 peaks in the SVD spectra.
- 066 2. Identification of **head heterogeneity**, namely, of the varying behavior of attention heads
 067 during CPT stages on different domains, which becomes more pronounced with increasing
 068 the pre-train token budget. More specifically, we observe some heads demonstrating sig-
 069 nificant changes regardless of CPT domain nature, and some heads changing in a domain-
 070 specific manner. We use this information to put forward a criterion for ordering heads
 071 according to their effect on CPT quality, which enables us to achieve a quality increase of
 072 up to **4%** for math CPT of 7B model. Additionally, we discover that CPT deltas have re-
 073 dundancy in parameters, which increases with model size: up to **60%** of attention heads or
 074 up to **50%** smallest singular values in CPT delta can be dropped without significant changes
 075 to model quality.
- 076 3. Identification of the ability to linearly interpolate between checkpoints after CPT on differ-
 077 ent domains without quality decrease, for which we coin the term **domain connectivity**;
 078 we find that interpolated model quality improves with the increase in pre-train stage length.
- 079 4. Implementation of an open-source tool for matrix spectra analysis — NetInspect package
 080 — in order to ensure the reproducibility of our findings and to facilitate future research.

082 2 METHODOLOGY

084 In order to investigate the properties of model weight matrices, we employ several analytical meth-
 085 ods centered on singular value decomposition (SVD) (Golub & Reinsch, 1970). For a weight matrix
 086 from the i -th layer \mathbf{W}^i , with dimensions $m \times n$ ($m \geq n$) and hard rank $r = R(\mathbf{W})$, its thin SVD
 087 is $\mathbf{W} = \mathbf{U}\Sigma\mathbf{V}^\top$, where $\mathbf{U} = [\mathbf{u}_1(\mathbf{W}), \dots, \mathbf{u}_r(\mathbf{W})] \in \mathbb{R}^{m \times r}$, $\mathbf{V} = [\mathbf{v}_1(\mathbf{W}), \dots, \mathbf{v}_r(\mathbf{W})] \in$
 088 $\mathbb{R}^{n \times r}$, and $\Sigma = \text{diag}(\sigma_1(\mathbf{W}), \dots, \sigma_r(\mathbf{W}))$ with $\sigma_1(\mathbf{W}) \geq \dots \geq \sigma_r(\mathbf{W}) > 0$. This notation is
 089 used consistently throughout our analysis.

090 **Norms and Ranks.** We characterize singular spectra $\Sigma(\mathbf{W})$ through established spectral measures:
 091 the Frobenius norm $\|\mathbf{W}\|_F$, spectral norm $\|\mathbf{W}\|_2$, stable rank $R^s(\mathbf{W})$, and effective rank $R^e(\mathbf{W})$.
 092 Complete definitions are provided in Appendices A.1 and A.2.

093 **Singular Vector Agreement.** SVD provides both spectral magnitudes and directional information
 094 through singular vectors. To analyze directional changes during training, we measure agreement be-
 095 tween singular vectors of a given weight matrix along the training trajectory. Further implementation
 096 details are presented in Appendix A.3.

097 **Fitting Model Distributions.** We model the empirical spectral density (ESD) using two comple-
 098 mentary approaches: the Marchenko–Pastur distribution (Marčenko & Pastur, 1967) for the bulk
 099 spectrum and power-law models for heavy-tailed spectral regions. Estimation procedures and diag-
 100 nóstic methods are detailed in Appendix A.4.

102 3 EXPERIMENTAL SETUP

104 3.1 TRAINING SETUP

106 107 We initialize all models using the OLMo 2 architecture and training stack (OLMo et al., 2024),
 training 1B and 7B models. Our experimental pipeline consists of two sequential stages:

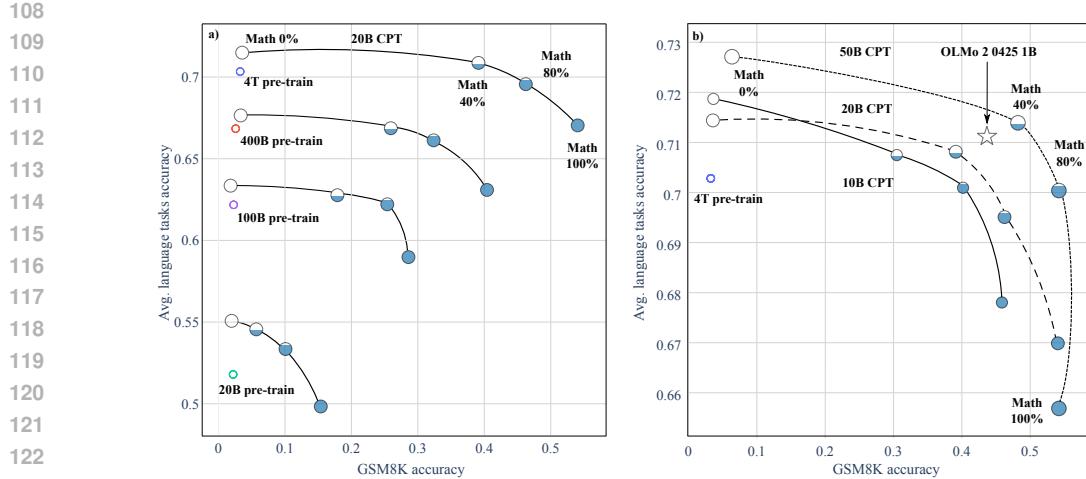


Figure 1: Math–language quality trade-off with continual pre-training on the OLMo 2 1B backbone. The y-axis reports the average accuracy on WinoGrande, ARC-Easy, and HellaSwag. Hollow circles denote pre-train checkpoints; filled circles denote continual pre-training runs initialized from the corresponding pre-train checkpoints. Marker size encodes the CPT token budget (10B, 20B, 50B) on a mixture of math and text data; marker fill encodes the math proportion in the data (0%, 40%, 80%, 100%). Points with the same CPT token budget are connected. a) Overview across pre-train sizes (20B, 100B, 400B, 4T). For each pre-train checkpoint, we plot CPT runs with a fixed 20B-token budget (equal marker sizes) and varying math proportions; the leftmost hollow marker in each connected series is the corresponding pre-train checkpoint. b) Quality of CPT runs starting from 4T pre-train checkpoint (leftmost hollow marker). CPT runs vary both the token budget and the math proportion; the star marks the original OLMo 2 0425 1B CPT model (50B tokens with 10B math, i.e., 20%). Larger pre-train token budgets yield better results overall. Increasing the math proportion moves models rightward while typically lowering language-task accuracy, whereas larger token budgets shift the trade-off frontier outward.

Stage 1: Pre-train. We pre-train models from scratch on mixtures sampled from DCLM (Li et al., 2024), using token budgets ranging from 20B to 400B. Training follows a cosine learning rate schedule with a warm-up phase; for each pre-train dataset size we use a full scheduling cycle. Due to computational constraints, this stage is conducted only for the 1B model; we also use 1B and 7B checkpoints pre-trained for 4T tokens by OLMo team.

Stage 2: Continual pre-training (CPT). Starting from the pre-trained checkpoints listed above, we further train the models on several data mixtures to study domain shift and replay effects. We vary the CPT data composition to emphasize (i) DolmimoMath-only data (MATH) (OLMo et al., 2024), (ii) balanced DCLM+DolmimoMath mixtures, (iii) DCLM-heavy replay mixtures (TEXT), (iv) instruction data from FLAN (Wei et al.) and Stack Exchange¹ (INST), and (v) instruction data combined with DolmimoMath and (vi) source code from StarCoder (CODE) (Li et al., 2023). The learning rate is initialized to the final value used in Stage 1 and is annealed to zero throughout this phase. Complete reproducibility details, including hyperparameters, training configurations, and data splits, are provided in Appendix B.2. The code can be found in Appendix B.3.

3.2 EVALUATION PROTOCOL

The quality of the model is evaluated using the OLMES framework (Gu et al., 2025). Language accuracy is measured as the average performance across three datasets: ARC-Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2019). Each of these language tasks is evaluated in a 5-shot setting, where answer choices are scored individually using LLM token probabilities in a cloze-style format.

¹https://archive.org/details/stackexchange_20240930

162 For math accuracy, we use an 8-shot evaluation on GSM8K (Cobbe et al., 2021), computing exact-
 163 match accuracy between model predictions and the gold answers. To assess instruction following
 164 and reading comprehension, we evaluate on the DROP dataset (Dua et al., 2019). Finally, code
 165 generation capabilities are measured using HumanEval (Chen et al., 2021).

166

167 4 MAIN RESULTS

168

169 4.1 CPT QUALITY DYNAMICS

170

171 First, we focus on identifying trends in the CPT quality as a function of token budget and CPT
 172 dataset composition. To that end, we study continual pre-training on the DolmimoMath mathematics
 173 corpus, which demonstrates pronounced quality gains in GSM8K accuracy (OLMo et al., 2024).
 174 We run experiments on a 1B model with pre-train token budgets of 20B, 100B, 400B and 4T, and
 175 CPT token budgets of 10B, 20B, and 50B for CPT mixtures of DolmimoMath and DCLM data.

176

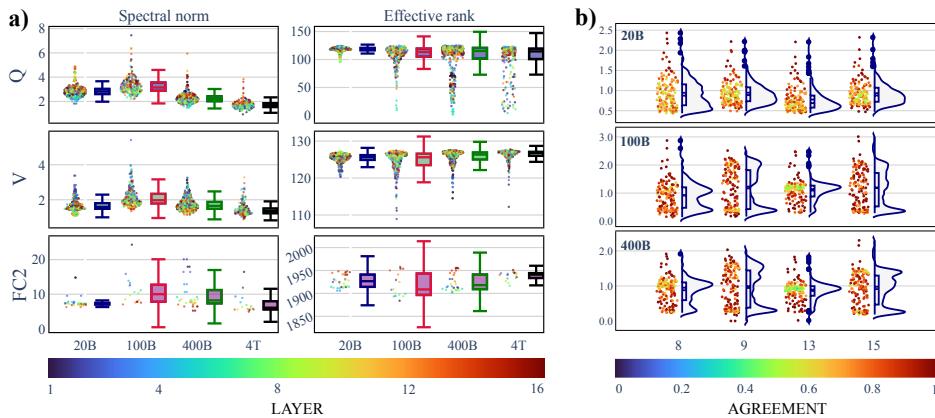
177 Our analysis reveals two key findings. First, we consider CPT runs starting from the 4T pre-train
 178 checkpoint, and find that the math performance plateaus at 20B (Fig. 1(b)). GSM8K accuracy for
 179 our 20B CPT run is higher than that of the OLMo 2 0425 1B checkpoint. Therefore, in further
 180 experiments with other pre-train token budgets, other domains, and the 7B model, we focus on a
 181 20B-token CPT. Second, for 20B CPT runs starting from different pre-train budgets, we find that
 182 while math performance after pre-train is similarly low — consistent with the absence of domain
 183 knowledge in the pre-train dataset mix — models with a longer pre-train stage achieve better final
 184 math quality metrics after the CPT stage (Fig. 1(a)). Similar results hold for 10B and 50B CPT
 185 lengths, as we demonstrate in Appendix Fig. 8. In the next section, we propose a hypothesis for
 186 such behavior based on spectral analysis of model weight matrices.

187

188 4.2 SPECTRAL EVOLUTION ALONG THE PRE-TRAIN STAGE

189

190 To gain insight into pre-train dynamics, we first consider weight matrix norms and ranks (Fig. 2(a)).
 191 We highlight the non-monotonic behavior of Frobenius and spectral norms, which reach maximum
 192 values at around 100B tokens of pre-train. Effective rank also demonstrates an inflection



207

208 Figure 2: Spectral shape and metrics evolution during pre-train. a) Rows (top to bottom) correspond
 209 to W^Q , W^V , and W^{FC_2} weight matrices, while columns (left to right) report the Frobenius norm
 210 and the effective rank. Each subplot overlays jittered per-matrix values with box plots summarizing
 211 the distributions for models pre-trained on 20B, 100B, 400B, and 4T tokens. Points denote indi-
 212 vidual matrices and are color-coded by the corresponding layer index. b) Singular-value spectra for
 213 W^Q (layer 6, heads 8, 9, 13, 15) at 20B, 100B, and 400B tokens. Jitter points represent singular
 214 values and are colored by the left singular vector agreement between each pre-train checkpoint and
 215 the corresponding CPT endpoint on math domain. Note the increasingly complex spectral shape that
 poorly conforms to MP and PL models. Starting at 100B the singular vectors that change during the
 CPT stage are increasingly localized in narrow spectral bands.

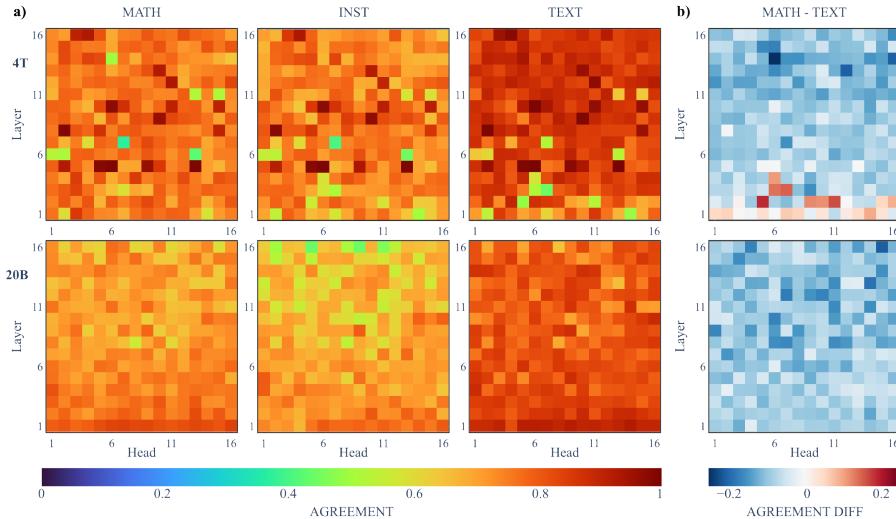
216 point around 100B tokens: a substantial number of layer-level outliers with significantly lower rank
 217 emerge.

218 We go beyond basic statistics and perform a detailed examination of the shape of singular spectra
 219 for attention weights of 1B and 7B models. For 1B we consider pre-train budgets from 20B to
 220 400B (Fig. 2(b)). At initialization, weight matrices are random, and their singular spectra follow the
 221 Marchenko-Pastur law (Marčenko & Pastur, 1967). After 20B pre-train, the power-law tail starts
 222 to form in the spectra of the heads (Fig. 2(b), top panel), in accordance with heavy-tailed self-
 223 regularization theory (HTSR) (Martin & Mahoney, 2021). However, at 100B and larger pre-train
 224 budgets the complexity of attention heads spectra increases — namely, the appearance of outliers and
 225 multiple narrow peaks. The same holds for both 7B and 1B models after a 4T pre-train (Appendix
 226 Fig. 9(b)). These empirical distributions deviate significantly from HTSR models. We hypothesize
 227 that such complex structure is a prerequisite for faster domain adaptation of models with larger pre-
 228 train token budgets and note that these findings call for the development of more complex models
 229 for the singular spectra of attention heads.

230 The spectral structure of MLP blocks stays close to the HTSR model with power-law tail — re-
 231 sembling the spectra of attention heads at 20B (Fig. 2(b), top panel, Appendix Fig. 10) — for any
 232 pre-train token budget. However, we note that the power-law (PL) tail already forms after 20B pre-
 233 train, as determined by goodness-of-fit — Kolmogorov-Smirnov (KS) distance (Clauset et al., 2009)
 234 (Appendix Fig. 11, bottom panels), and the agreement with this model deteriorates with the increase
 235 in pre-train tokens and with the increase in model quality (Fig. 1). From these observations, we
 236 can conclude that the formation of a power-law tail in the singular spectra is a necessary but not
 237 sufficient prerequisite for the model performance increase.

238 4.3 SPECTRAL EVOLUTION ALONG THE CPT STAGE — HEAD HETEROGENEITY

240 First, we highlight that the CPT stage does not induce significant changes in the singular spectra of
 241 model weight matrices. Apart from the similarity of matrix properties, we confirm this experimen-
 242



261 Figure 3: **Head heterogeneity** — the effect of CPT data domain on vector agreement with the pre-
 262 trained model as a function of the pre-train budget: 4T tokens (top row) and 20B tokens (bottom
 263 row). a) Heatmaps show the average vector agreement between CPT and pre-train for individ-
 264 ual heads of W^Q across different CPT domains (left to right: math, instruct, text). Lower vector
 265 agreement values correspond to larger changes of the corresponding weight matrices relative to the
 266 pre-trained model. b) Difference in vector agreement between the math and text domains. Blue and
 267 red colors indicate larger changes under math and text CPT, respectively. As the pre-train budget
 268 increases, outlier heads emerge (a) and become specialized to particular domains (b). Furthermore,
 269 the domains exhibit a clear ordering: CPT on text preserves the strongest vector agreement, whereas
 math and instruct CPT induce substantially larger rotations.

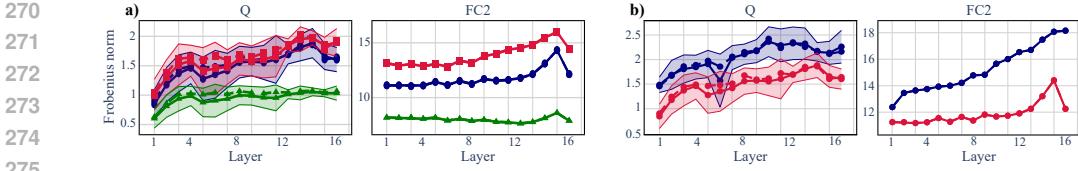


Figure 4: Layer-wise Frobenius norm of CPT deltas for \mathbf{W}^Q and \mathbf{W}^{FC_2} for 1B model across (a) CPT domains and (b) pre-train budgets. Statistics are aggregated per head (mean: solid line, median: dashed line; shaded region: mean \pm std). a) Effect of CPT domain for 4T tokens pre-train: deltas for the text domain (green) are smallest in magnitude, indicating less incremental change compared to math (blue) or instruct (red) domains. b) Effect of pre-train budget on math domain: deltas from 100B-token models (blue) exhibit simpler layer-wise shape compared to 4T-token models (red).

tally — namely, the model quality after CPT does not change after inserting singular spectra from $\mathbf{W}^{\text{pre-train}}$ into $\mathbf{W}^{\text{domain}}$ (see Appendix Fig. 14). This allows us to investigate the effects of CPT by considering only row-maximum singular vector agreement (Appendix A.3).

Vector agreement analysis can be carried out in two ways, supported by the NetInspect package. First, for each singular value in the spectrum one can consider the agreement of the corresponding vector in $\mathbf{W}^{\text{pre-train}}$ and $\mathbf{W}^{\text{domain}}$ (Fig. 2(b)). This mode allows us to infer that the most significantly changing vectors are associated with peaks in singular value spectra. Next, one can consider agreement in an aggregated mode over all vectors in a matrix — this enables the quantification of the degree of change for each attention head or MLP layer in the model (Fig. 3(a)). We apply this analysis to study the behavior of attention heads after CPT on the domains of math, instruct, and text, and establish the **head heterogeneity** effect. Namely, for the longer 4T pre-train, attention heads change differently during CPT: some heads exhibit substantial changes during CPT across all domains, while others change in a domain-specific manner. This is shown in Fig. 3(a) for 1B model and Appendix Fig. 12(a) for 7B model. In contrast, for the shorter 20B pre-train, the changes are more uniformly distributed across heads. The onset of head heterogeneity occurs simultaneously with the increase in complexity of attention heads singular spectra; we hypothesize that both phenomena are related to the increase in CPT quality and more rapid improvement with CPT token budget.

In order to further quantify the dynamics induced by CPT we consider Frobenius norm of the CPT delta $\Delta\mathbf{W} = \mathbf{W}^{\text{domain}} - \mathbf{W}^{\text{pre-train}}$. A comparative analysis of CPT deltas across the same domains of math, instruct, and text reveals highly consistent behavior of Frobenius norms for both 1B (Fig. 4(a)) and 7B models (Appendix Fig. 13). For MLP layers, we observe larger changes in later layers — a trend consistent across domains. We note that such layer specialization arises with the increase in pre-train budget (Fig. 4(b)). For attention matrices, we note the high within-layer variance of CPT delta, consistent with the head heterogeneity observation above. Next, we turn to quantifying the effect of head heterogeneity on model quality after CPT.

4.4 DRIVERS OF DOMAIN QUALITY IN CPT DELTAS

In order to quantify the effect of head heterogeneity on model quality after CPT, we carry out head-wise rewind analysis and investigate CPT delta compressibility by truncating its singular spectrum.

Head-wise rewind. We assess the importance of individual attention heads for CPT quality as follows — we order all heads by one of the scalar importance criteria defined below and then incrementally rewind the heads in that order to the pre-train state.

We evaluate the following types of ordering criteria. As a simple baseline, we rewind heads several times in different random orders. Next, we use the decrease in CPT quality upon the single-head rewind as a “greedy” ordering criterion. We treat this ranking as a “ground truth” reference measure of head importance. Additionally, we consider head orderings based on spectral properties of the corresponding weight matrices of model checkpoints and CPT deltas. For pre-train checkpoints, we use PL-KS distance and the PL exponent α ; for CPT deltas, we use the Frobenius norm and the singular vector agreement between $\mathbf{W}^{\text{pre-train}}$ and $\mathbf{W}^{\text{domain}}$.

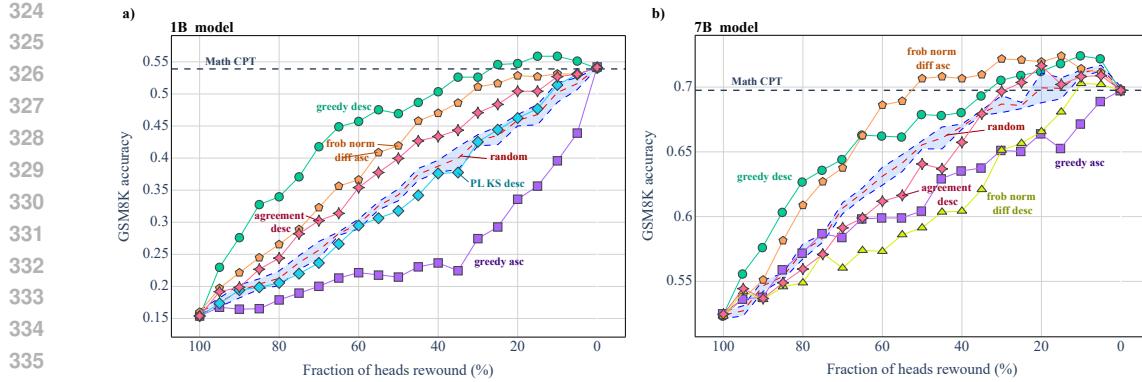


Figure 5: CPT delta head-wise rewind results. a) GSM8K accuracy versus fraction of heads rewound for the 1B model. Greedy ordering (green for descending and purple for ascending) strongly outperforms simple heuristic proxies: random (red dashed line with std band), PL-KS distance (blue), and average singular vector agreement between CPT and pre-train (solid red). b) GSM8K accuracy versus fraction of heads rewound for the 7B model. The difference-in-scaled-Frobenius-norms metric, highlighted in orange (ascending) and light green (descending), demonstrates significantly improved ordering.

We study CPT on math domain for 1B and 7B models after 4T pre-train, shown in Fig. 5 for 1B- and 7B-parameter models, and also instruct CPT for 7B model and math CPT for 1B model from a much smaller 20B pre-train, shown in Appendix Fig. 15. This multi-domain analysis reveals three main observations. First, rewinding any single head changes CPT quality by less than two percentage points on average, and for some heads even improves it (see Appendix Fig. 16). Second, among the simple matrix properties, performance is largely comparable to the random baseline and is outmatched by the “greedy” strategy, suggesting that head-wise spectral metrics are not very useful for assessing head importance. Finally, we demonstrate additional evidence for the emergence of head heterogeneity along the pre-train stage. Rewinding the heads of a model with much smaller 20B pre-train budget results in a rapid decline in quality (Appendix Fig. 15(b)), consistent with the homogeneous pattern of head-wise changes during CPT (Fig. 3(a), lower panel).

Motivated by the head heterogeneity concept introduced in the previous section (Fig. 3), we propose a novel head ordering criterion that allows: 1) to achieve a quality increase — of up to **+4%** for math CPT of a 7B model upon rewinding around 15% of heads, and 2) to rewind up to **60%** of heads without a significant quality drop. Specifically, we define the text CPT as a *reference* domain, since it is carried out on a similar text data to the pre-train stage, while other CPTs are considered as *target* domains that focus on specialized knowledge. For each target domain, we order heads by the amount of change during its CPT compared to the reference CPT — such as the quantity demonstrated in Fig. 3(b). However, for 7B models, we find that a similar metric based on Frobenius norms of CPT deltas, per the equation below, performs better:

$$\text{scale}_{[0,1]} \left(\left\{ \|\mathbf{W}^{\text{domain}} - \mathbf{W}^{\text{pre-train}}\|_F \right\}_{(l,h)} \right) - \text{scale}_{[0,1]} \left(\left\{ \|\mathbf{W}^{\text{reference}} - \mathbf{W}^{\text{pre-train}}\|_F \right\}_{(l,h)} \right) \quad (1)$$

where “l” and “h” index layer and head respectively, and $\text{scale}_{[0,1]}(\mathbf{X}) = (\mathbf{X} - X_{\min}) / (X_{\max} - X_{\min})$.

Empirically, this novel methodology helps elucidate domain-specific changes via a comparison with a reference text domain, and outperforms not only standard spectral heuristics, but also the greedy ranking strategy (see Appendix Table 4). We hypothesize that further research of more complex models for singular spectra reflective of the rich structure observed in Fig. 2(b), will enable the development of more powerful head ranking criteria.

SVD truncation of CPT delta.

To assess CPT parameter redundancy, we analyze the low-rank structure of the CPT delta. For each matrix, we compute an SVD of $\Delta\mathbf{W}$, zero out the smallest singular values, reconstruct a truncated

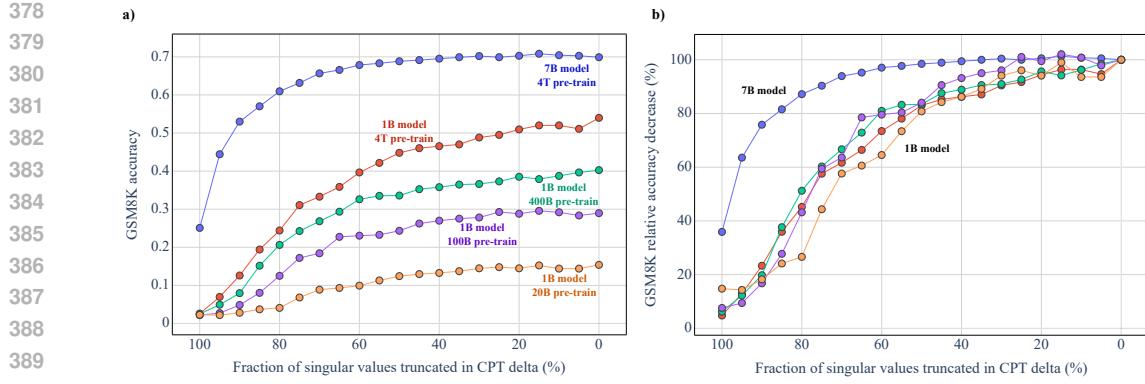


Figure 6: CPT delta SVD redundancy analysis. GSM8K (a) absolute and (b) relative accuracy as a function of the fraction of singular values retained after SVD truncation of the CPT delta. Curves show models with different scales and pre-train budgets: 7B/4T tokens (blue), 1B/4T tokens (red), 1B/400B tokens (green), 1B/100B tokens (purple), 1B/20B tokens (orange). The 7B model maintains performance with aggressive truncation (50% of singular values removed), while 1B models degrade more rapidly, suggesting the larger model learns more redundant representations during CPT.

$\Delta \widetilde{\mathbf{W}}$, and evaluate $\mathbf{W}^{\text{pre-train}} + \Delta \widetilde{\mathbf{W}}$. Truncation is applied only to attention (head-wise) and MLP matrices; all other matrices are taken directly from $\mathbf{W}^{\text{domain}}$.

For the 1B model, CPT deltas remain high-rank, and truncation tolerance does not improve monotonically with the pre-train token budget. More concretely, truncating 30% of the CPT delta leads to a relative drop of $\approx 10\%$ in GSM8K accuracy for both the 100B-token and 4T-token pre-trained models. In contrast to the token budget, model scale has a substantial effect on truncation tolerance, suggesting that larger architectures accommodate more redundant task directions. As shown in Fig. 6, for the 7B model one can remove up to **50%** of singular values without a measurable drop in GSM8K accuracy, while pronounced degradation begins once more than 80% of singular values are removed. We confirm these findings for the instruct CPT, see Appendix Fig. 17(b).

4.5 DOMAIN CONNECTIVITY

Inspired by linear mode connectivity (Frankle et al., 2020) in fine-tuning of large language and vision models, we observe a similar phenomenon for continual pre-training. We study **domain connectivity** between pairs of models initialized from the same $\mathbf{W}^{\text{pre-train}}$ checkpoint and continually pre-trained on different domains: math, text, code, and instruct for 20B tokens, considering both 1B and 7B models. Specifically, we form interpolants:

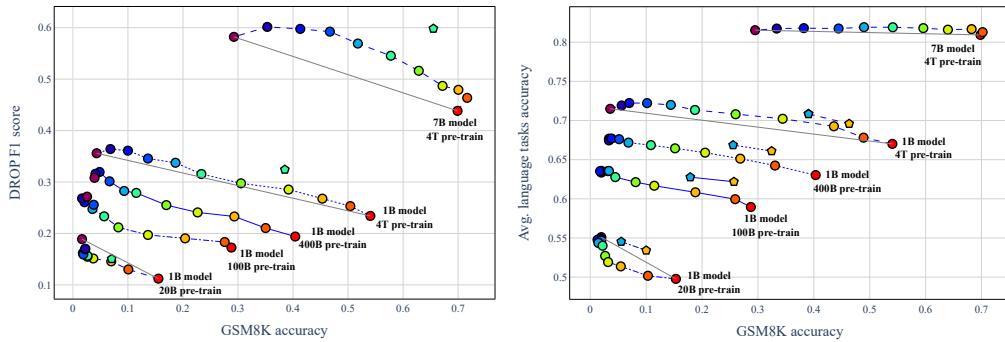
$$\mathbf{W}^{\text{interp}}(\omega) = (1 - \omega) \mathbf{W}^{\text{domain}_1} + \omega \mathbf{W}^{\text{domain}_2} \quad \omega \in [0, 1] \quad (2)$$

which we refer to as “*model soups*”. Additionally, we evaluate models trained on different domain mixtures (see Appendix Table 2). We present results for math – instruct and math – text interpolation for both 1B and 7B models in Fig. 7; additionally, we report results for instruct – text in Appendix Fig. 17(a) and instruct – code and math – code in Appendix Fig. 18(a, b).

For the math domain (Fig. 7), for all interpolation pairs, the model soup quality lies *below the chord* connecting the endpoints (i.e., is concave) at 20B, is approximately *linear* at 400B, becomes mildly *convex* at 4T for the 1B model, and is clearly *convex* at 4T for the 7B model. This trend indicates that interpolation quality improves with both the pre-train token budget and model size.

We hypothesize that the transition from concave to convex behavior may be related to the development of complex spectral structure in attention heads. Additionally, across pre-train budgets and model sizes, linear interpolation underperforms CPT trained directly on dataset mixtures. This, in turn, may limit the applicability of simple task-vector-style linear combinations, but a more systematic study is left for future work.

432
433
434
435
436
437
438
439
440
441
442
443
444
445



446 Figure 7: **Domain connectivity.** – linear interpolation quality, step size $\omega = 0.1$. a) DROP F1 score
447 vs. GSM8K accuracy for different pre-train token budgets and model sizes. The cyan pentagon
448 marker denotes a model trained on 10B DolmidoMath + 10B FLAN. b) Average language-task
449 accuracy vs. GSM8K accuracy for different pre-train token budgets and model sizes. Yellow markers
450 correspond to 80% Math / 20% filtered DCLM; blue markers correspond to 40% Math / 60% filtered
451 DCLM. As the pre-train token budget and model size increase, both interpolation quality and the
452 performance of models trained on data mixtures improve.

5 RELATED WORK

453
454
455
456
457 **Continual pre-training.** A primary challenge in CPT is mitigating catastrophic forgetting while
458 efficiently adapting models to new domains. To combat forgetting directly, interleaving a small
459 fraction of *replay data* from the original pre-train distribution during CPT is a simple yet powerful
460 method to anchor the model’s general representations (Wang et al., 2023; Qi et al., 2025; Hickok,
461 2025). The optimization process itself is crucial, as empirical findings demonstrate that learning
462 rate re-warming and re-decaying is necessary to overcome initial instability and adapt optimization
463 dynamics to the new data, even in the absence of a distribution shift (Gupta et al., 2023; Ibrahim
464 et al., 2024). Furthermore, data selection strategies that choose samples based on their similarity to
465 the target task or their novelty and diversity are highly effective for adaptation (Xie et al., 2023; Que
466 et al., 2024).

467 **Model weight spectrum interventions.** Weight matrices are often approximately low rank, en-
468 abling selective removal of higher-order components (small singular values) to denoise networks and
469 enhance reasoning performance (Sharma et al., 2023). This low-rank property underpins parameter-
470 efficient fine-tuning methods like LoRA (Hu et al., 2022). However, optimal rank is highly layer-
471 dependent, and smaller residual singular values are not mere noise—they maintain connectivity to
472 good loss basins and preserve performance on difficult tasks (Yin et al., 2023).

473 **Model averaging and task arithmetic.** Model merging is rooted in linear mode connectivity (Fran-
474 kle et al., 2020), which posits that independently trained networks can lie in a shared low-error basin,
475 enabling weight interpolation without catastrophic loss (Ainsworth et al., 2022). Model souping
476 averages weights of models fine-tuned from a common checkpoint (Wortsman et al., 2022), and
477 merging models from diverse training runs boosts out-of-distribution generalization (Rame et al.,
478 2022). Task arithmetic (Ilharco et al., 2023) reframes fine-tuning as additive task vectors in nearly
479 orthogonal directions, with TIES-Merging mitigating interference by pruning small updates and en-
480 forcing consensus signs (Yadav et al., 2023). Complementary approaches are based on the exclusion
481 of a large proportion of delta entries from merging to confine task deltas (Yu et al., 2024; He et al.,
482 2024), and compressing per-layer deltas via SVD with Procrustes alignment to reduce subspace
483 overlap (Gargiulo et al., 2025).

484 **Spectral analysis and model performance.** RMT studies identify heavy-tailed self-regularization
485 (HTSR) as a key feature of well-trained models, where lower power-law exponents correlate with
486 superior generalization in Transformers, serving as data-free quality predictors (Yang et al., 2022;
487 Martin & Mahoney, 2019; 2021; Kothapalli et al., 2024). Training yields HTSR shaped by the dy-

486 namics of the optimizer and consistently decreasing effective rank during training across architec-
 487 tures, with better generalizing solutions exhibiting lower effective rank (Yunis et al., 2024; Thamm
 488 et al., 2022; Staats et al., 2024). The Marchenko–Pastur (MP) law helps distinguish bulk eigenvec-
 489 tors—which are largely random—from the top singular components, which encode learned signal
 490 (Thamm et al., 2022; Staats et al., 2024).

492 6 DISCUSSION AND DIRECTIONS FOR FURTHER WORK

494 Our analysis allowed us to unveil several novel observations about continual pre-training (CPT)
 495 mechanisms in large language models. The properties we establish generalize across model scale,
 496 as demonstrated on OLMo 1B and 7B parameter models, and diverse CPT domains, including math,
 497 instruct, code, and text.

498 Leveraging our NetInspect framework for spectral analysis, we observe that pre-train stage induces
 499 complex spectral structures in attention-related weight matrices. While MLP layer characteristics
 500 align partially with heavy-tailed self-regularization (HTSR) theory, attention matrices display multi-
 501 peak distributions with outliers that substantially diverge from HTSR model. We hypothesize that
 502 this intricate spectral organization acquired during pre-train stage is essential for efficient domain
 503 adaptation during CPT. Support for this hypothesis arises from our finding that CPT largely pre-
 504 serves the singular value spectra and the adaptation takes place primarily via modifying the singular
 505 vectors, with the most pronounced changes occurring for vectors associated with the spectral peaks.

506 Our findings regarding CPT adaptation reveal a novel phenomenon in attention weight matrices
 507 which we term **head heterogeneity**. This phenomenon appears as the emergence of a small number
 508 of outlier heads in terms of CPT delta characteristics, and we identify heads whose changes are
 509 domain-specific. This feature becomes more pronounced with the increase of pre-train token budget.
 510 Based on this observation, we propose a principled criterion for ranking attention heads, identifying
 511 those that can be rewound with quality improvements of up to 4%. Additionally, we demonstrate
 512 that CPT delta can be sparsified by up to **60%** over attention heads without significant quality loss.

513 Moreover, we identify another novel phenomenon — **CPT domain connectivity**, namely, the ability
 514 to average checkpoints after CPT on different domains, with interpolated model quality increasing
 515 as a function of the pre-train token budget and model size. However, we note that the mixture of
 516 CPT checkpoints performs worse compared to training on dataset mixture; these results suggest that
 517 task vector merging approaches such as DARE (Yu et al., 2024) would face significant challenges.

518 Our results suggest several avenues for future research. First, we highlight the necessity of devel-
 519 oping more complex models for singular value spectral of modern large language models. Based
 520 on that, a more detailed analysis of head heterogeneity and head influence on CPT quality can be
 521 carried out. Finally, we suggest further investigation into the origins of domain connectivity and its
 522 quality drivers in order to enable more efficient CPT methodology.

524 REFERENCES

526 Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
 527 modulo permutation symmetries. *arXiv preprint arXiv:2209.04836*, 2022.

528 C. Blakeney, M. Paul, B. W. Larsen, S. Owen, and J. Frankle. Does your data spark joy? performance
 529 gains from domain upsampling at the end of training. *arXiv preprint arXiv:2406.03476*, 2024.
 530 URL <https://arxiv.org/abs/2406.03476>.

532 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 533 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 534 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 535 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 536 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 537 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
 538 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 539 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-

540 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
 541 language models trained on code. 2021.

542

543 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 544 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
 545 2018. URL <https://arxiv.org/abs/1803.05457>.

546

547 Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical
 548 data. *SIAM Review*, 51(4):661–703, November 2009. ISSN 1095-7200. doi: 10.1137/070710111.
 549 URL <http://dx.doi.org/10.1137/070710111>.

550

551 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Hilton, Rei-
 552 ichiro Nakano, Jacob Hesse, John Schulman, Jared Kaplan, et al. Training verifiers to solve math
 553 word problems. *arXiv preprint arXiv:2110.14168*, 2021.

554

555 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
 556 Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs, 2019.
 557 URL <https://arxiv.org/abs/1903.00161>.

558

559 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 560 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The LLaMA 3 herd of
 561 models. *arXiv e-prints*, pp. arXiv–2407, 2024.

562

563 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
 564nectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*, pp.
 565 3259–3269. PMLR, 2020.

566

567 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
 568 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
 569 merging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18695–
 570 18705, 2025.

571

572 G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. *Numer.
 573 Math.*, 14(5):403–420, April 1970. ISSN 0029-599X. doi: 10.1007/BF02163027. URL <https://doi.org/10.1007/BF02163027>.

574

575 Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Hajishirzi.
 576 Olmes: A standard for language model evaluations, 2025. URL <https://arxiv.org/abs/2406.08446>.

577

578 Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene
 579 Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language mod-
 580 els: How to (re)warm your model? *arXiv preprint arXiv:2308.04014*, 2023. URL <https://arxiv.org/abs/2308.04014>.

581

582 Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
 583 merging via sparse task arithmetic. *arXiv preprint arXiv:2408.13656*, 2024.

584

585 Truman Hickok. Scalable strategies for continual learning with replay. *arXiv preprint
 586 arXiv:2505.12512*, 2025. URL <https://arxiv.org/abs/2505.12512>.

587

588 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 589 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

590

591 Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Timothée
 592 Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
 593 large language models. *arXiv preprint arXiv:2403.08763*, 2024. URL <https://arxiv.org/abs/2403.08763>.

594

595 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 596 and Ali Farhadi. Editing models with task arithmetic. In *International Conference on Learning
 597 Representations*, 2023. URL <https://openreview.net/forum?id=6t0Kwf8-jrj>.

594 Vignesh Kothapalli, Tianyu Pang, Shenyang Deng, Zongmin Liu, and Yaoqing Yang. Crafting
 595 heavy-tails in weight matrix spectrum without gradient noise. *arXiv preprint arXiv:2406.04657*,
 596 2024.

597 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
 598 Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
 599 next generation of training sets for language models. *Advances in Neural Information Processing
 600 Systems*, 37:14200–14282, 2024.

601

602 Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
 603 Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
 604 you! *arXiv preprint arXiv:2305.06161*, 2023.

605

606 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

607

608 Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of
 609 random matrices. *Mathematics of the USSR-Sbornik*, 1(4):457, 1967.

610

611 Charles H. Martin and Michael W. Mahoney. Traditional and heavy-tailed self regularization in
 612 neural network models. *arXiv preprint arXiv:1901.08276*, 2019. URL <https://arxiv.org/abs/1901.08276>.

613

614 Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
 615 Evidence from random matrix theory and implications for learning. *Journal of Machine Learning
 616 Research*, 22(165):1–73, 2021. URL <https://jmlr.org/papers/v22/20-410.html>.

617

618 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 619 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint
 620 arXiv:2501.00656*, 2024.

621

622 Zhenting Qi, Fan Nie, Alexandre Alahi, James Zou, Himabindu Lakkaraju, Yilun Du, Eric Xing,
 623 Sham Kakade, and Hanlin Zhang. Evolm: In search of lost language model training dynamics.
 624 *arXiv preprint*, 2025. Paper on language model training dynamics and continual pre-training.

625

626 Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu Duan,
 627 Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, et al. D-cpt law: Domain-specific continual pre-training
 628 scaling law for large language models. *Advances in Neural Information Processing Systems*, 37:
 90318–90354, 2024.

629

630 Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
 631 and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. *Advances in
 632 Neural Information Processing Systems*, 35:10821–10836, 2022.

633

634 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 635 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 code. *arXiv preprint arXiv:2308.12950*, 2023.

636

637 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 638 sarial winograd schema challenge at scale, 2019. URL <https://arxiv.org/abs/1907.10641>.

639

640 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 641 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 642 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

643

644 Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning
 645 in language models with layer-selective rank reduction. *ArXiv*, abs/2312.13558, 2023. URL
 646 <https://arxiv.org/abs/2312.13558>.

647

Max Staats, Matthias Thamm, and Bernd Rosenow. Locating information in large language models
 via random matrix theory. *arXiv e-prints*, pp. arXiv–2410, 2024.

648 Matthias Thamm, Bernd Rosenow, and Itamar Levi. Random matrix analysis of deep neural network
 649 weight matrices. *Physical Review E*, 106(5):054124, 2022. URL <https://arxiv.org/abs/2203.14661>.
 650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 652 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.
 653

654 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 655 learning: Theory, method and application. *arXiv preprint arXiv:2302.00487*, 2023. URL <https://arxiv.org/abs/2302.00487>.
 656

657 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
 658 drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 659 Conference on Learning Representations*.
 660

661 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
 662 Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
 663 Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
 664 accuracy without increasing inference time. In *International Conference on Machine Learn-
 665 ing*, pp. 23965–23998. PMLR, 2022. URL <https://proceedings.mlr.press/v162/wortsman22a.html>.
 666

667 Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building do-
 668 main specific large language models. *arXiv preprint arXiv:2311.08545*, 2023. URL <https://arxiv.org/abs/2311.08545>.
 669

670 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
 671 solving interference when merging models. *Advances in Neural Information Processing Systems*,
 672 36:7093–7115, 2023.
 673

674 Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E Gonzalez, Kannan Ramchandran,
 675 Charles H Martin, and Michael W Mahoney. Evaluating natural language processing models
 676 with generalization metrics that do not need access to any training or testing data. *arXiv preprint
 677 arXiv:2202.02842*, 2022.
 678

679 Lu Yin, Ajay Jaiswal, Shiwei Liu, Souvik Kundu, and Zhangyang Wang. Pruning small pre-
 680 trained weights irreversibly and monotonically impairs “difficult” downstream tasks in llms. *arXiv
 681 preprint arXiv:2310.02277*, 2023.
 682

683 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
 684 sorbing abilities from homologous models as a free lunch. In *Forty-first International Conference
 685 on Machine Learning*, 2024.

686 David Yunis, Kumar Kshitij Patel, Samuel Wheeler, Pedro Savarese, Gal Vardi, Karen Livescu,
 687 Michael Maire, and Matthew R Walter. Approaching deep learning through the spectral dynamics
 688 of weights. *arXiv preprint arXiv:2408.11804*, 2024.
 689

690 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 691 chine really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.
 692

693

694

695

696

697

698

699

700

701

702 **A NETINSPECT METHODOLOGY AND TECHNICAL DETAILS**
 703

704 To systematically analyze the spectral characteristics and singular vector agreement adjustments
 705 in continual pre-training, we developed NetInspect, an open-source library designed for granular,
 706 architectural-component-level analysis of neural networks. The main text of the paper contains our
 707 key findings. This appendix provides a brief, practical overview of how to use our library to perform
 708 similar analyses.

710 **A.1 NORMS**
 711

712 Our investigation includes the Frobenius ($\|\mathbf{W}\|_F$) and spectral ($\|\mathbf{W}\|_2$) norms:

713
$$\|\mathbf{W}\|_F = \sqrt{\sum_i \sigma_i(\mathbf{W})^2}, \quad (3)$$

 714

715
$$\|\mathbf{W}\|_2 = \max_i \sigma_i(\mathbf{W}). \quad (4)$$

 716

719 **A.2 RANKS**
 720

721 We track the following structure-aware ranks:

722 *Stable Rank:*

723
$$R^s(\mathbf{W}) = \frac{\|\mathbf{W}\|_F^2}{\|\mathbf{W}\|_2^2}. \quad (5)$$

 724

726 *Effective Rank:*

727
$$R^e(\mathbf{W}) = - \sum_{i=1}^{R(\mathbf{W})} \frac{\sigma_i(\mathbf{W})}{\sum_j \sigma_j(\mathbf{W})} \log \left(\frac{\sigma_i(\mathbf{W})}{\sum_j \sigma_j(\mathbf{W})} \right), \quad (6)$$

 728

730 where hard rank $R(\mathbf{W})$ is the number of nonzero singular values (or a chosen truncation).

732 **A.3 SINGULAR VECTOR AGREEMENT**
 733

734 Let $\mathbf{W}^i = \mathbf{U}^i \Sigma^i (\mathbf{V}^i)^\top$ and $\mathbf{W}^j = \mathbf{U}^j \Sigma^j (\mathbf{V}^j)^\top$. In this work we consider the cosine similarities
 735 between *left* singular vectors via the *vector agreement* matrix

736
$$\mathbf{A}^u(\mathbf{W}^i, \mathbf{W}^j) = |(\mathbf{U}^i)^\top \mathbf{U}^j|, \quad (7)$$

 737

738 where the absolute value is taken element-wise. We report two levels: per-vector (diagonal and
 739 row-maximum agreements) and a global average given by the mean of diagonal agreements across
 740 the matrix.

742 **A.4 RANDOM MATRIX THEORY FITS**
 743

744 The HTSR (Heavy-Tailed Self-Regularization) theory originally emerged as a semi-empirical the-
 745 ory, and early seminal works (Martin & Mahoney, 2019; 2021) studied the empirical spectral density
 746 of weight matrices given by

747
$$\mu(\lambda; \mathbf{X}^i) = \frac{1}{n} \sum_{j=1}^n \delta(\lambda - \lambda_j(\mathbf{X}^i)). \quad (8)$$

 748

751 Here \mathbf{X}^i is a correlation matrix, defined as $\mathbf{X}^i = \frac{1}{m} (\mathbf{W}^i)^\top \mathbf{W}^i$. The eigenvalues of \mathbf{X}^i provide
 752 insight into the distribution of information across different directions in the feature space. This
 753 is captured by the Empirical Spectral Density (ESD), where $\lambda_1(\mathbf{X}^i) \leq \dots \leq \lambda_n(\mathbf{X}^i)$ are the
 754 eigenvalues of \mathbf{X}^i , and δ denotes the Dirac delta function. The ESD thus represents a probability
 755 measure describing how the eigenvalues are distributed. Note the relation between singular values
 and correlation eigenvalues: $\lambda_i(\mathbf{X}) = \frac{1}{m} \sigma_i(\mathbf{W})^2$.

756 At random initialization weights are modeled as entries drawn from a Gaussian Orthogonal Ensemble
 757 (GOE)

$$758 \quad W_{i,j} \sim \mathcal{N}(\mathbf{x}; 0, \text{Var}(\mathbf{W})). \quad (9)$$

759 One of the key observations in modern DNNs is the deviation of ESDs from classical RMT predictions
 760 for such matrices, such as the Marchenko–Pastur (MP) distribution
 761

$$762 \quad \rho^{\text{MP}}(\lambda; \mathbf{X}) = \begin{cases} \frac{n}{2\pi m \cdot \text{Var}(\mathbf{W})} \frac{\sqrt{(\lambda^{\max} - \lambda)(\lambda - \lambda^{\min})}}{\lambda}, & \lambda \in [\lambda^{\min}, \lambda^{\max}], \\ 763 \quad 0, & \text{otherwise,} \end{cases} \quad (10)$$

764 with

$$765 \quad \lambda^{\max/\min}(\mathbf{X}) = \text{Var}(\mathbf{W})(1 \pm \sqrt{n/m})^2. \quad (11)$$

766 While random GOE matrices follow the classical MP distribution, trained neural network weight
 767 matrices deviate significantly from this behavior (Martin & Mahoney, 2019; 2021). During training,
 768 a non-random (signal) component typically emerges outside the MP bulk. We delineate bulk versus
 769 outliers by estimating an upper edge $\hat{\lambda}^{\max}$ via a rescaled MP heuristic (Martin & Mahoney, 2021).
 770 To be more precise, for a particular matrix \mathbf{W} we:

- 771 1. Randomise \mathbf{W} by permuting its elements.
- 772 2. Compute the empirical scale $s(\mathbf{W})$ from the randomized matrix.
- 773 3. Find λ^{\max} based on the MP prediction with $s(\mathbf{W})$.
- 774 4. Correct the scale

$$775 \quad \hat{s}^2 = s(\mathbf{W})^2 - \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{\lambda_i > \lambda^{\max}\}} \lambda_i, \quad (12)$$

776 then find $\hat{\lambda}^{\max}$ based on \hat{s} .

777 Well-trained models further develop heavy tails with $\rho^{\text{PL}}(\lambda; \mathbf{X}) = c \cdot \lambda^{-\alpha}$ with normalization
 778 constant c and scaling exponent $\alpha \in (1.5, 5)$ (Clauset et al., 2009); smaller α indicates stronger
 779 correlations and, empirically, higher model quality (Martin & Mahoney, 2021).

780 We estimate α by Maximum Likelihood Estimation (MLE) estimator (Clauset et al., 2009); em-
 781 pirical evidence shows MLE performs well for $\alpha \in [1.5, 3.5]$ (Martin & Mahoney, 2021), a typical
 782 range for DNN weight matrices. Fit quality is checked with the Kolmogorov–Smirnov (KS) distance
 783 between the empirical spectrum CDF $S(\lambda)$ and the fitted PL CDF $\hat{S}(\lambda)$

$$784 \quad \text{KS} = \sup_{\lambda \in \{\lambda_i(\mathbf{W})\}} |S(\lambda) - \hat{S}(\lambda)|. \quad (13)$$

785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **B TRAINING AND REPRODUCIBILITY DETAILS**
811812 **B.1 DATA**
813814 For pre-train, we use DCLM (Li et al., 2024) sample with 100B tokens in 4 mixes: 20B DCLM
815 sample, 100B DCLM, 200B DCLM (oversampled), and 400B DCLM (oversampled).
816817 Table 1: Dataset composition for Dolmno High Quality Subset and Dolmno Math Mix.
818

Source	Type	Tokens	Words	Bytes	Docs
Mid-Training Dolmno High Quality Subset					
DCLM-Baseline <i>FastText top 7%</i> <i>FineWeb > 2</i>	High quality web	752B	670B	4.56T	606M
FLAN <i>from Dolma 1.7 decontaminated</i>	Instruction data	17.0B	14.4B	98.2B	57.3M
High quality total		832.6B	739.8B	5.09T	710.8M
Mid-Training Dolmno Math Mix					
TuluMath	Synthetic math	230M	222M	1.03B	220K
Dolmno SynthMath	Synthetic math	28.7M	35.1M	163M	725K
TinyGSM-MIND	Synthetic math	6.48B	5.68B	25.52B	17M
MathCoder2 Synthetic <i>Ajibwa-2023 M-A-P Matrix</i>	Synthetic math	3.87B	3.71B	18.4B	2.83M
Metamath <i>OWM-filtered</i>	Math	84.2M	76.6M	741M	383K
CodeSearchNet <i>OWM-filtered</i>	Code	1.78M	1.41M	29.8M	7.27K
GSM8K <i>Train split</i>	Math	2.74M	2.00M	25.3M	17.6K
Math total		10.7B	9.73B	45.9B	21.37M

819 For CPT we use data from FLAN decontaminated dataset, Dolmno High Quality Subset and DolmnoMath Mix, as proposed in OLMo 2 (OLMo et al., 2024), this data consists of language presented
820 in the DCLM baseline. This is filtered by FastText and the FineWeb version of the original DCLM
821 (Li et al., 2024). For code dataset we use StarCoder (Li et al., 2023). All mixes used in CPT are
822 presented in Table 2.
823824 Table 2: Continual pre-training mixes. * — oversampled data
825

Mix Name	Dolmno Math	DCLM Filtered	FLAN filtered	StackExchange	StarCoder
10B Mixes					
4BDM	4B	6B	-	-	-
8BDM	8B	2B	-	-	-
MATH	10B	-	-	-	-
TEXT	-	10B	-	-	-
20B Mixes					
8BDM	8B	12B	-	-	-
16BDM	16B	4B	-	-	-
MATH	20B*	-	-	-	-
TEXT	-	20B	-	-	-
INST	-	-	10B*	10B*	-
10BInst 10BDM	10B	-	10B*	-	-
CODE	-	-	-	-	20B*
50B Mixes					
20BDM	20B*	30B*	-	-	-
40BDM	40B*	10B	-	-	-
MATH	50B*	-	-	-	-
TEXT	-	41.5B	8.5B	-	-

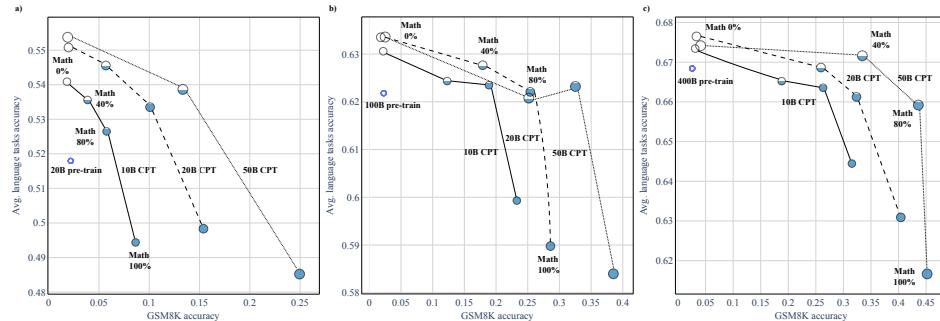
864 B.2 MODELS AND TRAINING CONFIGURATION
865866 This study utilizes the OLMo 2 model architecture at two different scales: 1B and 7B (Table 3). The
867 architecture is based on the standard Transformer decoder Vaswani et al. (2023) and incorporates
868 several modern enhancements:

- 869 • Removal of bias terms
- 870 • SwiGLU activation function
- 871 • Rotary positional embeddings (RoPE) with $\theta = 500,000$
- 872 • QKV clipping
- 873 • RMSNorm normalization
- 874 • Reordered layer norm (post-norm configuration)
- 875 • QK normalization
- 876 • Z-loss for training stability
- 877
- 878
- 879

880 All models are trained in mixed precision bfloat16. A complete description of the architecture and
881 training methodology can be found in the original OLMo 2 paper OLMo et al. (2024).882
883 Table 3: Model architecture and training hyperparameters.

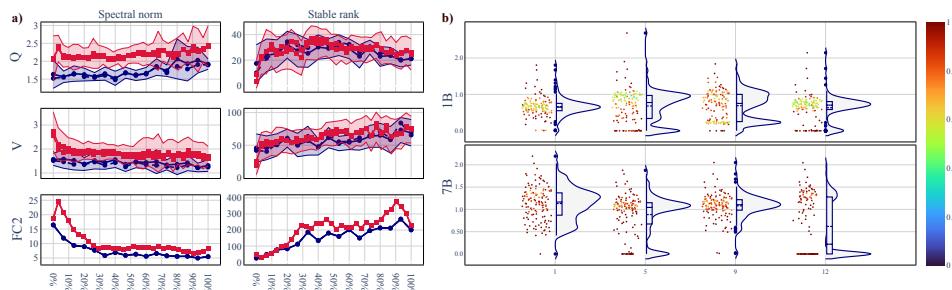
	OLMo 2 1B	OLMo 2 7B
Model Architecture		
Hidden Dimension	2048	4096
Number of Layers	16	32
Number of Attention Heads	16	32
MLP Ratio	8	5.375
Activation Function	SwiGLU	SwiGLU
Normalization Type	RMS Norm	RMS Norm
Positional Encoding	RoPE ($\theta = 500,000$)	RoPE ($\theta = 500,000$)
Max Sequence Length	4096	4096
Vocabulary Size	100,278	100,278
Training Configuration		
Global Batch Size	512	1024

890 **Pre-train stage.** For our training setup, we adhere to the parameters proposed in the original OLMo
891 2 paper: a learning rate of 4×10^{-4} with a warmup phase over 0.7 billion tokens, followed by a
892 cosine learning rate scheduler that decays to 10% of the initial rate by the end of training. The optimi-
893 zation is carried out using the AdamW optimizer Loshchilov & Hutter (2019) with the following
894 hyperparameters: $\beta_1 = 0.9$, $\beta_2 = 0.95$, and $\epsilon = 10^{-8}$. A weight decay of 0.1 is applied to all
895 weights, including norms and biases, but not to embeddings.896 **Continual pre-training.** The hyperparameters for continual pre-training remain consistent with
897 those from pre-train, with the exception of the learning rate. In this stage, we start with the final
898 learning rate from pre-train, which is 4×10^{-5} , and apply a linear annealing schedule that decreases
899 the learning rate to zero over the course of training.900 B.3 LINKS TO CODE
901902 We provide full source code to ensure all our experiments are reproducible. Our release includes
903 the code for pre-train, CPT runs and commands for the OLMEs framework evaluation. The code is
904 publicly available at: <https://anonymous.4open.science/r/all-in-your-heads-CA28>905 We conduct a deep analysis of model weights using our open-source library, NetInspect
906 <https://anonymous.4open.science/r/netinspect-EF67>

918 C ADDITIONAL EXPERIMENTAL RESULTS
919920 C.1 ADDITIONAL RESULTS FOR PRE-TRAIN AND CPT SPECTRAL ANALYSIS
921

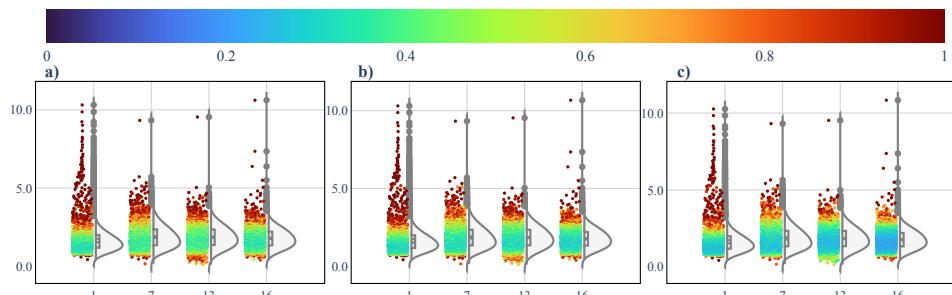
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 8: Analysis of CPT configurations varying in token budgets and math proportions. Panels (a)-(c) show results for CPT initialized from the 20B, 100B and 400B pre-train checkpoints respectively. Performance is evaluated as a function of the mathematical data proportion in the CPT mix.



955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Comparison of spectral properties of 1B and 7B parameter models. a) Layer-wise spectral norm and stable rank comparison for W^Q , W^V , and W^{FC2} matrices. The x-axis represents the relative layer depth, normalized as a percentage of total layers to account for the differing total counts (16 and 32 layers for the 1B and 7B models, respectively). Notably, the trends for both model scales are qualitatively similar. b) Singular-value spectra for W^Q (layer 15, heads 1, 5, 9, 12) for 1B and 7B model sizes for 4T tokens. The spectral structures for both model sizes exhibit significant complexity and deviate from standard theoretical distributions such as MP or PL.



968
969
970
971

Figure 10: The effect of CPT data domain on vector agreement with pre-train. Violin plots (with jittered points colored by the left singular vector agreement between CPT and pre-train) display the W^GATE per layer for CPT a) on text, b) a math-text mix, c) or pure math (all pre-trained on 4T tokens). The results demonstrate a clear ordering: text CPT preserves the strongest vector agreement, while math domain induces the largest rotation.

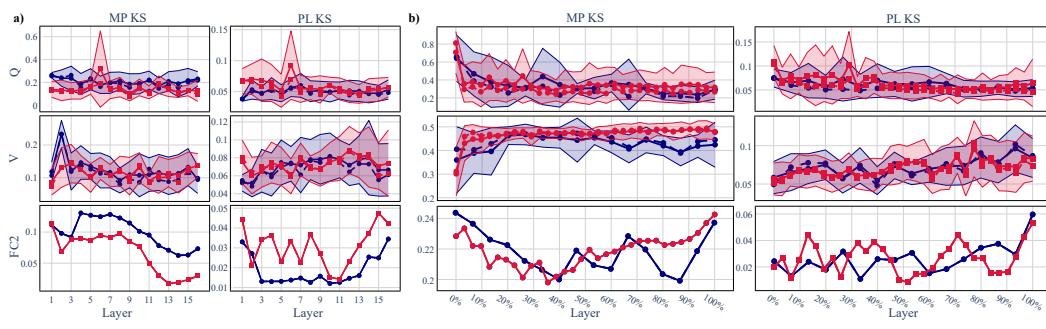


Figure 11: Goodness-of-fit — layer-wise Kolmogorov-Smirnov distance between the weight matrix ESD and Marchenko-Pastur model (left) and power-law (right) model for W^Q , W^V , and W^{FC_2} matrices. The x-axis indexes layers; solid lines show the mean across attention heads, dashed lines the median, and the shaded band denotes mean \pm std. a) Blue denotes 20B-token pre-train and red denotes 400B-token pre-train of 1B model. b) Blue denotes 4T-token pre-train of 1B model and red denotes 4T-token pre-train of 7B model.

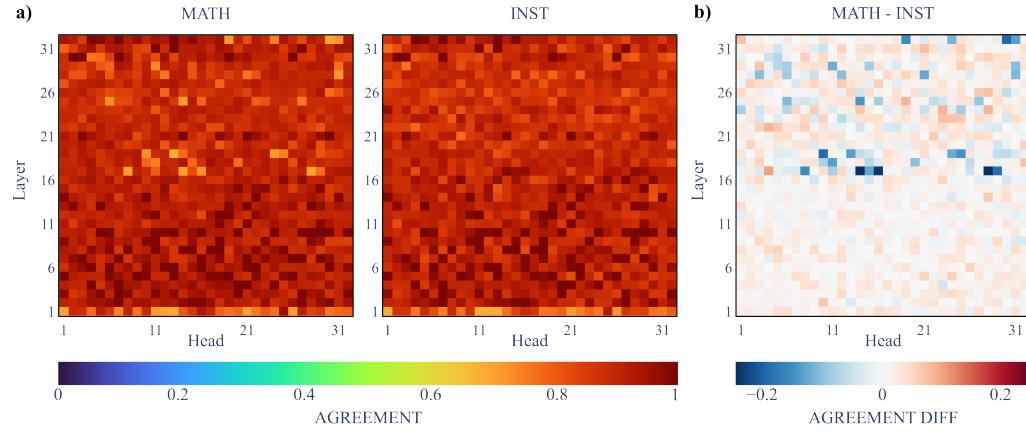


Figure 12: Effect of CPT data domain on vector agreement. a) Heatmaps show the average vector agreement between CPT and pre-train for individual heads of W^Q across different CPT domains (left to right: math, instruct) on 7B model. Lower vector agreement values correspond to larger changes of the corresponding weight matrices relative to the pre-trained model. b) Difference in vector agreement between the math and instruct domains.

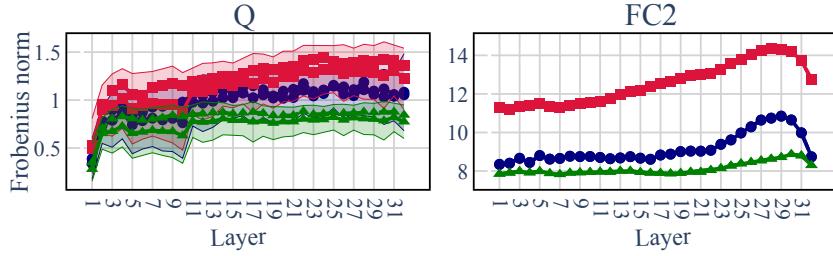
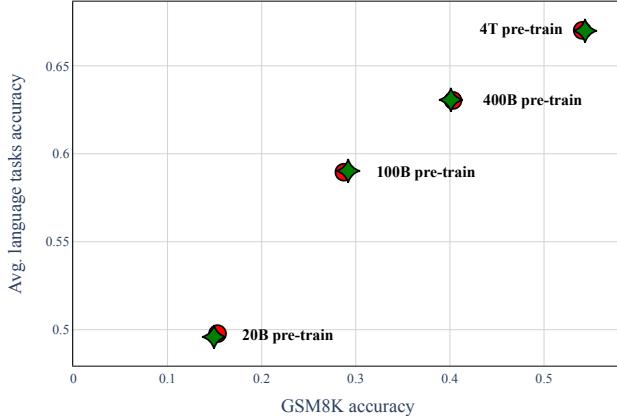
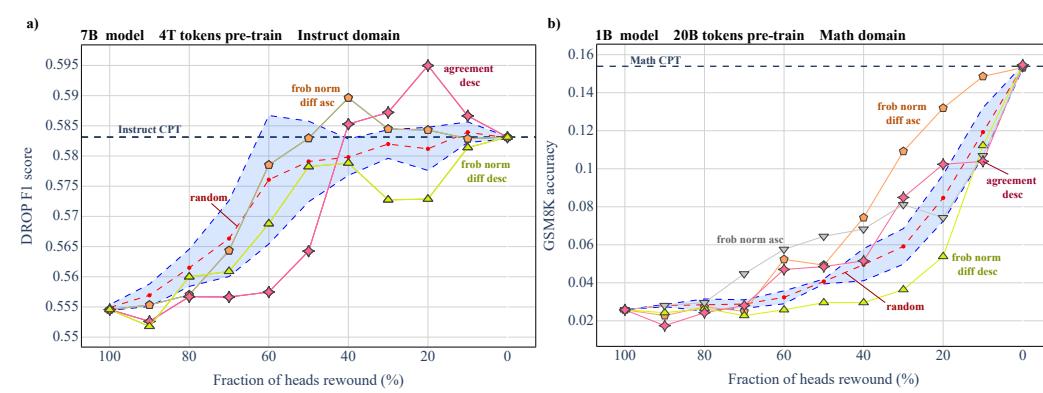


Figure 13: Layer-wise Frobenius norm of CPT deltas for W^Q and W^{FC_2} for 7B model across CPT domains. Statistics are aggregated per head (mean: solid line, median: dashed line; shaded region: mean \pm std). Effect of CPT domain for 4T tokens pre-train: deltas for the text domain (green) are smallest in magnitude, indicating less incremental change compared to math (blue) or instruct (red) domains.

1026 C.2 SINGULAR-VALUE TRANSPLANTATION
10271028 Given two checkpoints with per-layer weights $\mathbf{W}^{\text{ckpt1}} = \mathbf{U}_1 \boldsymbol{\Sigma}_1 \mathbf{V}_1^\top$ and $\mathbf{W}^{\text{ckpt2}} = \mathbf{U}_2 \boldsymbol{\Sigma}_2 \mathbf{V}_2^\top$
1029 (SVD), the *transplanted* weight is
1030

1031
$$\widetilde{\mathbf{W}} = \mathbf{U}_2 \boldsymbol{\Sigma}_1 \mathbf{V}_2^\top. \quad (14)$$

1032

1033 Unless otherwise stated, transplantation is applied head-wise to attention $(\mathbf{W}^Q, \mathbf{W}^K, \mathbf{W}^V, \mathbf{W}^O)$
1034 and MLP $(\mathbf{W}^{\text{FC1}}, \mathbf{W}^{\text{Gate}}, \mathbf{W}^{\text{FC2}})$ weight matrices only; all other parameters remain from the target
1035 checkpoint.
10361050 Figure 14: Singular-value transplantation results. Red circles denote CPT on DolmimoMath, while
1051 star-diamond markers denote CPT on DolmimoMath with singular values transplanted from the
1052 pre-train model. The results indicate that singular-value transplantation does not affect GSM8K
1053 accuracy.
10541055 C.3 METHODOLOGY AND ADDITIONAL RESULTS FOR HEAD-WISE REWIND
10561072 Figure 15: Head redundancy under CPT deltas. (a) DROP F1 score versus the fraction of heads
1073 rewound for a 7B-parameter model with a 4T-token pre-train budget and a 20B-token instruct do-
1074 main. Rewinding heads according to any heuristic has only a minor effect on CPT quality in the
1075 instruct domain, while random rewind exhibits high variance across different random seeds. (b)
1076 GSM8K accuracy versus the fraction of heads rewound for a 1B-parameter model with a 20B-token
1077 pre-train budget and a 20B-token math domain. Here, head rewinding under all heuristics leads to
1078 a rapid and substantial degradation in performance, indicating lack of head heterogeneity at small
1079 pre-train token budgets. In both panels, our proposed difference-in-scaled-Frobenius-norms metric
(highlighted in orange) yields the most effective head ranking for preserving task performance.
1080

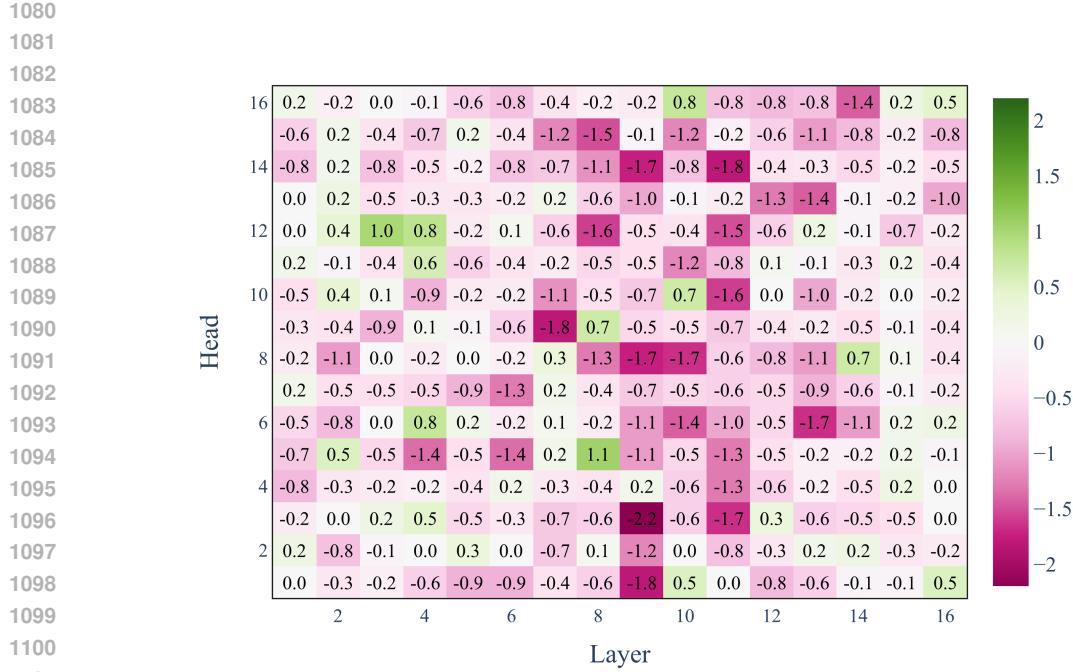


Figure 16: Head rewind heatmap (per-layer, per-head impact) for 20B Math CPT based on 4T pre-train. Cells contain GSM8K accuracy change (%).

Let H be the number of heads and d_{head} the head dimension, so $d_{\text{model}} = H d_{\text{head}}$. We split projections along the head-concatenated axis and operate per head:

$$\mathbf{W}^Q = [\mathbf{W}_{(0)}^Q \mid \dots \mid \mathbf{W}_{(H-1)}^Q], \mathbf{W}^K = [\mathbf{W}_{(0)}^K \mid \dots \mid \mathbf{W}_{(H-1)}^K], \mathbf{W}^V = [\mathbf{W}_{(0)}^V \mid \dots \mid \mathbf{W}_{(H-1)}^V] \quad (15)$$

where $\mathbf{W}_{(i)}^{Q/K/V} \in \mathbb{R}^{d_{\text{model}} \times d_{\text{head}}}$ are column blocks. For the output projection $\mathbf{W}^O \in \mathbb{R}^{(H d_{\text{head}}) \times d_{\text{model}}}$, we split by rows into H blocks $\mathbf{W}_{(i)}^O \in \mathbb{R}^{d_{\text{head}} \times d_{\text{model}}}$ and reassemble by row concatenation. Single-head rewind at index i sets

$$\{\mathbf{W}_{(i)}^Q, \mathbf{W}_{(i)}^K, \mathbf{W}_{(i)}^V, \mathbf{W}_{(i)}^O\}^{\text{math}} \leftarrow \{\mathbf{W}_{(i)}^Q, \mathbf{W}_{(i)}^K, \mathbf{W}_{(i)}^V, \mathbf{W}_{(i)}^O\}^{\text{pre-train}} \quad (16)$$

and replaces the corresponding QK-norm segments along the head axis with pre-train values.

AUC computation. Let $\{k_t\}_{t=1}^T$ be the discrete percentages of heads rewound (in $[0, 100]$), and let $\mathcal{C}_\downarrow(k_t)$ and $\mathcal{C}_\uparrow(k_t)$ denote the metric at k_t for descending and ascending greedy orders, respectively. We first compute the discrete AUC of each curve using the trapezoidal rule:

$$\text{AUC}_\downarrow = \sum_{t=1}^{T-1} \frac{\mathcal{C}_\downarrow(k_t) + \mathcal{C}_\downarrow(k_{t+1})}{2} (k_{t+1} - k_t), \quad \text{AUC}_\uparrow = \sum_{t=1}^{T-1} \frac{\mathcal{C}_\uparrow(k_t) + \mathcal{C}_\uparrow(k_{t+1})}{2} (k_{t+1} - k_t) \quad (17)$$

Our reported score is the absolute difference

$$\text{AUC-diff} = |\text{AUC}_\downarrow - \text{AUC}_\uparrow| \quad (18)$$

When the grid is uniform, $k_{t+1} - k_t = \Delta$, this reduces to a constant Δ times the sum of trapezoid averages. Higher values indicate a greater separation between descending and ascending orders, while values near zero indicate random-like behavior.

1134 Table 4: Absolute area between descending and ascending head-rewind curves for math domain
 1135 (AUC; higher is better). Smaller values indicate behavior closer to random, where ordering does not
 1136 matter.

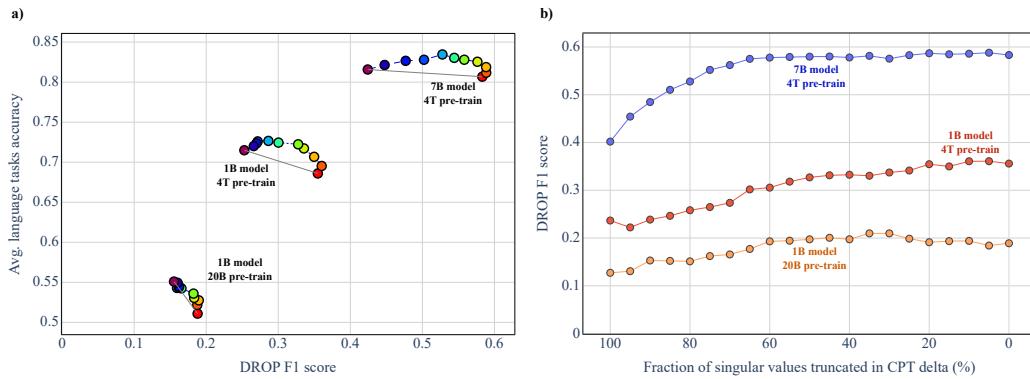
1138	Heuristic	AUC-diff 1B	AUC-diff 7B
1139	greedy	19.1	5
1140	difference in average singular vector agreement between math and text	11.7	5.1
1141	difference in scaled Frobenius norms	11	6
1142	agreement average	5.2	4.5
1143	delta Frobenius norm	5.2	4.9
1144	PL KS (pre-train)	0.9	1.1
1145	random	0.0	0.0

1147 C.4 CPT DELTA SVD TRUNCATION METHODOLOGY AND ADDITIONAL RESULTS

1150 Given $\mathbf{W} = \mathbf{U} \Sigma \mathbf{V}^\top$ with $r = \min(m, n)$, setting $k = \lfloor (n/100) r \rfloor$ yields the top- k truncation

$$1153 \widetilde{\mathbf{W}}_{(n\%)} = \mathbf{U}_{[:,1:k]} \Sigma_{1:k,1:k} (\mathbf{V}^\top)_{[1:k,:]}, \quad (19)$$

1155 where we keep the top- k singular directions and discard the rest. We report the kept fraction $n\%$.



1171 Figure 17: Linear interpolation and CPD delta redundancy analysis on instruct domain. a) Linear
 1172 interpolation (step size $\omega = 0.1$). Average language-task accuracy vs. DROP F1 score. As the pre-
 1173 train token budget and model size increase, interpolation quality improves. b) CPT delta spectral
 1174 redundancy analysis. DROP F1 score vs. fraction of singular values kept under CPT delta SVD
 1175 truncation. Curves show models with different scales and pre-train budgets: 7B/4T tokens (blue),
 1176 1B/4T tokens (red), 1B/20B tokens (orange). A substantially larger fraction of the CPT delta can be
 1177 truncated in the 7B model than in the 1B model.

1181 C.5 RESULTS FOR CODE DOMAIN CPT

1183 We conducted preliminary CPT experiments on code to assess domain generality, training on the
 1184 StarCoder corpus and evaluating on HumanEval. The 1B model achieved 0.04 pass@1 before code
 1185 CPT and only 0.09 pass@1 after code CPT — an absolute improvement of just 5 percentage points.
 1186 This limited improvement aligns with OLMo-2’s behavior, where competitive HumanEval perfor-
 1187 mance emerges only after supervised fine-tuning with chat templates, not from base or continual
 1188 pre-training.

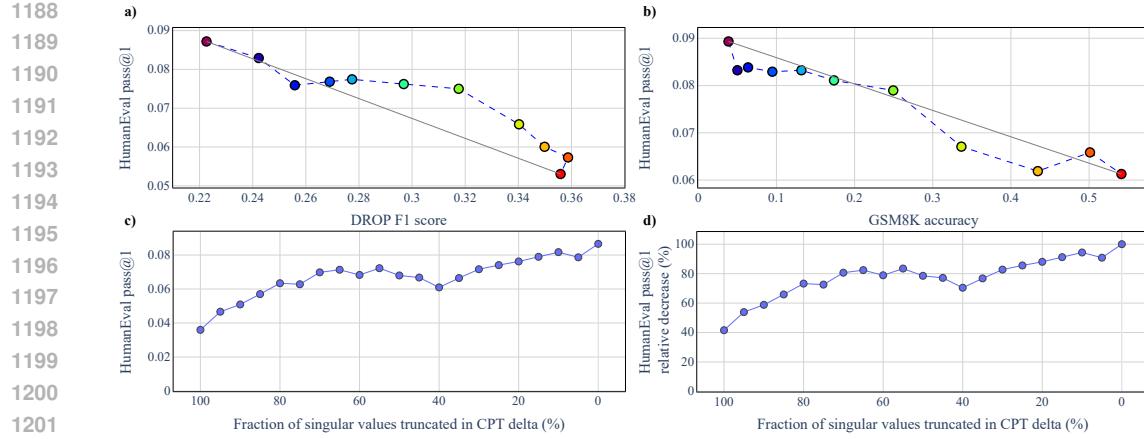


Figure 18: a) Interpolation between 1B/4T tokens Instruct CPT and 1B/4T tokens Code CPT. b) Interpolation between 1B/4T tokens Math CPT and 1B/4T tokens Code CPT. c) Truncation of 1B/4T tokens Code CPT delta with HumanEval pass@1 accuracy reported. d) Truncation of 1B/4T tokens Code CPT delta with relative HumanEval pass@1 accuracy drop reported.

1242 **D KEY NETINSPECT VISUALIZATION TOOLS**
12431244 The pipeline consists of five sequential stages, each designed to probe different aspects of the net-
1245 work’s weight matrices. We assume the user is comparing two model checkpoints, $\mathbf{W}^{\text{ckpt1}}$ and
1246 $\mathbf{W}^{\text{ckpt2}}$, and checkpoint of their delta ($\mathbf{W}^{\text{ckpt1}} - \mathbf{W}^{\text{ckpt2}}$).
12471248 **BOX PLOTS: COMPONENT-WISE SPECTRAL METRICS DISTRIBUTION**
12491250 The analysis employs comparative box plots generated for all weight matrices, which are organized
1251 by matrix family — specifically, the Attention projections (\mathbf{W}^Q , \mathbf{W}^K , \mathbf{W}^V , \mathbf{W}^O) and the MLP
1252 layers. To ensure a granular analysis, each attention matrix is first decomposed into its heads before
1253 any metric computation.1254 The analysis itself is structured by distinct metric categories for precise comparison: one group
1255 focuses on norms, including the Frobenius and Spectral norm, while another group concentrates on
1256 rank measures, namely the Stable rank and Effective rank. For the MLP matrices exclusively, this
1257 set of metrics is augmented with the Kolmogorov-Smirnov (KS) statistic, which quantifies the fit to
1258 both a power-law (PL) and a Marchenko-Pastur (MP) distribution.1259 The visual encoding of the box plots is designed to convey multiple data dimensions simultaneously.
1260 The fill color of each box plot signifies the specific matrix parameter. The outline color denotes
1261 the checkpoint, where blue represents ckpt1, red represents ckpt2, and green represents the delta.
1262 Furthermore, a jittered scatter plot is laid near each box; the individual data points are colored on
1263 a continuous spectral scale from blue to red. This color mapping corresponds directly to the layer
1264 index, with blue indicating layers near the model input and red indicating layers near the output. This
1265 integrated approach allows for the immediate assessment of distributional properties — including
1266 medians, quartiles, and outliers — across the two checkpoints, while preserving the crucial ability
1267 to discern depth-dependent patterns within the metric distributions.
12681269 **CLUSTER BAR CHARTS: SINGULAR VALUES DISTRIBUTION**
12701271 The purpose of this stage is to visualize the entire distribution of singular values. The visualization
1272 employs a cluster bar chart where the x-axis is exponential binning of the singular values, while the
1273 y-axis represents the count of values falling into each bin.1274 To articulate the layer-by-layer evolution of the spectrum, the color of each bar corresponds to its
1275 layer index. For attention matrices, the singular values are first averaged across all heads within a
1276 given layer before the binning process.
12771278 **SPARKLINES: SPECTRAL METRIC TRENDS**
12791280 This stage aims to compactly visualize the trend of each metric across the network’s depth, enabling
1281 a quick, at-a-glance assessment of layer-wise patterns. The procedure involves plotting the metric
1282 value as a function of layer index for each matrix family. For attention matrices, the values are
1283 aggregated across their heads: a solid line represents the mean, a dashed line represents the median,
1284 and a shaded area delineates the band of mean \pm one standard deviation. These resulting sparklines
1285 provide a temporal view of metric evolution through the network’s layers. This visualization allows
1286 for the immediate identification of critical patterns, where a sharp change in a metric at a specific
1287 layer or a consistent divergence between the mean and median can signal important architectural
1288 transitions or anomalies.
12891290 **HEATMAPS: SPECTRAL METRIC HETEROGENEITY**
12911292 The purpose of this stage is to expose fine-grained, head-specific and layer-specific variations in
1293 metrics, providing a direct visual comparison of the differences between the two checkpoints. The
1294 procedure involves creating a two-dimensional grid for each combination of attention matrix type
1295 (\mathbf{W}^Q , \mathbf{W}^K , \mathbf{W}^V , \mathbf{W}^O) and metric, with the axes representing the layer index and head index. For
1296 each such combination, a quartet of heatmaps is generated: the first visualizes the raw metric values
1297 for $\mathbf{W}^{\text{ckpt1}}$ on a blue color scale; the second visualizes the raw values for $\mathbf{W}^{\text{ckpt2}}$ on a red scale;
1298 the third shows the delta and the fourth displays a metric difference. This visualization allows for

1296 pinpointing the exact heads and layers that contribute most significantly to the overall divergence
1297 between the two models, moving from a high-level summary to a precise diagnostic tool.
1298

1299 VIOLIN PLOTS: SINGULAR VALUE DISTRIBUTION AND SINGULAR VECTOR AGREEMENT
1300

1301 The final stage of our analysis is architected the most detailed view of the singular value distribution
1302 for each individual head and layer, while simultaneously incorporating information about singular
1303 vector agreement. This is achieved by generating a matrix of plots, where each cell corresponds
1304 to a specific (layer, head) pair. Within a given cell, a violin plot is used to depict the density of
1305 the singular values for that specific matrix. Overlaid onto this violin plot is a jittered scatter plot,
1306 where the color of each point is determined by a vector agreement metric — overlap between the
1307 corresponding singular vectors of W^{ckp1} and W^{ckp2} . This powerful composite visualization syn-
1308 ergistically combines the shape of the singular value spectrum, conveyed by the violin, with the
1309 stability of the underlying directional components, indicated by the colored jitter, across the entire
1310 model. It thereby enables the precise identification of nuanced scenarios, such as attention heads
1311 that exhibit a similar spectral distribution but possess different singular vectors directions, or vice
1312 versa, offering insight into the micro-dynamics of network evolution.
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349