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ABSTRACT

Existing certified training methods can only train models to be robust against
a certain perturbation type (e.g. l∞ or l2). However, an l∞ certifiably robust
model may not be certifiably robust against l2 perturbation (and vice versa) and
also has low robustness against other perturbations (e.g. geometric and patch
transformation). By constructing a theoretical framework to analyze and mitigate
the tradeoff, we propose the first multi-norm certified training framework CURE,
consisting of several multi-norm certified training methods, to attain better union
robustness when training from scratch or fine-tuning a pre-trained certified model.
Inspired by our theoretical findings, we devise bound alignment and connect natural
training with certified training for better union robustness. Compared with SOTA-
certified training, CURE improves union robustness to 32.0% on MNIST, 25.8%
on CIFAR-10, and 10.6% on TinyImagenet across different epsilon values. It leads
to better generalization on a diverse set of challenging unseen geometric and patch
perturbations to 6.8% and 16.0% on CIFAR-10. Overall, our contributions pave a
path towards generalized certified robustness.

1 INTRODUCTION

While deep neural networks (DNNs) are widely deployed in various vision applications, they remain
vulnerable to adversarial attacks (Goodfellow et al., 2014; Kurakin et al., 2018). Many empirical
defenses (Madry et al., 2017; Zhang et al., 2019a; Wang et al., 2023) against adversarial attacks have
been proposed, however, they do not provide provable guarantees and remain vulnerable to stronger
attacks. Hence, it is important to train DNNs to be formally robust against adversarial perturbations.
Various deterministic certified training methods for specific perturbations (Mirman et al., 2018; Gowal
et al., 2018; Zhang et al., 2019b; Balunović & Vechev, 2020; Shi et al., 2021; Müller et al., 2022;
Yang et al., 2022; Hu et al., 2023; 2024; Mao et al., 2024)(e.g., l∞, l2, and geometric transformations)
have been proposed. However, those defenses are mostly limited to a specific perturbation and cannot
easily be generalized to other perturbation types (Yang et al., 2022; Chiang et al., 2020). Multi-norm
attacks that examine models’ robustness against lp norms simultaneously have arisen in real-world
settings such as cybersecurity Zhang et al. (2024), video recognition Lo & Patel (2021), and social
media filtering Dai et al. (2024): it is essential for building models that are robust across diverse lp
norms, to generalize better against other non-lp perturbations (Jiang & Singh, 2024).

In this work, we propose the first multi-norm Certified training for Union RobustnEss (CURE)
framework, consisting of several multi-norm certified training methods. Inspired by SABR (Müller
et al., 2022), we use a deterministic l2 defense that first finds the l2 adversarial examples in a slightly
truncated l2 region and then propagates the smaller l∞ box using the IBP loss (Gowal et al., 2018).
In Figure 1a, we show that an l∞ certified robust model may lack l2 certified robustness and vice
versa: l∞ model only has 6.0% l2 robustness and l2 model has 0% l∞ robustness, which reveals the
robustness tradeoff among different lp perturbations. Therefore, we first construct a theoretical
framework for binary classification to analyze the tradeoff, from which we propose several methods
based on multi-norm empirical defenses with different loss formulations (Tramer & Boneh, 2019;
Madaan et al., 2021; Croce & Hein, 2022; Jiang & Singh, 2024). Our proposed methods successfully
improve union and generalized certified robustness, shown in Table 1, Figure 4, and Table 2a.

However, the aforementioned methods achieve sub-optimal union robustness since they do not exploit
the in-depth connections between certified training for different lp perturbations as well as natural
training. Thus, we propose the following improvements. (1) Bound alignment: Inspired by the
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upper bound of theoretical analysis (Theorem 3.2), we propose a new bound alignment method
to mitigate the lq − lr tradeoff better. We regularize the distributions of output bound differences,
computed with IBP, for lq, lr perturbations on the correctly certified subset γ, as shown in Figure 1b.
In this way, we encourage the model to emphasize optimizing the samples that can potentially become
certifiably robust against multi-norm perturbations. To achieve this, we use a KL loss to encourage
the distributions of the lq, lr output bound differences on subset γ to be close to each other for
better union accuracy. (2) Gradient Projection: We find that there exist some useful components in
natural training that can be extracted and leveraged to improve certified robustness (Jiang & Singh,
2024). To achieve this, we find and incorporate the layer-wise useful natural training components by
comparing the similarity of the certified and natural training model updates. (3) Quick fine-tuning:
Fine-tuning an lp-robust model using bound alignment quickly achieves superior multi-norm certified
robustness. By addressing the lq − lr tradeoff, bound alignment preserves more lq robustness when
fine-tuning with lr perturbations, focusing on correctly certified samples. This technique enables
efficient multi-norm robustness using pre-trained models with single lp robustness. Figure 1a shows
that both scratch training (CURE-Scratch) and fine-tuning (CURE-Finetune) significantly enhance
union robustness over single-norm training. (4) Generalized robustness: As a perhaps surprising
side effect, improving union-certified robustness leads to stronger generalized certified robustness by
generalizing better to other geometric and patch transformations (Section 4.1), confirming that lp
robustness is the bedrock for non-lp robustness (that non-ℓp perturbations may be modeled through
ℓp-bounded formulations) (Mangal et al., 2023).
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(b) Bound alignment during training.

Figure 1: (a) l∞ − l2 tradeoff: an l∞ certified robust model may lack l2 certified robustness and vice
versa. CURE-Scratch (yellow) and CURE-Finetune (green) improve union robustness significantly.
(b) We align the output bound differences for lq, lr perturbations on the correctly certified lq subset γ
to mitigate lq − lr tradeoff for better union robustness.
Main Contributions:

• We design a theoretical framework to analyze the multi-norm certified robustness tradeoff. Based
on this, we propose three training methods, CURE-Joint, CURE-Max, and CURE-Random with
different loss formulations for better union and generalized certified robustness.

• Inspired by our theoretical findings, we introduce techniques including bound alignment, connecting
natural training with certified training, and certified fine-tuning for better union robustness. CURE-
Scratch and CURE-Finetune further facilitate our multi-norm certified training procedure and
advance multi-norm robustness.

• Compared with a SOTA certified training method (Müller et al., 2022), CURE improves union
robustness up to 32.0% on MNIST, 25.8% on CIFAR-10, and 10.6% on TinyImagenet. It improves
robustness against unseen geometric and patch perturbations up to 0.6%, 8.5% on MNIST and
6.8%, 16% on CIFAR-10.

2 BACKGROUND

In this section, we provide the necessary background of neural network verification and certified
training, with related work discussed in Appendix B. Given samples {(xi, yi)}Ni=0 from a data
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distributionD, the input comprises images x ∈ Rd with labels y ∈ Rk. The goal is to train a classifier
f , parameterized by θ, to minimize a loss function L : Rk × Rk → R over D.

2.1 NEURAL NETWORK VERIFICATION

Neural network verification formally proves a network’s robustness, with the provably robust samples
defining the certified accuracy. Interval Bound Propagation (IBP) (Gowal et al., 2018; Mirman
et al., 2018) is a simple yet effective method for verification. It over-approximates the input region
Bp(x, ϵp), p ∈ {2,∞}, propagates it layer by layer through the network f = Lj ◦σ ◦Lj−2 ◦ . . . ◦L1

(with linear layers Li and ReLU activations σ), and verifies whether the reachable outputs classify
correctly. Robustness is certified if the lower bound of the correct class exceeds the upper bounds of
all others (∀i ̸= y, oi − oy < 0) (for more details, see Gowal et al. (2018)).

2.2 TRAINING FOR ROBUSTNESS

A classifier is adversarially robust on an lp-norm ball Bp(x, ϵp) = {x′ ∈ Rd : ∥x′ − x∥p ≤ ϵp} if
it correctly classifies all points within this region, i.e., argmax f(x′) = y for all x′ ∈ Bp(x, ϵp).
Training for robustness is framed as a min-max optimization problem, defined for an lp attack as:

min
θ

E(x,y)∼D

[
max

x′∈Bp(x,ϵp)
L(f(x′), y)

]
(1)

The inner maximization problem is often approximated through adversarial training (Madry et al.,
2017) or certified training (Gowal et al., 2018; Müller et al., 2022). However, such methods are
typically tailored to specific p values, leaving networks vulnerable to other perturbations. To address
this, prior work has only trained networks to be adversarially robust against multiple perturbations
(l1, l2, l∞). Our focus is on training networks to be certifiably robust to multiple lp perturbations.

2.3 CERTIFIED TRAINING

There are two main categories of methods to train certifiably robust models: unsound and sound
methods. Sound methods optimize a rigorously defined upper bound of the inner maximization
problem, ensuring provable robustness guarantees. In contrast, unsound methods give up this
guarantee to have a more precise approximation. IBP, a sound method, optimizes the following loss
function based on logit differences:

LIBP(x, y, ϵ∞) = ln(1 +
∑
i̸=y

eoi−oy ) (2)

Also, state-of-the-art certified training methods SABR (Müller et al., 2022), TAPs (Mao et al., 2024),
and CC/EXP/MTL-IBP (Palma et al., 2024) relax the robustness guarantee within the specification
loss, but in practice, result in better standard and certified accuracy. Given a small box size τ∞, SABR
finds an adversarial example x′ ∈ B∞(x, ϵ∞ − τ∞) and propagates a small box region B∞(x′, τ∞)
across all layers using IBP loss, expressed as:

Ll∞(x, y, ϵ∞, τ∞) = max
x′∈B∞(x,ϵ∞−τ∞)

LIBP(x
′, y, τ∞) (3)

2.4 EVALUATION METRICS

Union certified accuracy (UCA). We focus on the union threat model ∆ = B1(x, ϵ1)∪B2(x, ϵ2)∪
B∞(x, ϵ∞) which requires the DNN to be certifiably robust within the l1, l2 and l∞ adversarial
regions simultaneously. Union accuracy is then defined as the robustness against ∆(i) for each xi
sampled from D. In this paper, similar to the prior works (Croce & Hein, 2022), we use union
accuracy as the main metric to evaluate the multi-norm certified robustness.

UCA = Exi∼D
[
1{∀x′ ∈ ∆ with bounds oi, oi, ∀i ̸= yi, oi − oyi

< 0}
]
,

where yi is the true label for sample xi, and 1{·} is the indicator function.

Generalized certified robustness (GCR). We measure the generalization ability of multi-norm
certified training to other perturbation types, including rotation, translation, scaling, shearing, contrast,
and brightness change of geometric transformations (Balunovic et al., 2019; Yang et al., 2022), as
well as patch attacks (Chiang et al., 2020). If we have perturbation sets Tj(x) representing each
transformation or attack type j, we define:

GCR = Exi∼D

[
1

J

∑
j = 1J1{∀x′ ∈ Tj(xi) with bounds oi, oi, ∀i ̸= yi, oi − oyi

< 0}
]
,
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(a) Sq and Sr are disjoint
and cover X

(b) Sr includes Sq

Figure 2: lq − lr trade-off visualization. Blue and
purple points belong to Sq ⊆ X and Sr ⊆ X .

Figure 3: Comparisons of union errors of two ex-
treme cases. Note thatRr ≤ Runion ≤ 1. A larger
union error has a more severe lq − lr trade-off.

Sq ∩ Sr = ∅ ∧ Sq ∪ Sr = X Sq ⊆ Sr

Ralign 1 - Rr 0
Runion 1 Rr (optimal)

where J is the total number of considered perturbation types.

3 CURE: MULTI-NORM CERTIFIED TRAINING FOR UNION ROBUSTNESS

This section presents our multi-norm certified training (CT) framework CURE. We introduce our
framework with binary classification to analyze the tradeoff between certified lp, lq perturbations.
However, we note our algorithms presented in this work are all multi-class, and the binary classifica-
tion framework can be easily extended to the multi-class case Zhang et al. (2019a). Based on the
theoretical analysis (Eq. 4), we propose three methods for multi-norm CT against l2, l∞ perturbations
using different loss formulations, which serve as the base instantiations of our framework. Then, we
design new techniques to improve union-certified accuracy inspired by our theoretical findings.

Notations. For binary classification, we denote the sample instance as x ∈ X , with the label
y ∈ {−1,+1} , where X ⊆ Rd is the instance space. The dataset is denoted as D = {(xi, yi)}ni=1,
where X = {x1, . . . , xn} ⊆ X is the set of instances and Y = {y1, . . . , yn} ⊆ {−1,+1} is the set
of corresponding labels. Let f : X → R map instances to output values ∈ {−1,+1}, which can
be parameterized (e.g., by deep neural networks). We use 1{event}, the 0-1 loss, as an indicator
function that is 1 if an event happens and 0 otherwise. For any function ψ(u), we use ψ−1 to denote
the inverse function. ϕ(·) is used to denote the surrogate for the 0-1 loss function.

Robust, alignment and union error. To characterize the robustness of a score function f : X → R,
similar to Schmidt et al. (2018); Cullina et al. (2018); Bubeck et al. (2019), we define robust error
under the threat model of ϵq perturbation: Rq(f) := E(x,y)∼D1{∃x′q∈Bq(x, ϵq) s.t. f(x′q)y ≤ 0}.
We define Rr(f) similarly to Rq(f) for ϵr perturbation, and without loss of generality, assume
Rr(f) ≥ Rq(f). Then, we introduce alignment error as the risk calculated by x ∈ X that are robust
against lr attack but not robust against lq attack: Ralign(f) := E(x,y)∼D1{∃x′r ∈Br(x, ϵr), x

′
q ∈

Bq(x, ϵq), s.t. f(x′r)y > 0 and f(x′q)y ≤ 0}. The union error is the risk calculated by x ∈ X that
are either not robust against lq or lr attack. We have the following relationship ofRunion(f):

Runion(f) = Rr(f) +Ralign(f). (4)

Trade-off between lq, lr perturbations. Our study is motivated by the trade-off between lq and
lr robust errors, as shown empirically in Figure 1a. To illustrate, we provide two extreme cases in
Figure 2. We define Sr = {x|∃x′r ∈ Br(x, ϵr) s.t. f(x′r)y ≤ 0, (x, y) ∈ D} (define Sq similarly).
As shown in Table 3, we have (a) the lowest union accuracy of 0: when all instances in X can be
successfully attacked by lq or lr norms yet no single instance can be attacked in both lq and lr, we
have a union error of 1; (b) the highest union accuracy of 1−Rr: when the instances that are not
robust against lr attack includes all instances that are not robust against lq attack, we have a union
errorRr. A larger union error indicates a bigger lq, lr trade-off. Runion is lower bounded byRr.

3.1 CERTIFIED TRAINING FOR MULTIPLE NORMS

Eq. 4 reveals that we need to minimize Ralign by not only training with one kind of adversarial
examples x′r since it will lead to a largeRalign with more instances not robust against lq attack. To
effectively combine the optimization of lq and lr (q = 2, r = ∞) certified training, based on the
work (Tramer & Boneh, 2019; Madaan et al., 2021; Croce & Hein, 2022) on adversarial training for
multiple norms, we propose the following methods:

1. CURE-Joint: optimizes Ll∞ and Ll2 together: it takes the sum of two worst-case IBP losses with
l∞ and l2 examples using a convex combination of weights with hyperparameter α ∈ [0, 1].
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LJoint = (1− α) · Ll∞(x, y, ϵ∞, τ∞) + α · Ll2(x, y, ϵ2, τ2)
2. CURE-Max: compares Ll2 and Ll∞ , selecting the higher IBP loss as the worse-case outcome.
This approach acts as a worst-case defense, accounting for adversarial examples with the highest IBP
loss across multiple perturbation types. The max loss LMax is defined as:

LMax = max
p∈{2,∞}

max
x′∈Bp(x,ϵp−τp)

LIBP(x, y, ϵp, τp)

3. CURE-Random: randomly partitions a batch of data (x,y) ∼ D into equal sized blocks (x1,y1)
and (x2,y2). For (x1,y1), we calculate the l∞ worst-case IBP loss Ll∞ with l∞ perturbations. For
the other half (x2,y2), similarly, we get the l2 worst-case IBP loss by applying l2 perturbations.
After that, we optimize the Joint loss of these two with equal weights, as shown below. In this way,
we reduce the time cost of propagating the bounds and generating the adversarial examples by 1

2 .

LRandom = Ll∞(x1,y2, ϵ∞, τ∞) + Ll2(x2,y2, ϵ2, τ2),where x = x1 ∪ x2,y = y1 ∪ y2

3.2 UNIFIED AND EFFECTIVE MULTI-NORM CERTIFIED TRAINING

The methods proposed above are still suboptimal as they fail to fully explore the relationship between
worst-case IBP losses across different perturbations, certified training (CT), and natural training (NT).
To address this, we introduce the following techniques to enhance the union robustness of CURE: (1)
We derive an upper bound on the terms, which informs us to propose a bound alignment technique to
mitigate the trade-off better, improving multi-norm robustness. (2) We analyze and connect certified
and natural training to attain better union accuracy. (3) the first certified fine-tuning method to quickly
improve union accuracy with pre-trained single-norm models (Table 1).

Bound alignment (BA). First, we aim to design tight upper bounds for different risk terms, leveraging
the theory of classification-calibrated loss, which informs how to design methods to mitigate the
lr − lq tradeoff more efficiently. First, classification-calibrated surrogate loss is a surrogate loss
Rϕ(f) := E(x,y)∼Dϕ(f(x)y) designed to approximate the 0-1 loss, making it computationally
efficient for optimization while maintaining a meaningful relationship with the true error (Zhang
et al., 2019a). A loss is classification-calibrated if it ensures that any decision rule inconsistent with
the Bayes optimal classifier has a strictly larger ϕ-risk of the loss function ϕ. This property is crucial
for achieving optimal classification performance, and examples include hinge loss, logistic loss, and
exponential loss. Here, we show the binary IBP loss falls into this loss category.
Lemma 3.1. Binary IBP loss is a logistic loss in the classification-calibrated surrogate loss family.
Proof. We have binary LIBP(x, y, ϵp) = ln(1 + eoi−oy ), i ̸= y, which is a logistic loss.

Upper bound. Our following analysis provides a performance guarantee for minimizing the surrogate
loss. We introduce a transformation ψ of classification-calibrated losses. ψ : [0, 1] → [0,∞) is
defined as the convex conjugate of a function that lower bounds the gap between a modified entropy
function (e.g., a surrogate loss like cross-entropy) and the standard Shannon entropy (Zhang et al.,
2019a). This gap quantifies how well the surrogate loss approximates the true 0-1 classification
error. The function ψ is used to bound the difference between the union riskRunion and the optimal
risk under individual ℓr perturbations R∗

r := minf Rr(f). It has desirable properties: ψ is non-
decreasing, convex, continuous on [0, 1], and satisfies ψ(0) = 0. By Eq.4, we haveRunion(f)−R∗

r =
Rr(f)−R∗

r +Ralign(f) ≤ ψ−1(Rϕ(f)−R∗
ϕ) +Ralign(f), where the inequality holds because ϕ

is constructed from a classification-calibrated loss (Bartlett et al., 2006).

Theorem 3.2. Let Rϕ(f) := Eϕ(f(x)y) and R∗
ϕ := minf Rϕ(f). Under Assumption 1 in Zhang

et al. (2019a), with E taken over the data distribution, for any non-negative loss function ϕ such that
ϕ(0) ≥ 1, any measurable f : X → R, any probability distribution on X × {±1}, IBP output bound
differences from f as d(x) = oi − oy(i ̸= y), and any λ > 0, we have

Runion(f)−R∗
r ≤ ψ−1(Rϕ(f)−R∗

ϕ) + E max
x′
r∈

Br(x,ϵr)

max
x′
q∈

Bq(x,ϵq)

(ϕ(d(x′r)d(x
′
q)/λ), oi ≤ oy for d(x′r)).

The proof is in Appendix A.1, which sheds light on how we can further improve union-certified
robustness. Algorithmically, we can extend the framework to the case of multi-class classifications
by replacing ϕ with a multi-class calibrated loss L(·, ·) (Zhang et al., 2019a), such as cross-entropy,
which ensures that minimizers of the surrogate risk align with those of the 0-1 loss. ϕ(d(x′r)d(x

′
p)/λ)

indicates that we need to align the distributions between output bound differences of two perturbations,
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so Theorem 3.2 has a tighter upper bound. ∀i ̸= y, oi ≤ oy means we need to regularize those bounds
only on the correctly predicted lr subsets (Definition 3.3), meaning the subset γ for which the lower
bound computed with IBP of the correct class is higher than the upper bounds of other classes.

Definition 3.3 (Correctly Certified lr Subset). At epoch e, given the perturbation size ϵr ∈ R
and model f , for a batch of data (x,y) ∼ D of size n, we have the output upper and lower
bounds computed by IBP for lr perturbations. We define a function h for this procedure as h(x) =
{oj ,oj}

j<n
j=0 , where o = {oi}i<k

i=0 is a vector of bounds for all classes. Then, the correctly certified
subset γ at the current step is defined as:

∀j ∈ γ with (xj ,yj) and bounds {oj = {oi}i<k
i=0 ,oj = {oi}i<k

i=0}, we have ∀i ̸= yj , oi ≤ oyj
.

For certified training, Gowal et al. (2018); Müller et al. (2022) optimize the model using bound
differences {oi − oy}i<k

i=0 (y is the correct class). Inspired by Theorem 3.2, we align the bound
differences {{oi − oy}i<k

i=0}n of lr and lq CT outputs with a batch of n samples, specifically on
the correctly certified lq subset γ. Specifically, for each batch of data (x,y) ∼ D, we denote the
bounds differences after softmax normalization for two perturbations as dq and dr. Then, we select
indices γ, according to Definition 3.3. We denote the size of the indices as nc ≤ n. We compute a
KL-divergence loss over this set of samples using KL(dq[γ]∥dr[γ]) (Eq. 5). Intuitively, we aim to
encourage dr[γ] and dq[γ] distributions to become close to each other, such that we gain more union
robustness.

LKL =
1

nc
·

nc∑
i=1

k∑
j=0

dq[γ[i]][j] · log
(
dq[γ[i]][j]

dr[γ[i]][j]

)
(5)

Apart from the KL loss, we add another loss term using a Max-style approach in Eq. 6, since Max
performs relatively well, as shown in Table 1. We also consider combining with Random/Joint
losses if they lead to a better performance. Our final loss LScratch combines LKL and LMax, via a
hyper-parameter η, as shown in Eq. 7.

LMax = max
p∈{2,∞}

max
x′∈Bp(x,ϵp−τp)

LIBP(x, y, ϵp, τp) (6) LScratch = LMax + η · LKL (7)

Integrate NT into CT. In the context of adversarial robustness, Jiang & Singh (2024) shows that
there exist a useful portion of model updates in natural training, which can be extracted and integrated
into adversarial training to improve adversarial robustness. Based on this, we propose a technique
to integrate NT into CT, to enhance union-certified robustness. Specifically, for model p(r) at any
epoch r, we examine the model updates of NT and CT over all samples from D. The models p(r)n

and p(r)c represent the results after one epoch of NT and CT, from the same initial model p(r). Then
we compare the updates of the two gn = p

(r)
n − p(r) and gc = p

(r)
c − p(r). For a specific layer l,

by comparing gln and glc, we retain a portion of gln according to their cosine similarity score (Eq.8).
Negative scores indicate that gln does not contribute to certified robustness, so we discard components
with similarity scores ≤ 0. The GP (Gradient Projection) operation, defined in Eq.9, projects glc
towards gln.

cos(gln, g
l
c) =

gln · glc
∥gln∥∥glc∥

(8) GP(gln, g
l
c) =

{
cos(gln, g

l
c) · gln, cos(gln, g

l
c) > 0

0, cos(gln, g
l
c) ≤ 0

(9)

Therefore, the total projected (useful) model updates gp coming from gn could be computed as Eq. 10.
We useM to represent all layers of the current model update. The expression

⋃
l∈M concatenates

the useful natural model update components from all layers. A hyper-parameter β is introduced
to balance the contributions of gGP and gc, as outlined in Eq.11. It is important to note that this
projection procedure is applied only after the eps-annealing phase of certified training. The theoretical
analysis of why connecting NT with CT works is discussed in Appendix A.2.

gp =
⋃
l∈M

GP(gln, g
l
c) (10) p(r+1) = p(r) + β · gp + (1− β) · gc (11)

Quick certified fine-tuning. In adversarial robustness, Croce & Hein (2022) shows that public mod-
els can be made more robust with only the application of fine-tuning, which reduces the computational
cost significantly compared with training from scratch. In this work, we propose the first fine-tuning
certified multi-norm robustness scheme CURE-Finetune. Starting from a single norm pre-trained
model, we perform the bound alignment technique by optimizing LScratch for a few epochs. Because
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of the lq − lr tradeoff, certifiably finetuning a lq pre-trained model on lr perturbations reduces lq
robustness. Thus, we want to preserve more lq robustness when doing certified fine-tuning, which
makes bound alignment useful here. By regularizing on the correctly certified lq subset with LScratch,
we can prevent losing more lq robustness when boosting lr robustness, which leads to better union
accuracy. We note that CURE-Finetune can be adapted to any single-norm certifiably pre-trained
models. As shown in Table 1, we can obtain a superior multi-norm certified robustness by performing
quick fine-tuning on pre-trained l∞ models.

4 EXPERIMENT

In this section, we present and discuss the results of union, geometric, and patch robustness, as well as
ablation studies on hyper-parameters for MNIST, CIFAR-10, and TinyImagenet experiments. Other
ablation studies, visualizations, and algorithms of CURE can be found in Appendix D and F.

Experimental Setup. For datasets, we use MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky
et al., 2009) which both include 60K images with 50K and 10K images for training and testing, as
well as TinyImageNet (Le & Yang, 2015) which consists of 200 object classes with 500 training
images, 50 validation images, and 50 test images per class. We compare the following methods: 1.
l∞: l∞ certified defense SABR (Müller et al., 2022), 2. l2: l2 certified defense based on SABR, 3.
CURE-Joint: take a weighted sum of l2, l∞ IBP losses. 4. CURE-Max: take the worst of l2, l∞
IBP losses. 5. CURE-Random: randomly partitions the samples into two blocks, then applies the
Joint loss with equal weights. 6. CURE-Scratch: training from scratch with bound alignment and
gradient projection techniques. 7. CURE-Finetune: robust fine-tuning with the bound alignment
technique using l∞ pre-trained models. We use a 7-layer convolutional architecture CNN7, a standard
architecture (Müller et al., 2022) for certified training. In Table 12, we compare our proposed l2
defense with Hu et al. (2023), where we show our method outperforms the SOTA l2 deterministic
certified defense on CIFAR-10. We choose similar hyperparameters and training setup as Müller
et al. (2022) for l∞ certified training. We select α = 0.5, l2 subselection ratio λ2 = 1e−5, β = 0.5,
and η = 2.0 according to our ablation study results in Section 4.2 and Appendix D. For certified
fine-tuning, we finetune 20% of the epochs of CURE-Scratch and are only performed on l∞ models
as they generally have higher robust errors. Full implementation details are in Appendix C.
4.1 MAIN RESULTS

Evaluation. We choose the common ϵ∞, ϵ2, ϵ1 values used in the literature (Müller et al., 2022; Hu
et al., 2023) to construct multi-norm regions. These include (ϵ1 = 1.0, ϵ2 = 0.5, ϵ∞ = 0.1), (ϵ1 =
2.0, ϵ2 = 1.0, ϵ∞ = 0.3) for MNIST, (ϵ1 = 0.5, ϵ2 = 0.25, ϵ∞ = 2

255 ), (ϵ1 = 1.0, ϵ2 = 0.5, ϵ∞ =
8

255 ) for CIFAR-10 and (ϵ1 = 72
255 , ϵ2 = 36

255 , ϵ∞ = 1
255 ) for TinyImageNet. We make sure the

adversarial regions with sizes ϵ∞, ϵ1 and ϵ2 do not include each other. We report the clean accuracy,
certified accuracy against l1, l2, l∞ perturbations, union accuracy, and individual/average certified
robustness against geometric transformations as well as patch attacks. Further, we use alpha-beta
crown (Zhang et al., 2018) for certification on l2, l∞ perturbations, FGV (Yang et al., 2022) for
efficient certification of geometric transformations, and Chiang et al. (2020) for 2× 2 patch attacks.
Additional experiment results on CIFAR-100, varying epsilons for lp norms where we show our
methods generalize to a wide choice of epsilons and ablation studies can be found in Appendix D.
Union accuracy on MNIST, CIFAR-10, and TinyImagenet with CURE framework. In Table 1,
we show the results of clean accuracy and certified robustness against single and multi-norm with
CURE on MNIST, CIFAR-10, and TinyImagenet. CURE-Joint, CURE-Max, and CURE-Random
usually yield better union robustness than l2 and l∞ certified training. Further, CURE-Scratch and
CURE-Finetune consistently improve the union accuracy compared with other multi-norm methods
with significant margins in most cases (20% for MNIST and 8% for CIFAR-10 experiments), showing
the effectiveness of bound alignment and gradient projection techniques. Also, for quick fine-tuning,
we show it is possible to quickly fine-tune a l∞ robust model with good union robustness using bound
alignment, achieving SOTA union accuracy on MNIST and CIFAR-10 experiments. More results on
MNIST, CIFAR-10, and CIFAR-100 are available in Appendix D.
Robustness against unseen geometric and patch transformations. Table 4 and Table 6 (in
Appendix) compare CURE with single norm training against various geometric perturbations on
MNIST and CIFAR-10 datasets. CURE outperforms single norm training on diverse geometric
transformations (e.g., 6% for CIFAR-10 on average), leading to better generalized certified robustness.
Also, CURE-Scratch has better geometric robustness than CURE-Max on both datasets, which
reveals that bound alignment and gradient projection lead to better generalized certified robustness.
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Dataset (ϵ∞, ϵ2, ϵ1) Methods Clean l∞ l2 l1 Union

l∞ 98.7 92.1 69.6 38.9 38.5
l2 99.4 0.0 94.5 94.7 0.0

CURE-Joint 98.7 90.5 76.3 50.8 50.3
MNIST (0.3, 1.0, 2.0) CURE-Max 98.7 91.1 76.2 47.2 46.5

CURE-Random 98.7 90.5 76.3 50.8 50.3
CURE-Finetune 98.5 90.1 83.5 64.0 63.2

CURE-Scratch 98.0 89.4 85.9 71.5 70.5
l∞ 51.8 36.3 6.0 3.8 3.5
l2 78.6 0.0 56.5 75.8 0.0

CURE-Joint 51.3 23.9 34.0 38.6 21.4
CIFAR-10 ( 8

255 , 0.5, 1.0) CURE-Max 51.5 33.9 19.5 21.6 16.8
CURE-Random 53.0 28.9 28.0 34.6 24.0
CURE-Finetune 40.2 30.2 30.8 34.8 29.3

CURE-Scratch 49.5 34.2 28.1 32.0 26.3

l∞ 28.3 19.4 19.4 12.9 12.9
l2 36.2 2.9 30.6 23.5 2.9

CURE-Joint 30.2 20.0 25.9 18.8 18.8
TinyImagnet ( 1

255 , 36
255 , 72

255 ) CURE-Max 29.6 21.8 23.5 18.2 18.2
CURE-Random 30.5 25.9 28.2 23.5 23.5
CURE-Fintune 28.1 21.2 21.8 18.2 16.6
CURE-Scratch 29.7 23.5 26.5 22.4 22.4

Table 1: Comparison of the clean accuracy, individual, and union certified accuracy (%). CURE
consistently improves union accuracy compared with single-norm training with significant margins
on all datasets. CURE-Scratch and CURE-Finetune outperform other methods in most cases.

Configs R(10) R(2),Sh(2) Sc(1),R(1),
C(1),B(0.001)

Avg

l∞ 27.8 33.2 23.3 28.1
l2 36.6 0.0 0.0 12.2
CURE-Joint 35.0 41.4 28.2 34.9
CURE-Max 33.7 39.0 23.3 32.0
CURE-Random 35.1 40.9 26.2 34.1
CURE-Scratch 34.2 39.6 24.9 32.9

Figure 4: Comparison on CURE against geometric trans-
formations for CIFAR-10 (ϵ1 = 1.0, ϵ2 = 0.5, ϵ∞ = 8

255 )
experiment. We denote R(φ) a rotation of ±φ degrees;
Tu(∆u) and Tv(∆v) a translation of ±∆u pixels horizon-
tally and ±∆v pixels vertically, respectively; Sc(λ) a scal-
ing of ±λ%; Sh(γ) a shearing of ±γ%; C(α) a contrast
change of ±α%; and B(β) a brightness change of ±β.
CURE improves the geometric certified robustness com-
pared with single norm training. CURE-Scratch achieves
the best average geometric transformation robustness.
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Figure 5: CURE-Max and CURE-
Scratch bound difference visualization.

In addition, in Table 2a, we display the certified robustness of CURE compared with single-norm
baselines against patch 2× 2 attacks. Our framework outperforms related baselines with 8.5% for
MNIST and 16.0% for CIFAR-10, showing better generalized certified robustness. We hypothesize
that many non-lp perturbations can be approximated or parameterized using lp-bounded formulations,
and improving lp robustness enhances robustness to such transformations - we find that CURE
training achieves significantly higher bound overlap compared to single-norm models (Table 8).
However, we also observe that a geometrically robust model lacks multi-norm robustness, as shown
in Table 7 in Appendix.
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Figure 6: Alabtion studies on λ2, η and β hyper-parameters.
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4.2 ABLATION STUDY AND DISCUSSIONS

Subselection ratio λ. For l∞ certified training, we use the same λ∞ as in Müller et al. (2022). For
λ2, in Figure 6a, we show the l2 certified robustness using varying λ2 ∈ [0, ..., 1e−2] with ϵ2 = 0.5.
According to Figure 6a, we choose τ2 = 1e−5.

Bound alignment (BA) hyper-parameter η. We perform CIFAR-10 (ϵ∞ = 8
255 , ϵ2 = 0.5, ϵ1 = 1.0)

experiments with η values in [0.5, 1.0, 1.5, 2.0, 4.0]. In Figure 6b, the clean accuracy generally drops
as we have larger η values, with union accuracy improving then dropping. We pick η = 2.0 with the
best union accuracy for most experiments.

Gradient projection (GP) hyper-parameter β. Figure 6c displays the change of clean and union
accuracy with choices of varying β values on CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5, ϵ1 = 1.0). CURE-
Scratch is generally insensitive to β values. Thus, we choose β = 0.5 for the experiments.

Ablation study on BA and GP. In Table 2b, we show the ablation study of BA and GP techniques on
CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5, ϵ1 = 1.0) experiment. BA and GP improve union accuracy by 6.8%
and 2.7%, demonstrating the individual effectiveness of our proposed techniques.

Methods MNIST CIFAR-10
l∞ 68.9 0.0
l2 0.0 0.0
CURE-Joint 68.5 0.2
CURE-Max 65.8 0.1
CURE-Random 72.8 16.0
CURE-Scratch 77.4 10.1

(a) Robust accuracy against 2 × 2 patch attacks on MNIST
(ϵ1 = 2.0, ϵ2 = 1.0, ϵ∞ = 0.3) and CIFAR-10 (ϵ1 =
72
255

, ϵ2 = 36
255

, ϵ∞ = 1
255

) datasets. Results show CURE
significantly outperforms single-norm training.

Clean l∞ l2 l1 Union

CURE-Max 51.5 33.9 19.5 21.6 16.8
+BA 50.2 33.8 25.4 27.9 23.6
+BA + GP 49.5 34.2 28.1 32.0 26.3

(b) Ablations on BA and GP.

Visualization of bound differences. Figure 5 displays the bound differences {oy − oi}i<k
i=0,i̸=y of

one example that is improved by CURE-Scratch (second row), compared with the CURE-Max
(first row), from the CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5, ϵ1 = 1.0) experiment. We use outputs from
α, β-CROWN. For l2 perturbations (blue diagrams), CURE-Scratch consistently shows positive
bound differences enabling robust union prediction, while CURE-Max has several negative ones
(highlighted in red). The second-row distributions are more aligned than the first, showing that
CURE-Scratch effectively aligns bound differences. This highlights the effectiveness of the bound
alignment method. Additional visualizations are in Appendix D.

Time cost of CURE. The extra training costs of GP are small, taking 6, 24, 82 seconds using a single
NVIDIA A40 GPU on MNIST, CIFAR-10, and TinyImageNet datasets (Table 14), respectively.
Compared with the total training cost of CURE-Scratch, it only accounts for ∼ 6% of the total cost.
For runtime comparison of different methods with the same number of training epochs, we have a
complete runtime analysis (Table 13) in Appendix E for the MNIST experiment. CURE-Joint has
the largest cost among all methods. CURE-Scratch has a small extra time cost than CURE-Max,
showing our proposed techniques have little additional cost.

Limitations. For l2 certified training, we use a l∞ box instead of l2 ball for bound propagation,
which leads to more over-approximation and the potential loss of precision. Also, we notice drops in
clean accuracy when training with CURE methods. BA and GP techniques lead to a slight decrease
in clean accuracy in experiments. Further, our work does not claim to achieve universal certified
robustness, but takes a step toward it by showing that multi-norm training offers broader certified
robustness than single-norm or geometric-certified models (Table 7).

5 CONCLUSION

We propose a framework CURE with multi-norm certified training methods for better union robust-
ness. We establish a theoretical framework to analyze the tradeoff between perturbations, which
inspires us to devise bound alignment, gradient projection, and robust certified fine-tuning techniques
to enhance and facilitate the union-certified robustness. Extensive experiments on MNIST, CIFAR-10,
and TinyImagenet show that CURE significantly improves union accuracy and robustness against
geometric and patch transformations, paving the path to generalized certified robustness.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on developing methods for
improving the certified robustness of machine learning models. We do not involve human subjects,
personal data, or sensitive demographic attributes in our experiments, as all evaluations are conducted
on widely used benchmark datasets such as MNIST, CIFAR-10, and TinyImageNet that are publicly
available and ethically sourced. While robustness research has the potential to be misused for creating
stronger adversarial attacks, we emphasize that our contributions are specifically designed to advance
defense techniques, improve safety guarantees, and guide the development of trustworthy AI systems.
We release our code and results in alignment with principles of transparency, reproducibility, and
research integrity, while carefully avoiding the release of harmful attack-specific artifacts beyond
what is necessary for scientific validation. Our work complies with relevant privacy, security, and
fairness considerations, and we believe it contributes positively toward the broader goal of building
safer and more reliable AI systems.

7 REPRODUCIBILITY STATEMENT

We provide the source code of CURE as part of the supplementary material that can be used to
reproduce our results. We provide the details of our hyper-parameters, training scheme, and model
architecture in Section 4. We also provide additional details including other training details, further
evaluation, and pseudocode not covered in the main text in the appendix.
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A PROOFS OF THE THEOREMS

In this section, we provide the proofs of the Theorems.

A.1 PROOF OF THEOREM 3.2

Theorem 3.2 (restated). LetRϕ(f) := Eϕ(f(x)y) andR∗
ϕ := minf Rϕ(f). Under Assumption 1

in Zhang et al. (2019a), for any non-negative loss function ϕ such that ϕ(0) ≥ 1, any measurable
f : X → R, any probability distribution on X × {±1}, IBP output bound differences from f as
d(x) = oi − oy(i ̸= y), and any λ > 0, we have

Runion(f)−R∗
r ≤ ψ−1(Rϕ(f)−R∗

ϕ) + Pr[x′r∈Br(x, ϵr), x
′
q∈Bq(x, ϵq), f(x

′
r)y > 0 and f(x′q)y ≤ 0]

≤ ψ−1(Rϕ(f)−R∗
ϕ) + E max

x′
r∈Br(x,ϵr),

x′
q∈Bq(x,ϵq)

(ϕ(f(x′r)f(x
′
p)/λ), f(x

′
r)y > 0)

≤ ψ−1(Rϕ(f)−R∗
ϕ) + E max

x′
r∈Br(x,ϵr),

x′
q∈Bq(x,ϵq)

(ϕ(d(x′r)d(x
′
p)/λ), oi ≤ oy for d(x′r)).

Proof. By Eqn. equation 4, Runion(f) − R∗
r = Rr(f) − R∗

r + Ralign(f) ≤ ψ−1(Rϕ(f) −
R∗

ϕ) +Ralign(f), where the last inequality holds because we choose ϕ as a classification-calibrated
loss Bartlett et al. (2006). This leads to the first inequality.

Also, notice that

Pr[x′r∈Br(x, ϵr), x
′
q∈Bq(x, ϵq), f(x

′
r)y > 0 and f(x′q)y ≤ 0]

≤ Pr[x′r∈Br(x, ϵr), x
′
q∈Bq(x, ϵq), f(x

′
r)f(x

′
q) ≤ 0, f(x′r)y > 0]

= E max
x′
r∈Br(x,ϵr)

max
x′
q∈Bq(x,ϵq)

(1{f(x′r) ̸= f(x′q)}, f(x′r)y > 0)

= E max
x′
r∈Br(x,ϵr)

max
x′
q∈Bq(x,ϵq)

(1{f(x′r)f(x′q)/λ < 0}, f(x′r)y > 0)

≤ E max
x′
r∈Br(x,ϵr)

max
x′
q∈Bq(x,ϵq)

(ϕ(f(x′r)f(x
′
q)/λ), f(x

′
r)y > 0)

≤ E max
x′
r∈Br(x,ϵr)

max
x′
q∈Bq(x,ϵq)

(ϕ(d(x′r)d(x
′
p)/λ), oi ≤ oy for d(x′r)).

The last inequality holds because the adversarial loss is always upper-bounded by the IBP loss.
Therefore, we get the second and third inequality in Theorem A.1.

A.2 THEORY OF CONNECTING NT WITH CT

The proof for connecting NT with CT via gradient projection (GP) is very similar to what has been
done in Jiang & Singh (2024), where authors analyze and compare the delta errors of two aggregation
rules (standard training and training with GP). Delta errors are the indicators of convergences of
different aggregation rules based on a mild assumption on the Lipschitz continuity of loss function
gradients. GP leads to a smaller Delta error, which means GP results in a better convergence. The
only difference in connecting NT with CT is that we use a different loss function compared with
adversarial training, which makes the proof almost the same. One can refer to Jiang & Singh (2024)
for the more detailed proof of GP.

B RELATED WORK

Neural network verification. We rely on deterministic verification techniques to evaluate robust-
ness under multiple norms. Although exact verification is NP-complete and infeasible for large
models (Katz et al., 2017), scalable relaxations such as abstract interpretation (Singh et al., 2019)
and convex optimization approaches (Wang et al., 2021) make it possible to obtain sound, though
sometimes conservative, certificates. These methods are widely used in certified training because they
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strike a balance between tractability and rigor, enabling provable guarantees at scale. Our analysis
of multi-norm certified training builds on this foundation, leveraging deterministic verification to
provide stronger and more general robustness guarantees.

Certified training. For l∞ certified training, a widely-used method IBP (Mirman et al., 2018; Gowal
et al., 2018) minimizes a sound over-approximation of the worst-case loss, calculated using the Box
relaxation method. Wong et al. (2018) applies DeepZ (Singh et al., 2018) relaxations, estimating
using Cauchy random projections. CROWN-IBP (Zhang et al., 2019b) integrates efficient Box
propagation with precise linear relaxation-based bounds during the backward pass to estimate the
worst-case loss. Balunović & Vechev (2020) consists of a verifier that aims to certify the network
using convex relaxation and an adversary that tries to find inputs causing verification to fail. Shi
et al. (2021) proposes a new weight initialization method for IBP, adds Batch Normalization (BN) to
each layer and designs regularization with a short warmup schedule. Besides this, SABR (Müller
et al., 2022) and TAPS (Mao et al., 2024) are unsound improvements over IBP by connecting IBP to
adversarial attacks and adversarial training. For l2 deterministic certified training, recent works (Leino
et al., 2021; Xu et al., 2022; Hu et al., 2023; 2024) are based on Lipschitz-based certification methods.
They design specialized architectures under a particular lp norm, which do not naturally extend to
robustness under the diverse settings considered in our work. To the best of our knowledge, CURE is
the first deterministic framework for multi-norm certified robustness, compatible with diverse model
architectures. In comparison to previous works, CURE is a more general deterministic framework
for multi-norm certified robustness.

Robustness against multiple perturbations. Adversarial Training (AT) usually employs gradient
descent to discover adversarial examples and incorporates them into training for enhanced adversarial
robustness (Tramèr et al., 2017; Madry et al., 2017). Numerous works focus on improving robustness
(Zhang et al., 2019a; Carmon et al., 2019; Raghunathan et al., 2020; Wang et al., 2020; Wu et al.,
2020; Gowal et al., 2020; Zhang et al., 2021; Debenedetti & Troncoso—EPFL, 2022; Peng et al.,
2023; Wang et al., 2023) against a single perturbation type while remaining vulnerable to other
types. Tramer & Boneh (2019); Kang et al. (2019) observe that robustness against lp attacks does not
necessarily transfer to other lq attacks (q ̸= p). Previous studies (Tramer & Boneh, 2019; Maini et al.,
2020; Madaan et al., 2021; Croce & Hein, 2022; Jiang & Singh, 2024) modified Adversarial Training
(AT) to enhance robustness against multiple lp attacks, employing average-case (Tramer & Boneh,
2019), worst-case (Tramer & Boneh, 2019; Maini et al., 2020; Jiang & Singh, 2024), and random-
sampled (Madaan et al., 2021; Croce & Hein, 2022) defenses. There are also works (Nandy et al.,
2020; Liu et al., 2020; Xu et al., 2021; Xiao et al., 2022; Maini et al., 2022) that use preprocessing,
ensemble methods, mixture of experts, and stability analysis to solve this problem. For multi-norm
certified robustness, Nandi et al. (2023) study the certified multi-norm robustness with probabilistic
guarantees. They apply randomized smoothing, which is expensive to compute in nature, making
it impractical for real-world applications. Our work in contrast to these works, proposes the first
deterministic certified multi-norm training for better multi-norm and generalized certified robustness.

C MORE TRAINING DETAILS

Certified training for l2 robustness. We propose a new l2 deterministic certified training method,
inspired by SABR Müller et al. (2022). For the specified ϵ2 and τ2 values, we first generate adversarial
examples by computing the gradient in the l2 direction (Kim, 2020), then truncating the perturbation
to lie within a slightly reduced l∞ ball B∞(x, ϵ2− τ2). After that, we propagate a smaller box region
B∞(x′, τ2) using the IBP loss. The loss we optimize can be formulated as follows:

Ll2(x, y, ϵ2, τ2) = max
x′∈B∞(x,ϵ2−τ2)

LIBP(x
′, y, τ2)

Training details. We mostly follow the hyper-parameter choices from Müller et al. (2022) for CURE.
We include weight initialization and warm-up regularization from Shi et al. (2021). Further, we use
ADAM (Kingma, 2014) with an initial learning rate of 1e−4, decayed twice with a factor of 0.2.
For CIFAR-10, we train 160 and 180 epochs for (ϵ∞ = 2

255 , ϵ2 = 0.25) and (ϵ∞ = 8
255 , ϵ2 = 0.5),

respectively. We decay the learning rate after 120 and 140, 140 and 160 epochs, respectively. For
the TinyImagenet experiment, we use the same setting as the CIFAR-10 (ϵ∞ = 8

255 , ϵ2 = 0.5)
experiment. For the MNIST dataset, we train 70 epochs, decaying the learning rate after 50 and 60
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epochs. For batch size, we set 128 for CIFAR-10 and TinyImagenet and 256 for MNIST. For all
experiments, we first perform one epoch of standard training. Also, we anneal ϵ∞, ϵ2 from 0 to their
final values with 80 epochs for CIFAR-10 and TinyImagenet and 20 epochs for MNIST. We only
apply GP after training with the final epsilon values. For certification, we verify 1000 examples on
MNIST and CIFAR-10, as well as 170 examples on TinyImagenet. The values of all hyperparameters
can be found in Table 3.

MNIST-small MNIST-large CIFAR-small CIFAR-large TinyImagenet
λ∞ 0.4 0.6 0.1 0.7 0.4
λ2 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Learning rate 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04
LR decay ratio 0.2 0.2 0.2 0.2 0.2
Training epochs 70 70 160 180 180
Decay epochs 50, 60 50, 60 120, 140 140, 160 140, 160
Batch size 256 256 128 128 128
α (CURE) 0.5 0.5 0.5 0.5 0.5
η (CURE) 2.0 0.5 2.0 2.0 2.0
β (CURE) 0.5 0.5 0.5 0.5 0.5

Table 3: Training specifications of our main experiments on MNIST, CIFAR-10, and TinyImagenet.

Certifications for evaluations on l1, l2, l∞ norms. We evaluated our trained models using α, β-
CROWN (Zhang et al., 2018). Specifically, α, β-CROWN employs an efficient linear bound prop-
agation framework coupled with a branch-and-bound algorithm to certify the robustness of neural
networks against adversarial attacks. It propagates bounds on network outputs layer-by-layer. These
bounds are linear functions representing the range of potential values the network’s output can take
under a given set of input constraints. In addition, the branch-and-bound algorithm systematically
divides the input space into smaller regions (branching) and computes tighter bounds on each subre-
gion. α, β-CROWN is versatile and supports various activation functions, including ReLU, sigmoid,
and tanh, making it applicable to a wide range of neural network architectures. Also, it supports
the certification on different lp(p = 1, 2,∞) norms, which fits the goal of our CURE framework for
multi-norm certified robustness.

D OTHER EXPERIMENT RESULTS AND ABLATION STUDIES

Additional experiment on MNIST (ϵ∞ = 0.1, ϵ2 = 0.5, ϵ1 = 1.0) and CIFAR-10 (ϵ∞ = 2
255 ,

ϵ2 = 0.25, ϵ1 = 0.5). As shown in Table 4, our CURE-Scratch method achieves higher union-certified
accuracy on both MNIST and CIFAR-10 compared to all baseline methods. This demonstrates that
training from scratch with our proposed multi-norm certified training framework not only consistently
outperforms single-norm approaches.

Additional experiment on CIFAR-100 (ϵ∞ = 2/255, ϵ2 = 0.25, ϵ1 = 0.5). As shown in Table 5,
our CURE-Scratch method significantly improves union-certified accuracy on the CIFAR-100 dataset
compared to all baseline methods. Specifically, CURE-Scratch reaches a union accuracy of 30.4%,
outperforming CURE-Joint, CURE-MAX, and CURE-Random by substantial margins.

Robustness against geometric transformations on CIFAR-10. Table 6 displays the certified
robustness against geometric transformations on CIFAR-10. CURE outperforms the single-norm
baselines with significant margins. Also, we notice that CURE-Scratch improves CURE-Max, which
indicates the effectiveness of bound alignment and gradient projection.

CURE compares to models trained to be robust against geometric perturbations. To evaluate
whether geometric robustness generalizes to multi-norm robustness, we conducted additional ex-
periments on CIFAR-10 using (ϵ∞ = 2/255, ϵ2 = 0.25, ϵ1 = 0.5). We tested models trained with
various geometric transformations, including rotation R(φ), translation Tu(∆u), Tv(∆v), scaling
Sc(λ), shearing Sh(γ), contrastC(α), and brightnessB(β), where the values denote the perturbation
magnitudes (e.g., R(10) applies up to ±10◦ rotation). As shown in the table below, models trained
with geometric perturbations Yang et al. (2022) achieve substantially lower union certified accuracy
(e.g., 21.5%) compared to our CURE model (61.2%). This indicates that geometric robustness alone
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Dataset (ϵ∞, ϵ2, ϵ1) Methods Clean l∞ l2 l1 Union
l∞ 99.2 97.0 96.5 95.0 94.9
l2 99.5 2.6 98.6 98.0 2.6

CURE-Joint 99.2 97.6 97.9 97.5 97.2
MNIST (0.1, 0.5, 1.0) CURE-Max 99.3 97.6 97.3 96.8 96.8

CURE-Random 99.2 97.3 97.2 97.1 96.9
CURE-Finetune 99.1 97.0 97.3 96.8 96.5

CURE-Scratch 99.2 97.5 98.0 97.9 97.5
l∞ 79.2 60.3 67.3 75.9 60.3
l2 82.1 5.8 71.3 81.7 5.8

CURE-Joint 79.4 56.2 68.1 77.1 56.2
CIFAR-10 ( 2

255 , 0.25, 0.5) CURE-Max 77.6 60.0 69.3 75.2 60.0
CURE-Random 78.4 59.0 68.5 76.9 58.9
CURE-Finetune 78.0 59.7 68.2 75.9 59.7

CURE-Scratch 76.0 61.2 67.7 74.6 61.2

Table 4: Comparison of the clean accuracy, individual, and union certified accuracy (%). CURE
consistently improves union accuracy compared with single-norm training with significant margins
on all datasets. CURE-Scratch and CURE-Finetune outperform other methods in most cases.

Clean Linf (2/255) L2 (0.25) L1 (0.5) Union
Linf (2/255) 39.7 26.4 16.0 18.6 14.8
L2 (0.25) 54.3 2.4 37.4 47.4 2.4
CURE-Joint 42.5 28.0 26.8 32.4 26.0
CURE-MAX 40.7 26.8 22.8 29.4 22.6
CURE-Random 41.3 28.4 27.2 34.0 27.0
CURE-Scratch 40.4 30.6 31.4 36.2 30.4

Table 5: Multi-norm certified accuracy (%) on CIFAR100 dataset.

does not transfer well to multi-norm robustness, while our approach offers strong generalization
across diverse norm-bounded threats.

Comparing bound overlap across models. In Table 8, we compare single-norm and multi-norm
trained models in terms of their bound overlap with CGT models. For fairness, we compute the
maximum overlap across each batch and normalize the bound outputs. The results show that CURE-
Scratch achieves substantially higher overlap than the ℓ∞ certified baseline, highlighting its stronger
alignment and generalization across perturbation types.

l∞, l2 and CURE-scratch trained on CIFAR-10 (ϵ∞ = 8/255, ϵ2 = 0.5, ϵ1 = 1.0) union certified
robustness analysis with varying l∞, l2, and l1 epsilons. We evaluate the certified robustness of
our trained l∞, l2, and CURE-Scratch models across a range of perturbation sizes under l1, l2, and
l∞ norms. This comprehensive evaluation reveals that CURE-Scratch consistently outperforms the
single-norm trained models across all tested settings. The results highlight the effectiveness of our
approach in achieving strong multi-norm certified robustness, demonstrating that CURE-Scratch not

Configs R(30) Tu(2),Tv(2) Sc(5),R(5),
C(5),B(0.01)

Sh(2),R(2),Sc(2),
C(2),B(0.001) Avg

l∞ 54.6 20.9 82.5 95.6 63.4
l2 0.0 0.0 0.0 0.0 0.0
CURE-Joint 55.9 21.3 82.3 95.7 63.8
CURE-Max 50.1 20.7 80.2 94.8 61.5
CURE-Random 54.8 18.8 83.5 95.6 63.2
CURE-Scratch 51.0 24.3 85.5 95.1 64.0

Table 6: Comparison on CURE against geometric transformations for MNIST (ϵ1 = 2.0, ϵ2 =
1.0, ϵ∞ = 0.3) experiment. CURE improves the generalized certified robustness significantly
compared with single norm training.
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Method ℓ∞ ℓ2 ℓ1 Union

CGT: R(10) 1.6 22.8 38.0 1.6
CGT: R(2), Sh(2) 32.2 22.8 38.0 18.1
CGT: Sc(1), R(1), C(1), B(0.001) 33.2 22.8 38.0 21.5
Ours 61.2 67.7 74.6 61.2

Table 7: Comparison of CGT (Yang et al., 2022) versus our CURE model on CIFAR-10.

R(10) R(2), Sh(2) Sc(1), R(1), C(1), B(0.001)

Linf 0.141 0.723 0.791
CURE-Scratch 0.277 0.789 0.892

Table 8: Comparison of multi-norm (CURE-Scratch) versus single-norm certified trained models on
the bound overlap with the CGT model.

only generalizes better across different norms but also maintains superior certification performance
under varying attack strengths.

The overlapping of l∞ and l2 balls. A reasonable misconception is that because l∞ and l2 balls
contain some overlap, training for robustness in one norm will sufficiently account for the weakness
in the other. Besides choices of l∞ and l2 that completely overlap each other, the true regions of
successful attacks have a significant mismatch across different norms.

To illustrate the mismatch between l∞ and l2 regions, it suffices to show the existence of successful
attacks that lie further enough from the original data input such that they are not covered by the other
norm ball. We ran PGD 19968 times through a full testing run of a naturally trained model in the
MNIST setting (ϵ∞ = 0.1, ϵ2 = 0.5) with the following results:

% of ℓ∞ attacks not in ℓ2 ball % of ℓ2 attacks not in ℓ∞ ball

100.00% (9984/9984) 98.95% (9879/9984)

Table 9: Comparison of ℓ∞ and ℓ2 attack coverage.

Of course, PGD may not find the absolute strongest adversarial examples in each ball. That only
makes the mismatch claim stronger, because if PGD can find adversarial examples outside the other
norm’s ball, more attacks almost certainly exist in those regions as well.

Comparison of l2 certified training and PGD training. Table 10 shows the l2 certified robustness
comparison between certified training and PGD training. The results demonstrate that determinist-
certified training greatly improves the certified robustness.

Hyper-parameter α for Joint certified training. As shown in Table 11, we test the changing of l∞,
l2, and union accuracy with different α values in [0, 0.25, 0.5, 0.75, 1.0] on MNIST (ϵ∞ = 0.1, ϵ2 =
0.5) experiments. We observe that α = 0.5 has the best union accuracy and is generally a good
choice for our experiments by balancing the two losses.

Comparison of l2 certified robustness on l2 deterministic certified training methods. In Table 12,
we compare our proposed l2 certified defense with SOTA l2 certified defense Hu et al. (2023) on
CIFAR-10 with ϵ2 = 0.25 and 0.5. The results show that our proposed l2 deterministic certified
training method improves over l2 robustness by 2 ∼ 4% compared with the SOTA method.

More visualizations on bound differences. We plot the bound difference examples from alpha-
beta-crown on MNIST, CIFAR-10, and TinyImagenet datasets, where the negative bound differences
are colored in red. As shown in Figure 10, 11, 12, we compare CURE-Scratch (second row) with
CURE-Max (first row), with bound differences against l∞ and l2 perturbations colored in blue and
green, respectively. CURE-Scratch produces all positive bound differences, leading to unionly robust
predictions; CURE-Max is not unionly robust due to some negative bound differences. Also, we
observe that CURE-Scratch successfully brings lq, lr bound difference distributions close to each
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Figure 7: l∞, l2 and CURE-scratch trained on CIFAR-10 union certified robustness analysis with
varying l1 epsilons.
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Figure 8: l∞, l2 and CURE-scratch trained on CIFAR-10 union certified robustness analysis with
varying l2 epsilons.
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Figure 9: l∞, l2 and CURE-scratch trained on CIFAR-10 union certified robustness analysis with
varying l∞ epsilons.

l2 certified robustness MNIST-large CIFAR-small CIFAR-large
Certified training 94.5 71.2 56.6
PGD training 74.3 23.3 10.2

Table 10: Comparison on l2 certified robustness between certified and PGD training.

α 0.0 0.25 0.5 0.75 1.0
Clean 99.2 99.2 99.3 99.2 99.5
l∞ 97.7 97.7 97.5 97.2 2.0
l2 96.9 95.6 97.4 95.9 98.7
Union 96.9 95.6 97.1 95.8 2.0

Table 11: Ablation study on Joint training hyper-parameter α.

ϵ2 0.25 0.5
Hu et al. (2023) 69.5 52.2

Ours 71.2 56.6

Table 12: Comparison of l2 certified accuracy: our proposed l2 certified training consistently
outperforms Hu et al. (2023) by 2 ∼ 4%.

other compared with CURE-Max in many cases, which confirms the effectiveness of our bound
alignment technique.

E RUNTIME ANALYSIS

This section provides the runtime per training epoch for all methods on MNIST (ϵ∞ = 0.1, ϵ2 = 0.75)
experiments and runtime per training epoch of CURE-Scratch with ablation studies on GP for MNIST,
CIFAR10, and TinyImagenet experiments. We evaluate all the methods on a single A40 Nvidia GPU
with 40GB memory and the runtime is reported in seconds (s).

Runtime for different methods on MNIST experiments. In Table 13, we show the time in seconds
(s) per training epoch for single norm training (l∞ and l2), CURE-Joint, CURE-Max, CURE-Random,
CURE-Scratch, and CURE-Finetune methods. CURE-Finetune has a relatively small training cost
compared with other methods and CURE-Joint has the highest time cost (around two times of other
methods) per epoch. The results indicate the efficiency of training with CURE-Scratch/Finetune.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5
Classes

0

2

4

6

Bo
un

d 
Di

ffe
re

nc
es

Linf CURE-Max

0.0 2.5 5.0 7.5
Classes

0

5

Bo
un

d 
Di

ffe
re

nc
es

L2 CURE-Max

0.0 2.5 5.0 7.5
Classes

0

2

4

Bo
un

d 
Di

ffe
re

nc
es

Linf CURE-Scratch

0.0 2.5 5.0 7.5
Classes

0

2

4

6

Bo
un

d 
Di

ffe
re

nc
es

L2 CURE-Scratch

0.0 2.5 5.0 7.5
Classes

0

5

10

15

Bo
un

d 
Di

ffe
re

nc
es

Linf CURE-Max

0.0 2.5 5.0 7.5
Classes

10

0

10

20

Bo
un

d 
Di

ffe
re

nc
es

L2 CURE-Max

0.0 2.5 5.0 7.5
Classes

0

5

10

Bo
un

d 
Di

ffe
re

nc
es

Linf CURE-Scratch

0.0 2.5 5.0 7.5
Classes

0

5

10

Bo
un

d 
Di

ffe
re

nc
es

L2 CURE-Scratch

Figure 10: Bound difference visualizations on MNIST (ϵ∞ = 0.3, ϵ2 = 1.0) experiments.
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Figure 11: Bound difference visualizations on CIFAR-10 (ϵ∞ = 2
255 , ϵ2 = 0.25) experiments.
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Figure 12: Bound difference visualizations on CIFAR-10 (ϵ∞ = 8
255 , ϵ2 = 0.5) experiments.

Runtime for CURE-Scratch on MNIST, CIFAR10, and TinyImagenet datasets. In Table 14, we
show the runtime per training epoch using CURE-Scratch on MNIST, CIFAR10, and TinyImagenet
datasets with and without GP operations. We see that the GP operation’s cost is small compared with
the whole training procedure, accounting for around 6% of the whole training time.
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Methods Runtime (s)
l∞ 89
l2 82
CURE-Joint 155
CURE-Max 147
CURE-Random 101
CURE-Finetune 148
CURE-Scratch 153

Table 13: Runtime for all methods on MNIST (ϵ∞ = 0.1, ϵ2 = 0.5) experiment per epoch in seconds.

MNIST CIFAR-10 TinyImagenet
w/o GP 148 390 952
with GP 154 414 1036

Table 14: Runtime for CURE-Scratch on MNIST, CIFAR10, and TinyImagenet datasets.

F ALGORITHMS

In this section, we present the algorithms of CURE framework. Algorithm 1 illustrates how to get
propagation region for both l2 and l∞ perturbations. Algorithm 2, 3, 4, 5 refer to algorithms of
CURE-Joint, CURE-Max, CURE-Random, and CURE-Scratch/Finetune, respectively. Algorithm 6
is the procedure of performing GP after one epoch of natural and certified training (could be any of
Algorithm 2, 3, 4, 5).

Algorithm 1 get_propagation_region for l∞ and l2 perturbations

Require: Neural network f , input x, label t, perturbation radius ϵ, subselection ratio λ, step size α,
step number n, attack types ∈ {l∞, l2}

Ensure: Center x′ and radius τ of propagation region Bτ (x′)
(x,x)← clamp((x− ϵ,x+ ϵ), 0, 1) // Get bounds of input region
τ ← λ/2 · (x− x) // Compute propagation region size τ
x∗
0 ← Uniform(x,x) // Sample PGD initialization

for i = 0 . . . n− 1 do // Do n PGD steps
if attack = l∞ then // Find examples with l∞ gradient direction

x∗
i+1 ← x∗

i + α · ϵ · sign(∇x∗
i
LCE(f(x

∗
i ), t))

x∗
i+1 ← clamp(x∗

i+1,x,x)
end if
if attack = l2 then // Find examples with l2 gradient direction

x∗
i+1 ← x∗

i + α ·
∇x∗

i
LCE(f(x

∗
i ),y)

∥∇x∗
i
LCE(f(x∗

i ),y)∥2

δ ← ϵ
∥x∗

i+1−x∥2
· (x∗

i+1 − x)

x∗
i+1 ← clamp(x+ δ,x,x)

end if
end for
x′ ← clamp(x∗

n,x+ τ,x− τ) // Ensure that Bτ (x′) will lie fully in Bϵ(x)
return x′, τ
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Algorithm 2 CURE-Joint Training Epoch

Require: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1, loss balance factor α
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x
′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← (1− α) · lossl∞ + α · lossl2 + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

Algorithm 3 CURE-Max Training Epoch

Require: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x
′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossMax ← max(lossl∞ , lossl2) // We select the largest lp∈[2,∞] loss for each sample
lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← lossMax + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

Algorithm 4 CURE-Random Training Epoch

Require: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection ratio
λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x1,x2), (t1, t2)← partition(x, t) // Randomly partition inputs into two blocks

// Apply Algorithm 1
(x′

∞, τ∞)← get_propagation_region (x1, t1, attack = l∞)
(x′

2, τ2)← get_propagation_region (x2, t2, attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x
′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
losstot ← lossl∞ + lossl2 + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for
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Algorithm 5 CURE-Scratch/Finetune Training Epoch

Require: Neural network fθ, training set (X,T ), perturbation radius ϵ2 and ϵ∞, subselection
ratio λ∞ and λ2, learning rate η, ℓ1 regularization weight ℓ1, KL loss balance factor η, mode
∈ [Scratch, Finetune]
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )
(x′

∞, τ∞)← get_propagation_region (attack = l∞) // Refer to Algorithm 1
(x′

2, τ2)← get_propagation_region (attack = l2)
Bτ∞(x′

∞)← BOX(x′
∞, τ∞) // Get box with midpoint x′

∞,x
′
2 and radius τ∞, τ2

Bτ2(x′
2)← BOX(x′

2, τ2)
uy∆

∞
← get_upper_bound(fθ,Bτ∞(x′

∞)) // Get upper bound uy∆
∞
,uy∆

2
on logit differences

uy∆
2
← get_upper_bound(fθ,Bτ2(x′

2)) // based on IBP
lossl∞ ← LCE(uy∆

∞
, t)

lossl2 ← LCE(uy∆
2
, t)

lossMax ← max(lossl∞ , lossl2) // We select the largest lp∈[2,∞] loss for each sample
lossℓ1 ← ℓ1 · get_ℓ1_norm(fθ)
find correctly certified lq subset γ using Definition 3.3
lossKL ← KL(dq[γ]∥dr[γ]) // Eq. 5
losstot ← lossMax + η · lossKL + lossℓ1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

Algorithm 6 GP: Connect CT with NT

1: Input: model fθ, input images with distribution D, training rounds R, β, natural training NT
and certified training CT algorithms, perturbation radius ϵ∞ and ϵ2, subselection ratio λ∞ and
λ2, learning rate η, ℓ1 regularization weight ℓ1.

2:
3: for r = 1, 2, ..., R do
4: fn ← NT(f (r)θ ,D)
5: fc ← CT(f (r)θ , ϵ∞, ϵ2, λ∞, λ2, η, ℓ1,D) // Can be single-norm or any CURE training
6: compute gn ← fn − f (r)θ , gc ← fc − f (r)θ
7: compute gp using Eq. 10
8: update f (r+1)

θ using Eq. 11 with β and gc
9: end for

10: Output: model fθ.
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