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Abstract

A novel regularization technique, AdaCubic, is proposed that adapts the weight of the cubic
term. The heart of AdaCubic is an auxiliary optimization problem with cubic constraints
that dynamically adjusts the weight of the cubic term in Newton’s cubic regularized method.
We use Hutchinson’s method to approximate the Hessian matrix, thereby reducing compu-
tational cost. We demonstrate that AdaCubic inherits the cubically regularized Newton
method’s local convergence guarantees. Our experiments in Computer Vision, Natural Lan-
guage Processing, and Signal Processing tasks demonstrate that AdaCubic outperforms or
competes with several widely used optimizers. Unlike other adaptive algorithms that require
hyperparameter fine-tuning, AdaCubic is evaluated with a fixed set of hyperparameters,
making it a highly attractive optimizer in settings where fine-tuning is infeasible. This makes
AdaCubic an attractive option for researchers and practitioners alike. To our knowledge,
AdaCubic is the first optimizer to leverage cubic regularization in scalable deep learning
applications. The code of AdaCubic will be publicly released upon paper acceptance.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated strong performance on a variety of machine learning
tasks (Pouyanfar et al., 2018; Dargan et al., 2020). DNN models are non-convex (Jin et al., 2021; Danilova
et al., 2022; Pooladzandi et al., 2022b). Accordingly, saddle points may arise during the optimization
procedure (Bedi et al., 2021). In Dauphin et al. (2014), it is shown that the saddle points affect the efficiency
of a DNN. Therefore, methods that avoid saddle points are necessary, as discussed next.

The Cubic Regularized (CR) Newton’s method was introduced in (Nesterov & Polyak, 2006). This method
effectively circumvents saddle points in a non-convex setting. The first research direction focuses on carefully
selecting the regularization parameter for the cubic term. In Cartis et al. (2011a), an Adaptive Regularized
Cubic (ARC) method is presented where the cubic regularization term is adapted dynamically, similarly
to the radius in the Trust Region methods (Conn et al., 2000). To mitigate the computational burden of
deriving the Hessian matrix and the gradient in ARC, Carmon & Duchi (2019) solves the CR sub-problem
using gradient descent. Alternatively, one solves the cubic sub-problem using a subsampled gradient and
a Hessian-vector product (Tripuraneni et al., 2018). In Kohler & Lucchi (2017), a subsampled scheme for
the gradient and the Hessian matrix is exploited, achieving the same convergence rate as ARC. In Wang
et al. (2020b), momentum information is utilized to improve the convergence rate of CR. Inspired by Fang
et al. (2018), a recursive stochastic variance reduced CR method is proposed in Zhou & Gu (2020), yielding
a better convergence rate than that reported in (Tripuraneni et al., 2018). In Huang et al. (2022), the CR
method was applied to solve unconstrained convex-concave saddle point problems.

In a second research direction, it has been demonstrated that injecting a random perturbation whenever a
saddle point is encountered can facilitate escape from saddle points. In Ge et al. (2015); Jin et al. (2017), both
negative curvature and random perturbation are applied to Stochastic Gradient Descent (SGD) to escape
saddle points. Within the same scope, in Allen-Zhu (2018); Royer & Wright (2018), it is shown that negative
curvature and random perturbation can be used to find an (ϵg, ϵH)-stationary point faster than the first-order
methods. A drawback of these methods is the need to compute the smallest eigenvalue of the Hessian matrix
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and the corresponding eigenvector. Several methods have been proposed to address this limitation. In Li
(2019), it is shown that a perturbed version of Stochastic Recursive Gradient Descent, without using the
Hessian matrix information, also converges to an (ϵg, ϵH)-stationary point. In Allen-Zhu & Li (2018); Zhang
& Li (2021), a robust Hessian matrix power method is proposed to compute the negative curvature near
saddle points, yielding faster convergence than the standard perturbed gradient descent methods. In Chen
et al. (2022), to achieve a better convergence rate, the average movement of the iterates is controlled by a
step-size shrinkage scheme (Li, 2019).

In a third research direction, escaping saddle points relies on momentum information (Wang et al., 2021b).
First-order methods with random initialization and momentum information are shown to be able to escape
saddle points in (Sun et al., 2019). A greater momentum in SGD enlarges the projection to an escape
direction, leading to a fast saddle point escape (Wang et al., 2020a). In Levy et al. (2021), a parameter-free
recursive momentum method is proposed for non-convex optimization. In Wang et al. (2020a), it is shown
that acceleration can be achieved for non-quadratic functions under Polyak-Łojasiewicz condition and non-
convexity. In Wang et al. (2021a), it is presented that the momentum term accelerates the training of a
one-layer-wide ReLU network.

A fourth research direction employs variance reduction to escape saddle points. In Allen-Zhu & Hazan
(2016), the minimization of the sum of smooth functions is studied, where variance reduction is applied
to speed up convergence in both the stochastic and the deterministic case. A general variance-reduction
estimation method is introduced that is not restricted to gradients only (Fang et al., 2018). This method has
been applied to numerous problems and has achieved convergence rates superior to those reported in (Allen-
Zhu & Hazan, 2016). In Nguyen et al. (2017a), a recursive gradient estimator for convex optimization
is introduced. The latter estimator is then extended to non-convex problems in (Nguyen et al., 2017b).
In Ge et al. (2019), the first variance reduction technique not based on a separate negative curvature search
subroutine is proposed.

Last but not least, a second-order optimizer, called AdaHessian, has been introduced in (Yao et al., 2021).
AdaHessian is based on the Adaptive Moments Estimation (Adam) optimizer (Kingma & Ba, 2015) and
leverages Hutchinson’s method to approximate the curvature information with low computational cost (Bekas
et al., 2007). The convergence rate of AdaHessian for a strongly convex and smooth loss function can be
found in (Yao et al., 2021; Pooladzandi et al., 2022a). Based on the Hessian power, the convergence rate
of AdaHessian for a strongly convex and smooth loss function matches that of either gradient descent or
Newton’s method (Jahani et al., 2021; Sadiev et al., 2022).

In this paper, we focus on the CR Newton method (Nesterov & Polyak, 2006) and propose a novel algorithm
that dynamically adapts the weight of the cubic term in the cubic subproblem. The adaptation of the
cubic term is achieved by utilizing an auxiliary cubically constrained optimization problem. The proposed
algorithm, AdaCubic, leverages the advantages of CR theory and Hutchinson’s estimation technique. In
more detail, the contributions of this paper are:

• A novel method is proposed that automatically adapts the regularization parameter M in the cubic
sub-problem and avoids saddle points. The primary theoretical contributions concerning the adap-
tation of M are encapsulated in Lemma 2, Theorems 1 and 2, as well as the methodologies detailed
in Algorithms 1 and 2. Figure 6, in Appendix A, depicts how the key lemmata, theorems, and
corollaries are logically connected throughout Sections 2 to 4 and Appendices B.1 to B.13.

• The proposed optimizer does not need the computation of Krylov sub-space Wang et al. (2020b);
Zhou & Gu (2020); Kohler & Lucchi (2017) or the calculation of the smallest eigenvalue Allen-Zhu
& Li (2018); Allen-Zhu (2018); Park et al. (2020) to obtain an optimal solution. The optimal solu-
tion is obtained by leveraging Hutchinson’s method that approximates the diagonal of the Hessian
matrix (Bekas et al., 2007). This way, the proposed method enjoys low memory complexity.

• The convergence rate of AdaCubic is established by exploiting the diagonal structure of the ap-
proximate Hessian matrix, which is computed using data batches. This property makes AdaCubic
particularly appealing for deep learning applications.
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• AdaCubic is tested on Computer Vision, Natural Language Processing, and Signal Processing tasks,
demonstrating a competitive or better performance when compared to SGD Robbins & Monro
(1951), Adam Kingma & Ba (2015), and AdaHessian (Yao et al., 2021) optimizers. It should
be noted that the parametrization of AdaCubic is performed by employing a well-known set of
parameters used in Trust Region algorithms (Conn et al., 2000, Section 17.1). These parameters are
used universally in the experimental evaluation, casting AdaCubic as an attractive optimizer when
fine-tuning is prohibitive.

The paper is organized as follows. Section 2 details the proposed optimization framework. The convergence
analysis of the proposed optimization framework is demonstrated in Section 3. Section 4 presents the algo-
rithms that compute the optimal solution of the proposed optimization framework in Section 2. Experimental
results, computational complexity, and conclusions are presented in Sections 5, 6, and 7, respectively.

2 Proposed Optimization Framework

Outline. Section 2.1 introduces the fundamental definitions used throughout the paper, including the
basic formulation of the CR method, which serves as a core building block of the proposed framework.
Section 2.2 then introduces an auxiliary constrained optimization problem that forms the foundation of the
AdaCubic. The key intuition is to reformulate the classical CR method as a constrained problem in which
the cubic regularization term appears explicitly as a constraint. By leveraging Lagrange multiplier theory,
this reformulation yields an adaptive update mechanism in which the strength of the cubic regularization
term of the CR method is automatically adjusted during optimization. To derive this update mechanism
Lemmata 1, 2, Theorem 1, Corollary 1, and Theorem 2 are introduced.

Lemma 1 establishes that the auxiliary constrained problem admits a global minimizer and ensures that
each optimization step is well defined. Lemma 2 is used to establish Theorem 1 which in turn is used to
derive Corollary 1. Corollary 1 shows that the auxiliary optimization problem is characterized by strong
duality (Boyd & Vandenberghe, 2004, Section 5.4). The latter theoretical results are then combined to
derive Theorem 2 which provides the basis to replace the fixed cubic regularization parameter of the CR
method with an adaptive one and finally derive the AdaCubic optimizer presented in Section 4.

2.1 Preliminaries

To simplify notation, the iteration index k in xk ∈ Rd will be explicitly denoted when necessary. Otherwise,
it will be suppressed. Let ∇2

xf(xk) and ∇xf(xk) be the Hessian matrix and the gradient of the function
f(xk) with respect to (w.r.t.) x. In the following, the subscript x in ∇2

x and ∇x is omitted for simplicity,
resulting in ∇2f(xk) and ∇f(xk), respectively. The spectrum of the symmetric d × d matrix ∇2f(xk) is
denoted by λ(∇2f(xk)) = {λi(∇2f(xk))}di=1. Suppose that the eigenvalues are sorted in descending order,
i.e.,

λ1(∇2f(xk)) ≥ · · · ≥ λd(∇2f(xk)) = λmin(∇2f(xk)). (1)

If ∇2f(xk) is indefinite, i.e.,

λd(∇2f(xk)) < 0 and λi(∇2f(xk)) > 0, i < d, (2)

then f(x) is non-convex. The notations ∇2f(xk) ⪰ 0 or ∇2f(xk) ≻ 0 indicate that the Hessian matrix
is positive semi-definite or positive definite, respectively. Let ∂τF be the partial derivative of a function
F : R → R w.r.t. the real-valued variable τ . Moreover, let ⊙ and ⊘ denote the element-wise product and
division, respectively. In addition, let diag(∇2f(xk)) =

[
[∇2f(xk)]11, . . . , [∇2f(xk)]dd

]T ∈ Rd be a column
vector containing the diagonal elements of the Hessian matrix and Diag(∇2f(xk)) = ∇2f(xk) ⊙ I a d × d
stand for a diagonal matrix retaining the diagonal elements of the Hessian matrix, where I is the identity
matrix. ∥·∥2 refers to the vector ℓ2 norm or to the spectral norm of a matrix. The d-dimensional vector of
ones is denoted by 1d.
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A non-convex optimization problem is defined by

min
x∈Rd

f(x) ∆= 1
n

n∑
ℓ=1

fℓ(x), (3)

where f : Rd → R and fℓ : Rd → R are non-convex functions. Solving (3) is generally NP-Hard (Murty &
Kabadi, 1987; Hillar & Lim, 2013). As a result, a reasonable goal is to find an ϵ-stationary point, i.e., an
approximate local minimum, by checking ∥∇f(x)∥2 ≤ ϵ, where ∇f(x) ∈ Rd is treated as a column vector.
However, ϵ-stationary points can be non-degenerate saddle points (i.e., the Hessian matrix at all saddle
points has negative eigenvalues) or even local extrema in non-convex optimization. To avoid saddle points,
second-order methods are used to find an (ϵg, ϵH)-stationary point by checking

∥∇f(x)∥2 ≤ ϵg and λmin

(
∇2f(x)

)
≥ −ϵH , (4)

where ϵg, ϵH > 0, and λmin
(
∇2f(x)

)
denotes the minimal eigenvalue of the Hessian matrix. CR technique is

designed to avoid saddle points (Nesterov & Polyak, 2006). Starting from an arbitrary point x0, the update
rule of CR that solves (3) is written as

sk+1 = arg min
s∈Rd

mM (s) (5)

where
mM (s) ∆= f(xk) +∇f(xk)T s + 1

2 sT ∇2f(xk) s + M

6 ∥s∥
3
2 , (6)

xk+1
∆= xk + sk+1, and M > 0 is the regularization parameter that can be fixed or adaptive (Nesterov &

Polyak, 2006; Cartis et al., 2011a). In the following sections, the problem formulation and its solution are
presented.

2.2 Problem Formulation

Auxiliary Problem. We are interested in developing an adaptive method for selecting M in (5). To do so,
we introduce the auxiliary constrained optimization problem

arg min
s∈Rd

m̂(s) ∆= f(xk) +∇f(xk)T s + 1
2 sT ∇2f(xk) s

subject to gξ(s) ∆= 1
6

(
∥s∥3

2 − ξ
)
≤ 0,

(7)

for ξ ≥ 0. The Lagrangian function of (7) is

Lξ(s, ν) = f(xk) +∇f(xk)T s + 1
2 sT ∇2f(xk) s + ν

6

(
∥s∥3

2 − ξ
)
, (8)

where ν is the Lagrange multiplier. Let Ω = {s | gξ(s) ≤ 0}. The minimizer we are seeking in (7) lies
either within the interior of Ω (i.e., gξ(s) < 0) or lies on the boundary of Ω (i.e., gξ(s) = 0). Lemma 1 is an
immediate result of the previous discussion.
Lemma 1. A vector s∗ is a minimizer of m̂(s) subject to ∥s∗∥3

2 ≤ ξ if and only if satisfies(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
s∗ = −∇f(xk), (9)

∇2f(xk) + ν∗

2 ∥s
∗∥2 I ⪰ 0, (10)

and ν∗ (∥s∗∥3
2 − ξ) = 0, where ν∗ ≥ 0. If ∇2f(xk) + ν∗

2 ∥s
∗∥2 I ≻ 0, then the minimizer s∗ is unique.
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The condition ν∗ (∥s∗∥3
2 − ξ) = 0 in Lemma 1 is called Complementary Slackness (CS) condition. The proof

of Lemma 1 can be found in Appendix B.1.
Definition 1. For some ν ≥ 0, denote

Dν
∆=
{
r | ∇2f(xk) + ν r

2 I ≻ 0, r > 0
}
. (11)

Next, it is proven that problem (7) is characterized by strong duality. To do so, Lemma 2 and Theorem 1
are introduced. Lemma 2, is used as a preliminary result to prove Theorem 1. Corollary 1 establishes the
strong duality of problem (7) as an immediate outcome of Theorem 1.
Lemma 2 (Proof in Appendix B.2). For r ∈ Dν we have

min
s∈Rd

Lξ(s, ν) = max
r∈Dν

Lξ(s(ν, r), ν, r), (12)

where
Lξ(s(ν, r), ν, r) = −1

2 ∇f(xk)T
(
∇2f(xk) + ν r

2 I
)−1
∇f(xk)− ν

6 ξ −
ν

12r
3. (13)

For r ∈ Dν the direction
s(ν, r) = −

(
∇2f(xk) + ν r

2 I
)−1
∇f(xk), (14)

satisfies

Lξ(s(ν, r), ν) = Lξ(s(ν, r), ν, r) + 4
3ν

(
r + 2 ∥s(ν, r)∥2

)
(
r + ∥s(ν, r)∥2

)2

(
∂rLξ(s(ν, r), ν, r)

)2
. (15)

For r∗ ∈ Dν that maximizes maxr∈Dν
Lξ(s(ν, r), ν, r),

s(ν, r∗) = −
(
∇2f(xk) + ν

2 ∥s(ν, r∗)∥2 I
)−1
∇f(xk) (16)

is the minimizer of mins∈Rd Lξ(s, ν) in (12).

Theorem 1 (Proof in Appendix B.3). We have

min
s∈Rd

max
ν≥0

Lξ(s, ν) = max
ν≥0, r∈Dν

Lξ(s(ν, r), ν, r), (17)

where Lξ(s(ν, r), ν, r) is defined in (13). For r ∈ Dν , the direction

s(ν, r) = −
(
∇2f(xk) + ν r

2 I
)−1
∇f(xk), (18)

satisfies

Lξ(s(ν, r), ν) = Lξ

(
s(ν, r), ν, r

)
− ν ∂νLξ

(
s(ν, r), ν, r

)
+ 4

3ν
(r + 2 ∥s(ν, r)∥2)
(r + ∥s(ν, r)∥2)2

(
∂rLξ(s(ν, r), ν, r)

)2
. (19)

For the optimal values ν∗ and r∗ ∈ Dν that maximize maxν≥0, r∈Dν
Lξ(s(ν, r), ν, r),

s∗(ν∗, r∗) = −
(
∇2f(xk) + ν∗

2 ∥s(ν∗, r∗)∥2 I
)−1
∇f(xk), (20)

is the minimizer of mins∈Rd maxν≥0 Lξ(s, ν) in (17), i.e., the optimal s∗ in Lemma 1.

Corollary 1. The constrained optimization problem (7) is characterized by strong duality, i.e.,

min
s∈Rd

max
ν≥0

Lξ(s, ν) = max
ν≥0

min
s∈Rd

Lξ(s, ν). (21)

5



Under review as submission to TMLR

Proof. See the proof of Theorem 1.

Given Corollary 1, the equivalence between problems (5) and (7) is established in Theorem 2. The equivalence
implies that both problems have the same optimum.
Theorem 2 (Proof in Appendix B.4). Let ν∗ be the optimal dual variable of the constrained optimization
problem (7). The following optimization problems

min
s∈Rd

mM (s) and min
s∈Rd

m̂(s) subject to gξ(s) ≤ 0 (22)

are equivalent w.r.t. the optimal solution s∗, when M = ν∗ and ξ = ∥s∗∥3
2.

3 Local Convergence Analysis

Outline. This section provides the local convergence analysis of Algorithm 1. It begins with Assumption 1,
which defines the Lipschitz continuity constants for fi(x), ∇fi(x), and ∇2fi(x). Subsequently, Theorem 3
establishes the local convergence of Algorithm 1 when using the exact gradient and Hessian matrix.

Adequate agreement between the exact gradient ∇f(xk) and the approximate gradient gk is established
in Assumption 2. This assumption is grounded on Wang et al. (2019, Assumption 2) and facilitates the
approximation of the gradient using a sampling scheme in Lemma 5, akin to the one outlined in (Kohler &
Lucchi, 2017, Theorem 7).

A sufficient agreement between the exact diagonal Hessian matrix Diag(∇2f(xk)) and the approximate
diagonal Hessian matrix Bk in (30), is established in Assumption 3. Assumption 3 is a direct application
of (Wang et al., 2019, Assumption 2). Additionally, Assumption 3 supports Lemma 6, while Lemma 3 is
pivotal for establishing Lemma 4. Lemma 4 is used in Lemmata 5, 6, and Corollary 2. Lemmata 5 and 6
provide the deviation bounds for the gradient and Hessian matrix, along with the corresponding conditions
required for these bounds to hold. These conditions are consolidated in Corollary 2, which ensures the
validity of both deviation bounds.

The analysis concludes by discussing the local convergence of the sub-sampled case, where the exact gradient
∇f(xk) and diagonal Hessian matrix Diag(∇2f(xk)) are replaced with their sub-sampled approximations gk
and Bk, respectively.

Convergence Analysis. Next, we begin with the main results of the analysis. Assumption 1 is commonly
used in previous works (Nesterov & Polyak, 2006; Cartis et al., 2011a;b; Kohler & Lucchi, 2017) and is
applied here in combination with Remark 1.

Let F ⊆ Rd be a closed convex set with a non-empty interior. Let x0 ∈ int F be a starting point of the
iterative optimization scheme in the interior of F .
Assumption 1 (Continuity). The convergence analysis is based on the following assumptions:

• The functions fi(x) are twice-continuously differentiable and bounded from below by f low
i .

• The functions fi(x), ∇fi(x), and ∇2fi(x) are Lipschitz continuous in F with Lipschitz constants
Lf , Lg, and LH , respectively.

Remark 1. Due to the triangle inequality, it follows that the Lipschitz continuity also holds for f(x), ∇f(x),
and ∇2f(x), with Lipschitz constants Lf , Lg, and LH , respectively. In addition, given Assumption 1, f(x)
is also lower bounded by some f low.

By leveraging Theorem 2, the iteration complexity of Algorithm 1 is equivalent to that performed by the
cubic regularization method in (Nesterov & Polyak, 2006). Theorem 3 analyses the iteration complexity
of Algorithm 1 by adapting the analysis from Nesterov & Polyak (2006, Theorem 1), when Diag(∇2f(x))
replaces ∇2f(x).
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Theorem 3 (Proof in Appendix B.12). Suppose Assumption 1 holds. Also, let the sequence xi, with i ≥ 0,
be generated by Algorithm 1 when Diag(∇2f(xi)) is used. Then, after k iterations, the sequence {xi}i≥1
satisfies

min
1≤i≤k

∥∇f(xi)∥2 ≤ O
(

1
k2/3

)
. (23)

If we want to find the iteration k that satisfies min1≤i≤k ∥∇f(xi)∥2 ≤ ϵ, we upper bound (23) by ϵ and we
conclude that

k ≥ O
(

1
ϵ3/2

)
. (24)

Deviation Bounds. Rather than utilizing deterministic gradient and Hessian information, we can employ
estimates of the gradient, the Hessian matrix, and the loss function, which are derived from an independent
set of points Bk, i.e.,

gk = 1
|Bk|

∑
i∈Bk

∇fi(xk), (25)

Hk = 1
|Bk|

∑
i∈Bk

∇2fi(xk), (26)

and
F (xk) = 1

|Bk|
∑
i∈Bk

fi(xk). (27)

Assumption 2 (Sufficient agreement of gk and ∇f(xk)). There is a constant Cg > 0 such that the inexact
gradient gk satisfies, for all k ≥ 0,

∥gk −∇f(xk)∥2 ≤ Cg ∥sk∥
2
2 . (28)

For some xk, the computation of the Hessian matrix Hk ∈ Rd×d in (26) is expensive due to the large size d
of xk. Only the Hessian-vector product can be calculated at a reasonable computational complexity (Pearl-
mutter, 1994). Let Hk : Rd → Rd be a function such that Hk(v) ∆= Hkv, where Hk is not accessible. Given
the Hessian-vector product operator Hk, the diagonal of Hk, i.e., hk

∆= diag(Hk), is approximated by the
Hutchinson’s method as Bekas et al. (2007)

bk =
[ S∑
s=1

Hk(vs)⊙ vs

]
⊘

[ S∑
i=1

vs ⊙ vs

]
= 1

S

S∑
s=1

Hk(vs)⊙ vs ∈ Rd, (29)

where vs ∼ Rademacher(0.5) and S is the number of random vectors used in the approximation. Thus, the
diagonal approximate Hessian matrix Bk ∈ Rd×d is given by

Bk
∆= Diag(bk) = 1

S

S∑
s=1

Diag (Hk(vs)⊙ vs) . (30)

The approximate Hessian matrix (30) is used in the description of Algorithms 1 and 2, in Section 4. It is
worth noting that in the code implementation of Algorithms 1 and 2 only the diagonal of Bk is computed,
which reduces the memory cost from d× d to d.
Assumption 3. There is a constant CB > 0 such that the inexact Hessian Bk satisfies, for all k ≥ 0,∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≤ CB ∥sk∥2 . (31)
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By replacing ∇f(xk) and ∇2f(xk) with gk and Bk we get

mM (s) ∆= F (xk) + gTk s + 1
2 sT Bk s + M

6 ∥s∥
3
2 . (32)

Note that the conditions under which ∇f(xk) and ∇2f(xk) can be substituted with gk and Bk are detailed
in Lemmata 5 and 6, respectively.

Let (sk+1, νk+1) be the output of Algorithm 2 for B = Bk, g = gk, and so on. Algorithm 2 is called in line 3
of Algorithm 1. Then, recall that (sk+1, νk+1) is a minimizer of (7) and according to Theorem 2 it is also a
minimizer of problem (5) for M = νk+1. The first- and second-order optimality conditions

sTk+1 ∇smM=νk+1(sk+1) = 0 (33)

and
sTk+1

(
∇2

smM=νk+1(sk+1)
)

sk+1 ≥ 0, (34)

get us to Lemma 3. Lemma 3 is exploited to prove Lemma 4. Lemma 4 is used by Lemmata 5, 6, and
Corollary 2.
Lemma 3 (Approximate model minimizer). Let

sk+1 = arg min
s∈Rd

mM (s). (35)

Then, the following statements hold

gk + Bk sk+1 + M

2 ∥sk+1∥2 sk+1 = 0, (36)

Bk + M

2 ∥sk+1∥2 I ⪰ 0, (37)

and
gTk sk+1 + 1

2sTk+1Bk sk+1 + M

6 ∥sk+1∥3
2 ≤ −

M

12 ∥sk+1∥3
2 . (38)

Recall that xk+1 = xk + sk+1 and from Theorem 2, M = νk+1.

Proof. The reader is referred to (Wang et al., 2019, Lemma 3).

Lemma 4. Let {F (xk)} be bounded from below by F low. Also, let sk+1 satisfy the first two conditions in
Lemma 3 and let M be bounded from below by some M low. Then

∥sk+1∥ → 0, as k →∞. (39)

Proof. First, note that by Assumption 1, F (x) is also bounded from below by some F low. Additionally, since
M is bounded from below and M = νk+1, as indicated in Theorem 2, νk+1 is also bounded from below. The
lower bound of M is further discussed in Lemma 14 in Appendix B.11.

Following similar lines to Cartis et al. (2011a, Lemma 5.1), we focus on the sub-sequence of successful
iterations, as in (Cartis et al., 2011a; Conn et al., 2000). Thus, from the successful iteration in Algorithm 1,
i.e., when ρk ∈ [η1, η2), we have

F (xk)− F (xk+1) ≥ η1(F (xk)−mM=νk+1(sk+1))
(32)
≥ η1

(
−gTk sk+1 −

1
2 sTk+1 Bk sk+1 −

M low

6 ∥sk+1∥3
2

)
, (40)

which by applying (38) yields

F (xk)− F (xk+1) ≥ η1
M low

12 ∥sk+1∥3
2 . (41)
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Summing over all iterates from 0 to k − 1 in (41) we obtain

F (x0)− F (xk+1) ≥ η1

12M
low

k−1∑
k=0
∥sk∥3

2 , (42)

which taking into account that {F (xk)} is bounded below yields

12
η1M low

(
F (x0)− F low) ≥ k−1∑

k=0
∥sk∥3

2 . (43)

Thus, the series
∑k−1
k=0 ∥sk∥

3
2 is convergent and (39) holds. The same conclusion is also derived in (Cartis

et al., 2011a, Lemma 5.1).

Lemma 5. Let the approximate gradient gk be computed on a set of points Bgk, with cardinality |Bgk|. For

ϵ ≥ 4
√

2Lf
√

ln 1
δ + 1

4
|Bg

k
| we have with high probability 1− δ that

∥gk −∇f(xk)∥2 ≤ ϵ. (44)

In addition, if

|Bgk| ≥ 32L2
f

ln 1
δ + 1

4

C2
g ∥sk∥

4
2
, (45)

and Lemma 4 holds, gk satisfies Assumption 2.

Proof. The proof can be found in Appendix B.5.

Lemma 6. Let the approximate diagonal Hessian matrix Bk be computed on a set of points BHk , with
cardinality |BHk |. For ϵ ≥

√
dLg

ln 2d
δ

S|BH
k

| we have with high probability 1− δ that∥∥Bk −Diag(∇2f(xk))
∥∥

2 ≤ ϵ. (46)

In addition, if

|BHk | ≥
√
dLg

ln 2d
δ

S ∥sk∥2 CB
(47)

and Lemma 4 holds, Bk satisfies Assumption 3.

Proof. The proof can be found in Appendix B.6.

Corollary 2. If

|Bk| ≥ max
{

32L2
f

ln 1
δ + 1

4

C2
g ∥sk−1∥4

2
,
√
dLg

ln 2d
δ

S ∥sk−1∥2 CB

}
, (48)

then gk and Bk satisfy Assumptions 2 and 3 with probability 1− δ, for δ ∈ (0, 1].

Proof. We combine the results of Lemma 5 and 6. Note that ∥sk−1∥ is used instead of ∥sk∥. Due to Lemma 4,
∥sk∥2 ≤ ∥sk−1∥2 ⇔ ∥sk∥

−1
2 ≥ ∥sk−1∥−1

2 . This modification is useful for the practical application of the
sampling schemes. However, this poses a challenge since Cg, CH , Lf , and Lg are not easily accessible.

Remark 2. Lemma 4 and Corollary 2 imply that the sample size is eventually equal to the entire sample
size n as Algorithm 1 converges. Thus we have

gk → ∇f(xk) and Bk → Diag(∇2f(xk)) as k →∞. (49)

This allows us to invoke the deterministic local convergence guarantees as k →∞ in Theorem 3. However,
stochastic first- and second-order information from gk and Bk is used.

9
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4 Algorithmic Solution

In Theorem 1, it was shown that the optimal (ν∗, r∗) solving maxν≥0, r∈Dν
Lξ(ν, r) is used in (18) to

compute the minimizer of (7). To solve (7) and compute (ν∗, r∗) Algorithm 1 and 2 are utilized, respectively.
In particular, Lemma 7 is employed in Algorithm 2, which is essential for calculating the values of ν∗ and
r∗.

Let VSI, SI, and UI stand for the Very Successful, Successful, and Unsuccessful Iteration, respectively, in
Algorithm 1 (Conn et al., 2000, Section 6.1). Denote λ+

d (Bk) as the minimal non-negative diagonal shift
that makes Bk sufficiently positive definite to allow a stable computation of the TR step. Details on the
selection of λ+

d (Bk) in Algorithm 2 can be found in Conn et al. (2000, Section 7.3.11) and (Gould et al.,
1999).
Lemma 7 (Proof in Appendix B.7). The optimal values ν∗ and r∗ achieving

max
ν≥0, r∈Dν

Lξ(ν, r) (50)

are given by r∗ = 3
√
ξ and by solving

ϕ(ν∗, r∗) = 1
∥s(ν∗, r∗)∥2

− 1
3
√
ξ

= 0, (51)

w.r.t. ν∗, respectively.

Algorithm 1 AdaCubic algorithm
1: Set ξk ← 1, κeasy ∈ (0, 1), 0 < α2 < 1 ≤ α1, and 0 < η1 ≤ η2 < 1.
2: repeat ▷ k-th iteration, k = 0, 1, . . .
▷ The function F , Bk, and gk are evaluated on the same batch.
▷ RootFinder is Algorithm 2.

3: sk+1, νk+1 ← RootFinder(Bk,gk, ξk, κeasy)
4: Compute ρk using

ρk = F (xk)− F (xk + sk+1)
F (xk)−mνk+1(sk+1)

5: if ρk ≥ η1 then
6: xk+1 ← xk + sk+1
7: else
8: xk+1 ← xk
9: end if

10: Update ξk using

ξk+1 ←


max

{
α1 ∥sk+1∥3

2 , ξk

}
if ρk ≥ η2 ▷ VSI

keep the same ξk if ρk ∈ [η1, η2) ▷ SI
max

{
α2 ∥sk+1∥3

2 , ϵm

}
if ρk ≤ η1 ▷ UI

where ϵm ≈ 10−6.
11: until execution stops (e.g., after a specific number of training epochs)

Next, we clarify the role and physical interpretation of the AdaCubic hyperparameters as they appear in
Algorithms 1 and 2:

• η1 (acceptance threshold). η1 ∈ (0, 1) is the minimum ratio between the actual loss reduction
and the predicted reduction of the cubic model required to accept a step. If ρk ≥ η1, the step is
considered successful and the parameters are updated. This parameter η1 controls how cautiously the
algorithm accepts update steps. Smaller values make acceptance easier, while larger values enforce
stricter agreement between the cubic model mνk+1(sk+1) and the objective function F (xk + sk+1).

10
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Algorithm 2 Find model minimizer
1: procedure RootFinder(B,g, ξ, κeasy)
2: Set r ← 3

√
ξ

3: if B is positive definite then
4: ν ← 0
5: else

▷ For some λ+
d (B) barely smaller than λd(B)

6: ν ← −2 λ+
d (B)

/
r

7: end if
8: Compute s = −(B + 1

2ν r I)−1 g
9: if ∥s∥3

2 ≤ ξ then
10: if B is positive definite or ∥s∥3

2 = ξ then
11: return s, ν
12: else
13: Compute the eigenvector ud that corresponds to the eigenvalue λd(B). Then find the root α

of the equation ∥s + α ud∥2 = ξ1/3 which makes the model mν(s + α ud) the smallest.
14: return s + α ud, ν
15: end if
16: end if

▷ The following, produces s∗ and ν∗ in Lemma 1.
17: while | ∥s∥2 − ξ1/3| ≤ κeasy ξ

1/3 do
▷ By Remark 3, ν increases.

18: ν ← ν − ϕ(ν, r) / ∂νϕ(ν, r)
19: s = −(B + 1

2ν r I)−1 g
20: end while
21: return s, ν
22: end procedure

• η2 (very successful threshold). η2 ≥ η1 identifies very successful iterations. When ρk ≥ η2, the
effective trust-region boundary is expanded, allowing larger steps in subsequent iterations. This
mechanism accelerates convergence when the cubic model mνk+1(sk+1) is highly accurate.

• α1 (expansion factor). α1 ≥ 1 controls the increase of the trust-region parameter ξk after very
successful iterations, thereby expanding the effective trust-region boundary.

• α2 (shrinkage factor). α2 ∈ (0, 1) decreases the trust-region boundary after unsuccessful itera-
tions (ρk ≤ η1). By shrinking the trust-region boundary, more conservative updates are obtained,
improving robustness in regions where the cubic model mνk+1(s) is less accurate.

• κeasy (root-finding tolerance). κeasy ∈ (0, 1) specifies the error tolerance to terminate the Newton
iterations when solving the cubic subproblem in Algorithm 2. κeasy determines how close the norm
of the computed step should be to the trust-region boundary before the termination of the dual
variable calculation. Smaller values enforce higher accuracy in solving the subproblem, while larger
values favor computational efficiency.

Overall, η1 and η2 govern step acceptance, α1 and α2 regulate updates of the trust-region boundary, and
κeasy balances accuracy and efficiency in the inner solver of Algorithm 2. AdaCubic adaptively computes
the dual parameter νk+1, which determines the step sk+1, the acceptance ratio ρk, and consequently the
evolution of the trust-region parameter ξk. The dual variable νk+1 encodes local curvature information
through the Hessian approximation and acts as an adaptive term in the cubic subproblem. This relationship
enables an automatic adjustment of ξk, allowing AdaCubic to respond effectively to the local geometry of
the non-convex loss landscape and to achieve competitive performance across the benchmarks in Section 5.

11
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5 Experimental Evaluation

Experiments are conducted on computer vision, natural language processing, and signal processing tasks,
where the results obtained with the proposed AdaCubic optimizer are compared with those obtained with
the SGD, Adam, and AdaHessian optimizers. The natural language processing experiments are conducted
using the Hugging Face Transformers library (Wolf et al., 2020). For SGD, Adam, and AdaHessian, the
Learning Rate (LR) is fine-tuned. For AdaCubic, the parameters η1 = 0.05, η2 = 0.75, α1 = 2.5, α2 = 0.25,
and κeasy = 0.01 are chosen universally in the experimental evaluation. These parameters are chosen based
on the analysis in (Conn et al., 2000, Section 17.1). Table 1 summarizes the universal hyperparameter values
used by AdaCubic across all benchmarks.

Table 1: Universal AdaCubic hyperparameter settings. All hyperparameters in Algorithm 2 are fixed across
benchmarks. ϵm denotes a numerical safeguard used in Algorithm 1.

AdaCubic Hyperparameters
Hyperparameter η1 η2 α1 α2 κeasy ϵm

Assigned Value 0.05 0.75 2.5 0.25 0.01 10−6

Tables 2 and 3 summarize the experimental configurations for each benchmark, including datasets, model
architectures, optimizers, and LR settings.

Table 2: Summary of model architectures, training settings, and optimizers used in all experiments.

Task Dataset Model Batch Epochs Optimizers

CV CIFAR-10 ResNet20 / ResNet32 256 500 SGD, Adam, AdaHessian, AdaCubic
CIFAR-100 ResNet18 256 200 SGD, Adam, AdaHessian, AdaCubic

NLU
SST-2, QNLI, RTE, WNLI SqueezeBERT 32 15 SGD, AdaHessian, AdaCubic

MRPC, QQP SqueezeBERT 32 15 SGD, AdaHessian, AdaCubic
STS-B, MNLI SqueezeBERT 32 15 SGD, AdaHessian, AdaCubic

LM WikiText-2 RoBERTa / BERT / DistilBERT 8 6 SGD, AdaHessian, AdaCubic
PTB RoBERTa / BERT / DistilBERT 8 6 SGD, AdaHessian, AdaCubic

CMI VISION ResNet18 256 100 Adam, AdaCubic

Computer Vision (CV). To prove the effectiveness of AdaCubic, experiments are conducted using
CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009). The experimental results are summarized in Ta-
ble 4. In all experiments, a batch size of 256 is used. The mean accuracy and standard deviation (std) over
five runs are reported for each experiment. The number of epochs used to train the models on CIFAR-10 and
CIFAR-100 is 500 and 200, respectively. In addition, the optimizers are fine-tuned w.r.t. the initial LR and
the decaying LR scheme. For SGD, Adam, and AdaHessian, the initial learning rates are 0.1, 0.001, and
0.15. Furthermore, for AdaHessian, β1 and β2 are set to 0.9 and 0.999, respectively. On CIFAR-10, the
LR is decayed by a factor of 10 at epochs 80 and 120, while on CIFAR-100, the LR is decayed by a factor of
20 at epochs 60, 120, and 160. In addition, spatial averaging (Yao et al., 2021) is used for AdaCubic and
AdaHessian on CIFAR-100. The entries corresponding to the best accuracy are marked in bold. ∆ reports
the accuracy differences between AdaCubic and the strongest competing optimizer in each setting. When
spatial averaging is used, the accuracy is shown in gray.

On the CIFAR-10 dataset, both AdaHessian and AdaCubic demonstrate higher accuracy than conven-
tional optimization methods like SGD and Adam. It is worth noting that, while both methods excel,
AdaHessian achieves a slight edge in accuracy over AdaCubic for ResNet20 and ResNet32 by 0.15% and
0.5%, respectively. This performance distinction underscores the effectiveness of AdaCubic and positions
it as a formidable competitor to AdaHessian in enhancing model accuracy on the CIFAR-10 dataset.

On the CIFAR-100 dataset without spatial averaging, AdaCubic falls behind SGD, Adam, and AdaHessian
by margins of 0.81%, 0.23%, and 0.64%, respectively. However, with spatial averaging, both AdaHessian

12
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Table 3: Summary of LRs used in all experiments. For the CV benchmark, LRs are decayed by a factor
of 10 at epochs 80 and 120 on CIFAR-10, and by a factor of 20 at epochs 60, 120, and 160 on CIFAR-100.
For NLU, LM, and CMI benchmarks, no LR decay is applied. For CMI, LR is decayed by a factor of 10 at
epochs 80 and 120. AdaCubic is used with a fixed universal parameter set and does not require LR tuning.

Optimizer Task Dataset(s) Initial LR LR Schedule / Tuning
SGD CV CIFAR-10 / CIFAR-100 0.1 Step decay (tuned)
Adam CV CIFAR-10 / CIFAR-100 10−3 Step decay (tuned)
AdaHessian CV CIFAR-10 / CIFAR-100 0.15 Step decay (tuned)
AdaCubic CV CIFAR-10 / CIFAR-100 no LR Universal parameters
SGD NLU SST-2, QNLI, RTE, WNLI 2×10−2 Tuned
SGD NLU STS-B 2×10−3 Tuned
AdaHessian NLU SST-2, QNLI, STS-B, MNLI 2×10−3 Tuned
AdaHessian NLU MRPC, RTE 2×10−4 Tuned
AdaHessian NLU WNLI 2×10−2 Tuned
AdaCubic NLU All GLUE tasks no LR Universal parameters
SGD LM WikiText-2, PTB 5×10−3 Tuned
AdaHessian LM WikiText-2 (all models) 5×10−4 Tuned
AdaHessian LM PTB (RoBERTa) 5×10−3 Tuned
AdaHessian LM PTB (BERT, DistilBERT) 5×10−4 Tuned
AdaCubic LM WikiText-2, PTB no LR Universal parameters
Adam CMI VISION 10−4 Tuned
AdaCubic CMI VISION no LR Universal parameters

and AdaCubic achieve improved accuracy. This comparative analysis highlights AdaCubic’s distinct per-
formance characteristics, demonstrating its unique capabilities relative to other optimizers in challenging
scenarios, such as on the CIFAR-100 dataset.

Table 4: Accuracy (%) and std of the accuracy measures for ResNet18/20/32 models on CIFAR-10 and
CIFAR-100 datasets. ∆ reports the gap between the strongest competing optimizer and AdaCubic.

CIFAR-10 CIFAR-100

ResNet20 ResNet32 ResNet18

SGD 88.52 ± 0.24 89.02 ± 0.20 72.62 ± 0.002
Adam 90.26 ± 0.19 91.24 ± 0.20 72.04 ± 0.13

AdaHessian 91.64 ± 0.46 93.15 ± 0.12 72.45 ± 0.16
- - 72.59 ± 0.271

AdaCubic 91.49 ± 0.46 92.65 ± 0.19 71.81 ± 0.003
- - 72 ± 0.337

∆ 0.15 ± 0.36 0.5 ± 0.07 0.81 ± 0.001
- - 0.59 ± 0.066

Figure 1 depicts the training loss of ResNet20 (top) and ResNet32 (bottom) on CIFAR-10 for Adam, Ada-
Hessian, and AdaCubic optimizers. As can be seen, the losses of Adam and AdaHessian decrease
dramatically at epoch 80, when the LR has decayed by a factor of 10. As can be seen, only by using an
adaptive LR can the training loss reduction of Adam and AdaHessian match that of AdaCubic. In the
last epochs, the loss of AdaCubic is lower than that of Adam and higher than that of AdaHessian. It
should be noted that, in all experiments, AdaCubic is used with the same set of parameters and achieves
competitive performance compared to the remaining fine-tuned optimizers.
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Figure 1: Training loss curve of ResNet20 (top) and ResNet32 (bottom) on CIFAR-10 for Adam, AdaHes-
sian, and AdaCubic optimizers.

On CIFAR-10, AdaCubic consistently outperforms first-order methods (SGD, Adam) and ranks second
to AdaHessian, with very small gaps of 0.15% and 0.5% for ResNet20 and ResNet32, respectively, as
summarized in Table 4. On CIFAR-100 without spatial averaging, AdaCubic trails the best-performing
optimizer by at most 0.81%. Due to its larger number of classes and increased classification difficulty, CIFAR-
100 will possibly lead to optimization regimes with stronger parameter interactions. Since AdaCubic,
like AdaHessian, relies on a diagonal approximation of the Hessian, it does not explicitly capture such
off-diagonal curvature effects, which may partially explain the observed gap. Importantly, when spatial
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Table 5: Figures of merit on GLUE benchmark using SGD, AdaHessian, and AdaCubic optimizers on
natural language understanding tasks. ∆ reports the gap between the strongest competing optimizer and
AdaCubic.

Dataset SGD AdaHessian AdaCubic ∆
Accuracy (%)

SST-2 91.62 90.71 90.71 0.91
QNLI 90.37 89.47 90.01 0.36
RTE 70.39 64.98 70.39 0.00
WNLI 56.33 56.33 56.33 0.00

F1 / Accuracy (%)
MRPC 0.9094 / 87.25 0.8562 / 78.18 0.9042 / 86.76 0.0052/0.49
QQP 0.8775 / 90.89 0.8742 / 90.82 0.8723 / 90.40 0.0052/0.49

Pearson / Spearman Corr.
STS-B 0.8863 / 0.8845 0.8786 / 0.8735 0.8832 / 0.8814 0.0031/0.0031

Matched / Mismatched Accuracy (%)
MNLI 82.45 / 82.05 81.65 / 81.57 81.88 / 81.89 0.57/0.16

averaging is applied, the performance of AdaCubic improves and becomes closer to that of AdaHessian
and SGD, confirming that part of the gap is related to high-variance curvature estimation.

Natural Language Understanding (NLU). Table 5 summarizes the results on the natural language
understanding task. The GLUE benchmark (Wang et al., 2018) is used to train the SqueezeBERT (Iandola
et al., 2020) model for 15 epochs. For SGD and AdaHessian, the initial LR is fine-tuned in all datasets.
For SGD, the initial LR is set to 2 · 10−2 for all datasets except from STS-B where it is set to 2 · 10−3. For
AdaHessian, the initial LR is set to 2 · 10−3 for SST-2, STS-B, MNLI, and QNLI, to 2 · 10−4 for MRPC and
RTE, and to 2 · 10−2 for WNLI.

The default parameters of the SqueezeBERT model can be found in the official Hugging Face library1. The
dataset acronyms in the Hugging Face library are SST-2, QNLI, RTE, WNLI, MRPC, QQP, STS-B, and MNLI, while
the model acronym is squeezebert/squeezebert-uncased.

To simplify the experimental evaluation, the experiments are divided into four groups, each corresponding
to a different performance measure. Group 1 consists of the SST-2, QNLI, RTE, and WNLI datasets. Group
2 consists of the MRPC and QQP datasets, while groups 3 and 4 consist of the SST-B and MNLI datasets,
respectively. The entries corresponding to the best metrics are marked in bold. ∆ reports the accuracy
differences between AdaCubic and the strongest competing optimizer in each setting.

• Group 1. Concerning accuracy measure, AdaCubic and AdaHessian demonstrate the same per-
formance on SST-2, while SGD performs better by 0.91%. On QNLI, SGD outperforms AdaCubic
by 0.36%, while AdaCubic outperforms AdaHessian by 0.54%. On RTE, AdaCubic and SGD
achieve the same performance, while AdaHessian is outperformed by 5.41%. On WNLI, all optimiz-
ers achieve the same performance. Overall, the mean accuracies achieved by SGD, AdaHessian,
and AdaCubic are 77.17%, 75.37%, and 76.86%, respectively. It can be observed that, on average,
SGD outperforms AdaCubic by 0.31%, while AdaCubic outperforms AdaHessian by 1.5%.

• Group 2. Concerning F1 measure on MRPC, SGD outperforms AdaCubic by 0.0052, while AdaCu-
bic outperforms AdaHessian by 0.048. On the same dataset, SGD achieves higher accuracy
than AdaCubic by 0.49%, whereas AdaCubic outperforms AdaHessian by 8.58%. Concerning
F1 measure on QQP, SGD outperforms AdaHessian by 0.0052, while AdaHessian outperforms

1https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
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AdacCubic by 0.0019. On the same dataset, SGD achieves higher accuracy than Adahessian by
0.07%, while AdaHessian outperforms AdaCubic by 0.42%. Overall, the mean F1 values achieved
by SGD, AdaHessian, and AdaCubic are 0.89345, 0.8652, and 0.88825, respectively, while the
mean accuracies are 89.07%, 84.5%, and 88.58%, respectively. This way, on average, SGD outper-
forms AdaCubic by 0.0052 and 0.49%, on F1 and accuracy measures, respectively, while AdaCubic
outperforms AdaHessian by 0.02305 and 4.08%, respectively.

• Group 3. Concerning Pearson correlation index, SGD outperforms AdaCubic by 0.0031, while
AdaCubic outperforms AdaHessian by 0.0046. Regarding the Spearman correlation index, SGD
outperforms AdaCubic by 0.0031, while AdaCubic outperforms AdaHessian by 0.0079.

• Group 4. Concerning matched accuracy (Wang et al., 2018), SGD outperforms AdaCubic by 0.57%,
while AdaCubic outperforms AdaHessian by 0.23%. Concerning mismatched accuracy (Wang
et al., 2018), SGD outperforms AdaCubic by 0.16%, while AdaCubic outperforms AdaHessian
by 0.32%.

It is worth noting that AdaCubic exhibits the second-best performance with a pre-fixed universal set of
parameters, while SGD and AdaHessian are fine-tuned w.r.t. the initial LR.

Language Modeling (LM). Tables 6 and 7 summarize the results on the language modeling, where perplex-
ity (Jelinek et al., 1977) is used as an evaluation metric. PTB (Marcus et al., 1994) and wikitext-2 (Mer-
ity et al., 2017) datasets are used to train RoBERTa (Liu et al., 2019), BERT (Devlin et al., 2018), and
DistilBERT (Sanh et al., 2019) models with SGD, AdaHessian, and AdaCubic optimizers.

Table 6: Perplexity achieved by SGD, AdaHessian, and AdaCubic on wikitext-2 dataset.

Optimizer RoBERTa BERT DistilBERT

SGD 3.547 13.380 6.118
AdaCubic 3.756 5.759 6.565

AdaHessian 4.374 16.151 6.822

Table 7: Perplexity using SGD, AdaHessian, and AdaCubic on the PTB dataset.

Optimizer RoBERTa BERT DistilBERT

SGD 4.345 17.344 8.299
AdaCubic 5.145 14.170 7.334

AdaHessian 7.582 20.851 10.182

The initial LR of SGD is fine-tuned to 5 · 10−3 for all models and both datasets. For AdaHessian, the
initial LR is fine-tuned to 5 · 10−4 for all models on wikitext-2 dataset. On PTB dataset, the initial LR of
AdaHessian optimizer is set to 5·10−3 to train RoBERTa model, while the remaining models are trained with
initial LR 5·10−4. The remaining parameters for the trained models can be found in the official Hugging Face
library2. The dataset acronyms in the Hugging Face library are ptb_text_only and wikitext-2-raw-v1.
In contrast, the model acronyms are roberta-base, bert-base-cased, and distilbert-base-uncased.

First, the perplexity measurements gathered for the wikitext-2 dataset in Table 6 are discussed. When
RoBERTa is used, SGD outperforms AdaCubic and AdaHessian by 0.209 and 0.827, respectively. Next,
when BERT is used, AdaCubic outperforms SGD and AdaHessian by 7.621 and 10.392, respectively. For
the DistilBERT model, SGD outperforms AdaCubic and AdaHessian by 0.447 and 0.704, respectively.
We observe that in all models, AdaCubic outperforms AdaHessian and performs better or competitively
when compared to SGD. Figure 2 depicts the perplexity metric vs. epochs for all models and optimizers on
the wikitext-2 dataset.

2https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
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Figure 2: Perplexity vs. epochs for RoBERTa, BERT, and DistilBERT models on wikitext-2 dataset.
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Figure 3: Perplexity vs. epochs for RoBERTa, BERT, and DistilBERT models on PTB dataset.

Table 7 gathers perplexity measures on the PTB dataset. When RoBERTa is used, SGD outperforms AdaCu-
bic and AdaHessian by 0.8 and 3.237, respectively. For the BERT model, AdaCubic outperforms SGD and
AdaHessian by 3.174 and 6.681, respectively. For the DistilBERT model, AdaCubic outperforms SGD
and AdaHessian by 0.965 and 2.848, respectively. Figure 3 depicts the perplexity metric vs. epochs for all
models and optimizers on the PTB dataset.

On the NLU benchmark, Table 5, AdaCubic consistently achieves either the best or the second-best perfor-
mance across all tasks, with the performance gaps reported in the ∆ column remaining small. The second-best
performance of AdaCubic on certain GLUE tasks can be understood in light of recent Hessian-based anal-
yses of Transformers (Zhang et al., 2024). In particular, Zhang et al. (2024) shows that Transformer models
exhibit block-wise heterogeneity in their Hessian structure, with strong curvature differences and interactions
across parameter groups. While AdaCubic explicitly leverages second-order information through diagonal
Hessian approximations, such approximations may be insufficient to capture cross-parameter or block-level
curvature interactions fully. This likely explains why AdaCubic remains highly competitive but does not
consistently outperform finely tuned baselines on Transformer-based tasks. Similar conclusions hold for the
LM benchmark, where AdaCubic consistently achieves either the best or second-best performance across
all datasets.

Overall, it should be noted that AdaCubic exhibits the best or second-best performance with a pre-fixed
universal set of parameters, while SGD and AdaHessian are fine-tuned w.r.t. the initial LR.

Camera Model Identification (CMI). The publicly available VISION dataset (Shullani et al., 2017) is
utilized for camera model identification. VISION includes 648 Native videos, which remain unaltered post-
capture by the camera. These Native videos were disseminated via social media platforms such as YouTube
and WhatsApp, with corresponding versions included in the dataset. Of the 684 Native videos, 644 were
shared via YouTube and 622 via WhatsApp. Additional details on VISION can be found in (Shullani et al.,
2017). Taking into account the VISION dataset naming conventions outlined in Shullani et al. (2017), videos
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captured by devices D04, D12, D17, and D22 are excluded due to issues encountered during frame extraction
or audio track retrieval.

Table 8: CMI accuracy (%) using ResNet18.

AdaCubic Adam
Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 97.40 96.10 94.59 96.10 93.50 91.9
Fold 1 93.51 93.51 93.24 94.80 90.90 93.24
Fold 2 94.81 92.22 94.59 90.90 88.31 95.94
Fold 3 93.42 93.43 91.89 93.42 94.73 82.43
Fold 4 94.73 88.16 93.24 94.73 88.15 95.94
Mean
± std

94.77
± 1.43

93.68
± 2.59

93.51
± 1.01

93.99
± 1.76

91.11
± 2.66

91.89
± 4.98

The videos are partitioned into training, testing, and validation sets to conduct a typical five-fold strati-
fied cross-validation. The audio content from each video is extracted, and the log-Mel spectrogram of each
extracted audio is computed using three distinct windows and hop sizes. This results in 3-channel log-Mel
spectrograms that capture various frequency details of the audio content. The 3-channel log-Mel spectro-
grams are then fed into ResNet18 to perform CMI. Furthermore, for Adam, β1 and β2 are set to 0.9 and
0.999, respectively. The LR is decayed by a factor of 10 at epochs 80 and 120 with an initial value 10−4.

Table 8 summarizes the results when AdaCubic and Adam optimizers are used. The mean accuracy achieved
using AdaCubic in the Native, WhatsApp, and YouTube benchmarks is 94.77%, 93.68%, and 93.51%, re-
spectively. In comparison, the mean accuracy with Adam is 93.99% for Native, 91.11% for WhatsApp, and
91.89% for YouTube. This indicates that AdaCubic is more accurate than Adam by 0.78%, 2.57%, and
1.62% in the Native, WhatsApp, and YouTube benchmarks, respectively. In terms of std, AdaCubic demon-
strates greater consistency than Adam by achieving lower std values of 0.33, 0.07, and 3.97 in the Native,
WhatsApp, and YouTube benchmarks, respectively. Implementation details for the audio CMI task can be
found in (Tsingalis et al., 2024).
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Figure 4: Cumulative time vs. epochs for SGD, AdaHessian, and AdaCubic for ResNet20 on CIFAR-10.
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Figure 5: Comparison of SGD, AdaHessian, and AdaCubic on ResNet20 and CIFAR-10. Training loss
vs. cumulative time over epochs (Left). Training loss vs. epochs (Right).

6 Computational Complexity and Discussion

The performance and time complexity of the second-order methods depend on the approximation of the
second-order information captured by the Hessian matrix. Similarly to AdaHessian, AdaCubic leverages
the Hutchinson method (Bekas et al., 2007) to approximate the diagonal of the Hessian matrix. Figure 4
depicts the time complexity of SGD, AdaHessian, and AdaCubic when they are used to train ResNet20
on CIFAR-10. As can be seen, the time complexity of the first-order optimizer SGD is smaller than that of
the two second-order optimizers, with AdaCubic having less time complexity than AdaHessian.

Figure 5a shows the training loss vs. cumulative time for SGD, AdaHessian, and AdaCubic. Figure 5b
shows the training loss vs. epochs for SGD, AdaHessian, and AdaCubic. The training loss in Figure 5b
corresponds to that in Figure 5a. The horizontal dashed line in Figure 5a marks the target loss threshold
of 0.15. AdaCubic reaches this threshold after 55 epochs and 42.40 minutes. In comparison, SGD and
AdaHessian require 83 and 81 epochs, corresponding to 35.16 and 61.85 minutes. Table 9 summarizes the
latter results. Although AdaCubic needs more time than SGD due to computation of the second-order
information, AdaCubic reaches the desired loss in fewer epochs without any LR tuning. This highlights
AdaCubic as an efficient trade-off between computational cost and convergence quality.

Table 9: Execution time in minutes required to reach a target loss threshold when ResNet20 is trained on
CIFAR-10.

SGD AdaHessian AdaCubic
Epoch Time Epoch Time Epoch Time

Result 83 35.16 81 61.85 55 42.40

Additionally, storing the Hessian matrix increases the memory consumption of any second-order optimizer.
Using Hutchinson’s method for approximating the diagonal of the Hessian, the second-order information
is represented by the diagonal approximation of the Hessian matrix, which leads to a O(d) memory com-
plexity (Bekas et al., 2007). This additional memory cost is incurred by AdaCubic relative to first-order
methods such as SGD.

Furthermore, when utilizing Bekas et al. (2007), the approximation of the diagonal of the Hessian demands
an additional gradient back-propagation. The additional gradient back-propagation step is also needed in
AdaHessian. When comparing AdaCubic with Adam, the latter shares similar memory consumption
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due to the requirement of the gradient momentum term, but it does not necessitate an additional gradient
back-propagation.

Table 10: Comparison of optimization methods used in the experimental evaluation. Recall that d denotes
the number of model parameters and S the number of random vectors used in the diagonal Hessian approx-
imation.

Optimizer Order Sensitivity Extra Backward Pass Time Cost Memory Footprint
SGD First High No d d
Adam First High No d 3d
AdaHessian Second Medium Yes S d 4d
AdaCubic Second Low Yes S d 2d

Table 10 summarizes the optimization methods used in the experimental evaluation, highlighting their opti-
mization order, sensitivity to hyperparameters, and computational overhead. The “Order” column indicates
whether an optimizer relies on first- or second-order information. The sensitivity of the optimizers w.r.t. the
LR is summarized in the “Sensitivity” column. The sensitivity of SGD, Adam, and AdaHessian w.r.t. the
LR is discussed thoroughly in (Yao et al., 2021). AdaCubic has low sensitivity, as it achieves competitive
performance with a universal set of hyperparameters. The “Extra Backward Pass” column indicates whether
additional back-propagation steps are required per optimization iteration, which directly relates to the use
of second-order information. The reported time cost is dominated by the back-propagation procedure and
is expressed as a function of the number of model parameters d. Recall that S is the number of random
vectors used in the approximation of the diagonal Hessian matrix. Using S random vectors requires S
backpropagation steps, increasing the time cost linearly. The “Memory Footprint” refers to the memory
needed to store the gradient, the moment terms, and the approximated diagonal Hessian. As can be seen,
the memory footprint of Adam and AdaHessian is 3d and 4d, respectively, as the gradient and moments
need memory relative to the number of parameters d. AdaHessian needs an additional memory footprint of
d for the storage of the approximate diagonal Hessian. AdaCubic shows a 2d memory overhead relative to
SGD, since the gradient must be retained to compute the Hutchinson-based approximation of the diagonal
Hessian, which is subsequently used by Algorithm 2.

However, according to Algorithm 2, AdaCubic requires only the approximated diagonal Hessian for its
updates, yielding a theoretical memory footprint of O(d). The gap between practical and theoretical memory
costs comes from the design of modern deep-learning frameworks, such as PyTorch, which are optimized for
first-order optimization methods. Thus, computing the diagonal Hessian approximation requires retaining
intermediate gradient information. Developing a custom implementation that directly computes the diagonal
Hessian without storing such intermediates is beyond the scope of this work.

7 Conclusions

AdaCubic, a novel adaptive cubic regularized second-order optimizer, has been proposed. AdaCubic
leverages an approximate Hessian diagonal to reduce the computational cost induced by estimating curvature
information. Although many cubically regularized methods have been proposed in the literature, none have
been extensively tested in practical deep-learning applications. The effectiveness of the proposed optimizer
has been demonstrated through experiments on computer vision, natural language processing, and signal
processing tasks that utilize deep neural networks trained on various datasets. With a pre-fixed universal
selection of parameters, AdaCubic exhibits better or competitive performance when compared to other
state-of-the-art fine-tuned optimizers. This fact makes AdaCubic an attractive solution for optimizing deep
neural networks.
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Figure 6: Logical connection between key lemmata, theorems, and corollaries throughout Sections 2
to 4 and Appendices B.1 to B.13.

B Supporting Proofs

B.1 Proof of Lemma 1

Here, we follow the guidelines in (Conn et al., 2000, Theorem 7.2.1). Let us assume that s∗ is a minimizer
of m̂(s) subject to ∥s∗∥3

2 ≤ ξ. Then, there is a Lagrange multiplier ν∗ such that

ν∗ (∥s∗∥3
2 − ξ) = 0⇔

{
ν∗ = 0, inactive constraint
∥s∗∥3

2 = ξ, active constraint.
(52)

(52) is the unfolded Complementary Slackness (CS) condition Bertsekas (2017) for the constrained optimiza-
tion problem (7). The active case occurs when s∗ lies on the boundary of Ω, i.e., gξ(s∗) = 0 ⇔ ∥s∗∥3

2 = ξ

and the inactive case occurs when s∗ lies in the interior of Ω, i.e. gξ(s∗) < 0⇔ ∥s∗∥3
2 < ξ.

▷ Active constraint case. We assume that s∗ is a minimizer of m̂(s) subject to ∥s∗∥3
2 = ξ. From the

first-order optimality conditions Bertsekas (2017), there exists a Lagrange multiplier ν∗, such that

∇sLξ(s∗, ν∗) = 0⇔ ∇sm̂(s∗) + ν∗ ∇sgξ(s∗) = 0

⇔ ∇2f(xk) s∗ +∇f(xk)︸ ︷︷ ︸
∇sm̂(s∗)

+ν∗

2 ∥s
∗∥2 s∗ = 0⇔

(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
s∗ = −∇f(xk), (53)
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where the identity ∇s ∥s∥3
2 = 3 ∥s∥2 s was used for some s. Let s be a feasible point on the boundary of

Ω, i.e., ∥s∥3
2 = ξ. The Taylor expansion of m̂(s) around the minimizer s∗ is

m̂(s) = m̂(s∗) + (s− s∗)T ∇sm̂(s∗) + 1
2 (s− s∗)T ∇2

sm̂(s∗) (s− s∗). (54)

From the second line in (53), we also have

∇sm̂(s∗) = −ν2 ∥s
∗∥2 s∗. (55)

Given (55) and the fact that s and s∗ are feasible points on the boundary of Ω, i.e., ∥s∗∥3
2 = ξ = ∥s∥3

2, we
have

(s− s∗)T ∇sm̂(s∗) = −ν
∗

2 ∥s
∗∥2 (s− s∗)T s∗ = ν∗

2 ∥s
∗∥2 (∥s∗∥2

2 − sT s∗)

= ν∗

2 ∥s
∗∥2

[
1
2

(
ξ2/3 + ξ2/3

)
− sT s∗

]
= ν∗

2 ∥s
∗∥2

[
1
2

(
∥s∗∥2

2 + ∥s∥2
2

)
− sT s∗

]
, (56)

which implies
(s− s∗)T ∇sm̂(s∗) = ν∗

4 ∥s
∗∥2 (s− s∗)T (s− s∗). (57)

Combining (54), (57), and ∇2
sm̂(s∗) = ∇2f(xk) gives

m̂(s) = m̂(s∗) + 1
4ν

∗ ∥s∗∥2 (s− s∗)T (s− s∗) + 1
2 (s− s∗)T∇2f(xk)(s− s∗)

= m̂(s∗) + 1
2 (s− s∗)T

(
∇2f(xk) + ν∗

2 ∥s
∗∥ I

)
(s− s∗). (58)

The second-order optimality condition Bertsekas (2017, Proposition 4.3.1) for z ∈ Rd yields

zT
(
∇2

sm̂(s∗) + ν∗ ∇2
sgξ(s∗)

)
z ≥ 0, (59)

where
∇2

sm̂(s∗)︸ ︷︷ ︸
∇2f(xk)

+ν∗ ∇2
sgξ(s∗) =

(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
+ ν∗

2
s∗(s∗)T
∥s∗∥2

(60)

such that zT∇sgξ(s∗) = 1
2 ∥s

∗∥2 zT s∗ = 0⇔ zT s∗ = 0. Since s∗ ̸= 0, we have

zT
{(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
+ ν∗

2
s∗(s∗)T
∥s∗∥2

}
z ≥ 0⇔

zT
(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
z + ν∗

2
(zT s∗)2

∥s∗∥2
≥ 0.

(61)

Using zT s∗ = 0 in (61) we get

zT
(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
z ≥ 0. (62)

This indicates that ∇2f(xk) + ν∗

2 ∥s
∗∥2 I is positive semi-definite for vectors in the direction of the

null-space of ∇sgξ(s∗), i.e., perpendicular to ∇sgξ(s∗).
It remains to consider vectors w ∈ Rd that do not belong to the null-space of ∇sgξ(s∗), i.e., wT∇sgξ(s∗) ̸=
0, and prove that ∇2f(xk) + ν∗

2 ∥s
∗∥2 I is also positive semi-definite. To this end, define the line s =

s∗ +α w as a function of α. Because we are interested in w, such that wT∇sgξ(s∗) ̸= 0, the line intersects
the constraint gξ(s) = 0⇔ ∥s∥3

2 = ξ in two values of α. For α = 0 we have s = s∗ and the aforementioned
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discussion holds. For α ̸= 0, s satisfies ∥s∥3
2 = ξ. In the latter case, we may write s−s∗ = α w. From (58),

we arrive at
m̂(s) = m̂(s∗) + α2

2 wT

(
∇2f(xk) + ν∗

2 ∥s
∗∥2 I

)
w, (63)

with α ̸= 0. Given the assumption that s∗ is a minimizer, i.e., m̂(s∗) ≤ m̂(s), (63) implies that ∇2f(xk)+
ν∗

2 ∥s
∗∥2 I is positive semi-definite. So far, we have shown that if s∗ is a minimizer subject to ∥s∗∥3

2 = ξ,
then ∇2f(xk) + ν∗

2 ∥s
∗∥2 I is positive semi-definite either in the direction of the null-space of ∇sgξ(s∗)

or not. Conversely, if ∇2f(xk) + ν∗

2 ∥s
∗∥2 I is positive semi-definite, from (58) and (63), we arrive at

m̂(s∗) ≤ m̂(s), i.e., s∗ is a minimizer subject to ∥s∗∥3
2 = ξ.

Regarding the uniqueness of the solution, when ∇2f(xk) + ν∗

2 ∥s
∗∥2 I is positive definite, from (58)

and (63) we have that m̂(s∗) < m̂(s), which indicates that s∗ is a unique minimizer subject to ∥s∗∥3
2 = ξ.

▷ Inactive constraint case.
In this case, we assume that s∗ is a minimizer of m̂(s) subject to ∥s∗∥3

2 < ξ when ν∗ = 0. From (53) we
obtain

∇2f(xk)s∗ = −∇f(xk). (64)

From the second-order optimality condition Bertsekas (2017, Proposition 4.3.1), it is implied that
∇2

ssLξ(s∗, ν∗) is positive semi-definite. Using the latter fact, along with the fact that ∇2
ssLξ(s∗, ν∗) =

∇2f(xk) when ν∗ = 0, we get that ∇2f(xk) is positive semi-definite. This, in turn, implies that we are
dealing with a convex problem.
Conversely, when ∇2f(xk) is positive semi-definite and ν∗ = 0, we can use the Taylor expansion of m̂(s)
in (54) along with the fact that

∇sLξ(s∗, ν∗) = 0⇔ ∇sm̂(s∗) +������:0
ν∗ ∇sgξ(s∗)︸ ︷︷ ︸

as ν∗ = 0

= 0

⇔ ∇sm̂(s∗) = 0

(65)

to show that m̂(s∗) ≤ m̂(s). This implies that s∗ is a minimizer subject to ∥s∗∥3
2 < ξ. Regarding

the uniqueness of the solution, when ∇2f(xk) positive definite and ν∗ = 0, we can solve (58) w.r.t.
s∗ = −∇2f(xk)−1∇f(xk), which indicates that s∗ is a unique minimizer subject to ∥s∗∥3

2 < ξ.

Given that no assumption has been made on the structure of ∇f(x), we can repeat the aforementioned proof
using Diag(∇2f(x)) instead of ∇f(x) to arrive at Corollary 3.
Corollary 3. A vector s∗ is a minimizer of m̂(s) subject to ∥s∗∥3

2 ≤ ξ if and only if satisfies(
Diag(∇2f(xk)) + ν∗

2 ∥s
∗∥2 I

)
s∗ = −∇f(xk), (66)

Diag(∇2f(xk)) + ν∗

2 ∥s
∗∥2 I ⪰ 0, (67)

and ν∗ (∥s∗∥3
2 − ξ) = 0, where ν∗ ≥ 0. If ∇2f(xk) + ν∗

2 ∥s
∗∥2 I ≻ 0, then the minimizer s∗ is unique.

Corollary 3 will be used in the proof of Theorem 3.

B.2 Proof of Lemma 2

Starting from the primal optimization problem

min
s∈Rd

Lξ(s, ν) (8)= min
s∈Rd ∥s∥2

2=τ
∇f(xk)T s + 1

2 sT∇2f(xk)s + ν

6

(
τ3/2 − ξ

)
, (68)
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where ν is the Lagrange multiplier, the optimal value of the primal problem can be expressed as

min
s∈Rd

Lξ(s, ν) (8)= min
s∈Rd τ≥0

max
r∈Dν

{
∇f(xk)T s + 1

2 sT ∇2f(xk) s + ν

6

(
τ3/2 − ξ

)
+ rν

4

(
∥s∥2

2 − τ
)}

, (69)

where r is the Lagrange multiplier associated to the constraint ∥s∥2
2 = τ (Boyd & Vandenberghe, 2004, Section

5.4). It is essential to highlight that the optimality conditions outlined in Bertsekas (2017, Proposition 4.2.1)
explicitly require r to belong to R. However, r is restricted to Dν for reasons that become apparent as the
proof unfolds. If the weak duality property is applied to the right-hand side (RHS) of (69), we arrive at

min
s∈Rd

Lξ(s, ν) ≥ max
r∈Dν

min
s∈Rd τ≥0

{
∇f(xk)T s + 1

2 sT ∇2f(xk) s + ν

6

(
τ3/2 − ξ

)
+ rν

4

(
∥s∥2

2 − τ
)}

. (70)

From the first-order optimality condition Bertsekas (2017), the optimal value in the Left Hand Side (LHS)
of (68) w.r.t. s is attained by s that satisfies ∇sLξ(s, ν) = 0, i.e.,(

∇2f(xk) + ν

2 ∥s∥2 I
)

s = −∇f(xk), ν ≥ 0. (71)

At this point, we note that (71) differs from (9), because the stationarity of Lξ(s, ν) is studied w.r.t. s only.
Denote the RHS of (70) as

Lξ(s, ν, r, τ) = ∇f(xk)T s + 1
2 sT ∇2f(xk) s + ν

6

(
τ3/2 − ξ

)
+ rν

4

(
∥s∥2

2 − τ
)

= ∇f(xk)T s + 1
2 sT

(
∇2f(xk) + ν r

2 I
)

s + ν

6

(
τ3/2 − ξ

)
− rν

4 τ. (72)

We start with the case ν > 0. Solving ∂τLξ(s, ν, r, τ) = 0 w.r.t. τ , we get

τ∗ = r2, (73)

where r ∈ Dν . Restricting r in Dν , implies that r > 0, which in turn implies τ∗ > 0, as ∥s∥ = τ∗. If τ∗ = 0,
we have ∥s∥ = 0, which leads to the trivial solution, i.e., the zero vector. Solving ∇sLξ(s, ν, r, τ) = 0 w.r.t.
s, we arrive at

∇f(xk) = −
(
∇2f(xk) + ν r

2 I
)

s. (74)

For r ∈ Dν , we get from (74)

s(ν, r) = −
(
∇2f(xk) + ν r

2 I
)−1
∇f(xk), ν > 0, (75)

which implies the dependence of s on the variables ν and r. Restricting r in Dν , we achieve the invertibility
in (75) when ν > 0. Substituting (73) and (74) in (72), we get

Lξ(s(ν, r), ν, r) = −1
2 s(ν, r)T

(
∇2f(xk) + ν r

2 I
)

s(ν, r)− ν

6 ξ −
ν

12r
3. (76)

Combining (70) and (76) we get for ν > 0

min
s∈Rd

Lξ(s, ν) ≥ max
r∈Dν

Lξ(s(ν, r), ν, r). (77)

The derivative of (76) w.r.t. r is

∂rLξ(s(ν, r), ν, r) = ν

4

(
∥s(ν, r)∥2

2 − r
2
)
. (78)

Thus, for any ν > 0, the optimal value in the RHS of (77) is attained for r∗ ∈ Dν that solves(
∂Lξ(s(ν, r), ν, r)

∂r

)
r=r∗

= 0. (79)
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Using (78) in (79), we have
r∗ = ∥s(ν, r∗)∥2 for any ν > 0. (80)

Restricting r∗ in Dν , we avoid the trivial solution s(ν, r∗) = 0 for any ν > 0. This restriction on r in (69) is
precisely due to its inclusion in Dν .

Using (74) in (8) we attain

Lξ(s(ν, r), ν) = −s(ν, r)T
(
∇2f(xk) + ν r

2 I
)

s(ν, r) + 1
2 s(ν, r)T ∇2f(xk) s(ν, r) + ν

6 ∥s(ν, r)∥3
2 −

ν

6 ξ. (81)

Adding and subtracting the terms ν
12r

3 and ν r
4 ∥s(ν, r)∥2

2, we get

Lξ(s(ν, r), ν) = −s(ν, r)T
(
∇2f(xk) + ν r

2 I
)

s(ν, r) + 1
2 s(ν, r)T ∇2f(xk) s(ν, r) + ν

6 ∥s(ν, r)∥3
2

− ν

6 ξ +
( ν

12r
3 − ν

12r
3
)

︸ ︷︷ ︸
0

+
(ν r

4 ∥s(ν, r)∥2
2 −

ν r

4 ∥s(ν, r)∥2
2

)
︸ ︷︷ ︸

0

. (82)

Next, using (76), with appropriate rearrangements we arrive at

Lξ(s(ν, r), ν) = Lξ(s(ν, r), ν, r) + ν

12r
3 + ν

6 ∥s(ν, r)∥3
2 −

ν r

4 ∥s(ν, r)∥2
2

= Lξ(s(ν, r), ν, r) + ν

12

(
r3 + 2 ∥s(ν, r)∥3

2 − 3r ∥s(ν, r)∥2
2

)
= Lξ(s(ν, r), ν, r) + ν

12 (∥s(ν, r)∥2 − r)
2 (r + 2 ∥s(ν, r)∥2) . (83)

Then, using (78) for r ∈ Dν and ν > 0 we obtain

Lξ(s(ν, r), ν) = Lξ(s(ν, r), ν, r) + 4
3ν

(r + 2 ∥s(ν, r)∥2)
(r + ∥s(ν, r)∥2)2

(
∂rLξ(s(ν, r), ν, r)

)2
. (84)

When (79) is satisfied for some ν > 0, Lξ(s(ν, r), ν, r) given by (84) is maximized w.r.t. r ∈ Dν . From (84)
we have

Lξ(s(ν, r∗), ν) = max
r∈Dν

Lξ(s(ν, r), ν, r). (85)

In order to obtain (12), we need to show

Lξ(s(ν, r∗), ν) = min
s∈Rd

Lξ(s, ν), ν > 0. (86)

When r∗ ∈ Dν in (75) and using r∗ = ∥s(ν, r∗)∥2 for some ν > 0 in (80), we get(
∇2f(xk) + ν

2 ∥s(ν, r∗)∥ I
)

s(ν, r∗) = −∇f(xk) (87)

which implies that s(ν, r∗) minimizes Lξ(s, ν).

We conclude with the case ν = 0. In this case, we observe that (12) is easily attained by applying (70) when
equality holds, which concludes the proof.

B.3 Proof of Theorem 1

From the weak duality in (7) and (12) we have

min
s∈Rd

max
ν≥0

Lξ(s, ν) ≥ max
ν≥0

min
s∈Rd

Lξ(s, ν) (12)= max
ν≥0

max
r∈Dν

Lξ(s(ν, r), ν, r) = max
r∈Dν ,ν≥0

Lξ(s(ν, r), ν, r), (88)

where the last term in (88) refers to a joint optimization problem. We start with the case ν > 0. The
derivative of (76) w.r.t. ν is

∂νLξ

(
s(ν, r), ν, r

)
= r

4 ∥s(ν, r)∥2
2 −

ξ

6 −
r3

12 , (89)
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where r ∈ Dν .

To prove that (88) holds with equality and subsequently prove (17), we study the optimality conditions that
maximize the RHS of (88). The optimal value in the RHS of (88) w.r.t ν > 0 is achieved by some ν∗ > 0
that solves (

∂Lξ

(
s(ν, r), ν, r

)
∂ν

)
ν=ν∗

= 0, (90)

for r ∈ Dν . In addition, the optimal value in the RHS of (88) w.r.t r ∈ Dν is achieved if (79) or equiva-
lently (80) holds. Given that (80) holds for any ν > 0, without loss of generality, we assume that (80) also
holds for ν∗ > 0, i.e.,

r∗ = ∥s(ν∗, r∗)∥2 for any ν∗ > 0. (91)
When (91) holds, from (90) we get

ξ = 3r∗

2 ∥s(ν∗, r∗)∥2
2 −

r∗3

2 . (92)

Solving (14) w.r.t. ∇f(xk) and substituting in (8) we get

Lξ(s(ν, r), ν) = −s(ν, r)T
(
∇2f(xk) + ν r

2 I
)

s(ν, r)+
1
2 s(ν, r)T ∇2f(xk) s(ν, r) + ν

6

(
∥s(ν, r)∥3

2 − ξ
)
. (93)

Then, applying (92) for r ∈ Dν , we have

Lξ(s(ν, r), ν) = −s(ν, r)T
(
∇2f(xk) + ν r

2 I
)

s(ν, r) + 1
2 s(ν, r)T ∇2f(xk) s(ν, r)+

ν

6 ∥s(ν, r)∥3
2 −

ν r

4 ∥s(ν, r)∥2
2 + ν r3

12 . (94)

Adding and subtracting ν r
4 ∥s(ν, r)∥2

2 we obtain

Lξ(s(ν, r), ν) = −1
2 s(ν, r)T

(
∇2f(xk) + ν r

2 I
)

s(ν, r)− ν r

4 ∥s(ν, r)∥2
2 + ν

6 ∥s(ν, r)∥3
2−

ν r

4 ∥s(ν, r)∥2
2 + ν r3

12 . (95)

Similarly adding and subtracting νξ
6 and ν r3

12 reveals the term Lξ(s(ν, r), ν, r) yielding

Lξ(s(ν, r), ν) (13)= Lξ(s(ν, r), ν, r) + ν

(
r3

12 + ξ

6 −
r

4 ∥s(ν, r)∥2
2

)
+ ν

12

(
r3 + 2 ∥s(ν, r)∥3

2 − 3r ∥s(ν, r)∥2
2

)
.

(96)
The terms inside the first bracket of (96) are identified as −∂νLξ

(
s(ν, r), ν, r

)
, yielding

Lξ(s(ν, r), ν) = Lξ(s(ν, r), ν, r)− ν ∂νLξ

(
s(ν, r), ν, r

)
+ ν

12 (∥s(ν, r)∥2 − r)
2 (r + 2 ∥s(ν, r)∥2)

(89)= Lξ

(
s(ν, r), ν, r

)
+ 4

3ν
(r + 2 ∥s(ν, r)∥2)
(r + ∥s(ν, r)∥2)2

(
∂rLξ(s(ν, r), ν, r)

)2
− ν ∂νLξ

(
s(ν, r), ν, r

)
(97)

and by rearranging terms, we arrive at

Lξ(s(ν, r), ν) = Lξ

(
s(ν, r), ν, r

)
− ν ∂νLξ

(
s(ν, r), ν, r

)
+ 4

3ν
(r + 2 ∥s(ν, r)∥2)
(r + ∥s(ν, r)∥2)2

(
∂rLξ(s(ν, r), ν, r)

)2
. (98)

When (79) and (90) hold, Lξ

(
s(ν, r), ν, r

)
is maximized and from (98), we have

Lξ
(
s(ν∗, r∗), ν∗, r∗) = max

ν≥0,r∈Dν

Lξ(s(ν, r), ν, r), (99)
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where r∗ and ν∗ optimize the RHS of (88). Given r∗, ν∗, and (99), to show (17), we need to prove

Lξ
(
s(ν∗, r∗), ν∗, r∗) = min

s∈Rd
max
ν≥0

Lξ(s, ν). (100)

To do so, we need to show that the optimal s in the RHS of (100) equals s(ν∗, r∗) in the LHS of (100). The
optimal s in the RHS of (100) satisfies Lemma 1. Thus, by Lemma 1, if s(ν∗, r∗) satisfies the CS condition

ν∗ (∥s(ν∗, r∗)∥3
2 − ξ) = 0 (101)

and the system of equations(
∇2f(xk) + ν∗

2 ∥s(ν∗, r∗)∥ I
)

s(ν∗, r∗) = −∇f(xk), (102)

then (100) holds. (101) implies ∥s(ν∗, r∗)∥3
2 = ξ for ν∗ > 0, which is true because of (91). To prove (102),

we apply (87), where without loss of generality we replace ν > 0 with ν∗ > 0, and the proof is complete.
Corollary 1, in the paper’s main body, summarizes this proof’s main result.

B.4 Proof of Theorem 2

The proof has two parts. The first part deals with the RHS of (22), while the second part deals with the
LHS of (22). A similar procedure is followed to that in Kloft et al. (2009, Proposition 1) to prove Theorem 2.

▷ First part.
Let s∗ be the minimizer of (7) which satisfies the feasibility condition gξ(s∗) ≤ 0. We want to show
that when M = ν∗, s∗ is also a minimizer of (5). From Lemma 1, we recall that ν∗ (∥s∗∥3

2 − ξ) = 0.
Consequently,

min
s∈Rd

max
ν≥0

Lξ(s, ν) = Lξ(s∗, ν∗) = m̂(s∗) +
��������:0
ν∗

6

(
∥s∗∥3

2 − ξ
)

︸ ︷︷ ︸
0 from CS condition

= m̂(s∗). (103)

From Corollary 1, we have

min
s∈Rd

max
ν≥0

Lξ(s, ν) = max
ν≥0

min
s∈Rd

Lξ(s, ν)︸ ︷︷ ︸
ψ(ν)

= max
ν≥0

ψ(ν) = ψ(ν∗), (104)

where ψ(ν) is the dual function of the constrained optimization problem (7). From (103) and (104) we
have

m̂(s∗) = ψ(ν∗) = min
s∈Rd

Lξ(s, ν∗) = min
s∈Rd

{
m̂(s) + ν∗

6

≤0, by feasibility︷ ︸︸ ︷(
∥s∥3

2 − ξ
) }

≤ min
s∈Rd

m̂(s) = m̂(s∗) + 1
6 ��������:0
ν∗
(
∥s∗∥3

2 − ξ
)

︸ ︷︷ ︸
0 from CS condition

= m̂(s∗). (105)

Since the first and the last term in (105) are equal, due to the CS condition, the in-between inequalities
hold with equality, i.e.,

min
s∈Rd

{
m̂(s) + ν∗

6

(
∥s∥3

2 − ξ
)}

= m̂(s∗) + ν∗

6

(
∥s∗∥3

2 − ξ
)
. (106)

Removing the constant term − ν∗

6 ξ from both sides of (106), we obtain

min
s∈Rd

mν∗(s) = m̂(s∗) + ν∗

6 ∥s
∗∥3

2
(7)= f(xk) +∇f(xk)T s∗

k + 1
2s∗T∇2f(xk)s∗ + ν∗

6 ∥s
∗∥3

2
(6)= mν∗(s∗), (107)

which implies that s∗ is also a minimizer of (5) with M = ν∗ and the first part of the proof is complete.
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▷ Second part.
Let s∗ be a minimizer of (5). We should prove that s∗ is also a minimizer of (7) when ξ = ∥s∗∥3

2. For
such ξ, gξ(s∗) = 0. We prove the second part by contradiction. Suppose, s∗ is not optimal in (7), i.e.,
there is a feasible point s such that m̂(s) ≤ m̂(s∗). For this feasible point we also have gξ(s) ≤ 0 and
gξ(s) ≤ gξ(s∗). Then, we get,

m̂(s) ≤ m̂(s∗)⇔ m̂(s) + gξ(s) ≤ m̂(s∗) + gξ(s∗)

⇔ m̂(s) + ν

6

(
∥s∥3

2 − ξ
)
≤ m̂(s∗) + ν

6

(
∥s∗∥3

2 − ξ
)
. (108)

Adding ν
6 ξ in both sides of the last inequality in (108), using the definition of mM (s) (6) with M = ν,

and applying the definition of m̂(s) (7), we get

mν(s) ≤ mν(s∗). (109)

This is a contradiction, because s∗ is a minimizer of (5). Hence, s∗ is also a minimizer of (7), when
gξ(s∗) = 0⇔ ξ = ∥s∗∥3

2, which concludes the second part of the proof.

B.5 Proof of Lemma 5

We follow similar lines to the proof of (Kohler & Lucchi, 2017, Lemma 6 and Theorem 7). Note that Bgk
is used instead of Bk to emphasize that the deviation bound in (44) and the sampling scheme in (45) are
specifically derived using information associated with gk.

The proof resorts to Vector Bernstein’s inequality in Lemma 19 (discussed in Appendix B.13). Let us define
the centered gradient

zsi,k = ∇fi(xk)−∇f(xk), (110)
where i = 1, . . . , n = |Bgk|. First, we show∥∥zsi,k

∥∥
2 ≤ ∥∇fi(xk)∥+ ∥∇f(xk)∥2 ≤ 2Lf , (111)

which implies
∥∥∥zsi,k

∥∥∥2

2
≤ 4L2

f . Accordingly, σ2 ∆= 4L2
f in Lemma 19. In (111), we have used

∥∇f(xk)∥2 ≤
1
n

n∑
i=1
∥∇fi(x)∥2 ≤

1
n

n∑
i=1

Lf = Lf , (112)

where the triangle inequality and Assumption 1 have been applied. Then, we have

zk = 1
|Bgk|

n∑
i=1

zsi,k = gk −∇f(xk). (113)

Using (113) in Lemma 19 for n = |Bgk| and σ2 = 4L2
f yields

Pr(∥gk −∇f(xk)∥2 ≥ ϵ) ≤ exp
(
−|Bgk|

ϵ2

32L2
f

+ 1
4

)
. (114)

Next, we require that the probability of the gradient deviation Pr(∥gk −∇f(xk)∥2 ≥ ϵ) is less than some
δ ∈ (0, 1], i.e.,

exp
(
−|Bgk|

ϵ2

32L2
f

+ 1
4

)
≤ δ ⇔ ϵ ≥ 4

√
2Lf

√
ln 1

δ + 1
4

|Bgk|
. (115)

To derive (44), we use (115) in ∥gk −∇f(xk)∥2 ≥ ϵ, along with Assumption 2 to get

ϵ ≤ ∥gk −∇f(xk)∥2 ≥ Cg ∥sk∥
2
2 ⇔ 4

√
2Lf

√
ln 1

δ + 1
4

|Bgk|
≤ Cg ∥sk∥2

2 , (116)
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which yields (45). Using the complementary probability

with δ ∈ (0, 1], it is implied that
∥gk −∇f(xk)∥2 ≤ ϵ

is fulfilled with high probability 1− δ when (115) holds. The latter derives (44), and the proof is complete.

B.6 Proof of Lemma 6

Following similar lines to Kohler & Lucchi (2017, Lemma 8 and Theorem 9) and using BHk instead of Bk to
emphasize that the deviation bound in (46) and the sampling scheme in (47) are obtained using information
related to Bk, we get

Bk
(30)= 1

S

S∑
s=1

Diag (Hkvs ⊙ vs) = 1
S

S∑
s=1

Diag

 1
|Bgk|

∑
i∈Bg

k

∇2fi(xk)

vs ⊙ vs


= 1

S

S∑
s=1

1
|Bgk|

∑
i∈Bg

k

Diag
(
∇2fi(xk)vs ⊙ vs

)
. (117)

Let
Bs
i,k = Diag

(
∇2fi(xk)vs ⊙ vs

)
. (118)

For A ∈ Rd×d it is known that ∥A∥2 ≤ ∥A∥F (Golub & Van Loan, 2012). Accordingly, for Bs
i,k we obtain∥∥Bs

i,k

∥∥
2 =

∥∥Diag
(
∇2fi(xk)vs ⊙ vs

)∥∥
2 ≤

∥∥Diag
(
∇2fi(xk)vs ⊙ vs

)∥∥
F

=

√√√√ d∑
j=1

([∇2fi(xk)vs]j [vs]j)2 =

√√√√ d∑
j=1

([∇2fi(xk)vs]j)2
, (119)

where [vs]j = ±1, yielding ∥∥Bs
i,k

∥∥
2 ≤

∥∥∇2fi(xk)vs
∥∥

2 ≤
∥∥∇2fi(xk)

∥∥
2 ∥vs∥2 . (120)

For vs ∈ Rd, ∥vs∥2 ≤
√
d ∥vs∥∞ Gould et al. (1999), where ∥vs∥∞ = max1≤i≤d |[vs]i| = 1. This allows us

to rewrite (120) as ∥∥Bs
i,k

∥∥
2 ≤
√
d
∥∥∇2fi(xk)

∥∥
2 ∥vs∥∞ ≤

√
d
∥∥∇2fi(xk)

∥∥
2 . (121)

As a result ∥∥Bs
i,k

∥∥
2 ≤
√
dLg, (122)

because
∥∥∇2fi(xk)

∥∥
2 ≤ Lg due to Assumption 1.

To apply the Matrix Bernstein’s inequality in Lemma 22, define the centred Hessian matrix

Zsi,k = Bs
i,k −Diag(∇2f(xk)), (123)

where i = 1, . . . , |BHk |.

Let n′ = |BHk |. From Lemma 8, using Assumption 1, and applying the triangle inequality we have

∥∥Diag(∇2f(x))
∥∥

2 ≤
∥∥∇2f(x)

∥∥
2 ≤

1
n′

n′∑
i=1

∥∥∇2fi(x)
∥∥

2 ≤
1
n′

n′∑
i=1

Lg ≤ Lg, (124)

Using (122), (124), and applying triangle inequality yields∥∥Zsi,k
∥∥

2 =
∥∥Bs

i,k −Diag(∇2f(x))
∥∥

2 ≤
∥∥Bs

i,k

∥∥
2 +

∥∥Diag(∇2f(x))
∥∥

2 ≤ (
√
d+ 1)Lg, (125)
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which implies ∥∥Zsi,k
∥∥

2 ≤
√
dLg, (126)

as d≫ 1. Let

Zk
∆= 1

S

S∑
s=1

1
|BHk |

∑
i∈BH

k

Zsi,k =
(123)

(118)
Bk −Diag(∇2f(xk)). (127)

Let also

σ2 ∆=

∥∥∥∥∥∥
S∑
s=1

∑
i∈BH

k

E
[
Zsi,k

2
]∥∥∥∥∥∥

2

≤
S∑
s=1

∑
i∈BH

k

∥∥∥E [Zsi,k2
]∥∥∥

2
≤

S∑
s=1

∑
i∈BH

k

E
[∥∥∥Zsi,k

2
∥∥∥

2

]

≤
S∑
s=1

∑
i∈BH

k

E
[∥∥Zsi,k

∥∥
2

∥∥Zsi,k
∥∥

2

]
≤ d S |BHk | L2

g, (128)

which implies σ2 ≤ d S |BHk | L2
g. Also let K ∆=

√
d Lg. Using the latter in Lemma 22 implies

P

∥∥∥∥∥∥
S∑
s=1

∑
i∈BH

k

Zsi,k

∥∥∥∥∥∥
2

≥ t

 ≤
2d exp

(
3
8

−t2
dS|BH

k
|L2

g

)
, t ≤ σ2

√
dLg

2d exp
(

3
8

−t√
dLg

)
, t > σ2

√
dLg

.
(129)

Using (127) in (129) for t ≤ σ2
√
dLg

and setting ϵ = t
|BH

k
|S yields

Pr(
∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≥ ϵ) ≤ 2d exp

−3
8S |B

H
k |

(
ϵ√
dLg

)2
 . (130)

For some δ ∈ (0, 1], we are interested in the upper bound

Pr(
∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≥ ϵ) ≤ δ, (131)

which implies

2d exp
(
−3

8S |B
H
k |

ϵ2

dL2
g

)
≤ δ ⇔ ϵ ≥

√
dLg

√
ln 2d

δ

S |BHk |
. (132)

Similarly, using (127) in (129) for t > σ2
√
dLg

and setting ϵ = t
|BH

k
|S yields

Pr(
∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≥ ϵ) ≤ 2d exp

(
−3

8S |B
H
k |

ϵ√
dLg

)
. (133)

Again, we are interested in the probability Pr(
∥∥Bk −Diag(∇2f(xk))

∥∥
2) ≥ ϵ) is less than some δ ∈ (0, 1],

i.e.,

2d exp
(
−3

8S |B
H
k |

ϵ√
dLg

)
≤ δ ⇔ ϵ ≥

√
dLg

ln 2d
δ

S |BHk |
. (134)

We have that for x ≤ 1 that e−x ≤ e−x2 . Thus, for d≫ 1 we have ϵ√
dLg

< 1 and the tightest upper bound
of Pr(

∥∥Bk −Diag(∇2f(xk))
∥∥

2 ≥ ϵ) is (133). (134) indicates how large ϵ must be for the probability of a
deviation in (133) to be at most δ, depending on the number of Hutchinson samples S , the mini-batch size
|BHk |, the parameter dimension d, and the smoothness constant Lg. Next, using (134) in Assumption 3, we
get

ϵ ≤
∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≤ CB ∥sk∥2 ⇔

√
dLg

ln 2d
δ

S |BHk |
≤ CB ∥sk∥2 ⇔ |B

H
k | ≥

√
dLg

ln 2d
δ

S ∥sk∥2 CB
, (135)
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which yields (47).

Using the complementary bound

Pr(
∥∥Bk −Diag(∇2f(xk))

∥∥
2 ≤ ϵ) ≥ 1− δ,

it is implied that ∥∥Bk −Diag(∇2f(xk))
∥∥

2 ≤ ϵ

is fulfilled with high probability 1− δ when (134) holds. The latter is (46) and the proof is complete.

B.7 Proof of Lemma 7

In the following, gk and Bk are utilized instead of ∇f(xk) and ∇2f(xk). This substitution is performed
because gk and Bk are directly used in Algorithms 1 and 2, both of which operate on data batches. In this
manner, s(ν, r) is now defined in terms of Bk and gk, rather than Diag(∇2f(xk)) and ∇f(xk), respectively.

To obtain the minimizer s(ν, r) in (20), we need to solve w.r.t. ν and r the system of equations

∂rLξ(ν, r) = 0 and ∂νLξ(ν, r) = 0. (136)

The solution (ν, r) in (136) can also be computed sequentially. We start with the case ν > 0. In this case,
we can first solve ∂rLξ(ν, r) = 0 w.r.t. r ∈ Dν . Then, the optimal r, can be used to solve ∂νLξ(ν, r) = 0
w.r.t. ν to obtain the optimal ν > 0. Solving ∂rLξ(ν, r) = 0 w.r.t. r, yields

ν

4

{[
−gTk

(
Bk + ν r

2 I
)−1

] [
−
(

Bk + ν r

2 I
)−1

gk
]}
− ν r2

4 = 0 (18)⇔ ν (∥s(ν, r)∥2
2 − r

2) = 0. (137)

For s(ν, r) ̸= 0, r ∈ Dν , and ν > 0. Fom (137), we obtain the root

r = ∥s(ν, r)∥2 . (138)

Then, the optimal ν can be computed by solving ∂νLξ(ν, r)
(13)= 0 w.r.t. ν, i.e.,

r

4

{[
−gTk

(
Bk + ν r

2 I
)−1

] [
−
(

Bk + ν r

2 I
)−1

gk
]}
− ξ

6 −
r3

12 = 0, (139)

which is rewritten as
r

4 ∥s(ν, r)∥2
2 −

ξ

6 −
r3

12 = 0 (140)

for some ξ > 0. Substituting (138) in (140), the optimal r is given by

r = 3
√
ξ. (141)

Using (141) in (140), the optimal ν can be computed by solving

ω(ν, r) = ∥s(ν, r)∥2 −
3
√
ξ = 0, (142)

w.r.t. ν for r fixed. It is shown in Conn et al. (2000, Section 7.3.3) that instead of solving (142), it is more
preferable to solve

ϕ(ν, r) = 1
∥s(ν, r)∥2

− 1
3
√
ξ

= 0. (143)

We conclude with the case ν = 0. In this case, the minimizer s(ν, r) in (20) is handled by Algorithm 2, which
concludes the proof.
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B.8 Preliminaries for Lemmata 6 and 9

Lemma 8. For M ∈ Rd×d and Diag(M) we have

∥M∥2 ≥ ∥Diag(M)∥2 . (144)

Proof. First, we prove
∥Diag(M)∥2 = max

k
|Diag(M)kk|, (145)

Let d∗ = maxk Diag(M)kk. Then, from the definition of the spectral norm, we have

∥Diag(M)∥2 = max
∥x∥2=1

∥Diag(M)x∥2 ≤ max
∥x∥2=1

√∑
k

(Diag(M)kkxk)2 ≤ |d∗| max
∥x∥2=1

√∑
k

x2
k, (146)

which leads to
∥Diag(M)∥2 ≤ |d

∗|. (147)

Let em be the vector of all zeros except a 1 in the mth position, where m = arg maxi Diag(M)ii. Then,

∥Diag(M)∥2 = max
∥x∥2=1

∥Diag(M)x∥2 ≥ ∥Diag(M)em∥2 , (148)

which leads to
∥Diag(M)∥2 ≥ |d

∗|. (149)

(147) and (149) imply (145). From the definition of the spectral norm, we have

∥M∥2 = max
∥x∥2=1

√
xTMTMx
∥x∥2

2
= max

∥x∥2=1

∥Mx∥2
∥x∥2

= max
x,y̸=0

|xTMy|
∥x∥2 ∥y∥2

≥ |eTj Mei| = |Mij |. (150)

Restricting (150) in the diagonal elements of M gives

∥M∥2 ≥ max
i
|Diag(M)ii|, (151)

which using (145) leads to
∥M∥2 ≥ ∥Diag(M)∥2 , (152)

which is (144). This inequality becomes an equality when M is a diagonal matrix. Therefore, (144) provides
the tightest possible bound in this case.

B.9 Lemmata 9 and 10

Given the Lipschitz continuity assumption of ∇2f(x), Lemma 9 introduces the Lipschitz continuity of
Diag(∇2f(x)). Lemma 9 is used in Lemmata 10 and 17. Lemma 10 is an adaptation of Nesterov & Polyak
(2006, Lemma 1) tailored to fit the context of this analysis. Lemma 10 is used in Lemmata 14, 15, and 16.
Lemma 9. If ∇2f(x) is Lipschitz continuous in F , Diag(∇2f(x)) is also Lipschitz continuous, i.e.,∥∥Diag(∇2f(x))−Diag(∇2f(y))

∥∥
2 ≤ LH ∥x− y∥2 . (153)

Proof. The proof of the lemma is easily obtained by combining the Lipschitz continuity of the Hessian
matrix in Assumption 1 (see also Remark 1) with Lemma 8 in Appendix B.8. In Lemma 8, we use M =
∇2f(x)−∇2f(y).

36



Under review as submission to TMLR

Lemma 10. For any x and y in F , we have∥∥∇f(y)−∇f(x)−Diag(∇2f(x))(y− x)
∥∥

2 ≤
LH
2 ∥y− x∥2 (154)

and ∣∣∣f(y)− f(x)−∇f(x)T (y− x)− 1
2(y− x)T Diag(∇2f(x))(y− x)

∣∣∣ ≤ LH
6 ∥y− x∥3

2 . (155)

Proof. Nesterov & Polyak (2006, Lemma 1) does not make any assumption on the structure of ∇2f(x). The
only assumption to derive Nesterov & Polyak (2006, Lemma 1) is the Lipschitz continuity of ∇2f(x). Thus,
given Lemma 9 and following the proof guidelines in Nesterov & Polyak (2006, Lemma 1), (154) and (155)
are easily derived, which concludes the proof.

B.10 Details for Algorithm 2

Here, Algorithm 2 is discussed when Bk and gk are utilized instead of ∇f(xk) and ∇2f(xk), respectively.
This is done because Bk and gk are directly involved in the application of Algorithm 1, which operates on
data batches. In this manner, s(ν, r) and ϕ(ν, r) are now defined with respect to Bk and gk, rather than
Diag(∇2f(xk)) and ∇f(xk), respectively.

Lemma 11 provides some useful properties of ϕ(ν, r) exploited in line 18 of Algorithm 2. Lemma 11 is used in
Lemma 12 which shows that for some r ∈ Dν , Newton-Raphson updates in line 18 of Algorithm 2 converge
to the roots of ϕ(ν, r) = 0 w.r.t. ν > 0. However, the Newton-Raphson method may diverge on its own,
and appropriate safeguards are necessary to prevent this. These safeguards are adopted from (Conn et al.,
2000, Algorithm 7.3.6) in Algorithm 2. Lemma 13 stems from Conn et al. (2000, Lemma 7.3.5) adapted to
the analysis here. Lemma 13 provides the termination rule used in Algorithm 2.
Lemma 11. Let

H̃k(ν, r) ∆= Bk + ν r

2 I. (156)

Suppose gk ̸= 0 and ν r > max
{

0,−2 λd
(
Bk

)}
for some ν > 0 and r > 0. Then, the function ϕ(ν, r) is

strictly increasing and concave w.r.t. ν and fixed r. The first- and second-order partial derivatives of ϕ(ν, r)
w.r.t. ν are

∂νϕ(ν, r) = −∂νs(ν, r)T s(ν, r)
∥s(ν, r)∥3

2
> 0 (157)

and

∂2
νϕ(ν, r) = 3

{(
∂νs(ν, r)T s(ν, r)

)2

∥s(ν, r)∥5
2

−
∥∂νs(ν, r)∥2

2 ∥s(ν, r)∥2
2

∥s(ν, r)∥5
2

}
≤ 0, (158)

respectively, with
∂νs(ν, r) = −r2 H̃−1

k (ν, r) s(ν, r). (159)

Proof. Following similar lines to Conn et al. (2000, Lemma 7.3.1), the first-order partial derivative of ϕ(ν, r)
(51) w.r.t. ν is

∂νϕ(ν, r) = ∂ν
(
s(ν, r)T s(ν, r)

)− 1
2 −

�
�
��

0

∂ν
1

3
√
ξ

= −1
2 ∥s(ν, r)∥−3

2

d∑
ℓ=1

2 ∂ν(s(ν, r))ℓ (s(ν, r))ℓ = −∂νs(ν, r)T s(ν, r)
∥s(ν, r)∥3

2
, (160)

which is (157). The second-order partial derivative of ϕ(ν, r) w.r.t. ν reads
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∂2
νϕ(ν, r) = −∂ν

{(
s(ν, r)T s(ν, r)

)− 3
2
(
∂νs(ν, r)T s(ν, r)

)}

=
{

3
(
∂νs(ν, r)T s(ν, r)

)2

∥s(ν, r)∥5
2

−
∂2
νs(ν, r)T s(ν, r) + ∥∂νs(ν, r)∥2

2

∥s(ν, r)∥3
2

}
. (161)

The first-order partial derivative of
s(ν, r) (18)= −H̃−1

k (ν, r) gk (162)

w.r.t. ν is
∂νs(ν, r) = r

2 H̃−2
k (ν, r) gk

(162)= −r2 H̃−1
k (ν, r) s(ν, r), (163)

which is (159). From (163) and the assumptions about ν and r, i.e., ν r > max{0,−2 λd
(
Bk

)
} with ν > 0

and r > 0, we obtain
∂νs(ν, r)T s(ν, r) = −r2 s(ν, r)T H̃−1

k (ν, r) s(ν, r) < 0. (164)

Using (164) in (160), we infer that ϕ(ν, r) is strictly increasing w.r.t. ν. The second derivative of (162) w.r.t.
ν is given by

∂2
νs(ν, r) = r2

2 H̃−2
k (ν, r) s(ν, r). (165)

From (162) and (165) we get
∂2
νs(ν, r)T s(ν, r) = 2 ∥∂νs(ν, r)∥2

2 . (166)

The substitution of (166) in (161) yields

∂2
νϕ(ν, r) = 3

{(
∂νs(ν, r)T s(ν, r)

)2

∥s(ν, r)∥5
2

−
∥∂νs(ν, r)∥2

2 ∥s(ν, r)∥2
2

∥s(ν, r)∥5
2

}
, (167)

which is (158). The concavity of ϕ(ν, r), w.r.t. ν, i.e., ∂2
νϕ(ν, r) ≤ 0, follows by applying the Cauchy-Schwartz

inequality, i.e.,
(
∂νs(ν, r)T s(ν, r)

)2 ≤ ∥∂νs(ν, r)∥2
2 ∥s(ν, r)∥2

2, in (167), which completes the proof.

Lemma 12. Let ϕ(ν, r) satisfy Lemma 11. Suppose that for some ν > 0 and r > 0 we have ν r >
max

{
0,−2 λd

(
Bk

)}
and ϕ(ν, r) < 0. Then for a fixed r, the Newton iterates

ν+ ← ν − ϕ(ν, r)
∂νϕ(ν, r) , (168)

will still satisfy ϕ(ν+, r) < 0 and convergence monotonically toward the root ν∗ of ϕ(ν, r) = 0 w.r.t. ν. The
convergence of the Newton iterations w.r.t. ν is at least linear and ultimately quadratic.

Proof. Following similar lines to Conn et al. (2000, Lemma 7.3.2), we study the convergence of the Newton
iterations in (168) w.r.t. ν when r is fixed. Suppose that ϕ(ν, r) satisfies Lemma 11, which implies ∂νϕ(ν, r) >
0. Then, from the Newton iteration w.r.t. ν in (168), we have

ϕ(ν, r) + (ν+ − ν) ∂νϕ(ν, r) = 0. (169)

According to Lemma 11, ϕ(ν, r) is concave, i.e., ∂2
νϕ(ν, r) ≤ 0. Combining the concavity of ϕ(ν, r) with (169)

we get
ϕ(ν+, r) < ϕ(ν, r) + (ν+ − ν) ∂νϕ(ν, r) = 0

which proves that ϕ(ν, r) < 0 is inherited by all Newton iterations w.r.t. ν. Let (ν∗, r) be the root of
ϕ(ν, r). In addition, let (νI , r) be an intermediate point between points (ν, r) and (ν∗, r), i.e., (νI , r) =
α (ν, r) + (1− α) (ν∗, r) with α ∈ (0, 1). Then, the Taylor expansion about ν∗, r reads as

ϕ(ν, r) =����:0
ϕ(ν∗, r) + ∂νϕ(νI , r)(ν − ν∗) + 1

2 ∂
2
νϕ(νI , r)(ν − ν∗)2 + O

(
(ν − ν∗)3) . (170)
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We assume that (ν, r) is close to (ν∗, r). This proximity implies that the last term in equation (170) becomes
even closer to zero, and consequently, it is omitted from the subsequent analysis. The assumption that (ν, r)
is in proximity to (ν∗, r) ensures the convergence of the Newton method (Bertsekas, 2017). This proximity
is achieved by utilizing the safeguarded Newton Algorithm 2. A comprehensive analysis of the safeguarded
Newton methodology can be found in (Conn et al., 2000).

Subtracting ν∗ from both sides of (168), i.e.,

ν+ − ν∗ = (ν − ν∗)− ϕ(ν, r)
∂νϕ(ν, r) (171)

and substituting (170) in (171), we arrive at

ν+ − ν∗ =
(

1− ∂νϕ(νI , r)
∂νϕ(ν, r)

)
(ν − ν∗)− 1

2
∂2
νϕ(νI , r)
∂νϕ(ν, r) (ν − ν∗)2. (172)

We examine the following cases:

1. If
∣∣∣1− ∂νϕ(νI ,r)

∂νϕ(ν,r)

∣∣∣ > 1, (172) diverges.

2. If
∣∣∣1− ∂νϕ(νI ,r)

∂νϕ(ν,r)

∣∣∣ < 1, we have at least linear convergence in (172).

3. If
∣∣∣1− ∂νϕ(νI ,r)

∂νϕ(ν,r)

∣∣∣ = 0, we have quadratic convergence as the linear term vanishes in (172).

From the concavity of ϕ(ν, r) w.r.t. ν, we have that ∂νϕ(ν, r) is decreasing, which implies that
∣∣∣1− ∂νϕ(νI ,r)

∂νϕ(ν,r)

∣∣∣ <
1. Thus, the Newton iterations w.r.t. ν convergence in (168) is at least linear and ultimately quadratic,
which completes the proof.

Remark 3. Lemma 11 implies that ∂νϕ(ν, r) > 0. Suppose that for some ν and r we have ϕ(ν, r) < 0, i.e.,
Lemma 12 holds. Then, by (168) we have that ν+ > ν. Given ν+ > ν and the initial values of r and ν in
lines 2, 4, and 6 of Algorithm 2, the optimal r and ν always satisfy Bk + ν r

2 I ≻ 0.

Lemma 13. For some ν > 0 and r > 0, suppose ν r > max{0,−2 λd(Bk)} and

| ∥s(ν, r)∥2 − ξ
1
3 | ≤ κeasy ξ

1
3 (173)

with κeasy ∈ (0, 1). Then
m̂(s(ν, r)) ≤ (1− κeasy)2 m̂(s∗

k), (174)

where s∗
k is the minimizer of (7) that satisfies Lemma 1, and

m̂(s) ∆= F (xk) + gTk s + 1
2 sT Bk s. (175)

Proof. A similar proof to that in Conn et al. (2000, Lemma 7.3.5) can be devised for the constraint ∥s∥3
2 ≤

ξ.

B.11 Preliminaries for Theorem 3

Here, Nesterov & Polyak (2006, Lemma 1), Nesterov & Polyak (2006, Lemma 2), Nesterov & Polyak (2006,
Lemma 3), Nesterov & Polyak (2006, Lemma 4), and Nesterov & Polyak (2006, Lemma 5), correspond to
Lemmata 10, 14, 15, 16 and 18, respectively, proven for Diag(∇2f(x)) in place of ∇2f(x). In addition,
Lemma 17 is proven providing details not included in (Nesterov & Polyak, 2006, Section 2).
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Let the level set
L(c) = {x ∈ Rd : f(x) ≤ c}, (176)

and assume that F ⊆ L(f(x0)). Let

f̂(x,y) = f(x) +∇f(x)T (y− x) + 1
2(y− x)T Diag(∇2f(x))(y− x) + M

6 ∥y− x∥3
2 , (177)

TM (x) = arg min
y

f̂(x,y), (178)

and
f̄M (x) = min

y
f̂(x,y). (179)

That is,
f̄M (x) = f̂(x, TM (x)). (180)

To compute TM (x) in (178), we solve ∇yf̂(x,y) = 0, i.e.,

∇f(x) + Diag(∇2f(x))(y− x) + M

2 ∥y− x∥2 (y− x) = 0. (181)

Let rM (x) = ∥x− TM (x)∥2. For y = TM (x) in (181), if we multiply both sides of (181) by TM (x) − x we
arrive at

∇f(x)T (TM (x)− x) + (TM (x)− x)T Diag(∇2f(x))(TM (x)− x) + M

2 ∥(TM (x)− x)∥3
2 = 0. (182)

Lemma 14. For any x ∈ F with f(x) ≤ f(x0), we have

∇f(x)T (x− TM (x)) ≥ 0. (183)

Moreover, if M ≥ 2
3LH and x ∈ int F , then

TM (x) ∈ L(f(x)). (184)

Proof. Using Corollary 3, we obtain

Diag(∇2f(x)) + M

2 ∥x− y∥2 I ⪰ 0, (185)

which when pre-multiplied by (TM (x)− x)T and post-multiplied by (TM (x)− x) yields

(TM (x)− x)T Diag(∇2f(x))(TM (x)− x) + M

2 ∥TM (x)− x∥3
2 ≥ 0. (186)

Then, combining (182) with (186) we arrive at (183).

Assumption and Contradiction. We now show that TM (x) ∈ L(f(x)). Following the approach of Nes-
terov & Polyak (2006, Lemma 2), we proceed by contradiction by assuming TM (x) /∈ L(f(x)) for M ≥ 2

3LH .
We then show that this assumption cannot hold, leading to a contradiction. Thus, we conclude that
TM (x) ∈ L(f(x)).

By assuming TM (x) /∈ L(f(x)), there exist

yα = (1− α) x + α TM (x), (187)

with α ∈ [0, 1], such that
f(yα) > f(x). (188)

Using the upper bound of (155) with y = yα we obtain
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f(yα) ≤ f(x) +∇f(x)T (yα − x) + 1
2(yα − x)T Diag(∇2f(x))(yα − x) + LH

6 ∥yα − x∥3
2

(187)=

f(x) + α∇f(x)T (TM (x)− x) + α2

2 (TM (x)− x)T Diag(∇2f(x))(TM (x)− x) + α3LH
6 ∥TM (x)− x∥3

2 ,

(189)

which using (182) implies

f(yα)− f(x) ≤ −
(
α− α2

2

)
∇f(x)T (x− TM (x))︸ ︷︷ ︸

≥0 as α∈[0,1] and (195)

−α
2

2

(
M

2 −
αLH

3

)
∥TM (x)− x∥3

2 . (190)

For α ≤ 1, we have
M

2 −
αLH

3 ≥ M

2 −
LH
3 , (191)

which by using our assumption M ≥ 2
3LH it is implied that f(yα) ≤ f(x) in (190). However, f(yα) ≤ f(x)

contradicts (188) for M ≥ 2
3LH , which in turn leads to (184), and the proof is complete.

Lemma 15. If TM (x) ∈ F then

∥∇f(TM (x))∥2 ≤
LH +M

2 r2
M (x). (192)

Proof. Setting y = TM (x) in (154) and (181) we get∥∥∇f(TM (x))−∇f(x)−Diag(∇2f(x))(TM (x)− x)
∥∥

2 ≤
LH
2 ∥TM (x)− x∥2 (193)

and ∥∥∇f(x) + Diag(∇2f(x))(TM (x)− x)
∥∥

2 = M

2 ∥TM (x)− x∥2
2 = M

2 r2
M (x), (194)

respectively. Then, combining (193) with (194) and the definition of the reverse triangle inequality, we arrive
at (192) and the proof is complete.

Lemma 16. For any x ∈ F we have

f̄M (x) ≤ min
y

(
M + LH

6 ∥y− x∥3
2 + f(y)

)
(195)

and
f(x)− f̄M (x) ≥ M

12 r
3
M (x). (196)

Moreover, if M ≥ LH , then TM (x) ∈ F and

f(TM (x)) ≤ f̄M (x). (197)

Proof. In the following, we have used the relaxed condition M ≥ LH as M ≥ LH > 2
3LH . Note that the

relaxed condition M ≥ LH also satisfies Lemma 14. From the lower and upper bound of (155) we have

f̂(x,y) ≤ M + LH
6 ∥y− x∥3

2 + f(y) (198)

and
f(y) ≤ f̂(x,y), (199)

respectively. Thus, we have

f(y) ≤ f̂(x,y) ≤ M + LH
6 ∥y− x∥3

2 + f(y). (200)
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Minimizing (200) all sides w.r.t. y yields

min
y
f(y) ≤ min

y
f̂(x,y) ≤ min

y

(
M + LH

6 ∥y− x∥3
2 + f(y)

)
. (201)

which in turn using y = TM (x) yields

f(TM (x)) ≤ f̂(x, TM (x)) ≤ min
y

(
M + LH

6 ∥y− x∥3
2 + f(y)

)
. (202)

Additionally, using (180) in (202) we obtain (195). Note that (195) aligns with the results presented in Nes-
terov & Polyak (2006, Lemma 4), with the distinction that Diag(∇2f(x)) is used in place of ∇2f(x). From
the LHS of (202) and (177) we obtain

f(x)− f(TM (x)) ≥ f(x)− f̂(x, TM (x))

= −∇f(x)T (TM (x)− x)− 1
2(TM (x)− x)T Diag(∇2f(x))(TM (x)− x)− M

6 ∥TM (x)− x∥3
2 . (203)

In addition, from (182) we have

−1
2(TM (x)− x)T Diag(∇2f(x))(TM (x)− x) = 1

2∇f(x)T (TM (x)− x) + M

4 ∥TM (x)− x∥3
2 , (204)

which combined with (203) and (180) gives

f(x)− f̄M (x) ≥ −1
2∇f(x)T (TM (x)− x) + M

12 r
3
M (x), (205)

which in turn combined with (183) yields (196). To conclude the proof, setting y = TM (x) in the LHS
of (200) and using (180) we obtain (197).

Lemma 17. If x ∈ F then

µMi
(xi+1) ∆= max

{√
2

LH +Mi
∥∇f(xi+1)∥2,−

2
2LH +Mi

λmin(Diag(∇2f(xi+1)))
}
. (206)

Proof. From (192) we have √
2

LH +M
∥∇f(xi+1)∥2 ≤ ∥xi+1 − xi∥2 . (207)

(185) implies

Diag(∇2f(x))− LH ∥x− y∥2 I + M

2 ∥x− y∥2 I ⪰ −LH ∥x− y∥2 I⇔

λmin
(
Diag(∇2f(x))

)
− LH ∥x− y∥2 ≥ −

(
M

2 + LH

)
∥x− y∥2 , (208)

which by setting y = xt+1 and x = xt yields

λmin
(
Diag(∇2f(xt))

)
− LH ∥xt − xt+1∥2

2 ≥ −
(
M

2 + LH

)
∥xt − xt+1∥2 . (209)

Combining Nesterov (2018, Corrolary 1.2.3) with Lemma 9 for y = xt+1 and x = xt yields

λmin
(
Diag(∇2f(xt+1))

)
≥ λmin

(
Diag(∇2f(xt))

)
− LH ∥xt − xt+1∥2 , (210)

which when combined with (209) gives

λmin
(
Diag(∇2f(xt+1))

)
≥ −

(
M

2 + LH

)
∥xt − xt+1∥2 , (211)
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and, in turn, implies
− 2

2LH +M
λmin

(
Diag(∇2f(xt+1))

)
≤ ∥xt − xt+1∥2 , (212)

In order to obtain an (ϵg, ϵH)-stationary point, we need ∥xt − xt+1∥2 ≤ ϵg and ∥xt − xt+1∥2 ≤ ϵH in (207)
and (212), respectively, which yields (206), and the proof is complete.

Lemma 18. For any x ∈ F we have
µM (TM (x)) ≤ rM (x). (213)

Proof. Adapting Nesterov (2018, Corollary 1.2.2) in our context yields

Diag(∇2f(TM (x))) ⪰ Diag(∇2f(x))− rM (x)LHI. (214)

Combining (214) and (185) gives

Diag(∇2f(TM (x))) ⪰ −
(

1
2M + LH

)
rM (x)I, (215)

which when combined with Lemma 17 yields (213) and the proof is complete.

B.12 Proof of Theorem 3

Let (si+1, νi+1) be the output of Algorithm 2 for B = Diag(∇2f(xi)), g = ∇f(xi). Recall that (si+1, νi+1)
is a minimizer of (7) and according to Theorem 2 it is also a minimizer of problem (5) where M = νi+1.
Recall also that xi+1 = xi + si+1 and let the sequence {xi}i≥1 be generated by Algorithm 1.

Next, suppose that Assumption 1 holds, i.e., the objective function f(x) is bounded from bellow, f(x) ≥ f low

for all x ∈ F . Then, we continue with the proof of the main result in Theorem 3. From (196), we have

f(x0)− f̄M0(x0) ≥ M0

12 r
3
M0

(x0)

f(x1)− f̄M1(x1) ≥ M1

12 r
3
M1

(x1)

...

f(xk−1)− f̄Mk−1(xk−1) ≥ Mk−1

12 r3
Mk−1

(xk−1),

(216)

where rMi
(xi) = ∥xi − xi+1∥2 and

f̄Mi
(x) ∆= min

s∈Rd
mMi

(s). (217)

Summing over (216) we get
k−1∑
i=0

(
f(xi)− f̄Mi

(xi)
)
≥
k−1∑
i=0

Mi

12 r
3
Mi

(xi). (218)

Then applying f(xi+1) ≤ f̄Mi(xi) (Lemma 16), we get

k−1∑
i=0

(f(xi)− f(xi+1)) ≥
k−1∑
i=0

Mi

12 r
3
Mi

(xi), (219)

which, by applying the telescoping sum, yields

f(x0)− f(xk) ≥
k−1∑
i=0

Mi

12 r
3
Mi

(xi). (220)
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Next, using the lower bound of f(xk), i.e., f low by Assumption 1 and Remark 1, we obtain

f(x0)− f low ≥
k−1∑
i=0

Mi

12 r
3
Mi

(xi), (221)

which implies

f(x0)− f low ≥ kL0

12 r
3
L0

(xi)⇔ µMi
(xi+1) ≤ rMi

(xi) ≤ 121/3
(
f(x0)− f low

k Mi

)1/3

, (222)

where Lemma 18 (Appendix B.11) is applied to get µMi
(xi+1) ≤ rMi

(xi). For LH = Mi and applying the
trick 12 = 3 · 4 ⇔ 121/3 = 31/3 · (8/2)1/3 ⇔ 121/3 = (3/2)1/3 · 81/3 ⇔ 121/3 = (3/2)1/3 · 2 ⇔ 121/3 =
(3/2)1/3 · 8/4 ≤ (3/2)1/3 · 8/3, we arrive at

µLH
(xi+1) ≤ 8

3

(
3
2
f(x0)− f low

LHk

)1/3

. (223)

As in Nesterov & Polyak (2006, Theorem 3), here it is assumed that ∇2f(xi) is positive definite for some
i ≥ 0. The latter assumption implies that Diag(∇2f(xi)) is also positive definite. Then for some i ≥ 0,
from (206), we restrict our study to

µLH
(xi+1) =

√
1
LH
∥∇f(xi+1)∥2, (224)

which combined with (223), yields

min
0≤i≤k−1

∥∇f(xi+1)∥2 ≤ L
1/3
H

(
8
3

)2(3
2
f(x0)− f low

k

)2/3

, (225)

which implies (23). The convergence rate in (23) is used to establish the local convergence rate when
the approximate gi and Bi are used instead of ∇f(xi) and ∇2f(xi), respectively. The latter argument is
strengthened by Corollary 2, and the proof is complete.

B.13 Vector and Matrix Bernstein Inequalities

For completeness, we restate Kohler & Lucchi (2017, Lemma 18), incorporating corrections for minor ty-
pographical errors. Lemma 19 is utilized by Lemma 5. Next, Lemma 20 is introduced and utilized by
Lemma 22, which in turn is utilized by Lemma 6. Lemma 21 is also used by Lemma 22.
Lemma 19 (Vector Bernstein Inequality). Let x1,x2, . . .xn be independent random vectors of common
dimension d and assume that each one is centered, uniformly bounded, and also the variance is bounded from
above, i.e.,

E[xi] = 0 and ∥xi∥2 ≤ ϑ as well as E[∥xi∥2
2] ≤ σ2. (226)

Let z = 1
n

∑n
i=1 xi. Then we have

Pr(∥z∥2 ≥ ϵ) ≤ exp
(
−n ϵ2

8σ2 + 1
4

)
, (227)

with 0 < ϵ < σ2/ϑ+ σ.

Proof. A proof can be found in (Kohler & Lucchi, 2017, Lemma 18). However, some typographical errors
were identified, leading us to reproduce the proof for clarity.

The Vector Bernstein inequality for independent, zero-mean random vectors Gross (2011, Theorem 12)
states

Pr
(

1
n

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

≥ 1
n

(t+
√
V )
)
≤ exp

(
− t2

4V

)
, (228)
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where V =
∑n
i=1 E[∥xi∥2

2] is the sum of the traces of the covariance matrices of the centered vectors xi.
Using E[∥xi∥2

2] ≤ σ2 yields V ≤ nσ2.

Note that in (228), the probability condition is scaled by a factor of 1/n to align with the subsequent analysis
involving z. Let ϵ = (t+

√
V )/n⇔ t = nϵ−

√
V . Using (228) we get

Pr (∥z∥2 ≥ ϵ) ≤ exp

−1
4

(
nϵ−

√
V√

V

)2
 = exp

(
−1

4

(
nϵ√
V
− 1
)2
)
. (229)

We claim that
− 1

4

(
nϵ√
V
− 1
)2
≤ −1

4
n2ϵ2

2V + 1
4

(230)

Indeed, if (230) holds we arrive at a valid inequality

− n2ϵ2

V
+ 2 nϵ√

V
− 1 ≤ −1

2
n2ϵ2

V
+ 1

⇔
(

nϵ√
2V
−
√

2
)2
≥ 0.

(231)

Using (230) in (229) gives

Pr (∥z∥2 ≥ ϵ) ≤ exp
(
−n ϵ2

8σ2 + 1
4

)
, (232)

where V ≤ nσ2 is used. According to Gross (2011, Theorem 12), t < V/maxi ∥xi∥2. For V ≤ nσ2 and
∥xi∥2 ≤ ϑ gives t < nσ2/ϑ. Given V ≤ nσ2 and t < nσ2/ϑ, we arrive at

nϵ = t+
√
V ≤ nσ2

ϑ
+
√
nσ ⇔ ϵ ≤ σ2

ϑ
+ σ, (233)

where
√
x < x with x > 1 is used. In addition, it can be shown that Var(z) ≤ σ2/n Gross (2011, Theorem

12) establishing (227), which concluded the proof.

Lemma 20. Let ui : Ωui
→ Rn and vj : Ωvj

→ Rm be independent random vectors for each i, j. Let
g : Rn × Rm → Rd×d be a function that produces random matrices. Then, for any indices (i, j) ̸= (k, l), the
matrices g(ui,vj) and g(uk,vl) are independent, regardless of whether ui and vj come from the same or
different distributions.

Proof. Let two threshold matrices M and M′ (which are symmetric d × d matrices), and consider the
probability

P (g(ui,vj) ⋖−M ∩ g(uk,vl) ⋖−M′), (234)
using the element-wise comparison operator ⋖−. Given that ui : Ωui

→ Rn and vj : Ωvj
→ Rm are

independent random vectors, and g : Rn×Rm → Rd×d is a function generating random matrices, we rewrite
the event as

{g(ui,vj) ⋖−M} ≡ {(ωui , ωvj ) ∈ Ωui × Ωvj : g(ui(ωui),vj(ωvj )) ⋖−M}

≡ {(ui,vj) ∈ Rn × Rm : g(ui,vj) ⋖−M}. (235)

Similarly, we have

{g(uk,vl) ⋖−M′} ≡ {(ωuk
, ωvl

) ∈ Ωuk
× Ωvl

: g(uk(ωuk
),vl(ωvl

)) ⋖−M′}

≡ {(uk,vl) ∈ Rn × Rm : g(uk,vl) ⋖−M′}. (236)

Let
A = {(ui,vj) ∈ Rn × Rm : g(ui,vj) ⋖−M} (237)
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and
B = {(uk,vl) ∈ Rn × Rm : g(uk,vl) ⋖−M′}. (238)

Then using (235) and (236) in (234), we write

P ({g(ui,vj) ⋖−M} ∩ {g(uk,vl) ⋖−M′}) = P ((ui,vj) ∈ A ∩ (uk,vl) ∈ B). (239)

Recall that the sequences {ui} and {vj} are independent families of random variables which implies that
the pairs (ui,vj) are formed by drawing independently from these families. Thus, since ui and vj are
independent for each (i, j), and (uk,vl) are also independent, we have

P ({g(ui,vj) ⋖−M} ∩ {g(uk,vl) ⋖−M′}) = P ((ui,vj) ∈ A)P ((uk,vl) ∈ B), (240)

which implies

P ({g(ui,vj) ⋖−M} ∩ {g(uk,vl) ⋖−M′}) = P (g(ui,vj) ⋖−M)P (g(uk,vl) ⋖−M′), (241)

where (235) and (236) are used. Since the joint probability factorizes, this proves that g(ui,vj) and g(uk,vl)
are independent whenever (i, j) ̸= (k, l), regardless of whether ui and vj come from the same or different
distributions.

Lemma 21. Let X ∈ Rd×d be a symmetric mean-zero matrix with ∥X∥ ≤ 1 almost surely. Then,

E [exp(λX)] ⪯ exp
(
g(λ)E[X2]

)
, (242)

where g(λ) = eλ − λ− 1.

Proof. We refer the reader to (Vershynin, 2018).

Lemma 22 (Matrix Bernstein Inequality). Let Xij
∆= g(ui,vj) be d × d zero-mean random matrices with

two independent sources of randomness, ui and vj. Also, let {Xij}N,Mi,j=1 be a set of independent random
matrices of common dimension d×d, such that ∥Xij∥2 ≤ K almost surely for all i, j. Then, for every t ≥ 0,
we have

Pr

∥∥∥∥∥∥
N∑
i=1

M∑
j=1

Xij

∥∥∥∥∥∥
2

≥ t

 ≤ 2d exp
(
− t2/2
σ2 +Kt/3

)
. (243)

Here, the matrix variance is given by

σ2 =

∥∥∥∥∥∥
N∑
i=1

M∑
j=1

E
[
X2
ij

]∥∥∥∥∥∥
2

. (244)

In particular, we can express this bound as a mixture of sub-Gaussian and sub-exponential tails, just like in
the scalar Bernstein’s inequality:

Pr

∥∥∥∥∥∥
N∑
i=1

M∑
j=1

Xij

∥∥∥∥∥∥
2

≥ t

 ≤ 2d exp
(
−3

8 min
{
t2

σ2 ,
t

K

})
. (245)

Proof. The following analysis is based on (Vershynin, 2018, Theorem 5.4.1).

Reduction of MGF. To bound the norm of the sum

S ∆=
N∑
i=1

M∑
j=1

Xij , (246)
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we need to control the largest and smallest eigenvalues of S. We can do this separately. To put this formally,
consider the largest eigenvalue

λmax(S) ∆= max
i
λi(S) (247)

and note that
∥S∥2 = max |λi(S)| = max{λmax(S), λmax(−S)} (248)

and

Pr(|λmax(S)| ≥ t) = Pr(λmax(S) ≥ t) + Pr(λmax(−S) ≥ t)− Pr(λmax(S) ≥ t and λmax(−S) ≥ t), (249)

which implies
Pr(|λmax(S)| ≥ t) ≤ Pr(λmax(S) ≥ t) + Pr(λmax(−S) ≥ t). (250)

To bound λmax(S), we proceed with computing the moment generating function. We fix λ ≥ 0 and use
Markov’s inequality to obtain

Pr(λmax(S) ≥ t) = Pr(eλλmax(S) ≥ eλt) ≤ e−λt E[eλλmax(S)]. (251)

Since by Vershynin (2018, Definition 5.4.2) the eigenvalues of eλS are eλλi(S), we have

E
∆= E[eλλmax(S)] = E[λmax(eλS)]. (252)

Since the eigenvalues of eλS are all positive, the maximum eigenvalue of eλS is bounded by the sum of all
eigenvalues, the trace of eλS, which leads to

E ≤ E[Tr(eλS)]. (253)

Application of Lieb’s inequality. First note that

S =
N−1∑
i=1

M−1∑
j=1

Xij +
N−1∑
i=1

XiM +
M−1∑
j=1

XNj + XNM . (254)

To prepare the application of Lieb’s inequality in Vershynin (2018, Lemma 5.4.9), let us separate the last
term from the sum S

E

[
≤ E Tr

(
exp
(
N−1∑
i=1

M−1∑
j=1

λXij +
N−1∑
i=1

λXiM +
M−1∑
j=1

λXNj + λXNM

))]
. (255)

Conditioning on {Xij}N−1,M−1
i,j=1 and applying Vershynin (2018, Lemma 5.4.9) for the fixed matrix

H ∆=
N−1∑
i=1

M−1∑
j=1

λXij +
N−1∑
i=1

λXiM +
M−1∑
j=1

λXNj (256)

and the random matrix Z ∆= λXNM , we obtain

E ≤ E{Xij}N,M
i,j=1

[
Tr
(

exp
(
N−1∑
i=1

M−1∑
j=1

λXij +
N−1∑
i=1

λXiM +
M−1∑
j=1

λXNj + λXNM

))]

≤ E{Xij}N−1,M−1
i,j=1

[
EXNM

[
Tr
(

exp
(
N−1∑
i=1

M−1∑
j=1

λXij +
N−1∑
i=1

λXiM +
M−1∑
j=1

λXNj + λXNM

))]]

≤ E{Xij}N−1,M−1
i,j=1

[
Tr
(

exp
(
N−1∑
i=1

M−1∑
j=1

λXij +
N−1∑
i=1

λXiM +
M−1∑
j=1

λXNj + logEXNM
eλXNM

))]
. (257)
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We continue similarly: separate the next term λXN−1,M−1 from the remaining sum and apply Vershynin
(2018, Lemma 5.4.9) again for Z = λXN−1,M−1. Repeating this process NM times, we obtain

Pr(λmax(S) ≥ t) ≤ Tr

e−λt exp

 N∑
i=1

M∑
j=1

logE expλXij

 . (258)

MGF of the individual terms. It remains to bound the matrix-valued moment generating function
E eλXij for each term Xij . We now use Lemma 21.

Completion of the proof. Using Lemma 21, we obtain

E [exp (λXij/K)] ⪯ exp
(
g(λ) E[X2

ij ]/K2)⇔ N,M∏
i,j=1

E [exp (λXij/K)] ⪯
N,M∏
i,j=1

exp
(
g(λ) E[X2

ij ]/K2)

⇔
N,M∏
i,j=1

E [exp (λXij/K)] ⪯ exp

g(λ)
N,M∑
i,j=1

E[X2
ij ]/K2

 , (259)

which implies
N,M∏
i,j=1

E [exp (λXij/K)] ⪯ exp

g(λ)
N,M∑
i,j=1

E[X2
ij ]/K2

 . (260)

Also, given that Xij are independent, we have

N,M∏
i,j=1

E [exp (λXij/K)] = exp

log

N,M∏
i,j=1

E exp (λXij/K)

 = exp

N,M∑
i,j=1

logE exp (λXij/K)

 , (261)

which combined with (260)

exp

N,M∑
i,j=1

logE exp (λXij/K)

 ⪯ exp

g(λ)
N,M∑
i,j=1

E[X2
ij ]/K2

 , (262)

and applying the trace to both sides yields

Tr

exp

N,M∑
i,j=1

logE exp (λXij/K)

 ≤ Tr
(
exp

(
g(λ) Z̃/K2)) , (263)

where Z̃ ∆= E
[∑N

i=1
∑M
j=1 X2

ij

]
. Since the trace of exp(g(λ)Z̃/K2) is a sum of d positive eigenvalues, it is

bounded by d times the maximum eigenvalue and using Vershynin (2018, Definition 5.4.2), we obtain

Tr
(
exp

(
g(λ) Z̃/K2)) ≤ d λmax

(
exp

(
g(λ) Z̃/K2)) = d exp

(
g(λ) λmax(Z̃/K2)

)
= d exp

(
g(λ) ∥Z̃∥/K2) = d exp

(
g(λ) σ2/K2) . (264)

Combining (258) and (264) we get

Pr(λmax(S) ≥ Kt) ≤ e−λt Tr

exp

 N∑
i=1

M∑
j=1

logE expλXij/K

 ≤ d exp
(
−λt+ g(λ) σ2/K2) , (265)

which implies
Pr(λmax(S) ≥ t) ≤ d exp

(
− λ

K
t+ g(λ)

K2 σ
2
)
. (266)
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Minimizing over λ > 0, the minimum occurs at

λ = log
(

1 + Kt

σ2

)
, t ≥ 0. (267)

Plugging this into the bound, we get

Pr (λmax (S) ≥ t) ≤ d exp
(
− σ

2

K2 h

(
Kt

σ2

))
, (268)

where
h(u) = (1 + u) log(1 + u)− u, for u > 0. (269)

We know that Boucheron et al. (2013, Exercise 2.8)

h(u) ≥ u2

2(1 + u/3) , (270)

with u > 0 and thus
Pr (λmax (S) ≥ t) ≤ d exp

(
− σ

2

K2
u2

2(1 + u/3)

)
, (271)

where u = Kt
σ2 . Substituting u in (271), we obtain

Pr (λmax (S) ≥ t) ≤ d exp
(
− t2/2
σ2 +Kt/3

)
. (272)

Following similar steps with −S instead of S and using (250), yields

P (|λmax(S)| ≥ t) ≤
{

2d exp
(

−3t2
8σ2

)
, t ≤ σ2/K

2d exp
(−3t

8K
)
, t > σ2/K.

(273)

Intuitively, for small t, i.e., t ≤ σ2/K, we have a sub-Gaussian bound, while for large t, i.e., t > σ2/K, we
have a sub-exponential bound. Looking for the tightest bound, we may write

P (|λmax(S)| ≥ t) ≤ 2d exp
(
−3

8 min
{
t2

σ2 ,
t

K

})
. (274)
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Response to Reviewers
Original Article Title:

“AdaCubic: An Adaptive Cubic Regularization Optimizer for Deep
Learning”

Original Manuscript ID: 6482

To: TMLT Action Editor

Re: Response to Reviewers

Dear Prof. Yi Zhou,

On behalf of all authors, I would like to express my sincere gratitude to you and the reviewers for taking the
time to evaluate our manuscript (submission number 6482). We greatly value the insightful feedback from
the reviewers, which has significantly improved the quality and clarity of our work.

In response to the reviewer’s request, the code has been made available at:
https://gitfront.io/r/mysubpapers/3F7bdJzvSvVn/AdaCubic/

Sincerely,
The authors

Reviewer 1HGb

Requested Changes

Please address the aforementioned weaknesses, answer my questions at the end of this review, and resolve the
minor issues also listed at the end of this review. The critical parts are the weakness (A) and the questions
(I-III). Finally, I would like to note that the paper writing is quite technical, which is good on the one hand.
But on the other hand, more intuitive explanations, added to one place or another, would further ease the
understanding for non-experienced readers in the optimization literature. For example, outlining the steps
of deriving the proposed framework at the start of Section 2 (as also done in Section 3) would make the
general idea clearer from the beginning.

Author response:

We thank the reviewer for the constructive comments and suggestions. All changes made in the main body
of the manuscript in response to this review are highlighted in green, unless stated otherwise. The critical
points, namely Weakness (A) and Questions (I–III), are addressed thoroughly below individually.

Regarding the writing style, we acknowledge that the manuscript is technically dense and agree that addi-
tional intuitive explanations can further improve accessibility for non-expert readers. In particular, following
the reviewer’s suggestion, we have added a high-level outline of the steps leading to the proposed framework
at the beginning of Section 2. For completeness we quote this part below.

Section 2.1 introduces the fundamental definitions used throughout the paper, including the basic formu-
lation of the CR method, which serves as a core building block of the proposed framework. Section 2.2
then introduces an auxiliary constrained optimization problem that forms the foundation of the AdaCu-
bic. The key intuition is to reformulate the classical CR method as a constrained problem in which the
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cubic regularization term appears explicitly as a constraint. By leveraging Lagrange multiplier theory,
this reformulation yields an adaptive update mechanism in which the strength of the cubic regular-
ization term of the CR method is automatically adjusted during optimization. To derive this update
mechanism Lemmata 1, 2, Theorem 1, Corollary 1, and Theorem 2 are introduced.

Lemma 1 establishes that the auxiliary constrained problem admits a global minimizer and ensures that
each optimization step is well defined. Lemma 2 is used to establish Theorem 1 which in turn is used to
derive Corollary 1. Corollary 1 shows that the auxiliary optimization problem is characterized by strong
duality (Boyd & Vandenberghe, 2004, Section 5.4). The latter theoretical results are then combined to
derive Theorem 2 which provides the basis to replace the fixed cubic regularization parameter of the
CR method with an adaptive one and finally derive the AdaCubic optimizer presented in Section 4.

Weakness (A)

While a main contribution of AdaCubic is its effectiveness under fixed hyperparameter values, providing
more details on how these values are selected and how different choices affect its performance would make
AdaCubic more accessible for practitioners. Currently, the reader is referred to another paper to understand
the physical meanings of the hyperparameters.

Author response: We thank the reviewer for this insightful comment. To address this comment, changes
have been made in the revised manuscript marked with green color in Section 4 just below Algorithm 2. For
completeness, we quote the changes below.

Below we clarify the role and physical interpretation of the AdaCubic hyperparameters as they appear
in Algorithms 1 and 2:

• η1 (acceptance threshold). η1 ∈ (0, 1) is the minimum ratio between the actual loss reduction
and the predicted reduction of the cubic model required to accept a step. If ρk ≥ η1, the step is
considered successful and the parameters are updated. This parameter η1 controls how cautiously
the algorithm accepts update steps. Smaller values make acceptance easier, while larger values
enforce stricter agreement between the cubic model mνk+1(sk+1) and the objective function F (xk +
sk+1).

• η2 (very successful threshold). η2 ≥ η1 identifies very successful iterations. When ρk ≥ η2, the
effective trust-region boundary is expanded, allowing larger steps in subsequent iterations. This
mechanism accelerates convergence when the cubic model mνk+1(sk+1) is highly accurate.

• α1 (expansion factor). α1 ≥ 1 controls the increase of the trust-region parameter ξk after very
successful iterations, thereby expanding the effective trust-region boundary.

• α2 (shrinkage factor). α2 ∈ (0, 1) decreases the trust-region boundary after unsuccessful itera-
tions (ρk ≤ η1). By shrinking the trust-region boundary, more conservative updates are obtained,
improving robustness in regions where the cubic model mνk+1(s) is less accurate.

• κeasy (root-finding tolerance). κeasy ∈ (0, 1) specifies the error tolerance to terminate the Newton
iterations when solving the cubic subproblem in Algorithm 2. κeasy determines how close the norm
of the computed step should be to the trust-region boundary before the termination of the dual
variable calculation. Smaller values enforce higher accuracy in solving the subproblem, while larger
values favor computational efficiency.

Overall, η1 and η2 govern step acceptance, α1 and α2 regulate updates of the trust-region boundary,
and κeasy balances accuracy and efficiency in the inner solver. AdaCubic adaptively computes the dual
parameter νk+1 in Algorithm 2, which determines the acceptance ratio ρk and, in turn, the step sk+1.
This relationship enables the optimization dynamics to adapt automatically while keeping the remaining
hyperparameters fixed, helping to explain the robust performance observed across the benchmarks in
Section 5.
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To elaborate further, we note that the specific fixed parameter values used in our experiments follow estab-
lished recommendations from (Conn et al., 2000, Chapter 17). In particular, (Conn et al., 2000, Chapter 17)
presents empirical evidence showing that robust performance in trust-region methods is typically obtained
by choosing permissive acceptance thresholds (e.g., small η1 = 0.05), conservative criteria for declaring
very successful steps (e.g., large η2 = 0.75), and carefully balanced update factors that regulate how the
trust-region is adapted after very successful (α1 = 2.5) and unsuccessful (α2 = 0.25) iterations.

Choosing α1 = 2.5 induces a sufficiently strong adjustment of the trust-region parameter after very successful
iterations, allowing the algorithm to expand its search into regions where the local model is deemed highly
reliable. Conversely, choosing α2 = 0.25 enforces a strong corrective adjustment after unsuccessful iterations,
encouraging the algorithm to focus its search more closely on the current iterate, where the model is expected
to be more accurate.

As discussed at the end of the quoted text, the adaptivity of AdaCubic with respect to the dual parameter
allows the algorithm to automatically adjust its optimization dynamics, thereby reducing its sensitivity
to fixed hyperparameters. This property explains the robustness of AdaCubic across a wide range of
benchmarks.

Weakness (B)

The presentation of the training hyperparameters and model architectures is difficult to follow. For example,
the computer vision experiments clearly note the mini-batch size of 256, whereas this information is missing
for the other learning tasks. A condensed and standardized tabular overview could resolve such issues.

Author response: We thank the reviewer for this comment. To improve clarity and consistency, we
have added a tabular overview of all experimental settings. Specifically, Table 1 summarizes the universal
hyperparameter values used by AdaCubic across all experimental evaluations. In addition, Tables 2 and 3
now summarize, for each benchmark, the datasets, model architectures, batch sizes, number of epochs,
optimizers, and learning rate. Tables 1, 2 and 3 can be found at the beginning of Section 5.

Weakness (C)

There is no clear (potential tabular) overview of the differences and commonalities of AdaCubic to other es-
tablished optimizers, such as SGD, Adagrad, Adam, and AdaHessian. Such an overview would make it easier
to understand the advantages, e.g., cubic regularization, and the disadvantages, e.g., higher computational
complexity due to the extra backward pass for Hutchinson’s method, of AdaCubic.

Author response: We thank the reviewer for this comment. We have addressed it by adding Table 10 to
Section 6 of the revised manuscript. A detailed explanation of the table is provided immediately following
its appearance and is highlighted in green.

Weakness (D)

Although the paper notes that the code will be made publicly available upon acceptance, providing it as
supplementary material for review would have been insightful.

Author response: The implementation of the algorithm can be found at: https://gitfront.io/r/
mysubpapers/3F7bdJzvSvVn/AdaCubic/

Question (I)

In its principal design, the empirical evaluation study seems to be related to the one performed in the Ada-
Hessian paper. For example, both report results for ResNet20 and ResNet32 on CIFAR-10 and rely on the
GLUE benchmark. However, specific hyperparameter values differ. Concretely, 500 as the number of training
epochs for CIFAR-10 is quite large compared to 160 training epochs used in the AdaHessian paper. Figure 1
also demonstrates that AdaCubic requires more epochs until convergence. What was the reason to increase
the number of training epochs?

3

https://gitfront.io/r/mysubpapers/3F7bdJzvSvVn/AdaCubic/
https://gitfront.io/r/mysubpapers/3F7bdJzvSvVn/AdaCubic/


Author response: For CIFAR-10, the initial learning rate (LR) and LR schedule follow Yao et al. (2021).
For the remaining benchmarks, learning rates and schedules were determined through extensive empirical
tuning to achieve optimal performance.

In this experiment, we train for 500 epochs to study the loss-reduction behavior of AdaCubic. As shown
in Figure 1, both Adam and AdaHessian exhibit a sharp decrease in training loss following a learning-rate
reduction. However, such learning-rate scheduling strategies do not apply to AdaCubic, as the method does
have an LR and its theoretical framework does not support analogous scheduling heuristics.

Motivated by this distinction, we investigate the evolution of the training loss of AdaCubic over an extended
number of epochs. An alternative approach would have been to conduct experiments without reducing the
LR for any optimizers. However, our goal here was to achieve the best performance among the remaining
optimizers that use a LR and compare them with AdaCubic. We hope this discussion clarifies the rationale
behind the experimental design.

Question (II)

How are the (initial) learning rates of the optimizers SGD, Adam, and AdaHessian tuned? Most likely, these
learning rates stem from the respective benchmark papers. However, making this process more transparent
would be beneficial.

Author response: For CIFAR-10, the initial LR and LR schedule follow Yao et al. (2021). For the remaining
benchmarks, learning rates and schedules were selected through extensive empirical tuning to achieve optimal
performance. All learning rates are now summarized in Table 3 of the revised manuscript.

Question (III)

What are the effects of κeasy ∈ (0, 1) and how is its value defined?

Author response: We thank the reviewer for this comment. In the manuscript, the parameter κeasy ∈ (0, 1)
appears explicitly in Algorithm 2 and controls the stopping criterion of the inner root-finding procedure used
to compute the cubic-regularized step. Specifically, κeasy defines a tolerance band around the target radius
ξ1/3, as shown in line 17 of Algorithm 2. Specifically, Newton updates of the dual variable ν are performed
while the condition

∣∣∥s∥2 − ξ1/3
∣∣ ≤ κeasy ξ

1/3 is satisfied.

As a result, κeasy directly affects the numerical accuracy with which the constraint ∥s∥3
2 = ξ is satisfied.

Smaller values of κeasy enforce a stricter tolerance, leading to more Newton updates and a more accurate
satisfaction of the cubic constraint. In comparison, larger values allow earlier termination of the inner solver
and thus cheaper iterations.

In all experiments, we fix κeasy = 10−2. This choice enforces a relative tolerance of 1% on the cubic subprob-
lem constraint in Algorithm 2, ensuring that the computed step satisfies ∥s∥3

2 ≈ ξ with sufficient accuracy.
Such fixed relative tolerances are standard in trust-region and adaptive cubic regularization methods, where
the theory explicitly allows inexact subproblem solutions, provided that the approximation error is controlled
(Conn et al., 2000). Empirically, this value provides a good balance between numerical accuracy and compu-
tational efficiency and was kept fixed across all experiments. We have added κeasy = 10−2 at the beginning
of Section 5 of the revised manuscript. In addition, κeasy = 10−2 is also mentioned in the Table 1 added in
the revised manuscript. We hope this discussion clarifies the rationale behind the selection κeasy = 10−2.

Question (IV)

In the sentence above Corollary 3, you state that you repeat the proof with the diagonal Hessian matrix
Diag(∇f(x)) instead of the gradient ∇f(x). Do you rather mean Diag(∇2f(x)) instead of the full Hessian
matrix Diag(∇f(x))?

Author response: We thank the reviewer for this comment, which is addressed in the revised manuscript
just above Corollary 3 and is highlighted in green.
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Minor Comment #1

The paper uses citet and citep inconsistently: When the citation is grammatically part of the sentence, e.g.,
“Authors et al. proposed . . . ”, citet is often the right choice. When the citation is only a parenthetical
reference, e.g., “... as established previously (Authors et al., 2019) ...”, citep is typically the correct choice.

Author response: We thank the reviewer for this comment. All relevant corrections in the manuscript are
highlighted in green.

Minor Comment #2

There is a missing space in “subjectto” in Eq. (22).

Author response: We thank the reviewer for this comment. The typo is fixed.

Minor Comment #3

The itemize environment would be more suitable to describe the four groups of datasets as part of the GLUE
benchmark.

Author response: We thank the reviewer for this comment. Corrections are made.

Reviewer d2MB

General Comment: The motivation and the problem statement is quite clear. The paper is theoretically
strong with rigorous proofs for convergence. The experiment section of the paper exhibited performance
of the proposed optimizer comparing with other optimizers, including experiments on neural network task
specific performance, curves of convergence and cumulative timing. However, even though on some tasks the
AdaCubic shows slightly better scores, e.g., on CIFAR, the convergence rate and the cumulative timing don’t
show significant improvement, which hinders the wide application of AdaCubic. The authors claim other
optimizers need finetuning of hyperparameters while AdaCubic does not. However, AdaCubic also have a set
of hyperparameters, and it is unclear how these hyperparameters influence the training dynamic.

Author response: We thank the reviewer for the careful assessment. We would like to clarify two key
points regarding convergence behavior and hyperparameter usage.

Convergence and cumulative timing. To better assess the trade-off between convergence and wall-
clock time, we include Figures 5a and 5b in the revised manuscript. Figure 5a depicts the training loss
vs. cumulative time over epochs, while Figure 5b depicts the training loss vs. epochs. Both Figures 5a
and 5b depict comparisons between SGD, AdaHessian, and AdaCubic on ResNet20 and CIFAR-10. The
horizontal dashed line in Figure 5a marks the target loss threshold of 0.15. AdaCubic reaches this threshold
after 55 epochs and 42.40 minutes. In comparison, SGD and AdaHessian require 83 and 81 epochs,
corresponding to 35.16 and 61.85 minutes. Table 9 summarizes the latter results. Although AdaCubic
needs more time than SGD due to computation of second-order information, AdaCubic reaches the desired
loss in fewer epochs without any LR tuning.

In addition, according to Algorithm 2, AdaCubic relies only on the approximated diagonal Hessian for its
updates, which implies a theoretical (algorithmic) memory footprint of O(d). The gap between practical and
theoretical memory costs comes from the design of modern deep-learning frameworks, such as PyTorch, which
are optimized for first-order optimization methods. Thus, computing the diagonal Hessian approximation
requires retaining intermediate gradient information. Developing a custom implementation that directly
computes the diagonal Hessian without storing such intermediates is beyond the scope of this work.

A more detailed discussion of the computational complexity of AdaCubic is provided in Section 6, where
both the time complexity and the loss reduction (convergence behavior) are analyzed. The portions of the
text added in Section 6 during the revision are highlighted in color. We hope this analysis provides a clearer
picture of the trade-off between computational cost and convergence behavior for AdaCubic.
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Hyperparameter tuning. In Algorithm 1, the parameters η1 and η2 govern step acceptance, the pa-
rameters α1 and α2 regulate the update of the trust-region boundary ξk, and the parameter κeasy balances
accuracy and efficiency in the inner solver presented in Algorithm 2. AdaCubic adaptively computes the
dual parameter νk+1 in Algorithm 2, which determines the acceptance ratio ρk, the step sk+1, and, in turn
the trusts-region parameter ξk.

This relationship enables the optimization dynamics to adapt automatically while keeping the remaining
hyperparameters fixed. As a result, AdaCubic can respond effectively to the local geometry of the loss
landscape through the automatic adjustment of the trust-region parameter ξk and perform competitively
across the benchmarks in Section 5.

The intuition behind these hyperparameters, as well as the rationale for why AdaCubic performs robustly
with fixed hyperparameter values, is now discussed immediately after Algorithm 2 and highlighted in green.
For completeness, we quote the changes below.

Next, we clarify the role and physical interpretation of the AdaCubic hyperparameters as they appear
in Algorithms 1 and 2:

• η1 (acceptance threshold). η1 ∈ (0, 1) is the minimum ratio between the actual loss reduction
and the predicted reduction of the cubic model required to accept a step. If ρk ≥ η1, the step is
considered successful and the parameters are updated. This parameter η1 controls how cautiously
the algorithm accepts update steps. Smaller values make acceptance easier, while larger values
enforce stricter agreement between the cubic model mνk+1(sk+1) and the objective function F (xk +
sk+1).

• η2 (very successful threshold). η2 ≥ η1 identifies very successful iterations. When ρk ≥ η2, the
effective trust-region boundary is expanded, allowing larger steps in subsequent iterations. This
mechanism accelerates convergence when the cubic model mνk+1(sk+1) is highly accurate.

• α1 (expansion factor). α1 ≥ 1 controls the increase of the trust-region parameter ξk after very
successful iterations, thereby expanding the effective trust-region boundary.

• α2 (shrinkage factor). α2 ∈ (0, 1) decreases the trust-region boundary after unsuccessful itera-
tions (ρk ≤ η1). By shrinking the trust-region boundary, more conservative updates are obtained,
improving robustness in regions where the cubic model mνk+1(s) is less accurate.

• κeasy (root-finding tolerance). κeasy ∈ (0, 1) specifies the error tolerance to terminate the Newton
iterations when solving the cubic subproblem in Algorithm 2. κeasy determines how close the norm
of the computed step should be to the trust-region boundary before the termination of the dual
variable calculation. Smaller values enforce higher accuracy in solving the subproblem, while larger
values favor computational efficiency.

Overall, η1 and η2 govern step acceptance, α1 and α2 regulate updates of the trust-region boundary,
and κeasy balances accuracy and efficiency in the inner solver of Algorithm 2. AdaCubic adaptively
computes the dual parameter νk+1, which determines the step sk+1, the acceptance ratio ρk, and
consequently the evolution of the trust-region parameter ξk. The dual variable νk+1 encodes local
curvature information through the Hessian approximation and acts as an adaptive term in the cubic
subproblem. This relationship enables an automatic adjustment of ξk, allowing AdaCubic to respond
effectively to the local geometry of the non-convex loss landscape and to achieve competitive performance
across the benchmarks in Section 5.

Comment #1

Despite the strong mathematical results, I think there should be a text narrative part in the paper. For
example, why (3) is a form of non-convex optimization, and why such a sum decomposition? Maybe add
some text before Lemma 2 so that it is clearer to the reader what is going on there; the transition is not quite
smooth.
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Author response: We thank the reviewer for this comment. The function f(x) in (3) is non-convex by
definition, as is the sum of non-convex functions. We have marked that in the revised manuscript by placing
the symbol ∆ above =.We have added information clarifying the role of Lemma 2, marked in red, immediately
above its declaration. Additionally, the roles of Lemma 2 and the remaining theoretical results in Section 2
are now explicitly highlighted at the beginning of this section. Further illustration of the relationships and
dependencies among the theoretical results is provided in Figure 6.

Comment #2

For the self-containedness, some details e.g. λ+
d (B) in Algorithm 2 should also be explicitly explained.

Author response: We thank the reviewer for noticing this detail. We have added a description of λ+
d (B)

just above (7) marked with red. The remaining parameters of Algorithms 1 and 2 are mapped to the
parameters of the manuscript. A relation of the main theoretical results with Algorithms 1 and 2 also
exists at the beginning of Section 4. In addition, comments integrated into Algorithms 1 and 2 provide a
more self-contained description. An intuitive explanation of Algorithm 2 has also been added to the revised
manuscript immediately following its appearance highlighted with green color.

Comment #3

In Figure 1, why does the loss curve of AdaCubic not drop a lot with the LR decay?

Author response: We thank the reviewer for noticing this detail. Note that AdaCubic does not have an
LR to fine-tune. Thus, a drop in loss is not expected. The only parameter that is fine-tuned is M , and this
is done automatically by leveraging Theorems 1 and 2, and Algorithms 1 and 2. A description relevant to
the only parameter that is fine-tuned automatically, i.e., M , can be found at the beginning of Section 4.

Comment #4

Since AdaCubic is a second-order cubic regularized method, it should be compared with more related cubic
regularized methods.

Author response: Cubic regularization has been used in previous papers (Huang et al., 2022; Wang
et al., 2019; Carmon & Duchi, 2019; Tripuraneni et al., 2018; Zhou & Gu, 2020; Wang et al., 2020b; Cartis
et al., 2011a;b; Kohler & Lucchi, 2017; Park et al., 2020; Kamzolov et al., 2023). However, in all these
papers, the experimental evaluation was mostly theoretical and accompanied by small-scale experiments
where the full Hessian matrix is required. Thus, their application to deep neural networks, and therefore
their comparison with AdaCubic, is not yet possible. An interesting direction for future work is to extend
AdaCubic to incorporate acceleration terms, such as those proposed in (Zhou & Gu, 2020; Wang et al.,
2020b), in combination with approximate Hessian computations, and to study their effect on the optimization
procedure.

Comment #5

Is there a clear application field where AdaCubic dominates all the major optimizers?

Author response: A clear application field in which AdaCubic excels is CMI, as shown in Table 8.
According to Table 8, AdaCubic improves mean accuracy over Adam by approximately 1.7% on average
across the Native, WhatsApp, and YouTube benchmarks. In addition, it should be noted that, in the
natural language understanding tasks in Table 5, AdaCubic remains highly competitive, achieving the best
or second-best results without fine-tuning any parameters. The column ∆ in Table 5 is added in the revised
manuscript to make these differences explicit. All related changes are highlighted in red.
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Reviewer mfxj

Author response: We thank the reviewer for the comments. Changes in the main body of the manuscript
related to these comments are highlighted in cyan, unless stated otherwise.

Comment #1

Wall-Clock Time Analysis: While Figure 4 mentions “Cumulative time”, the text heavily emphasizes per-
epoch performance. It would be best to add a Table comparing the wall-clock time required by AdaCubic vs.
SGD/Adam to reach a specific validation accuracy or loss threshold. This is critical to assess if the extra
computation per step (Hutchinson’s estimation) is worth the improved convergence rate.

Author response: We thank the reviewer for raising the issue of wall-clock efficiency. To address this
comment, changes have been made in the revised manuscript marked with cyan color in Section 6. For
completeness, we quote the changes below.

Figure 5a shows the training loss vs. cumulative time for SGD, AdaHessian, and AdaCubic. Fig-
ure 5b shows the training loss vs. epochs for SGD, AdaHessian, and AdaCubic. The training loss
in Figure 5b corresponds to that in Figure 5a. The horizontal dashed line in Figure 5a marks the
target loss threshold of 0.15. AdaCubic reaches this threshold after 55 epochs and 42.40 minutes.
In comparison, SGD and AdaHessian require 83 and 81 epochs, corresponding to 35.16 and 61.85
minutes. Table 9 summarizes the latter results. Although AdaCubic needs more time than SGD due
to second-order information, it reaches the desired loss in fewer epochs without any LR tuning. This
highlights AdaCubic as an efficient trade-off between computational cost and convergence quality.

Comment #2

Clarification of “Large-Scale”: The abstract claims applicability to “large-scale applications”. The experi-
ments use ResNet on CIFAR and BERT-base, which are arguably medium-scale by modern standards. Please
either qualify this claim (e.g., “medium-to-large scale”) or include a discussion/experiment on a truly large-
scale setting (e.g., a larger LLM) to demonstrate memory scaling.

Author response: We thank the reviewer for pointing this out. We agree that our previous wording (“large-
scale applications”) could be interpreted as referring to training at the scale of multi-billion-parameter LLMs.
Our intention was instead to emphasize that AdaCubic is designed to scale efficiently with model size and
curvature estimation and has been validated on practical deep-learning workloads beyond the small-model
settings typically used in prior cubic-regularization studies (Huang et al., 2022; Wang et al., 2019; Carmon
& Duchi, 2019; Tripuraneni et al., 2018; Zhou & Gu, 2020; Wang et al., 2020b; Cartis et al., 2011a;b; Kohler
& Lucchi, 2017; Park et al., 2020; Kamzolov et al., 2023).

To avoid ambiguity, we have revised the wording in the abstract and conclusions. The abstract now states
that AdaCubic “leverages cubic regularization in scalable deep-learning applications,” and the conclusions
refer to “practical deep-learning applications” rather than “large-scale.” We believe this more accurately
reflects the scope of our experiments. Full-scale LLM experiments are beyond our current computational
resources. The changes are highlighted with cyan color in the Abstract and Conclusions of the revised
manuscript.

Comment #3

Performance Gaps: Explicitly discuss cases where the method did not outperform the baseline (e.g., specific
GLUE tasks or CIFAR-100 if applicable). Analyzing why the diagonal Hessian approximation might fail in
these specific instances would add valuable insight for the reader.

Author response: We thank the reviewer for highlighting the importance of discussing performance gaps.
We recall that AdaCubic achieves the best and second-best performance on the CV and NLP benchmarks.
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On the CMI benchmark, AdaCubic outperforms ADAM. To address this comment, changes have been
made in the revised manuscript related to the CV and NLP tasks, which are marked with cyan color in
Section 5 of the revised manuscript.

For completeness, we quote the changes below. The first and second quotes, highlighted with cyan color,
can be found below the Figures 1 and 3, respectively.

On CIFAR-10, AdaCubic consistently outperforms first-order methods (SGD, Adam) and ranks second
to AdaHessian, with very small gaps of 0.15% and 0.5% for ResNet20 and ResNet32, respectively, as
summarized in Table 4. On CIFAR-100 without spatial averaging, AdaCubic trails the best-performing
optimizer by at most 0.81%. Due to its larger number of classes and increased classification difficulty,
CIFAR-100 will possibly lead to optimization regimes with stronger parameter interactions. Since
AdaCubic, like AdaHessian, relies on a diagonal approximation of the Hessian, it does not explicitly
capture such off-diagonal curvature effects, which may partially explain the observed gap. Importantly,
when spatial averaging is applied, the performance of AdaCubic improves and becomes closer to that of
AdaHessian and SGD, confirming that part of the gap is related to high-variance curvature estimation.

On the NLU benchmark, Table 5, AdaCubic consistently achieves either the best or the second-best
performance across all tasks, with the performance gaps reported in the ∆ column remaining small.
The second-best performance of AdaCubic on certain GLUE tasks can be understood in light of recent
Hessian-based analyses of Transformer Zhang et al. (2024). In particular, Zhang et al. (2024) shows that
Transformer models exhibit block-wise heterogeneity in their Hessian structure, with strong curvature
differences and interactions across parameter groups. While AdaCubic explicitly leverages second-
order information through diagonal Hessian approximations, such approximations may be insufficient to
capture cross-parameter or block-level curvature interactions fully. This likely explains why AdaCubic
remains highly competitive but does not consistently outperform finely tuned baselines on Transformer-
based tasks. Similar conclusions are drawn for the LM benchmark, where AdaCubic consistently
achieves either the best or the second-best performance across all datasets.

Overall, it should be noted that AdaCubic exhibits the best or the second-best performance with a
pre-fixed universal set of parameters, while SGD and AdaHessian are fine-tuned w.r.t. the initial
learning rate.
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