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Abstract

Transformers are expensive to train due to the quadratic time and space complexity
in the self-attention mechanism. On the other hand, although kernel machines
suffer from the same computation bottleneck in pairwise dot products, several
approximation schemes have been successfully incorporated to considerably reduce
their computational cost without sacrificing too much accuracy. In this work,
we leverage the computation methods for kernel machines to alleviate the high
computational cost and introduce Skyformer, which replaces the softmax structure
with a Gaussian kernel to stabilize the model training and adapts the Nyström
method to a non-positive semidefinite matrix to accelerate the computation. We
further conduct theoretical analysis by showing that the matrix approximation
error of our proposed method is small in the spectral norm. Experiments on Long
Range Arena benchmark show that the proposed method is sufficient in getting
comparable or even better performance than the full self-attention while requiring
fewer computation resources.

1 Introduction

The cost of language model training increases exponentially. Among different models, Transformer-
based language models [Vaswani et al., 2017, Devlin et al., 2019, Liu et al., 2019, Lewis et al., 2020]
are shown to enjoy state-of-the-art (SOTA) performances on many Natural Language Processing
(NLP) tasks despite their enormous training cost. One of the computation bottlenecks lies in the
self-attention mechanism, which is known to be resource-intensive with quadratic time and space
complexity (O(n) where n is the input sequence length). Consequently, Transformers cannot support
long sequence processing and large batch size with limited resources.

The challenge of improving computational efficiency of Transformers has motivated several recent
studies on attention acceleration, using either sparse attention pattern [Qiu et al., 2020, Child et al.,
2019, Zaheer et al., 2020, Beltagy et al., 2020, Kitaev et al., 2020] or low-rank approximation
[Choromanski et al., 2020, Wang et al., 2020]. However, there is usually a lack of theoretical analysis
on the approximation error of these methods due to the complex softmax structure, which makes the
theoretical comparison between the efficiency of each method infeasible. It is also unclear in theory
how to set the hyper-parameters of those methods to attain a desired level of approximation accuracy.

Another issue of Transformers is the training instability that small perturbations in parameter updates
tend to be amplified, resulting in significant disturbances in the model output [Liu et al., 2020a].
Transformers on some NLP tasks have shown to be sensitive to hyper-parameters, learning schedulers,
or even random seeds, which usually demands a time-costly grid search for the best configuration
in real-world applications. It has also been observed in our experiments that a slight change in the
learning rate may cause the failure of convergence for some models. We conjecture that the instability
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in Transformer training comes from the softmax structure, as the un-normalized attention score
matrices before softmax tend to have extremely large condition numbers due to its fast singular value
decay.

To alleviate the instability issue, an extra factor of 1/
√
p in the softmax kernel SM is suggested by

Vaswani et al. [2017] to restrain the scale variation; Liu et al. [2020a] proposes a new scheme to
control the magnitude of output change and stabilize the training in early stages. In practice, we also
need to consider the lower numerical precision of GPU implementation in model training, which
further deteriorates the stability.

Kernel methods may be the answer to both challenges. As pointed out by Choromanski et al. [2020],
the softmax structure is closely related to Gaussian kernels up to diagonal matrix multiplications, as
the pairwise dot products naturally appear when expanding the squared `2 distance. We further notice
some important connections between self-attention and Gaussian kernels. First, the un-normalized
attention score matrix can be formed via basic matrix operations on an empirical Gaussian kernel
matrix. Moreover, the form of Gaussian kernels has the natural interpretation of assigning “attention”
to different tokens. Compared to the softmax function, Gaussian kernels automatically perform
the normalization as softmax does (c.f. Section 4.1). These observations motivate us to replace
the softmax structure with Gaussian kernels. As we demonstrated in this paper, the new attention
model, Kernelized Attention, empirically stabilizes the model training while being comparable to
self-attention in model accuracy.

To further improve the efficiency, we propose Skyformer (Symmetrization of Kernelized attention
for NYström method) to accelerate kernelized attention. Skyformer adapts the Nyström method
[Williams and Seeger, 2001, Drineas et al., 2005] to the non-PSD empirical Gaussian kernel matrix
(as query matrices in general do not equal to key matrices), by instead lifting the kernelized attention
score matrix into a large PSD matrix that contains the un-normalized attention score matrix as the
off-diagonal block. We further conduct theoretical analysis by showing that Skyformer has a small
matrix approximation error on kernelized attention in the spectral norm. Our experiments on the
LRA benchmark show that Skyformer consistently uses less space and time while achieving better
accuracy than other baseline methods.

In summary, our main contributions are:

(1) We revisit the intrinsic connection between self-attention and kernel methods, and explore a new
kernel-based structure, kernelized attention, to stabilize the training of Transformers.

(2) We propose Skyformer, which approximates the kernelized attention via low dimensional ran-
domized sketches by adapting the Nyström method to a non-PSD matrix. We provide the theoretical
guarantee that the matrix multiplication error is small in term of spectral norm.

(3) Extensive experiments show that Skyformer achieves comparable performance to the original
self-attention with fewer computational costs.2

2 Related Work

Among all the transformer acceleration methods, including attention layer simplification by pruning
redundant attention heads [Voita et al., 2019, Michel et al., 2019] and model size reduction with
knowledge distillation [Jiao et al., 2020, Tang et al., 2019, Liu et al., 2020b], we focus on attention
approximation models, which are closely related to kernel methods.

To reduce the time and space complexity by avoiding exhaustive computation over the attention
metric, recent studies propose to apply sparse attention patterns to limit the numbers of elements
participating in matrix multiplications [Qiu et al., 2020, Child et al., 2019, Zaheer et al., 2020, Beltagy
et al., 2020]. Beyond limiting the attention to fixed patterns, some approaches learn the patterns by
determining token assignments to relevant groups [Kitaev et al., 2020, Roy et al., 2021]. Those
models utilize local and global information in the attention score matrix to perform approximation,
which coincides with the attempt to accelerate the computation in Gaussian processes [Snelson and
Ghahramani, 2007].

2Our code is released at https://github.com/pkuzengqi/Skyformer
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The attention score matrix is known to exhibit a very fast rate of singular value decay [Bhojanapalli
et al., 2020, Dong et al., 2021], similar to that of an empirical kernel matrix [Yang et al., 2017].
This near singular property motivates many low-rank attention approximation methods to skillfully
leverage the computation techniques in kernel methods. Among them, Linformer [Wang et al.,
2020] compresses the size of the key and value matrix with random projections based on the
Johnson–Lindenstrauss transform, a common randomized sketching method in Gaussian processes
[Yang et al., 2017]; Reformer [Kitaev et al., 2020] applies locality-sensitive hashing (LSH) [Har-Peled
et al., 2012] to simplify the computation of the attention score matrix, which is widely used in kernel
density estimation [Charikar and Siminelakis, 2017, Backurs et al., 2019]; Performer [Choromanski
et al., 2020] projects both query and key matrix through random Fourier features [Rahimi et al., 2007],
heavily exploiting Bochner Theorem for stationary kernels.

The most related papers to ours are linear attention [Katharopoulos et al., 2020], Synthesizer [Tay
et al., 2020a], and Nyströmformer [Xiong et al., 2021]. Linear attention takes the softmax structure
in self-attention as a measure of similarity and replaces it with the dot product of separately activated
query and key matrices; Synthesizer aims to modify the original self-attention by replacing the dot
product before softmax with Synthetic Attention, which generates the alignment matrix independent
of token-token dependencies. Their attempts indicate that the softmax structure in self-attention is
not the only feasible choice, and justify our usage of kernelized attention. Rather than remodeling
self-attention, Nyströmformer applies the Nyström method [Williams and Seeger, 2001, Drineas et al.,
2005], a powerful and effective method for large-scale kernel machines acceleration, to approximate
the attention score matrix. However, Nyströmformer applies the Nyström method to a non-PSD
matrix, and thus fails to utilize the full potential of the Nyström method. This issue is resolved in
our proposed Skyformer by instead lifting the kernelized attention score matrix into a large PSD
matrix which contains the target non-PSD matrix as its off-diagonal block. For more details on
attention approximation methods, we refer readers to a survey paper on efficient transformers [Tay
et al., 2020c].

3 Preliminaries and notations

3.1 Revisiting self-attention

For a given input sequence X ∈ Rn×d0 of length n and embedding dimension d0, The dot-product
attention for a single head in Transformer Vaswani et al. [2017] is defined as

Attention(Q,K,V ) = softmax
(
QKT

√
p

)
V

where Q = XWQ, K = XWK , and V = XWV , and WQ, WK and WV are the query, key,
and value weight metrics that linearly project the input X of d0 dimension to an output tensor of p
dimensions.

To simplify the future analysis, the left softmax term can be rewritten into D−1A, where A :=
exp(QKT /

√
p) is the un-normalized attention score matrix; D is a diagonal matrix whose diagonal

is exp(QKT /
√
p) · 1 (by convention 1 is a size-n vector with all elements being 1). Following

the notation in Performer [Choromanski et al., 2020], we define SM(q,k) := exp(qTk/
√
p) as the

softmax kernel function, and represent A by the notation SM(Q,K), which means the element aij
from the i-th row and j-th column in A is equal to SM(qi,kj). Throughout this paper qi (resp. kj)
means the i-th (resp. j-th) row in Q (resp. K).

We close this subsection with a short lemma to show SM(·, ·) is a positive semidefinite (PSD) kernel
function [Wainwright, 2019, Definition 12.6] by relating it to Gaussian kernels.
Lemma 1. SM(·, ·) is a PSD kernel function. Equivalently, for all integers n ≥ 1 and elements
{qi}ni=1 ⊆ Rp, the n-by-n matrix C = SM(Q,Q) is PSD.

Proof. We first state an important equation to connect the softmax kernel and Gaussian kernels as
follows:

SM(qi, qj) = exp

(
qT
i qj√
p

)
= exp

(
‖qi‖2

2
√
p

)
exp

(
−‖qi − qj‖2

2
√
p

)
exp

(
‖qj‖2

2
√
p

)
.
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The middle part exp
(
‖qi−qj‖2

2
√
p

)
is exactly a Gaussian kernel with bandwidth p

1
4 . (Choromanski

et al. [2020] have more discussion on the findings.)

Through this equation, we can rewrite C as

C = D
1/2
Q · κ

(
Q

p1/4
,

Q

p1/4

)
·D1/2

Q , (1)

where DQ is a diagonal matrix with elements (DQ)ii = exp
(
‖qi‖2√

p

)
,∀i ∈ [n], and κ(qi, qj) :=

exp
(
−‖qi − qj‖2/2

)
is the standard Gaussian kernel function.

We prove the lemma by using the fact that κ is a PSD kernel and κ
(

Q
p1/4 ,

Q
p1/4

)
is a PSD matrix. ♦

3.2 Nyström method

Due to the intrinsic low-rankness of an empirical kernel matrix B, the so-called Nyström method that
replaces B with its low-rank approximation B̃, has been applied to accelerate kernel methods [Gittens
and Mahoney, 2016, Kumar et al., 2009, Williams and Seeger, 2001]. Specifically, the Nyström
approximation of B is the matrix B̃ = BS(STBS)†STB, where (·)† denotes the Moore-Penrose
pseudoinverse of a matrix, and S ∈ Rn×d is a zero-one sub-sampling matrix whose columns are a
subset of the columns in I , indicating which d observations have been selected. The formal definition
of the uniform sub-sampling matrix is given as follows:

Definition 1 (Uniform sub-sampling matrix). For a random matrix S ∈ Rn×d, if S has i.i.d. columns

and the j-th column S(j) can randomly be
√

1
dei with probability 1

n , where ei is the i-th column of
the n-by-n identity matrix In, then S is called a uniform sub-sampling.

We close this subsection with a remark that it is not appropriate to directly extend the Nyström
method from kernel method to self-attention due to a core requirement that B should be PSD with
consideration of approximation performance improvement. We will show in the next section how to
address this challenge and properly adapt Nyström method to non-PSD matrices.

3.3 Approximation evaluation

Beyond the time and space complexity, attention acceleration methods have been mostly evaluated
with empirical experiment results, such as the perplexity of pretrained language models and the fine-
tuned performance on downstream natural language understanding tasks. Specifically, Long Range
Arena benchmark [Tay et al., 2020b] has been proposed to systematically evaluate the performance of
efficient transformers with ten NLP tasks in long-context scenarios. However, such empirical results
are indirect for theoretical analysis. Therefore, we introduce a common criterion used in matrix
approximation, spectral norm, to ease the future discussion on performance.

Definition 2 (Spectral norm guarantee for matrix approximation (MA)). Given a matrix M ∈
Rn1×n2 , two constants ε > 0, δ < 1

2 , we say that its approximation matrix M̃ ∈ Rn1×n2 satisfies
(ε, δ)-MA property for M , if

P
{
‖M − M̃‖ > ε‖M‖

}
< δ. (2)

In previous works, the direct analysis of the approximation error to the entire output D−1AV in the
(ε, δ)-MA manner is usually spared due to the difficulty caused by the complex softmax structure.
In this paper, with the new kernelized attention, we are allowed to perform the analysis through the
existing theoretical results in kernel methods. Consequently, in Section 4.5 we are able to give a
relatively precise error analysis on the approximation of Skyformer to the entire kernelized attention,
which eases the future comparison with other methods approximating kernelized attention.

4



4 Method

4.1 Kernelized Attention

Kernelized Attention replaces the softmax structure in vanilla self-attention with a Gaussian kernel,
and the new attention model is stated as:

Kernelized-Attention(Q,K,V ) = CV := κ

(
Q

p1/4
,
K

p1/4

)
V , (3)

where we define the n-by-n matrix C as the kernelized attention score matrix κ(Q/p1/4,K/p1/4).

The justification for using the kernelized attention model is as follows. A significant advantage of
softmax attention is that tokens are allowed to attend to a limited number of other important tokens
in the sequence. We observe that Gaussian kernel function can play a similar role. The expression
of a Gaussian kernel is κ(qi,kj) := exp

(
−‖qi − kj‖2/2

)
. Via this expression, for token i in the

query, Gaussian kernel assigns a large attention score to the token j when kj is close to qi. The
distance-based weight assignment is indeed considered as a major reason why kernel methods are
powerful. The form of kernelized attention also leads to an automatic normalization. Based on
Equation (1), the new attention model can be rewritten in terms of the un-normalized attention score
matrix A as

Kernelized-Attention(Q,K,V ) =
(
D
−1/2
Q ·A ·D−1/2K

)
V ,

where DQ (resp. DK) is a diagonal matrix with elements (DQ)ii = exp
(
‖qi‖2√

p

)
(resp. (DK)ii =

exp
(
‖ki‖2√

p

)
), ∀i ∈ [n]. We remark the kernelized attention model can thus be formally taken as

a variant of the original self-attention, which instead normalizes the matrix A in a form of D−1A.
The intrinsic normalization allows kernelized attention to have a more reasonable condition number
than self-attention, which benefits the stability of model training. To demonstrate the improvement
in stability, we additionally provide a toy experiment in Appendix F, which shows the “condition
number" of kernelized attention is smaller than self-attention. Moreover, empirical evaluation in
Section 5 supports our claim that the new attention model can attain a comparable performance to the
original attention model.

4.2 Skyformer: a modified Nyström method

Before jumping into details of Skyformer, we first propose a method to apply Nyström method to
approximate an asymmetric (and thus non-PSD) empirical kernel matrix B constructed with any
PSD kernel φ(·, ·). Specifically, with two different n-by-p design matrices Q and K, its element
bij from the i-th row and j-th column in B is equal to φ(qi,kj), where qi (resp. kj) is the i-th
(resp. j-th) row in Q (resp. K). We remark this type of empirical kernel matrices involves the
un-normalized attention score matrix A := SM(Q,K), and the empirical Gaussian kernel matrix
C := κ(Q/p1/4,K/p1/4). Therefore this method leads to a low-rank approximation to the output
of either self-attention D−1AV or Kernelized Attention CV . (D in self-attention can be obtained
by computing A · 1, and thus a low-rank approximation to A also implies an approximation to D.)

Computational details are stated as follows. To tackle the challenge of approximating a non-PSD
matrix B, our first step is to complete the matrix into a PSD matrix B̄:

B̄ := φ

((
Q
K

)
,

(
Q
K

))
. (4)

Then we approximate B̄ with ˜̄B through

˜̄B = B̄S(ST B̄S)†ST B̄, (5)

where S is a 2n-by-d uniform sub-sampling matrix as defined in Definition 1. The final approximation
will be given as

B̃ := (I,0) ˜̄B(0, I)T . (6)
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The original matrix B can be well-approximated by B̃ due to the following inequality

‖B − B̃‖ = ‖(I,0)(B̄ − ˜̄B)(0, I)T ‖ ≤ ‖B̄ − ˜̄B‖,
and thus we show our task of approximating the non-PSD matrix B boils down to well approximating
the PSD matrix B̄.

Remark. The reason why B can be well approximated by a low-rank B̃ is that as an empirical kernel
matrix the eigenvalues in B̄ usually decay fast, and thus there are many small eigenvalues in the long
tail. In this case, theoretically a low-rank matrix (e.g. truncated singular value decomposition (SVD)
of B̄) has enough potential to well approximate the original matrix B̄ (and B accordingly) in terms
of spectral norm.

With the derivation above, we officially introduce our proposed Skyformer as an approximation to
Kernelized Attention, which applies the modified Nyström method to the kernelized attention score
matrix C. The next two subsections will continue our discussion on it, and respectively state the
theoretical analysis of its approximation error and some details of its implementation in practice.

4.3 Error analysis of Skyformer

As mentioned, an implicit advantage of using Kernelized Attention is that we can leverage the existing
conclusions for kernel methods to analyze the theoretical properties of the model. In this subsection,
we aim to provide some theoretical analysis of its approximation error.

We state a high probability bound on the size d of the sub-sampling matrix used in Skyformer to
attain (ε, δ)-MA property for the kernelized attention score matrix C by the following theorem. We
refer the readers to the proof in Appendix D to take a closer look at our claim that the matrix to be
approximated should be PSD is a key to the theoretical guarantee of Nyström method.
Theorem 2 (Adapted from Lemma 9 and Theorem 3 [Musco and Musco, 2017]). Consider the query,
key, and value matrix Q,K,V ∈ Rn×p and two positive constants ε < 1, δ < 1

2 . For the empirical
Gaussian kernel matrix C := κ(Q/p1/4,K/p1/4) defined above, we let λ := ε‖C‖ < ‖C̄‖,
where C̄ is the completion of C (similar to B̄, constructed as substituting the Gaussian kernel
with bandwidth p1/4 for the arbitrary kernel function φ in Equation (4)). We comment λ serves as
the regularization coefficient as well as the approximation error bound. To ease the analysis, we
specifically define the i-th diagonal element of C̄(C̄ + λI2n)−1 as leverage score `i,∀i = 1, . . . , 2n,
and define their sum Tr

(
C̄(C̄ + λI)−1

)
as the statistical dimension dstat, which increases with 1/ε

as λ ∝ ε. Suppose S is a uniform sub-sampling matrix, and assume there exists a constant β ∈ (0, 1]

such that β ≤ dstat

2n`i
,∀i = 1, . . . , 2n. For the approximation matrix ˜̄C constructed with C̄,S as in

Equation (5), there exists a constant C such that if

d ≥ C dstat
β

log
n

δ

then ˜̄C 4 C̄ 4 ˜̄C + λI with probability 1 − δ. Here 4 denotes the Loewner ordering: B 4 A
means A−B is positive semidefinite. Furthermore, for our approximation C̃ in Equation (6) to the
kernelized attention score C, we have

‖C̃ −C‖ ≤ λ = ε‖C‖.

This theorem implies the time and space complexity of our proposed approximation depends on the
statistical dimension dstat. If we directly use the conclusion from Gaussian kernels, dstat should be
Õ(1) (complexity modulo poly-log term) [Yang et al., 2017] due to the exponential eigenvalue decay
rate of Gaussian kernels, which is comparable to the complexity of most other efficient transformers.
However, different than the case in the classical kernel methods, the distribution of the query and key
matrix Q and K changes during the training procedure, which may invalidate the conclusion about
dstat. We leave the exact non-asymptotic analysis of the computational complexity for future work.

4.4 Workaround in implementation

A potential limitation with the implementation of the proposed method lies in the tricky fact that the
matrix inversion on GPU is much slower and numerically less stable than the same operation on CPU
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due to the different back-end libraries in the two platforms. We attempt to circumvent the problem by
adapting the strategy in Nyströmformer [Xiong et al., 2021] to our setting. Specifically, we use the
matrix-product-based iterative method [Razavi et al.] for finding approximate inverses, instead of
some division-based methods (such as the conjugate gradient method) which induces some instability
in model training.

To apply the iterative method and inverse matrix M = ST C̄S, we need to satisfy its assumption
[Razavi et al., Theorem 2] that ‖I −M‖ < 1. In practice, we instead pass the matrix D

−1/2
M (M +

γI)D
−1/2
M as an input to the iterative method, where γ > 0 is a small constant and the diagonal

matrix DM is defined as diag ((M + γI)1). We give the following lemma to justify our practical
usage of the method. The proof is deferred to Appendix E.

Lemma 3. Given a constant γ > 0, if matrices M is constructed as ST C̄S, and DM are defined
as above, then all the singular values of D−1/2M (M + γI)D

−1/2
M are within (0, 1), which implies

that ‖I −D
−1/2
M (M + γI)D

−1/2
M ‖ < 1.

We further comment that numerically an implicit risk of the Schulz-type iterative method we use is
the unintended consequence of “zero fill-in". If we use some sparse kernels (e.g. test functions with
bounded support) other than Gaussian kernels, the empirical kernel matrices are sparse while the
approximate inverse will converge to a dense matrix, which increases the computational cost.

4.5 Empirical approximation evaluation

Spectral norm, the maximum singular value of a matrix, is a computation-light indicator of matrix
approximation performance. In this work, we compare the spectral norm of the difference between
the outputs from attention functions and the output from vanilla self-attention with the same input.

We use the initialized and pretrained bert-base-cased models from Huggingface’s implementa-
tion [Wolf et al., 2019] . The input vector X is embedded from the tokenized raw text in Wikitext-2
dataset [Merity et al., 2017]. The query, key and value weight matrices in initialized or pretrained
models transform input X into Q,K, V of different distributions. We compare the results with differ-
ent sequence lengths and different numbers of features used in attention approximation methods. We
set the number of features in the range of 24 to 28. More features usually require more computation
resources.

Figure 1 shows the performance of the modified Nyström method on approximation error with regards
to the number of features. We conclude that for Skyformer the approximation is significantly better
with the increased number of features, while for other methods the gain is not obvious. The good
performance of the modified Nyström method also validates our previous claim that the Nyström
method is currently one of the most powerful methods in large-scale kernel machines acceleration.

Remark. Although in a single step the modified Nyström method in Section 4.2 can give low
approximation error, we do not recommend directly applying it to the original self-attention. With
some exploratory experiments on classification tasks, we find the variant suffers a more severe
gradient explosion issue than usual transformers. We speculate that it is because the matrix ST ĀS
(in the middle of Equation (6)) inherits the high condition number of the original attention score
matrices A, while the derivative of matrix inverse (

(
A−1

)′
= −A−1A′A−1) further amplifies the

condition number during backpropagation.

5 Experimental Results

Tasks and Datasets. We evaluate the proposed methods on five classification tasks on LRA bench-
mark [Tay et al., 2020b], which focuses on model quality under long-context scenarios: ListOps
[Nangia and Bowman, 2018], Text Classification on IMDb review dataset [Maas et al., 2011], Doc-
ument Retrieval on AAN dataset [Radev et al., 2013], Pathfinder [Linsley et al., 2018], and Image
Classification on CIFAR-10 [Krizhevsky et al., 2009]. The LRA benchmark covers diverse long-
sequence tasks in sequence length, task difficulty, and inspected model abilities. For example, ListOps
and Pathfinder evaluate the abilities to capture the long-range hierarchical dependency and spatial
dependency, respectively, which poses challenges for sparse attention pattern based methods. We
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Figure 1: Spectral norm results with different sequence lengths under different WQ,WK ,WV

settings, either from initialized or pretrained BERT models. All methods are approximating the
original self-attention output. Y axis: Lower spectral loss means better approximation. X axis:
Higher d (number of features) means visiting more elements in the original matrix and bringing more
computation costs. The label “Skyformer" here means that we use the algorithm behind Skyformer,
mainly Eq. (5), to approximate the raw attention score matrix A in self-attention. In this experiment,
“Skyformer" also needs to first approximate A, and then approximate D, as Performer does.

Figure 2: Validation accuracy changes with respect to training time for 50k steps. X axis: training
time (s). Y axis: classification accuracy.

Table 1: Classification accuracy (%) on LRA benchmark.

Model Text ListOps Retrieval Pathfinder Image AVG.

Self-Attention 61.95 38.37 80.69 65.26 40.57 57.37
Kernelized Attention 60.22 38.78 81.77 70.73 41.29 58.56

Nystromformer 64.83 38.51 80.52 69.48 41.30 58.93
Linformer 58.93 37.45 78.19 60.93 37.96 54.69
Informer 62.64 32.53 77.57 57.83 38.10 53.73
Performer 64.19 38.02 80.04 66.30 41.43 58.00
Reformer 62.93 37.68 78.99 66.49 48.87 58.99
BigBird 63.86 39.25 80.28 68.72 43.16 59.05

Skyformer 64.70 38.69 82.06 70.73 40.77 59.39
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Table 2: Running time (hour) and peak memory usage (GB). TC: Text Classification. LO: ListOps.
RE: Retrieval. PF: Pathfinder. IC: Image Classification. KA: Kernelized Attention.

Model Time (h) Memory (GB)
TC LO RE PF IC TC LO RE PF IC

Self-Attention 4.30 2.24 8.33 2.57 4.22 10.37 5.37 10.77 5.74 11.47
KA 3.91 1.99 7.46 2.42 4.05 5.73 5.94 10.46 6.38 6.38

Nystromformer 0.71 0.71 1.29 1.49 2.70 1.21 1.37 2.39 3.35 6.71
Linformer 0.65 0.60 1.13 1.09 2.19 0.99 0.99 1.89 1.97 3.94
Informer 1.60 1.19 2.91 2.39 3.90 5.12 4.85 5.77 4.75 9.51
Performer 0.77 0.73 1.41 1.40 2.55 1.09 1.09 2.16 2.20 4.39
Reformer 0.94 0.85 1.73 1.70 3.08 1.61 1.61 2.98 3.21 6.42
BigBird 2.00 1.88 3.81 3.39 6.53 2.83 2.71 4.97 4.97 9.95

Skyformer 1.02 1.29 1.86 2.03 3.40 1.59 1.75 3.15 4.13 8.26

report the classification accuracy on the test set, training time, and peak memory usage during training
for each task.

Baselines. Aside from the vanilla quadratic self-attention, we compare with Big Bird [Zaheer et al.,
2020], Performer [Choromanski et al., 2020], Linformer [Wang et al., 2020], Nyströmformer [Xiong
et al., 2021], Informer [Zhou et al., 2020], and Reformer [Kitaev et al., 2020]. Most methods
are approximating the vanilla full attention for efficiency and thus are not expected to have better
performance. As it is not realistic to exhaustively fine-tune all models and search for the best
performance under limited computation resources, we instead only replace the self-attention module
with the various attention methods and keep other experimental settings the same for fair comparisons.

Implementation Details. We conduct each experiment on one Tesla V100 SXM2 16GB. We use
the LRA evaluation benchmark reimplemented in PyTorch by Xiong et al. [2021]. We use a 2-layer
transformer model with 64 embedding dimension, 128 hidden dimension, 2 attention heads, and
mean pooling for classification. Batch size is selected conditioned on the memory requirements
of the standard self-attention method, which leads to 16 for Text Classification, 32 for ListOps, 16
for Document Retrieval, 128 for Pathfinder, and 256 for Image Classification. Learning rate is set
to 1e − 4 for Text Classification, ListOps, and Image Classification, and 2e − 4 for Retrieval and
Pathfinder. Each model on each task is trained for 50k steps, during which the best checkpoint with
the highest accuracy on the development set will be saved for evaluation. For comparable computation
complexity, we control the number of features to be 128 used in all methods (except Big Bird), under
which setting the models will visit 128 ·n elements in the attention matrix. For numerical consistency,
all experiment results are averaged across three runs with different random seeds.

We do not follow all settings in [Xiong et al., 2021] due to the hardware limitation. The compromises,
such as approximation dimension and gradient accumulations steps, might bring performance dif-
ferences comparing to results reported in [Xiong et al., 2021]. The training instability problem also
helps explain the performance gap.

Results. The training process of the standard softmax-based method is unstable as observed in
Figure 2: it takes more steps to reach the stationary distribution of its long-time limit, and it is more
easily getting stuck in a local minimum. Runs with different random seeds may bring divergent
performances, and probably leads to lower averaged scores. We have also tried directly approximating
the self-attention method with the Nyström method and observed numerical instability during training.

Replacing the softmax structure with Gaussian kernel somehow alleviates this instability problem
with boosted performance as shown in Table 1. However, the time and space requirement of
Kernelized Attention is not significantly improved compared to the original version, which serves as
the motivation to approximate Kernelized Self-Attention with Nyström method.

Though not necessarily the fastest, our proposed Skyformer can efficiently converge to the long-
time limit with comparable general performance in classification accuracy (Table 1) and resource
consumption (Table 2). The advantages over the standard self-attention are significant with consis-
tently less training time and generally better performance. For example, Skyformer brings nearly 4
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times speed-up on text classification and document retrieval while with 2.75% and 1.37% accuracy
improvement over the standard self-attention.

Limitations. The applications of Skyformer might be limited to long sequence tasks because for
small sequence length n the statistical dimension dstat might be close to n.

To make the claim above clear, we first reiterate that the efficiency of Skyformer is related to dstat.
As implied by Theorem 2, the intrinsic difficulty of approximating a raw attention score matrix
is concluded as dstat, which corresponds to the effective rank of matrix C̄. The complexity of
Skyformer depends on the sub-sample size d (the size of the sub-sampling matrix S). A large dstat
leads to a large d , and an inefficient application of the Nyström method.

The classical theory for statistical dimension only guarantees that dstat is small (compared to n)
when n is large enough, and it is possible the statistical dimension associated with a short sequence
might be even close to the sequence n. Therefore a large n serves as a condition to make the method
work. Figure 1 empirically shows that our method performs better with larger n’s.

6 Conclusions and future work

Motivated by the connection between kernel methods and self-attention, we introduce Kernelized
Attention, which replaces the softmax structure in self-attention with a Gaussian kernel. We also
propose Skyformer, which adapts the Nyström method to Kernelized Attention to improve its
efficiency. We expect the new model can enjoy more stable training while inheriting the strong
performance from self-attention. Extensive experiments verify our intuitions and show that both
Kernelized Attention and its Nyström approximation variant have comparable accuracy to the original
Transformer on the LRA benchmark.

Direct development of this work is the incorporation of further computation tricks in kernel methods,
such as the local and global approximation for gram matrix [Snelson and Ghahramani, 2007] and the
importance sampling in Nyström methods [Musco and Musco, 2017, Chen and Yang, 2021b,a]. Other
related questions include the choice of the kernel other than the Gaussian kernel in our kernelized
attention model. It is expected that for different tasks there will be specific kernels more proper than
the original self-attention. The results in this work also shed new light on the design of the attention
mechanism, which may benefit board downstream NLP tasks.
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