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Abstract
We explore two differentiable deep declarative
layers, namely least squares on sphere (LESS) and
implicit eigen decomposition (IED), for learning
principal matrix features (PMaF). It can be used
to represent data features with a low-dimensional
vector containing dominant information from a
high-dimensional matrix. We first solve the prob-
lems with iterative optimization in the forward
pass and then backpropagate the solution for
implicit gradients under a bi-level optimization
framework. Particularly, adaptive descent steps
with the backtracking line search method and
descent decay in the tangent space are studied
to improve the forward pass efficiency of LESS.
Meanwhile, exploited data structures are used to
greatly reduce the computational complexity in
the backward pass of LESS and IED. Empirically,
we demonstrate the superiority of our layers over
the off-the-shelf baselines by comparing the solu-
tion optimality and computational requirements.

1. Introduction
Principal matrix feature (PMaF)‡ in this work refers to a
single vector summarising a data matrix. It can be used
in deep feature representation or learning that is typical in
various areas, such as image analysis (Xu et al., 2014; Melas-
Kyriazi et al., 2022), natural language processing (Young
et al., 2017), weather prediction (Malakar et al., 2021), and
so on. It adapts learned features for downstream tasks and
studies matrix structures for fine-grained features with such
as a high sparsity or a low dimension (Ranzato et al., 2007;
Liu & Yan, 2011; Robles-Kelly, 2016; Liu et al., 2017).

In this work, we mainly focus on two optimization problems

†Parts of this work were completed when Hao Wang pursued
a master’s degree at the Australian National University. ‡PMaF
for the IED problem is equivalent to principal component analysis
(Mackiewicz & Ratajczak, 1993) for a covariance matrix. 1School
of Computing, CECC, ANU, Canberra, Australia. Correspondence
to: Zhiwei Xu <zhiwei.xu@anu.edu.au>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

Figure 1. With BLS and TWD, LESS converges faster and better.
The moving path starts from the initial value (red-dot) to the opti-
mal (black-star). More results are in the Appendix.

for PMaF and study two deep layers, namely least squares
on sphere (LESS) and implicit eigen decomposition (IED),
that are superior to off-the-shelf SciPy (nondifferentiable)
(Virtanen et al., 2020) and PyTorch (Paszke et al., 2019)
baselines in the effectiveness and/or efficiency of optimiza-
tion and differentiability for end-to-end learning.

In LESS, the proposed adaptive gradient descent steps on
the tangent plane greatly reduce the number of iterations,
see Fig. 1; in IED, the alternatives, power iteration (PI)
(von Mises & Pollaczek-Geiringer, 1929) and simultaneous
iteration (SI) (McCormick & Noe, 1977), achieve better
solutions for non-negative symmetric and nonsymmetric
matrices than the baseline. Meanwhile, we use implicit
differentiation methods, mainly deep declarative network
(DDN) (Gould et al., 2021) in this work, with exploited ma-
trix structures (Gould et al., 2022) to dramatically reduce the
computational requirements. Comprehensive experiments
are provided in the Appendix.

2. Deep Declarative Layers
2.1. Least Squares on Sphere

Given A ∈ Rm×n and b ∈ Rm, the least squares problem
with solution constrained on a unit sphere is defined as

minimizeu∈Rnf(A,b,u) ≜
1

2
∥Au− b∥2 ,

subject to ∥u∥2 = 1 ,

(1)

where ∥·∥ is the ℓ2-norm. For the notation simplicity, we
denote f(A,b,u) by using f(u). Since u is constrained
on the sphere, the closed-form of the optimal y = A−1b
no longer holds. The projected gradient descent (PGD)
method is used to decrease the energy in the gradient descent
direction while guaranteeing the solution feasibility.
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We first describe the vanilla PGD, PGD with direction
weight decay, and PGD projected onto the Riemannian man-
ifold (directly on the constraint sphere). For monotonic
energy convergence, either the backtracking line search
method or a simple yet effective step decay in the tangent
space is used for fast optimal solution search.

1) Projected Gradient Descent (PGD). We refer to the Ap-
pendix for the details of the widely used PGD method (Ak-
ilov & Kantorovich, 1982; Lemarechal, 2012).

2) Direction Weight (DW). Since the descent step η in PGD
needs to decrease for a fine search when ut approaches the
optimal solution, reducing η with weight wt adaptive to the
descent direction is desirable. Given f(u) in Eq. (1), the
center u0 = (A⊤A)−1A⊤b indicates if the least squares
problem is an inner (non-convex) or outer (convex) equality-
constrained problem and also the direction from the con-
straint center to the solution.

With the optimal unconstrained solution, u0 is parallel to the
descent direction dt. Hence, we define a direction weight
for each descent step as

wt = 1− Sc(dt,u0) , (2)

where

dt =

{
−∇f(ut) if ∥u0∥ ≥ 1

∇f(ut) otherwise
(3)

and Sc(a,b) = a⊤b/ (∥a∥ ∥b∥) is the cosine similarity
to measure the direction homotropy. When ut is optimal,
wt = 0 such that wtη = 0 terminates the update of ut.

3) PGD on Riemannian Manifold (RM). As the solution
is constrained on a sphere, using Riemannian geodesic dis-
tance is promising to learn better feature distribution than
using the Euclidean distance (Barachant et al., 2010; Wang
et al., 2017). Therefore, we define the solution projection
onto the Riemannian manifold (Boumal, 2020) as

ProjRM (−∇f(ut)) =
(
In − utu

⊤
t

)
(−∇f(ut)) , (4)

where In is an n× n identity matrix. The solution update
at (t+ 1) follows

ut+1 = ProjSph (ut + ηProjRM (−∇f(ut))) , (5)

where η = 1 or can be derived from∇f(ut+1) = 0 as

η =
(Aut − b)

⊤
A
(
In − utu

⊤
t

)
A⊤(Aut − b)∥∥A(In − utu⊤

t )A
⊤(Aut − b)

∥∥2 . (6)

See the Appendix for the Riemannian manifold projection.

4) Backtracking Line Search (BLS). While the direction
weight method causes many iterations if the solution is
far from optimal, a guarantee of energy reduction in every

iteration is crucial, requiring a suitable descent step. For
this to hold, we refer to the backtracking line search method
(Boyd & Vandenberghe, 2004) and apply the first-order
Lagrangian form of Eq. (1)

f(ut + η∆ut) ≤ f(ut) + αη∇⊤f(ut)∆ut , (7)

where constant α ∈ (0, 0.5) is for the maximum energy de-
crease at the (t+ 1)th iteration for the descent monotonicity.
Otherwise, the descent step would be decayed by η ← βη
with β ∈ (0, 1) to avoid surpassing the optimal solution.

5) Tangent Weight Decay (TWD). Alternatively, since a
large descent step tackles the monotonic energy decrease in
the update around the optimal solution, it could be unable
to converge on the manifold. Hence, the descent step is
decayed in the tangent space on the same side of the descent
direction with decay rate β, that is η ← βη, when

Sc (ProjRM (−∇f(ut)) ,ProjRM (−∇f(ut+1))) < 0 ,
(8)

with
ut+1 = ut + ηProjRM (−∇f(ut)) . (9)

In short, Eq. (8) indicates that the solution update at the (t+
1)th iteration causes a “reverse” descent direction, usually
in (90, 180] degrees, around the optimal solution, and thus,
a smaller step is preferred.

2.2. Implicit Eigen Decomposition

Generally, the eigen decomposition problem can be for-
mulated by solving the optimization f : A ∈ Rm×m →
{λ,u} with λ as a vector of n largest eigenvalues and
u ∈ Rm×n as the corresponding eigenvectors,

minimizeu∈Rm×nf(A,u) ≜ −tr
(
u⊤Au

)
,

subject to h (u) ≜ u⊤u = In ,
(10)

where tr() is the trace function over all n eigenvalues. The
optimal solution in Eq. (11) satisfies Eq. (12) as

y = argminu∈Rm×nf(A,u) , (11)
Ayi = λiyi, ∀i ∈ N = {1, ..., n} . (12)

The principal matrix component refers to the eigenvector
associated with the largest eigenvalue, for which we use the
power iteration algorithm and the simultaneous iteration al-
gorithm. For a complete analysis, solution update formulas
are provided below.

Solver 1. Power Iteration (PI). Given a randomly initialized
eigenvector u0, the solution update at time (t+ 1) follows

ut+1 = Aut/ ∥Aut∥ , (13)

and terminates (upon the convergence or the maximum iter-
ation) at t = K for the principal eigenvector and eigenvalue,

y = uK and λ = y⊤Ay . (14)
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Solver 2. Simultaneous Iteration (SI). QR decomposition
is required for iterative updates of the input and the solution.
The initial input x0 = A and the updates at time t follow

{Qt,Rt} = QR(xt) and xt+1 = xtQt . (15)

The principal eigenvector is the component of QK corre-
sponding to the largest eigenvalue λ = max(RK).

Solution consistency for effective backpropagation. The
eigen decomposition problem defined in Eq. (10) has two
optimal solutions with reverse directions due to the quadrat-
ics. This could happen either in the intermediately updated
solution ut (either Eq. (13) or Eq. (15)) or in the optimal
solution y in each learning epoch for the same data sample.
To alleviate the ineffectiveness of these updates, one can
apply a reference direction r such that the optimal solution
y updates in the same direction of r as

Historical : ut ← V (ut,ut−1)ut , (16)
Hard-coded : y← V (y, r)y , (17)

where V(a,b) = Sign
(
a⊤b

)
if (a ̸⊥ b) and otherwise 1

and Sign() calculates the sign value of a scalar. If ut is for
eigenvectors of multiple eigenvalues, only the diagonals of
u⊤
t ut−1 are used for the sign values.

3. Implicit Differentiation
Given the optimal solutions, their gradients over the input
entries enable end-to-end learning. Without unrolling the
iterations of the solvers, we use a single-step method with
implicit differentiation (Gould et al., 2021), fixed-point theo-
rem (for IED), and exploited structures (Gould et al., 2022).

3.1. Deep Declarative Networks based Gradients

With the iterative optimization as the forward pass, the back-
ward pass of y to A in Eq. (1) and Eq. (10) is required.
Backtracking the forward pass, however, is inefficient and
sometimes infeasible due to the discrete solution. Hence,
we use the deep declarative network method (Gould et al.,
2021) to efficiently calculate∇XL with∇Xy, where L is
the loss from the upper problem in the bi-level optimization
and X and Y indicate the input variable (can be multiple)
and the optimization solution respectively. It follows

K = ∇Y L
(
H−1A⊤ (AH−1A⊤)−1

A− In

)
H−1

, (18)

∇XL = KB . (19)

1) LESS. The components of K in Eq. (18) are

A = 2y⊤ ∈ R1×n , (20)

B = ∇2
XY f(A,b,y) ∈ Rn×(m×n) , (21)

H = A⊤A− 2βIn ∈ Rn×n , (22)

β =
1

2
y⊤A⊤ (Ay − b) ∈ R . (23)

Proposition 3.1. (Exploited Hessian structure for LESS)
Rather than applying Jacobian and Hessian operations, an
accumulation by parts approach with the exploited structure
of B greatly improves the implementation efficiency. Recall
that B ∈ Rn×(m×n), A ∈ Rm×n, and y ∈ Rn. Set indices
i, j ∈ N = {1, ..., n} for the dimensions related to n such
that B = [Bij ], A = [Ai], and y = [yj ]. Then,

Bij = Aiy
⊤
j , ∀i, j ∈ N ,

Bii ← Bii + (Ay − b), ∀i ∈ N .

(24)

(25)

Proof Sketch. See the Appendix for details. □

2) IED. Similarly, for IED, one has

A = 2y⊤ ∈ R1×m , (26)

B = ∇2
XY f(A,y) ∈ Rm×(m×m) , (27)

H = −
(
A+A⊤)− 2βIm ∈ Rm×m , (28)

β = −1

2
y⊤ (Ay +A⊤y

)
∈ R . (29)

Proposition 3.2. If the input A of the objective function
Eq. (10) is symmetric, the Lagrange multiplier equals the
negative largest eigenvalue, that is, β = −λ.

Proof. Since ∇Y f(A,y) = β∇Y h(A,y) in Eq. (17) of
(Gould et al., 2021) for the minima,∇Y f(A,y) = −(Ay+
A⊤y)⊤ and∇Y h(A,y) = 2y⊤ for the problem defined in
Eq. (10), and Ay = λy, one has −(λy+A⊤y) = 2βy. If
A⊤ = A, then A⊤y = Ay = λy, and thus, β = −λ.

Proposition 3.3. (Exploited Hessian structure for IED)
Recall that B ∈ Rm×(m×m) and y ∈ Rm. Set indices
i, j, k ∈ M = {1, ...,m} for the dimensions related to m
such that B = [Bijk] and y = [yi]. Then,

Bijk = 0, ∀i, j, k ∈M ,

Biji ← Biji − yj , ∀i, j ∈M ,

Biij ← Biij − yj , ∀i, j ∈M .

(30)
(31)
(32)

Proof Sketch. This can be easily proved by finding the
structure of B from an example. □

Nevertheless, B requires (4m3/10242)MB memory in
the single-precision floating-point format, for instance,
4,096MB for m = 1024. With the exploited Hessian struc-
ture of B and the vector-Jacobian product for ∇XL, how-
ever, B can be avoided by using merely y.

Proposition 3.4. (Exploited gradient structure for IED) B
can be split into y dependencies for∇XL ∈ Rm×m as

∇XL = −Ky⊤ − yK⊤ . (33)

Proof. See the Appendix for details.
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3.2. Implicit Function Theorem based Gradients

The implicit function theorem based gradients only apply to
eigen decomposition. By using PI for the largest eigenvalue
(to be positive), the implicit function is

f(A,ut,ut+1) = ut+1 −Aut/ ∥Aut∥ (34)

with the input matrix A ∈ Rm×m and the solution u ∈
Rm×n. Upon the convergence, y = ut+1 = ut, and thus,

f(A,y) = y −Ay/ ∥Ay∥ . (35)

Applying the implicit function theorem to f(A,y) achieves

∇Xf(A,y) +∇Y f(A,y)∇Xy = 0 , (36)

∇Xy = − (∇Y f(A,y))
−1∇Xf(A,y) . (37)

For the notation consistency with Sec. 3.1, we denoteH =
∇Y f(A,y) ∈ Rm×m, B = ∇Xf(A,y) ∈ Rm×(m×m),
and ∇Xy = −H−1B ∈ Rm×(m×m). Note that ∇Xy is
in the same form of Eq. (19) as an unconstrained problem.
Then, ∇Y L ∈ Rm follows

∇XL = ∇Y L∇Xy = −∇Y LH−1B , (38)

H = Im −
(
Im − yy⊤)A/λ ,

B = −
(
Im − yy⊤)y⊤/λ .

(39)

(40)

Different from using multiple eigenvalues for gradients
(Magnus & Neudecker, 2007), only the largest one is used.
Again, it is strongly encouraged to use the vector-Jacobian
product to calculate∇XL over B for memory reduction.

4. Experiments
Experiments are on a 3090 GPU and PyTorch 1.12.0. The
code is at https://github.com/anucvml/ddn.git. See the Ap-
pendix for evaluation standards including fixed-point dis-
tance (FPD) in Eq. (41), eigen distance in Eq. (43), and
mean relative error (MRE) in Eq. (44). We highlight ours .

4.1. Evaluation on LESS. We show the effectiveness in
Fig. 1 and Table 1 and efficiency in Table 2. Fig. 1 shows
a case where ours can achieve fewer iterative steps when
optimizing Eq. (1). In Table 1, ours with BLSOne and
TWD achieve comparable low MRE with the SciPy solver
(Virtanen et al., 2020) (supports only CPU and not differ-
entiable) and outperform the vanilla PGD and PGD+RM.
With exploited structures including Prop. 3.1, ours is faster
and more memory efficient than without those structures
(“AutoDiff”). More results are in the Appendix.

4.2. Evaluation on IED. We show the effectiveness in Fig. 2
and efficiency in Table 3. In Fig. 2, PI and SI achieve lower
eigen distance and FPD than PyTorch eigh() (“AutoDiff”)
(Paszke et al., 2019). With exploited structures in Table 3,
ours achieve higher speed or less memory without ignoring
their effectiveness. More results are in the Appendix.

Table 1. With 1,000 random data from N (0, 1). “In” and “Out”
refer to the number of failed cases inner and outer of the sphere
respectively. “Imp.” is the number of cases with FPD ≤ the SciPy
baseline. See the Appendix for more results.

Method Size 2×2 Size 64×32
In↓ Out↓ Imp.↑ MRE↓ In↓ Out↓ Imp.↑ MRE↓

PGD 172 353 389 10.84 548 440 52 0.15
+RM 0 118 844 4.30 30 0 980 0.00
+RM+BLSOne 0 14 938 0.14 6 0 994 0.00
+RM+TWD 0 0 806 0.00 29 0 954 0.00

Table 2. Backward speedup with exploited structures. Numbers
are averaged over 100 samples. “PGD+RM+TWD” is used for
LESS. “Speedup” is (“AutoDiff”-“LESS”)/“LESS”.

Size 256 ×8×64 Size 256×16×128
Time (s) Memory (MB) Time (s) Memory (MB)

AutoDiff 4.44 65.22 8.64 519.32
LESS 0.01 49.20 0.02 325.70
Speedup ×444↑ ×0.33↑ ×432↑ ×0.59↑

Figure 2. Precision evaluation with symmetric A in float32. See
the Appendix for nonsymmetric A and simulation on ResNet50.

Table 3. Efficiency evaluation with symmetric A and solution size
5 × 512. “J”: autodiff Jacobian without exploited structures; “E”:
our differentiation with exploited structures. See the Appendix for
results with nonsymmetric A and more sizes.

Method GPU Time (s) GPU Memory (MB)
Forward Backward Forward Backward

AutoDiff 0.0758 0.0005 20.56 24.99
PI-DDN-J 0.0069 0.0436 5.55 2570.06
PI-IFT-J 0.0070 0.6942 5.55 5125.00
PI-DDN-E 0.0069 0.0114 5.55 16.01
PI-IFT-E 0.0069 0.0043 5.55 31.01
SI-DDN-J 1.0623 0.0419 32.02 2570.06
SI-IFT-J 1.0624 0.7120 32.02 5125.00
SI-DDN-E 1.0622 0.0113 32.02 16.01
SI-IFT-E 1.0625 0.0042 32.02 31.01

5. Conclusion
We explore two deep layers, LESS and IED, for PMaF that
can be used in end-to-end learning. Either optimization im-
provements or alternatives enhance the optimization effec-
tiveness and/or efficiency. We also enable the differentiation
feasibility and largely reduce computational requirements
using DDN and IFT based gradients with exploited struc-
tures. Extensive experiments show the benefits of our layers
over the baseline from SciPy optimizer or PyTorch function.
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Appendix
A. Evaluation Standards

1) Fixed Point Distance (FPD). This measures the distance of the estimated solution to the minimum of the objective
function, where the minimum objective value is unnecessary to be zero given problem constraints.

LESS : F(y) = ∥Ay − b∥ , (41)

IED : F(y) =

∥∥∥∥y − Ay

∥Ay∥

∥∥∥∥ . (42)

2) Eigen Distance. This is intuitive from Eq. (12) to evaluate the eigen solution,

D(y) = ∥Ay − λy∥ . (43)

3) Mean Relative Error (MRE). Given a reference (generally ground truth) yr and kth sample, the mean relative error is

MRE(y,yr) =
1

K

K∑
k=1

F(yk)− F(yr
k)

F(yr
k)

× 100% , (44)

which can be negative when the estimation y outperforms the reference yr.

B. Projected Gradient Descent and Riemannian Manifold Projection

Figure 3. Descent direction projected onto a Riemannian manifold for the sphere constraints. −∇f(xt) is the PGD direction, G =
ProjRM(−∇f(xt)) is the descent direction on the Riemannian manifold, and xt is on the Riemannian manifold.

B.1. PROJECTED GRADIENT DESCENT

For ease of optimization, the solution is initialized with the least squares solution without constraints as

u0 =
(
A⊤A

)−1

A⊤b , (45)
u0 ← ProjSph(u0) . (46)

Then, the solution is iteratively updated in the gradient descent direction ∆ut at tth iteration by following

ut+1 = ut + η∆ut , (47)
ut+1 ← ProjSph(ut+1) (48)

with

∆ut = −∇f(ut) , η =

∥∥A⊤(Aut − b)
∥∥2

∥AA⊤(Aut − b)∥2
, (49)

where η is derived by setting ∇f(η) ≡ ∇f(ut+1) = 0 and ProjSph(u) = u/ ∥u∥ is the projection onto the unit sphere.
The solution update terminates when the objective value decrease is no greater than a predefined tolerance, 1.0e−7 in our
case, or when it reaches the maximum number of iterations, 100 in our case.

7
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B.2. RIEMANNIAN MANIFOLD PROJECTION

Since the solution is constrained on the sphere, a simple projection onto the sphere via gradient descent is inefficient
considering the inactive orthogonal descent component. In Fig. 3, considering only the descent component on the tangent
plane benefits the solution optimality and optimization process, comparing “PGD” and “PGD+RM” in Table 4.

P =
−xt

∥xt∥
∥∇f(xt)∥ cosθ =

−xt

∥xt∥
∥∇f(xt)∥

∇f(xt)
−xt

∥xt∥

∥∇f(xt)∥
∥∥∥ xt

∥xt∥

∥∥∥ =
xtx

⊤
t

∥xt∥2
∇f(xt) , (50)

then

G = −∇f(xt) +P = −∇f(xt) +
xtx

⊤
t

∥xt∥2
∇f(xt) . (51)

Hence,

ProjRM (−∇f(xt)) =

(
In −

xtx
⊤
t

∥xt∥2

)
(−∇f(xt)) , (52)

where xt ∈ Rn,∇f(xt) ∈ Rn, In is an n× n identity matrix.

C. Gradient Transformation with Flipped Eigenvalues

For different orderings of multiple eigenvalues, for instance, descending-order (concerning the order of eigenvalues) versus
ascending-order eigenvalues, the gradients of their associated eigenvectors need to be flipped according to the flipping of
the eigenvalues. Recall the eigen decomposition problem defined in Eq. (10). Reserve all of the eigenvalues of A, that is
n = m, a flipping function is defined as g(x) : Rm×m → Rm×m, that is

g(x) =

0 · · · 1
... . .

. ...
1 · · · 0

x

0 · · · 1
... . .

. ...
1 · · · 0

 = I∗mxI∗m , (53)

where (I∗nx) flips x in the vertical direction and (xI∗n) in the horizontal direction. For the notation simplicity, we denote
g(x) = xflip. Then,

Au = Λu = Iflip
m ΛflipIflip

m u , (54)

Iflip
m Au = ΛflipIflip

m u , (55)

Iflip
m A

(
Iflip
m uflipIflip

m

)
= ΛflipuflipIflip

m , (56)

Aflipuflip = Λflipuflip , (57)

where the input A ∈ Rm×m, eigenvectors u ∈ Rm×m, and eigenvalue matrix Λ ∈ Rm×m. It indicates that to obtain
the reverse-order eigenvalues, A needs to be flipped, which also leads to the flipping of u. Therefore, to compare the
descending-order eigen decomposition with an ascending-order one, both A and u need to be flipped.

For the gradient of loss L over the flipped eigenvectors uflip, that is ∇uflipL, since uflip = Iflip
n uIflip

n ,

∇uflipL = Iflip
n ∇uflipLIflip

n = (∇uL)
flip

. (58)

In sum, for the reverse-order eigenvalues, gradients of their associated eigenvectors need to be flipped in both the horizontal
and vertical directions, that is to apply Eq. (53), when the eigenvalue order (or equivalently the eigenvector order) is flipped.

D. Proof and Demo Code for Proposition 3.1

We explore the matrix structure by taking an example with m = 2 and n = 3, that is A, b, and y as

A =

[
a00 a01 a02
a10 a11 a12

]
, b =

[
b0
b1

]
, y =

y0y1
y2

 . (59)

8
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The Jacobian vector and Hessian matrices of the objective function in Eq. (1) over the solution y and the Hessian matrix
over entries A and b are

∇Y f(A,b,y) = A⊤ (Ay − b)

=

(a200 + a210)y0 + (a00a01 + a10a11)y1 + (a00a02 + a10a12)y2
(a01a00 + a11a10)y0 + (a201 + a211)y1 + (a01a02 + a11a12)y2
(a02a00 + a12a10)y0 + (a02a01 + a12a11y1 + (a202 + a212)y2)

−
a00b0 + a10b1
a01b0 + a11b1
a02b0 + a12b1

 , (60)

∇2
bY f(A,b,y) = −

a00 a10
a01 a11
a02 a12

 = −A⊤ , (61)

∇2
AY f(A,b,y) =



[
2a00y0 + a01y1 + a02y2 a00y1 a00y2
2a10y0 + a11y1 + a12y2 a10y1 a10y2

]
[
a01y0 a00y0 + 2a01y1 + a02x2 a01y2
a11y0 a10y0 + 2a11y1 + a12x2 a11y2

]
[
a02y0 a02y1 a00y0 + a01y1 + 2a02y2
a12y0 a12y1 a10y0 + a11y1 + 2a12y2

]


−



[
b0 0 0
b1 0 0

]
[
0 b0 0
0 b1 0

]
[
0 0 b0
0 0 b1

]



=



[
a00y0 a00y1 a00y2
a10y0 a10y1 a10y2

]
[
a01y0 a01y1 a01y2
a11y0 a11y1 a11y2

]
[
a02y0 a02y1 a02y2
a12y0 a12y1 a12y2

]


+



[
a00y0 + a01y1 + a02y2 0 0
a10y0 + a11y1 + a12y2 0 0

]
[
0 a00y0 + a01y1 + a02y2 0
0 a10y0 + a11y1 + a12y2 0

]
[
0 0 a00y0 + a01y1 + a02y2
0 0 a10y0 + a11y1 + a12y2

]


−



[
b0 0 0
b1 0 0

]
[
0 b0 0
0 b1 0

]
[
0 0 b0
0 0 b1

]



=



[
a00
a10

]
y⊤

[
a01
a11

]
y⊤

[
a02
a12

]
y⊤


+

Ay 0 0
0 Ay 0
0 0 Ay

−
b 0 0
0 b 0
0 0 b



=

A0y
⊤

A1y
⊤

A2y
⊤

+

Ay − b 0 0
0 Ay − b 0
0 0 Ay − b

 , (62)

where the left term can be written as Ai for all i ∈ N = {1, ..., n} and the right term assigns (Ay − b) to the diagonal of
∇2

AY f(A,b,y) which is B in Eq. (21). One can represent it as

Bij = Aiy
⊤
j , ∀i, j ∈ N , (63)

Bii ← Bii + (Ay − b), ∀i ∈ N . (64)

One can also obtain the same structure from different examples. It is clear that forming B using A, b, and y in this way
avoids calculating the zero vectors and matrices, and thus, becoming more efficient than using Jacobian to calculate every
element of such a spare matrix. To this end, we arrive at the result in Prop. 3.1. □

9
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Meanwhile, we show an implementation example comparing the automatic Jacobian (without exploited structures) and ours
with the exploited structure in Listing 1.

Listing 1. An implementation example of exploited Hessian structure for LESS.
1 import torch
2 from torch.autograd import grad
3 from torch.autograd.functional import jacobian as J
4
5 def obj_fnc(A, u, b):
6 Au_b = torch.einsum(’bmn,bn->bm’, A, u) - b
7 loss = 0.5 * torch.einsum(’bm,bm->b’, Au_b, Au_b)
8
9 return loss.sum()

10
11 # ==== Autogradient
12 def dfdy_auto_fnc(A, u, b):
13 return grad(obj_fnc(A, u, b), (u), create_graph=True)[0]
14
15 def dffdAy_auto_fnc(A, u, b):
16 m, n = A.shape[1:3]
17 D = []
18
19 with torch.enable_grad():
20 for A_p, u_p, b_p in zip(A, u, b):
21 A_p = A_p.view(1, m, n)
22 u_p = u_p.view(1, n)
23 b_p = b_p.view(1, m)
24 D.append(J(lambda A: dfdy_auto_fnc(A, u_p, b_p), (A_p)))
25
26 D = torch.cat(D, dim=0)
27
28 return D
29
30 # ==== Structure exploited
31 def dfdy_fnc(A, u, b):
32 Au_b = torch.einsum(’bmn,bn->bm’, A, u) - b
33
34 return torch.einsum(’bmn,bm->bn’, A, Au_b)
35
36 def dffdAy_fnc(A, u, b):
37 batch, m, n = A.shape
38 D = A.new_zeros(batch, n, m, n)
39
40 with torch.no_grad():
41 for i in range(n):
42 D_1 = torch.einsum(’bm,bn->bmn’, A[:, :, i], u)
43 D_2 = torch.einsum(’bmn,bn->bm’, A, u) - b
44 D[:, i] = D_1
45 D[:, i, :, i] += D_2
46
47 return D

E. Proof for Proposition 3.4

For the principal matrix features, the implicit differentiation is on the eigenvector associated with the largest eigenvalue as

∇XL(y) = ∇Y L(y)∇Xy = ∇Y L(y)
(
H−1AT

(
AH−1A⊤)−1

AH−1 −H−1
)
B = KB ∈ Rm×m , (65)

where K ∈ Rm is a vector given the upper-level loss L ∈ R from the bi-level problem. Then,

∇XL(y) = −Ky⊤ − yK⊤ . (66)

10



PMaF: Deep Declarative Layers for Principal Matrix Features

We find the matrix structure by taking the example of m = 2, where K = [k0, k1]
⊤ and y = [y0, y1]

⊤. Then,

B = B0 + B1 =

[
−y0 −y1 0 0
0 0 −y0 −y1

]
+

[
−y0 0 −y1 0
0 −y0 0 −y1

]
(67)

and

KB = KB0 +KB1 =

[
−k0y0 −k0y1
−k1y0 −k1y1

]
+

[
−k0y0 −k1y0
−k0y1 −k1y1

]
= −

[
k0
k1

] [
y0 y1

]
−
[
y0
y1

] [
k0 k1

]
= −Ky⊤ − yK⊤ ,

(68)
where KB0 is the outer-product of K and (−y), both KB1 and KB0 will be reshaped to m×m matrices. One can also apply
the same rule to different examples, which will have the same structure in Eq. (66). Clearly, using y ∈ Rm for ∇XL(y) is
much more efficient and requires much less memory than using B ∈ Rm×(m×m). To this end, we prove Prop. 3.4. □

F. More Results of LESS Optimization

In addition to Fig. 1, Fig. 4 contains the full list of the compared methods. The inputs for Fig. 1 are

A =

[
0.569525 −1.254572
0.414020 0.124439

]
and b =

[
−1.583332
−0.286124

]
. (69)

In this case, the vanilla PGD requires more iterations than our “PGD+RM+BLSOne” and “PGD+RM+TWD”. Statistically,
from Table 4, when comparing “PGD” with “PGD+RM”, all the metrics are better than “PGD”. With “+BLSOne” and
“+TWD”, these can be further improved.

Table 4. Effectiveness evaluation on 1,000 random data sampled from N (0, 1) normal distribution. Bold: the best, underline: the second
best. “PGD”: projected gradient descent (maximum 100 iterations), “RM”: Riemannian manifold, “BLS”: backtracking line search
(α=0.5 and β=0.8), “TWD”: tangent weight decay on Riemannian manifold (β=0.9), “DW”: direction weight, “In” and “Out”: the
number of failed cases inner and outer of the sphere respectively, where the case is regarded as failed when the solution update reaches
the maximum 100 iterations, “Imp.”: the number of cases with energy no greater than SciPy. Problem sizes, m×n for A, are 2×2 (282
inner and 718 outer), 64×32 (555 inner and 445 outer), and 1024×256 (all inner).

SciPy PGD RM BLS TWD DW 2×2 64×32 1024×256
η = 1 η = ∇ In↓ Out↓ Imp.↑ MRE↓ In↓ Out↓ Imp.↑ MRE↓ In↓ Out↓ Imp.↑ MRE↓

✓ - - - - - - - - - - - -
✓ 172 353 389 10.84 548 440 52 0.15 1000 - 0 1.35
✓ ✓ 179 438 37 4.89 474 363 63 0.07 1000 - 0 0.47
✓ ✓ 0 118 844 4.30 30 0 980 0.00 4 - 1000 -0.03
✓ ✓ ✓ 0 14 938 0.14 6 0 994 0.00 4 - 1000 -0.03
✓ ✓ ✓ ✓ 175 421 40 3.51 285 142 286 0.01 984 - 999 -0.03
✓ ✓ ✓ 0 108 853 4.21 7 0 994 0.00 2 - 1000 -0.03
✓ ✓ ✓ ✓ 204 536 17 1.19 472 355 92 0.04 1000 - 0 0.42
✓ ✓ ✓ 0 0 806 0.00 29 0 954 0.00 4 - 1000 -0.03
✓ ✓ ✓ ✓ 204 533 15 3.12 466 352 90 0.04 1000 - 0 0.42
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Figure 4. Illustration of the iterative optimization in LESS. Each row is a sample with 6 methods. “blue dash”: the least squares function;
“red solid”: the sphere constraints; “green solid”: solution updates before and after ProjRM(); “green dot-dash”: the least squares
function with the final solution; “red dot”: the initial solution; “black star”: the final solution, not always the optimal. The least
squares function with the exact solution (green dot-dash) should be tangent to the sphere (red solid). Our “PGD+RM+BLSOne” and

“PGD+RM+TWD” require much fewer iterations than the others for the optimal solution with comparable fixed point distance (FPD).
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G. Evaluation of IED Precision and Computational Requirements

G.1. SYMMETRIC AND NONSYMMETRIC DATA SAMPLING

Sampling Distributions. Our evaluated data A are sampled from the standard Gaussian distributionN (0, 1), uniform distri-
bution in [0, 1), von Mises distribution in V(0, 1) (von Mises, 1964), and random choices from [0.0, 10.0), with absolute val-
ues, where A← A+A⊤ is applied for symmetry. We use numpy.random.randn(), numpy.random.uniform(),
numpy.random.vonmises(0, 1), and numpy.random.choice(10.0), respectively, from the NumPy library (Harris
et al., 2020). They achieve similar numerical ranges as that from the Gaussian distribution in Figs. 5-6. Hyperparameters
required by the sampling methods are not limited to the settings in this work, such as the mean and variance in the von Mises
distribution and the value upper bound in the random choices.

(a) ED, float32 (b) ED, float64 (c) FPD, float32 (d) FPD, float64
Figure 5. Symmetric A sampled from Gaussian distribution with activation, precision evaluation with eigen distance and FPD.

(a) ED, float32 (b) ED, float64 (c) FPD, float32 (d) FPD, float64
Figure 6. Nonsymmetric A sampled from Gaussian distribution with activation, precision evaluation with eigen distance and FPD.

(a) Symmetric A, ED (b) Symmetric A, FPD (c) Nonsymmetric A, ED (d) Nonsymmetric A, FPD
Figure 7. Evaluation on 3 data sizes within the memory capacity as it requires a (2048× 82)×m2 dimension fully-connected layer in
ResNet50, where m = {32, 64, 128}. All data is in float32. Both metrics are the less the better.

The feasibility lies in 1) the simulation of normalized outputs (such as logits or softmax probability) of neural networks with
an absolute operation, 2) the requirement of positive largest eigenvalue for IFT in Eq. (34). For nonsymmetric sampling, as
we test 10,000 random samples (each with batch size 5) under this setting, the power iteration and simultaneous iteration
algorithms can always achieve almost 0 eigen distance and 0 fixed-point distance. In contrast, PyTorch eigh()*, denoted as
“AutoDiff”, has a much larger eigen distance, particularly in float32.

Simulation on ResNet50. We further generate random samples by using a modified ResNet50 with pretrained weights,
removing the adaptive average pooling layer and adjusting the last fully-connected layer to obtain m2 out channels (instead

*PyTorch eigh() was designed for symmetric A and PyTorch eig() for complex and general data for nonsymmetric A, but we are 1)
not aim at complex data and 2) to avoid using eigh() for symmetric matrix but rather PI or SI by investigating these results.

13
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of 1,000) which will then be reshaped to a m×m matrix, followed by the absolute operation and symmetry forA if required.
It follows: random data with size (5× 3× 256× 256) that is (batch × channel × height × width) sampled fromN (0, 1)→
ResNet()→ reshape to m×m→ absolute operation→ (A← A+A⊤) if symmetric A is required. In Figs. 7, “PI” and
“SI” still achieve better eigen solutions than “AutoDiff” on both symmetric and nonsymmetric A.

G.2. ADDITIONAL EXPERIMENTS ON COMPUTATIONAL REQUIREMENTS

We evaluate the solution precision with eigen distance and fixed-point distance on symmetric and nonsymmetric A in Fig. 5
and Fig. 6 respectively. Additionally, the computational requirements include running time and GPU memory in Tables 5-10
for both symmetric and nonsymmetric A. Although “AutoDiff” achieves faster speed in most cases, its precision is inferior
to “PI” and “SI”, particularly in float32. For the evaluation completion, we provide all of these results.

Meanwhile, since a solver achieves the same solutions given the same inputs, it consumes the same (at least quite similar)
computational resources in the backward pass. We modulate each solver with different backward propagation methods into
individual layers and provide all the forward and backward results.

In all these tables, implicit differentiation without exploited structure (“J”) and with our exploited structure (“E”) clearly
distinguishes the benefits of exploiting the Jacobian and Hessian matrices in both the running time and memory requirements.
For those with out-of-memory issues or extensive running time, we mark the results with “-” in the tables.

Table 5. Implicit eigen decomposition (IED) layer, CPU time (s) for symmetric A. “AutoDiff”: PyTorch eigh() function; “DDN”:
deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256
Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.0004 0.0001 0.0007 0.0002 0.0022 0.0003 0.0075 0.0011
AutoDiff-DDN-E 0.0004 0.0491 0.0008 0.0942 0.0021 0.1909 0.0080 2.0692
PI-unroll 0.0047 0.0121 0.0049 0.0175 0.0051 0.0344 0.0058 0.0984
PI-DDN-J 0.0038 0.0014 0.0039 0.0026 0.0042 0.0096 0.0049 0.0462
PI-IFT-J 0.0037 0.0230 0.0039 0.0452 0.0041 0.1103 0.0052 1.0283
PI-DDN-E 0.0037 0.0005 0.0039 0.0007 0.0041 0.0012 0.0048 0.0025
PI-IFT-E 0.0038 0.0003 0.0040 0.0004 0.0041 0.0007 0.0056 0.0018
SI-unroll 0.0138 0.0133 0.0401 0.0206 0.1198 0.0437 0.3927 0.1322
SI-DDN-J 0.0127 0.0014 0.0387 0.0026 0.1159 0.0096 0.3552 0.0464
SI-IFT-J 0.0127 0.0230 0.0383 0.0452 0.1096 0.1098 0.3791 1.0431
SI-DDN-E 0.0127 0.0005 0.0384 0.0007 0.1131 0.0012 0.3666 0.0028
SI-IFT-E 0.0127 0.0003 0.0393 0.0004 0.1139 0.0007 0.3667 0.0015

Table 6. Implicit eigen decomposition (IED) layer, GPU time (s) for symmetric A. “AutoDiff”: PyTorch eigh() function; “DDN”:
deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256 5×512 5×1024
Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.0004 0.0003 0.0041 0.0003 0.0097 0.0003 0.0261 0.0003 0.0758 0.0005 0.2193 0.0008
AutoDiff-DDN-E 0.0004 0.0784 0.0042 0.1523 0.0102 0.2946 0.0274 0.5861 0.0765 1.1695 0.2258 2.3861
PI-unroll 0.0077 0.0168 0.0077 0.0168 0.0079 0.0171 0.0079 0.0174 0.0082 0.0172 0.0086 0.0174
PI-DDN-J 0.0065 0.0028 0.0066 0.0050 0.0068 0.0096 0.0067 0.0182 0.0069 0.0436 0.0068 0.5281
PI-IFT-J 0.0065 0.0427 0.0065 0.0840 0.0067 0.1685 0.0068 0.3313 0.0070 0.6942 - -
PI-DDN-E 0.0065 0.0065 0.0065 0.0067 0.0067 0.0033 0.0068 0.0059 0.0069 0.0114 0.0070 0.0414
PI-IFT-E 0.0065 0.0007 0.0066 0.0009 0.0068 0.0013 0.0068 0.0023 0.0069 0.0043 0.0070 0.0152
SI-unroll 0.0591 0.0173 0.1831 0.0169 0.2679 0.0227 0.4631 0.0580 1.0811 0.1443 2.6506 0.4876
SI-DDN-J 0.0590 0.0029 0.1847 0.0051 0.2694 0.0089 0.4642 0.0173 1.0623 0.0419 2.5715 0.1566
SI-IFT-J 0.0588 0.0426 0.1833 0.0835 0.2677 0.1663 0.4642 0.3380 1.0624 0.7120 - -
SI-DDN-E 0.0584 0.0045 0.1832 0.0021 0.2676 0.0032 0.4646 0.0058 1.0622 0.0113 2.5676 0.0396
SI-IFT-E 0.0583 0.0007 0.1833 0.0009 0.2676 0.0013 0.4641 0.0022 1.0625 0.0042 2.6315 0.0144
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Table 7. Implicit eigen decomposition (IED) layer, GPU memory (MB) for symmetric A. “AutoDiff”: PyTorch eigh() function; “DDN”:
deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256 5×512 5×1024
Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.5903 0.0972 0.8247 0.3896 1.7671 1.5605 5.5298 6.2456 20.5552 24.9907 80.6060 99.9810
AutoDiff-DDN-E 0.5903 0.0884 0.8232 0.3467 1.7646 1.3789 5.5249 5.5063 20.5454 22.0112 80.5864 88.0210
PI-unroll 0.8228 0.0537 0.9810 0.2280 1.4146 0.9282 2.8506 3.7334 7.5977 14.9688 24.5918 59.9395
PI-DDN-J 0.5293 0.6743 0.5898 5.1694 0.8281 40.6440 1.7759 322.5327 5.5464 2570.0620 20.5874 20520.1206
PI-IFT-J 0.5293 1.2705 0.5898 10.0791 0.8281 80.3135 1.7759 641.2510 5.5464 5125.0010 - -
PI-DDN-E 0.5293 0.0674 0.5898 0.2534 0.8281 1.0044 1.7759 4.0068 5.5464 16.0117 20.5874 64.0215
PI-IFT-E 0.5293 0.1230 0.5898 0.4868 0.8281 1.9409 1.7759 7.7559 5.5464 31.0107 20.5874 124.0205
SI-unroll 4.6211 0.0962 16.5869 0.3882 65.0103 1.5576 256.5151 6.2402 1022.0249 24.9805 4083.0444 99.9609
SI-DDN-J 0.7539 0.6743 1.1182 5.1694 3.1353 40.6440 9.0151 322.5327 32.0249 2570.0620 123.0444 20520.1206
SI-IFT-J 0.7539 1.2705 1.1182 10.0791 3.1353 80.3135 9.0151 641.2510 32.0249 5125.0010 - -
SI-DDN-E 0.7539 0.0674 1.1182 0.2534 3.1353 1.0044 9.0151 4.0068 32.0249 16.0117 123.0444 64.0215
SI-IFT-E 0.7539 0.1230 1.1182 0.4868 3.1353 1.9409 9.0151 7.7559 32.0249 31.0107 123.0444 124.0205

Table 8. Implicit eigen decomposition (IED) layer, CPU time (s) for nonsymmetric A. “AutoDiff”: PyTorch eigh() function; “DDN”:
deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256
Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.0004 0.0001 0.0008 0.0002 0.0022 0.0003 0.0075 0.0011
AutoDiff-DDN-E 0.0004 0.0483 0.0008 0.0925 0.0021 0.1902 0.0075 2.0929
PI-unroll 0.0045 0.0113 0.0046 0.0150 0.0048 0.0306 0.0054 0.0923
PI-DDN-J 0.0036 0.0014 0.0037 0.0026 0.0039 0.0096 0.0045 0.0463
PI-IFT-J 0.0037 0.0221 0.0038 0.0432 0.0040 0.1040 0.0050 0.9539
PI-DDN-E 0.0036 0.0004 0.0037 0.0006 0.0039 0.0012 0.0044 0.0024
PI-IFT-E 0.0036 0.0003 0.0038 0.0004 0.0039 0.0006 0.0046 0.0015
SI-unroll 0.0136 0.0131 0.0396 0.0198 0.1159 0.0426 0.3661 0.1298
SI-DDN-J 0.0127 0.0014 0.0387 0.0027 0.1182 0.0097 0.3651 0.0468
SI-IFT-J 0.0125 0.0220 0.0380 0.0428 0.1104 0.1045 0.3977 1.0048
SI-DDN-E 0.0126 0.0004 0.0388 0.0006 0.1162 0.0012 0.3617 0.0028
SI-IFT-E 0.0127 0.0003 0.0385 0.0004 0.1184 0.0007 0.3739 0.0016

Table 9. Implicit eigen decomposition (IED) layer, GPU time (s) for nonsymmetric A. “AutoDiff”: PyTorch eigh() function; “DDN”:
deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256 5×512 5×1024
Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.0004 0.0003 0.0041 0.0003 0.0097 0.0003 0.0262 0.0003 0.0759 0.0005 0.2188 0.0008
AutoDiff-DDN-E 0.0004 0.0816 0.0042 0.1586 0.0102 0.3062 0.0275 0.5802 0.0766 1.1564 0.2271 2.3584
PI-unroll 0.0072 0.0166 0.0072 0.0165 0.0074 0.0166 0.0074 0.0166 0.0077 0.0168 0.0080 0.0170
PI-DDN-J 0.0060 0.0028 0.0061 0.0050 0.0063 0.0090 0.0063 0.0174 0.0064 0.0431 0.0063 0.5642
PI-IFT-J 0.0061 0.0411 0.0061 0.0811 0.0065 0.1613 0.0064 0.3218 0.0066 0.6743 - -
PI-DDN-E 0.0061 0.0064 0.0061 0.0068 0.0069 0.0033 0.0063 0.0059 0.0065 0.0113 0.0067 0.0410
PI-IFT-E 0.0060 0.0006 0.0060 0.0008 0.0064 0.0012 0.0064 0.0021 0.0065 0.0041 0.0066 0.0151
SI-unroll 0.0583 0.0166 0.1830 0.0163 0.2674 0.0226 0.4646 0.0582 1.0884 0.1454 2.6464 0.4886
SI-DDN-J 0.0588 0.0029 0.1847 0.0050 0.2692 0.0089 0.4624 0.0173 1.0584 0.0420 2.5674 0.1567
SI-IFT-J 0.0590 0.0403 0.1832 0.0793 0.2671 0.1581 0.4623 0.3211 1.0582 0.6744 - -
SI-DDN-E 0.0584 0.0045 0.1833 0.0021 0.2671 0.0031 0.4625 0.0057 1.0583 0.0112 2.5622 0.0395
SI-IFT-E 0.0583 0.0007 0.1833 0.0009 0.2671 0.0013 0.4624 0.0022 1.0590 0.0041 2.6394 0.0144
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Table 10. Implicit eigen decomposition (IED) layer, GPU memory (MB) for nonsymmetric A. “AutoDiff”: PyTorch eigh() function;
“DDN”: deep declarative network; “IFT”: implicit function theorem; “unroll”: unrolling the forward iteration for gradients via PyTorch
autodiff mechanism; “J”: autodiff Jacobian without exploited structure; “E”: our implicit differentiation with exploited structure. Our
best suggestions are highlighted considering the overall solution precision and computational requirements.

Method 5×32 5×64 5×128 5×256 5×512 5×1024
Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

AutoDiff-unroll 0.5747 0.0972 0.8091 0.3896 1.7515 1.5605 5.5142 6.2456 20.5396 24.9907 80.5903 99.9810
AutoDiff-DDN-E 0.5747 0.0884 0.8076 0.3467 1.7490 1.3789 5.5093 5.5063 20.5298 22.0112 80.5708 88.0210
PI-unroll 0.8071 0.0537 0.9653 0.2280 1.3989 0.9282 2.8350 3.7334 7.5820 14.9688 24.5762 59.9395
PI-DDN-J 0.5137 0.6743 0.5742 5.1694 0.8125 40.6440 1.7603 322.5327 5.5308 2570.0620 20.5718 20520.1206
PI-IFT-J 0.5137 1.2705 0.5742 10.0791 0.8125 80.3135 1.7603 641.2510 5.5308 5125.0010 - -
PI-DDN-E 0.5137 0.0674 0.5742 0.2534 0.8125 1.0044 1.7603 4.0068 5.5308 16.0117 20.5718 64.0215
PI-IFT-E 0.5137 0.1230 0.5742 0.4868 0.8125 1.9409 1.7603 7.7559 5.5308 31.0107 20.5718 124.0205
SI-unroll 4.6055 0.0962 16.5713 0.3882 64.9946 1.5576 256.4995 6.2402 1022.0093 24.9805 4083.0288 99.9609
SI-DDN-J 0.7383 0.6743 1.1025 5.1694 3.1196 40.6440 8.9995 322.5327 32.0093 2570.0620 123.0288 20520.1206
SI-IFT-J 0.7383 1.2705 1.1025 10.0791 3.1196 80.3135 8.9995 641.2510 32.0093 5125.0010 - -
SI-DDN-E 0.7383 0.0674 1.1025 0.2534 3.1196 1.0044 8.9995 4.0068 32.0093 16.0117 123.0288 64.0215
SI-IFT-E 0.7383 0.1230 1.1025 0.4868 3.1196 1.9409 8.9995 7.7559 32.0093 31.0107 123.0288 124.0205
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