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Abstract

Rule sets are highly interpretable logical models in which the predicates for decision
are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently,
the overall model comprises an unordered collection of if-then decision rules. In
this paper, we consider a submodular optimization based approach for learning rule
sets. The learning problem is framed as a subset selection task in which a subset of
all possible rules needs to be selected to form an accurate and interpretable rule set.
We employ an objective function that exhibits submodularity and thus is amenable
to submodular optimization techniques. To overcome the difficulty arose from
dealing with the exponential-sized ground set of rules, the subproblem of searching
arule is casted as another subset selection task that asks for a subset of features.
We show it is possible to write the induced objective function for the subproblem as
a difference of two submodular (DS) functions to make it approximately solvable
by DS optimization algorithms. Overall, the proposed approach is simple, scal-
able, and likely to be benefited from further research on submodular optimization.
Experiments on real datasets demonstrate the effectiveness of our method.

1 Introduction

Interpretability is becoming one of the key considerations when deploying machine learning models
to high-stake decision-making scenarios. Black box models, such as random forests and deep neural
networks, may achieve impressive prediction accuracy in practice, but it is often difficult to understand
the mechanisms about how their predictions are made. Moreover, it has been widely known that
machine learning models are susceptible to spurious correlations, which makes them not robust to
distribution shifts or adversarial attacks and leads to misleading predictions. Black box models are
particularly problematic here because they are hard to audit and to diagnose.

The development of inherently interpretable models is a longstanding attempt towards interpretable
and trustable machine learning [42, 43]. In this paper, we consider decision rule sets for binary
classification, in which if an example is tested true for a Boolean condition expressed in disjunctive
normal form (DNF), then a predefined label is predicted for it. For instance, a rule set for determining
whether a patient with community-acquired pneumonia should be hospitalized may be "IF (IsChild =
True AND OxygenSaturation < 0.9) OR (IsChild = True AND SOB = True) OR (IsAdult = True AND
CURBG65 > 2) THEN Yes". Rule sets are particularly suited for tabular data that contain mixed-type
features and exhibit complex high-order feature interactions. When compared to other rule-based
models such as decision trees and decision lists, the simpler combinatorial structure of rule sets makes
them easier to interpret and to learn from data.

The learning of rule sets has attracted interest from various research communities over the past few
decades. Two interplaying subset selection tasks constitute the major challenges in rule set learning.
First, the construction of a rule requires choosing a subset of all features. Then a subset of all possible
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rules has to be selected to form a rule set. In early algorithms from machine learning community,
such as FOIL [41]], CN2 [12] and RIPPER [13]], usually a greedy sequential covering strategy is
utilized, in which at each stage a rule is generated from uncovered examples using heuristics and
newly covered examples are removed. Associative classification techniques [33}/50] developed by
data mining community take a different two-stage strategy, in which a large set of rules are first
generated via association rule mining and then a rule set is constructed by ranking and pruning. Both
these early approaches lack a global objective that guides the generation of rules and optimizes the
interpretability of produced rule set.

This paper presents a new submodular optimization perspective on nearly optimal rule set learning.
We employ an objective function that simultaneously optimizes accuracy and interpretability. We
show that given a ground set of rules, this objective is a regularized submodular function [27], for
which algorithms with strong approximation guarantees have been developed recently [23]]. Instead
of using a pre-mined pool of rules as the ground set, we take an on-the-fly approach in which the
ground set consists of all possible rules and elements are picked from it one at a time through solving
an optimization subproblem. When the subproblem is always solved to optimality, our learning
algorithm enjoys the algorithmic guarantees for regularized submodular maximization. For most real
cases the global optimum of the subproblem is impractical to reach, therefore we propose an efficient
approximate algorithm based on iterative local combinatorial search.

Our contributions are summarized as follows: (i) We formulate interpretable rule set learning as a
regularized submodular maximization problem which is amenable to approximate algorithm with
strong guarantees. (ii) We discover an intuitive difference of submodular (DS) decomposition for
the induced rule construction subobjective, based on which an iterative refinement algorithm is
proposed to solve the subproblem approximately for large datasets. (iii) We conduct a comprehensive
experimental evaluation, demonstrating the proposed approach is competitive against state-of-the-arts
in both predictive performance and interpretability.

The remainder of this paper is organized as follows: Related work is summarized in Section[2] Section
[3 introduces the problem formulation. Section [4] presents the algorithmic details. Experimental
evaluation is reported in Section [5] We discuss the limitations of this work in Section[6and conclude
the paper with Section[7]

2 Related work

To discover rules from training data, heuristic sequential covering or separate-and-conquer strategy
is utilized by almost all early algorithms [41} [12} [13]], in which the interpretability of final rule set
is not explicitly controlled. In recent years, with the renewed interest in interpretable rule-based
models, the rule set learning problem was revisited under modern optimization lens and several new
algorithms were developed [22, 149, 28, |35, 148, I51]]. These algorithms mainly follow a two-stage
paradigm originating from early associative classification methods [33} 50], in which the learning
problem is divided into two separate steps: rule generation and rule selection. For example,
Lakkaraju et al. [28]] frame the task of constructing a interpretable rule set from pre-mined rules as
a submodular optimization problem and solve it approximately with a local search algorithm. In
general, such two-stage paradigm suffers from the drawback that some essential rules may be filtered
out prematurely.

Dash et al. [14] formulate the rule set learning problem as an integer program (IP) and solve its
linear programming relaxation using the column generation (CG) framework [[15} [17], in which
rules are instead generated on the fly by iteratively solving a IP subproblem. In this way they
bridge rule generation and rule selection together as a unified optimization procedure and thus
avoid the drawbacks of pre-mining. We contribute a similar framework from a different submodular
optimization perspective. Interestingly, subproblems in both frameworks share the same form (6)),
which asks the solution to cover more positively weighted samples and less negatively weighted
samples. This task shares some similarities with the subgroup discovery [6] problem in data mining,
for which exhaustive search [[7,31], heuristic beam search [30,46] and sampling [9}/10] are commonly
utilized. Eckstein and Goldberg [[17]] designed a specialized branch-and-bound method for the closely
related maximum monomial agreement (MMA) problem. To the best of our knowledge, we are the
first to study this task from a DS optimization perspective.



Our work is also related to optimization based learning of other rule models, such as optimal decision
lists [3} 4] and optimal decision trees [24, 134} 18} |39, 247, 52]. The learning of decision lists and trees
is inherently much harder because their combinatorial structures are more complex than rule sets.

3 Problem formulation

In this work, we consider binary classification based on a set of interpretable binary features. Categor-
ical features can be easily binarized via one-hot encoding, and numerical features may be binarized
through bucketing or comparisons like "Age > 18". Techniques such as one-versus-one are available
for transforming multiclass classification to binary classification.

Suppose we are given the training data {(x;, y;)}?;, in which each x; = (; 1,...,2;4) € {0,1}¢
is a binary feature vector associated with a label y; € {0, 1}. The goal is to learn an interpretable rule
set model F' : {0,1}? — {0, 1} to predict the label. A rule set is a Boolean classifier of the form "IF
P(x) THEN y = 1 ELSE y = 0", in which P(x) is a predicate restricted in disjunctive normal form
(DNF) and treats raw features {x; }?:1 as its variables. For simplicity, the use of not (—) operator
in DNF is disabled because equivalent expressivity can be achieved by creating augmented features
{—z; }?:1. Then a concrete P(x) is described as a set S C 2!, where each element R € S is a
subset of [d] := {1,...,d}. The mapping from a S to a DNF is given by Ps(x) := Vpcs Ajer j-
We call § a rule set and call each element R of it a rule. A sample x is covered by a rule R if
Pyry(x) is true. It is now clear that a rule set classifier can be simplified to y = Ps(x), i.e., it
predicts 1 iff x is covered by at least one of the rules.

To learn a rule set from data, we consider minimizing the empirical error while penalizing the
complexity by solving the optimization problem:

n
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However, even under the simplest setting where (-, ) is the 0-1 loss and €(-) is the cardinality
function, this problem is still hard to work with. To proceed, we replace Ps with a surrogate model

Ps : {0,1}¢ — Ny defined as Ps(x) = Y rcs A\jer ®;- Then a flexible objective function that
balances accuracy and interpretability is chosen to be:

L(S) =" lo (Ps(x).u) +4 Y [R| @

RES

where lg(-, -) is a loss function with hyperparameters 3 = (5o, 1, 82) € R%.:

Boy ify=0
Is(,y) =4 Bily—9) ify=1A75<1
Ba(g—y) ify=1A75>1

With a proper choice of hyperparameters, interpretability of the minimizer for this objective comes
from two aspects: sparsity and diversity. Sparsity is obvious because of the complexity regularization
term. Diversity is encouraged by the loss function through penalizing the overlap of rules. Ps (x)>1
means that x is covered by more than one of the rules, and in this case the objective function will
receive a penalty. Small overlap among rules benefits interpretability because it makes the decision
boundaries more clear and enables people to inspect the learned rules individually.

It may not be immediately clear that L(S) is a supermodular function and thus — L(S) is a submodular
function. To show this, we introduce more notations. Let XY™ = {i|y; = 1} and X~ = {i|y; = 0}
be the set of positive and negative samples, respectively. Let XJ = {i|i € X" A Ps(x;)} and
Xg = {ili € X~ A Ps(x;)} be the set of positive and negative samples covered by S, respectively.
Then we have

LS =63 ‘X{‘R}‘ + B |XF\ XS] + B (Z ‘XE’R}‘ - |Xg|> +A Y[R
REeS

RES RES



Ignoring the weights, then the first term is the miscoverage of negative samples, the second term is
the number of uncovered positive samples, the third term is the overlap in positive samples, and the
last term is the size of rules. After reorganizing the terms, we arrive at

L(S) = i [XF] = (B + B2) | X5 | + D Bo [ Xy | + B2 | Xy | + AR 3)
RES

Then the submodularity immediately follows.

Proposition 1. L(S) is a supermodular function and —L(S) is a submodular function.

Proof. The first term in (3) is a constant. The second term is a negative coverage, while coverage
functions are well-known to be submodular. The third term sums over elements of S and thus is
modular. A submodular function minus a modular function is still submodular, therefore —L(S) is
submodular and L(S) is supermodular.

We show in the Appendix that several design choices for the original objective in (I) may reduce to
L(S) through upper bounding surrogates, which justifies the generality of this objective function.
This objective function also generalizes the Hamming loss used in previous work [44, [14].

4 Algorithms

We consider the algorithms for minimizing L(S) in this section. Define g(S) = (81 + 2) | X4 |
as the revenue of a rule set and ¢(R) = fy ‘X{R}‘ + 2 ’X{JFR}’ + A|R| as the cost of a rule. Let

V(S) = 9(S) — >_res c(R) be the profit of a rule set, which is equal to —L(S) up to a constant.
Then minimizing L(S) is equivalent to maximizing V' (S). For the sake of practicality, we further put
a cardinality constraint |S| < K on this optimization problem, which limits the number of rules in
the rule set. Then

max  V/(S) ())

Scaldl |S|<K

is an instance of cardinality constrained submodular maximization problem. For non-negative mono-
tone submodular functions, the greedy algorithm achieves a 1 — 1/e & 0.632 approximation ratio
[38]], which is the best approximation possible for this problem. However, in our case V'(S) is neither
non-negative nor monotone. It is possible to apply non-monotone submodular maximization algo-
rithms [[L1} 20] to our problem without care of negativeness, but doing this makes their approximation
guarantees invalid.

Fortunately, V' (S) is the difference between a non-negative monotone submodular part g(S) and a
non-negative modular part ) s ¢(R). Set functions with such structure, recently named regularized
submodular functions [27], have been shown to be amenable to maximization procedures with strong
approximation guarantees [45} 23|18} [19].

4.1 Regularized submodular maximization

We apply the distorted greedy algorithm proposed by Harshaw et al. [23]] to approximate maximization
of V(S). As illustrated in Algorithm at each iteration, a rule maximizing the marginal gain in a
distorted objective is added to the rule set if its gain is positive. The distorted objective is adjusted
in a way such that initially higher importance is placed on the cost term, and then the importance
is gradually shifted back to the revenue term. By doing this, following approximation guarantee is
obtained.

Proposition 2. [23]] Algorithm|l|returns a rule set S of cardinality at most K. If the maximization
subproblem at line 5 is solved to optimality, then

V(S)=9(8) = Y e(R) = (1-1/e)g(OPT) = Y «(R)
RES REOPT

where OPT is the optimal solution to problem (4).



Algorithm 1 Rule set learning

1| Input: Training data {(x;,y;)}?, hyperparameters (3, \), cardinality K

2 Initialize S < 0

3 for k =1to K do
Define v, (R) = (1 — 1/K)X=Fg(R|S) — ¢(R) % g(RIS) = g(SU{R}) — g(S) #/
Solve R* < arg maxgc(q vk (R)
if v, (R*) > 0then S +— SU{R*} end if

end for

Output: S

0 J N L~

In addition, we provide an algorithm in the Appendix for further refining the output of Algorithm
[T)if possible. In each step, that algorithm tries to improve the objective through adding, removing,
or replacing a rule. The remaining question is how to solve the subproblem of marginal gain
maximization, which requires search over the subsets of [d]. Naive exhaustive enumeration only
works for small d, say, d < 20. For datasets with numerical features or high-cardinality categorical
features, the preprocessing step may easily produce hundreds or thousands of binary features, making
exhaustive enumeration impossible. In such cases, approximate solution should be considered and
the guarantee for Algorithm [I] will no longer hold. However, we observe in practice that Algorithm
will still work satisfactorily if good enough solutions to the subproblem are found. To this end,
approximate rather than exact method is considered in this work.

4.2 Solving the subproblem

We approximately solve the marginal gain maximization subproblem through iteratively refining a
solution with local search until no further improvement can be made. Our local search procedure
relies on a decomposable structure of the subproblem to find good solutions quickly. Objective
functions for the subproblem are of the general form:

v(R[S; a) = ag(R[S) — ¢(R)
= o(f1 + P2) ‘X{%} \X;’ —Bo ‘X{R}‘ — B2 ‘X{JFR}‘ — AR| (5)
= [0(B1 + B2) — o) [ Xy \ XE| = Bo [ Xy | - B2 [ A0y 0 A& = AR

where o € (1/e,1] is a multiplier on the marginal gain of g set by Algorithm[l| For notational
simplicity, denote wy = «(f1 + f2) — B2. Notice that samples are partitioned into three subsets: still
uncovered positive samples X \ X ; each with weight w_ , already covered positive samples X ;’
each with weight — (5, and negative samples X'~ each with weight —3y. As shown in the Appendix,
w4 > 0 is ensured by choosing 51 > (e — 1)f2. Let w; € {wy, —Bo, — B2} be weight of the i-th
sample. Then Equation (3) is equivalent to:

v(R) =) wilrcx, — AIR| (6)
=1

in which v(R) is short for v(R|S; ) and R C x; is short for R C {j|z;; = 1}. Intuitively, the
goal is to find a short rule to maximize the total weight of samples covered by it. We further rewrite
Equation (6} as:

V(R) =D wit+ > —wilgg, — Y wilgg, —AR| 7
=1

1 w; <0 i w; >0
Define u(R) = >
result.

irw<0 ~Willpgy, and w(R) =D >0 wilggy, + A|R|. We get the following

Proposition 3. u(R) and w(R) are non-negative monotone submodular functions.

Proof. Observe that {i|R € x;} = U;cr {il{j} € xi}, i-e., the samples excluded by R are the
union of samples excluded by each element of R. Then u(R) is a weighted coverage function, which
is non-negative monotone submodular. Similarly w(R) is the sum of a weighted coverage function
and a non-negative modular function, therefore it is also non-negative monotone submodular. O



Then maximizing v(R) is equivalent to maximizing the difference between submodular functions,
u(R) — w(R). This is not surprising, because any set function can be expressed as a difference
of two submodular functions (called a DS function) [37]. However, finding such a decomposition
requires exponential complexity for a general set function. This lucky discovery opens the door to
nontrivial optimization algorithms based on the submodularity of u(R) and w(R). In this work, we
take a minorize-maximization (MM) approach proposed by Iyer and Bilmes [25]]. For a submodular
function f : 2V — R, tight lower and upper bound approximations of f at X C V are given by
following modular functions [38, [26].

V)= f(SF-1y) = f(SF-1(jy-1) S F(Y),VY CV )
JjeY
mpx (V)= f(X) = > fUIX\{GH+ Y fG10) > f(Y),¥Y CV ©)
JEX\Y JEY\X
mi x(Y) = = " GIVANGD+ D FUIX) = fY) Y SV (10)
jex\y JEY\X

where S7 is a chain obtained by applying a permutation 7 : [|[V'|] — V to the ground set V' subject
to S§ =0, ST = {n(1),...,7(4)} and STx| = X. With these bounds, the MM idea works by
iteratively updating the solution by optimizing (sub)modular surrogates of the DS objective function.
In our case, u(R) — w(R) is approximately maximized using the modular-modular procedure [25]
detailed in Algorithm |2} At each iteration, lower bounding surrogates of u(R) — w(R) are obtained
via replacing u(R) by its modular lower bound and replacing w(R) by its modular upper bounds.
These modular surrogates are maximized exactly through selecting all positive elements.

Algorithm 2 DS-OPT(R, u, w)

1 while true do

2 R +R

3 Choose a permutation 7 of [d] to form the chain S™

4 ForVj € [d], compute hf} () = u(ST_1(;)) — u(ST-1(;)_1)

5 ForVj € R, compute my,  (j) = w (IR \ {j}) and m3, » (5) = w (j[[d] \ {5})
6 ForVj ¢ R, compute ml, 7 (j) = w (j|0) and m2, 1 (j) — w (jIR)

7 Ri (i R() = my = () > 0}, Ra = {5|1] 2 (7) = mi, = (5) > 0}

8 R ¢ argmaxpe(r, r,} 4(R) —w(R)

9 if R = R’ then break end if
10 end while
11 Output: R

To further reduce the possibility of stucking in local maxima, the MM procedure is augmented with
a restricted exact search step and a swap-based local search heuristic as sketched in Algorithm [3]
At line 6-7, the current solution is enlarged into an active set of size M and an exhaustive subset
search restricted on this active set is conducted. The aim of this exact search step is to produce
good initialization for DS-OPT, and we find empirically that the gain ratio u(j|R)/w(j|R) is a good
criterion for including new features in the active set. In our implementation, we set M = 16 and
carry out the exact search with customized branch-and-bound (BnB). At line 9, the SwapLocalSearch
subprocedure tries to improve the solution by adding, removing or replacing a feature.

S Experiments

We evaluate the proposed approach in terms of predictive performance, interpretability, scalability,
and approximation quality.

5.1 Setup

Datasets. Our experimental study is conducted on 20 public datasets. Fifteen of them are from the
UCT repository [[16]], and the other five are variants of the ProPublica recidivism dataset (COMPAS)



Algorithm 3 Local combinatorial search

1| Input: Training data {(x;,y;)}?_,, objective function v(R), threshold M for exact search
2 Decompose v(R) = u(R) — w(R)

3 Initialize R < 0

4 while true do

R+~R; R «+R .

if |R| < M then R < Enlarge(R, M, u, w) end if
if |R| < M then R + BestSubset(R, u, w) end if
R < DS-OPT(R, u, w)

9 R + SwapLocalSearch(R, u, w)

10 if R = R’ then break end if

11 end while

12 Output: R

003 N

[29] and the Fair Isaac credit risk dataset (FICO) [21] that have been used in recent work to evaluate
interpretable rule-based models [34]. We binarize the features of all datasets in exactly the same
way as [14]. Specifically, for categorical features, two features x; = z and x; # z are created for
each category z. For numerical features, we create comparison features x; < z and z; > z via
choosing sample deciles as the boundary value z. The number of binary features of each dataset
after preprocessing is given in Table 1, which is up to 2922. Note that the negative and comparison
features produced in this preprocessing method will make the feature matrices dense and make the
features highly correlated, which poses major challenges to rule set learning algorithms.

Baselines. The proposed method is compared with recently developed algorithms that explicitly
optimize the interpretability of rule set including CG [14] and BRS [49], as well as a classical
sequential cover algorithm, RIPPER [13]]. The official light version of CG implementation [5] is used
in our experiments, which solves the rule generation subproblem using heuristic beam search instead
of IP solver. This is exactly comparable to our method because we also rely on approximate algorithm,
which is more practical than calling a solver. For BRS, we use a third-party implementation [32] that
supports generating candidate rules based on random forest instead of frequent itemset miner, because
we find that the latter has poor scalability. For RIPPER, an open source Python implementation [36]
is chosen. In addition, we also include the widely used CART and random forest (RF) algorithms
implemented in the scikit-learn package [40] to illustrate the competitiveness of rule set models.

Parameter tuning. We estimate numerical results based on 10-fold stratified cross-validation
(CV). In each CV fold, we use grid search to optimize the hyperparameters of each algorithm on
the training split. For the method proposed in this paper, we fix 5y = 1 = 1 and optimize the
remaining hyperparameters 3> € {0.5,0.1,0.01}, A € {0.1,1,4,8,16,64} and K € {8,16,32}.
The hyperparameters of CG include the strength of complexity penalty and the beam width, for
which we sweep in {0.001,0.002,0.005} and {10, 20}, respectively. For RIPPER, the proportion
of training set used for pruning is varied in {0.2,0.25,...,0.6}. For BRS, the maximum length of
arule is chosen from {3,5}. For CART and RF, we tune the minimum number of samples at leaf
nodes from 1 to 100 and fix the number of trees in RF to be 100.

5.2 Numerical results

Predictive performance. The predictive performance measured by average test accuracy over
10 folds is reported in Table 2. BRS is not available on magic and gas because it ran beyond our
time limit, and CG is not available on COMPAS because we encountered an LP solver error. On
small datasets, the accuracy of our submodular optimization based approach matches the CG based
approach, and both of them are top-performing rule set learners that are as accurate as the tree-based
model, CART. The differences should not be overly concerned here because the variances are high
due to small sample sizes. Notably, our method achieves 100% test accuracy on tic-tac-toe and
mushroom, for which well-known perfect rule set solutions exist. On larger datasets, we observe that

"'We failed to run IDS [28] and DRS [51]] on most of the datasets.



Table 1: Predictive performance measured by average test accuracy (%).

Dataset #samples  #features | Ours RIPPER BRS CG | CART RF
tic-tac-toe 958 54 100.0 0.0 99.707 100.000 100.0 0.0 94.2 1.9 99.1 .9
liver 345 104 69.565.1) 66.0 .5 60.6 8.3) 68.7 5.4 68.6 6.3 73.9 93
heart 303 118 82.211) 76.2 7.7y 79.7 a5 78.0 68 82.2 61 82.8 7.1
ionosphere 351 566 91464 87205 850wz  90.6@s 89.563  94.0G4
ILPD 583 160 71.4 0s) 5781 69.053) 71.7 69.4 6.4 71.2 40
WDBC 569 540 94.0 48 94.7 (1.6) 93912 94.7 3.4 93.5Gs) 97.0 o)
pima 768 134 754a3» 759063  722¢63% 740064 | 75465 76903
transfusion 748 64 78.162 78.2 77.16.0 78.2 6 78.7 2s) 79.7 s
banknote 1372 72 98.7 1.0 92.8 24 91.1¢es 98.8 09 99.1a2 99.6 ©.6)
mushroom 8124 224 100.0 00  100.0 0.0 99.7 02 99.90.n | 100.000 100.0 .0
COMPAS-2016 5020 30 66.5 23 57.7 a0 63.407 66.7 22 66.2 22 66.6 2.5
COMPAS-binary 6907 24 67.005  56.006 65507 66409 | 67305 67306
FICO-binary 10459 34 T1.20.0) 60.1 12 70.5a.) 71.102 71.9 a4 72314
COMPAS 12381 180 73303 72.3 a5 70.7 a.n N/A 72204 73.8 .1
FICO 10459 312 70.4 a2 69.1 1.9 70.1 ©.9) 71.0 0.7 709 a.n 72.3 03
adult 48842 262 84.4 0.6 83.3 09 80.3 14 82.8 (04 83.7 04 84.7 05
bank-market 11162 174 84.4 03 829 76912 82.3 09 83.01.0 85.209
magic 19020 180 84.608  82.213 N/A  80.8a0 84.70s  86.7 05
musk 6598 2922 97.3 0s) 96.1 0s) 90.2 20 95.007 96.0 0.9 97.7 0.6
gas 13910 2304 98204  99.0 04 N/A  9590n | 99.003  99.80n

our method generally demonstrates superiority over other rule set learners. Overall, the accuracy
gaps between our method and the uninterpretable RF are within 3% on all datasets except liver.

Table 2: Interpretability measured by number of rules, number of literals, and overlap among rules.

#Rules #Literals Overlap (%)

Dataset Ours RIPPER CG CART | Ours RIPPER CG CART | Ours RIPPER
. 8.0 9.5 8.0 69.9 24.0 31.1 243 138.8 2.3 52.8 233
tic-tac-toe 0.0) (1.4) 0.0) (3.6) 0.0) (5.8) 0.5) 7.1) (12) ®.1) 0.5)
. 18.0 2.1 145 5.0 83.8 7.1 585 9.0 7.5 28.0 9.7
liver 24 ©0.7) (1.2) 0.0) (10.5) (3) “.9) 0.0) “.9) 7.7 i)
2.1 4.0 10.3 114 4.4 11.0 415 21.8 | 16.8 484 274
heart 0.3) (1) (0.8) (1.1 (1.3) (3.8) (3.2) @1 1.7 (4.9) 2.4)
] 2.0 36 43 24.7 8.0 125 203 48.4 34 572 32.1
ionosphere 0.7 ©0.8) 0.38) e 4 &) G.8) “2) (5.0) 1.9) )
1.1 2.6 2.0 43 0.2 7.0 3.0 7.6 0.0 31.7 0.0
ILPD (0.3) 0.5) (0.0) 0.5) 0.6) (15) 0.0) (1.0) 0.0) (6.7) 0.1)
8.0 5.0 5.3 7.9 27.7 10.6 134 14.8 24 35.0 26.8
WDBC L (L1 0.6) (1.0) 3.0 3.0 (1.6) 2.0 6.0) (53) (1.0)
. 32 3.6 6.7 10.1 10.0 13.0 20.0 19.2 2.6 27.0 54
pima 2.2) (1.3) (1.7 (0.6) (10.7) (6.5) (6.5) (1.1) (3.1) (8.2) (1.2)
. 1.4 2.1 2.7 11.0 43 90 79 21.0 0.0 21.3 0.8
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Interpretability. The interpretability of learned models is compared in terms of three metrics: the
number of rules, the total number of literals in all rules, and the overlap among rules. In our notation,
the former two complexity metrics are [S| and ) . s |R|, respectively. The overlap is measured

as the fraction of samples covered by more than one of the rules, i.e., |{i|Ps(x;) > 1}|/n. For
CARTs, we treat their root-to-leaf paths as rules. The complexities of RFs are generally high because
it consists of many trees, therefore we do not report them here. Note that the overlap among rules
generated from a CART is zero because these rules form a partition of the feature space. We leave
BRS out here as its predictive performance on larger datasets is incomparable to remaining methods.

The results averaged over 10 folds are reported in Table[2} We observe that CG usually produced rule
sets with lowest complexity, while our method is competitive when compared to RIPPER. Our method
learned notably simpler rule sets than RIPPER on large datasets except FICO. When it comes to the
overlap among learned rules, our method dominates the competition because it explicitly penalizes the
overlap in the objective function. We notice that RIPPER is particularly problematic if overlap is the
concern, as > 20% samples are covered more than once on all datasets. The learned 100%-accurate
rule sets on the mushroom and tic-tac-toe datasets are illustrated in Table[3] Remarkably, the rule set
for mushroom is even simpler than the ground truth provided in the dataset description file [1]], as the
third rule consists of only two conditions instead of three.

Scalability. Our method scales linearly with the dimensionality, the sample size and the number
of iterations. In our experience, the local search algorithm for the subproblem usually terminates at
a stationary point in a few iterations. Bit vectors are used in our implementation to process a large
number of samples efficiently. Therefore for our algorithm the dimensionality is the main bottleneck
in scalability. Figure[I]shows the training time of our method on the musk and gas datasets when
using randomly sampled subsets of features. As the number of features grows, the training time
demonstrates a roughly linear trend as expected. Our method is thus more practical when compared to
solving the subproblem with exact algorithms, e.g., branch-and-bound, because it is well known that
exact algorithms for general combinatorial optimization problems scale poorly with dimensionality.

The average running time of each method for fitting each dataset under typical hyperparameters found
in cross-validation is reported in the Appendix. In summary, our method is competitive with other
rule set learners but is slower than well-optimized tree-based methods. Further boosting of scalability
may be achieved through drawing inspiration from scalable submodular optimization techniques [27]],
and we leave this for future work.

Training time vs Number of features
—— gas

musk

Table 3: Examples of learned rule sets.
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spore_print_color =r
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Figure 1: Scalability test.

Approximation quality. To examine the effectiveness of Algorithm 3] we conduct a comparison
between approximate subproblem solving and exact subproblem solving under the same typical
hyperparameter settings. On nine low-dimensional datasets, all of the subproblems could be exactly
solved within 10 minutes using our customized BnB procedure. As the subproblems for remaining
higher-dimensional datasets could not be solved to optimality with practical running time, a time limit
of 10 minutes is specified for the BnB subproblem solver. For each dataset, we record the values of
objective function V'(S) achieved by learned rule sets under the two setups and calculate the relative
gaps between solutions as [V (Spnb) — V' (Sapprox)]/V (Sbnb ). Results are summarized in the Appendix.



The relative gaps are small in general and do not grow with the dimensionality, indicating that the
proposed approximate algorithm works well on these datasets. For instance, the two setups produced
exactly the same rule sets on five of the low-dimensional datasets. Interestingly, it turns out that
approximate subproblem solving is not necessarily worse than the exact counterpart. This is because
the outer loop (Algorithm|[I)) is also an approximation procedure, which does not guarantee that better
subproblem solutions will help build a better solution to the main problem.

6 Limitations

Approximation guarantee. The main limitation of this work is the invalidity of approximation
guarantee (Proposition [2)) under inexact subproblem solving. Nonetheless, the approximation guar-
antee is still relevant in the case that the optimal solution to the subproblem can be found. This is
possible if we restrict the space of rules to a tractable extent. For example, if we move back to the
pre-mining approach in which rules can only be picked from a given pool (e.g., rules extracted from a
random forest), the guarantee will still hold for this modified problem. Furthermore, the previous
discussion of approximation quality shows that empirically such invalidity will not necessarily lead to
much loss of performance. We are planning to analyze this phenomenon theoretically in future work.

Multiclass extension. Another more subtle limitation is the extension to multiclass classification.
We have suggested the model-agnostic one-versus-one (OvO) transformation, which only requires
the base classifiers to produce a binary class label, rather than a real-valued confidence score required
by the one-versus-rest (OvVR) approach. However, both OvR and OvO may suffer from ambiguities
and class imbalance. Moreover, the OvO reduction is not very efficient because K (K — 1)/2 base
classifiers must be trained for a K -class classification task. We are investigating if there is a more
scalable approach to extend this work to multiclass problems.

Societal impact. On the positive side, the underlying decision logic of an interpretable model
such as a rule set is more transparent for humans to understand. When used as a data exploration
tool, such transparency enables people to check easily if the fitted model has discovered some new
knowledge about the data. When deployed to make automatic decisions in high-stake scenarios,
such transparency helps people to diagnose if there are potential biases or risks in the model and to
explain the reason behind a specific decision. On the negative side, a rule set learned by optimizing
accuracy and interpretability will not automatically attain other properties requested by trustworthy
Al such as fairness and robustness. In addition, a learned rule "IF X=x0 AND Y=yl THEN Z=1"
may not conform to the causal mechanism underlying the variables X, Y and Z. This will lead to
misunderstandings if the rules are not interpreted properly.

7 Conclusions

In this paper, we propose a new perspective on interpretable rule set learning based on submodular
optimization. The learning task is decomposed into two related subset selection problems, where the
main problem selects a subset from all possible rules to optimize a regularized submodular objective,
and the subproblem selects a feature subset to form a rule. The optimization criteria of the subproblem
is derived based on a distorted greedy algorithm for maximizing the main objective, and we observe
that this criteria can be expressed as the difference between two submodular functions. Based on
this finding, an iterative local combinatorial search algorithm is designed to solve the subproblem
approximately. The effectiveness of our method is evaluated through a comprehensive experimental
study on 20 datasets. Directions for future work include warm-starting the search with rules generated
by random forests and extending the method to rule-based regression tasks.
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