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Abstract

Machine learning interatomic potentials trained on first-principles reference data are becoming
valuable tools for computational physics, biology, and chemistry. Equivariant message-passing
neural networks, including transformers, achieve state-of-the-art accuracy but rely on cutoff-
based graphs, limiting their ability to capture long-range effects such as electrostatics or
dispersion, as well as electron delocalization. While long-range correction schemes based
on inverse power laws of interatomic distances have been proposed, they are unable to
communicate higher-order geometric information and are thus limited in applicability. To
address this shortcoming, we propose the use of equivariant, rather than scalar, charges for
long-range interactions, and design a graph neural network architecture, Lorem, around this
long-range message passing mechanism. We consider several datasets specifically designed to
highlight non-local physical effects, and compare short-range message passing with different
receptive fields to invariant and equivariant long-range message passing. Even though most
approaches work for careful dataset-specific choices of their hyperparameters, Lorem works
consistently without adjustments, with excellent benchmark performance.

1 Introduction

Machine learning interatomic potentials (MLIPs) for atomistic simulations are trained on quantum-mechanical
simulations to predict energies and forces of new atomic structures. Most MLIPs assume locality: The energy
of each atom depends only on neighbors within a cutoff radius. This leads to linear scaling with respect to
the number of atoms but fails for systems with long-range interactions, such as electrostatics, dispersion, or
electron delocalization. (Behler & Parrinello, 2007; Ko et al., 2021; Tkatchenko & Scheffler, 2009; Grisafi
& Ceriotti, 2019; Unke et al., 2021b; Huguenin-Dumittan et al., 2023) Several approaches aim to overcome
this limitation. Message-passing graph neural networks (MPNNs, Gilmer et al. (2017)) overcome locality by
iteratively exchanging information between neighboring atoms, but are still constrained by the number of
message-passing steps, graph connectivity, and reduced information flow with increasing number of iterations
(Cai & Wang, 2020; Alon & Yahav, 2020; Nigam et al., 2022).

An alternative approach is to use physics-inspired corrections to the total energy, written as an inverse power
law of interatomic distances, 1/rp , with p = 1 for charge–charge, p = 3 for dipole–dipole, and p = 6 for
dispersion. Some models predict partial atomic charges, either using explicit charge labels and equilibration
schemes, or learning them implicitly from energies and forces to include electrostatic terms (Unke et al.,
2021a; Ko et al., 2021; Fedik et al., 2022; Pellegrini et al., 2023; Maruf et al., 2025; Cheng, 2025). Physical
long-range interactions can also serve as building block: For instance, Kosmala et al. (2023) propose Ewald
message passing, i.e., the use of electrostatic interactions for message passing, and Grisafi & Ceriotti (2019)
propose the long-distance equivariant (LODE) framework that uses inverse power-law interactions to compute
equivariant features.

In this work, combine the strengths of physical inverse power law 1/rp interactions with the ability of equiv-
ariant message passing to communicate higher-order geometric information. Inverse power-law interactions
are well-defined for periodic systems, have physically meaningful asymptotic behavior, and can be computed
efficiently using established techniques from computational physics. Extending the idea of Ewald message
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passing, we treat charges as equivariant objects and use inverse power-law potentials as a mechanism for
long-range equivariant communication. Based on this mechanism, we design Lorem, an MLIP architecture
that combines short- and long-range message passing. Lorem offers consistently high accuracy across a series
of long-range benchmark tasks, outperforming other short- and long-range message passing models.

Our contributions are:

• We introduce an equivariant, global, long-range message passing mechanism that can leverage efficient
methods from computational physics for asymptotic O(N log N) scaling in periodic systems, and
potentially O(N) scaling in non-periodic ones,

• We design a novel MLIP architecture, Lorem, around this mechanism,

• We conduct a series of experiments to probe the limits of equivariant short-range message passing to
model long-range physics.

2 Background

Machine learning interatomic potentials Under the Born & Oppenheimer (1927) approximation, which
decouples the nuclear and the electronic degrees of freedom, the atoms in a molecule or material move on
a potential energy surface (PES) E = E ({ (ri, Zi) | i = 1...N }) where ri and Zi are positions and atomic
numbers for the N atoms; in a periodic system, i.e., materials or liquids, the arrangement of N atoms is
repeated periodically in space, described by three cell vectors { ca | a = 1, 2, 3 } and corresponding integer
offsets {na | a = 1, 2, 3 } so that each position ri is associated with the replicas { ri +

∑3
a=1 naca |n ∈ Z3 }.

The energy is then computed for the positions in the unit cell (n = 0) considering their interactions with
the infinite ‘crystal’ system. The forces, which drive the dynamics of the atoms, are defined as derivatives
of the energy fi = −∇ri

E. Traditionally, this PES has been approximated by physics-inspired analytical
expressions, called force fields, that are parametrized manually or through global optimization. In the past
decades, in tandem with the increasing availability of large datasets of quantum mechanical reference data,
MLIPs have emerged as a less computationally efficient, but more accurate, data-driven alternative.

Atomistic graph neural networks Most MLIPs can be seen as graph neural networks (GNNs, Battaglia
et al. (2018)) acting on a description of an arrangement of atoms in space as a geometric graph G = (E ,V)
with edges E corresponding to interatomic relative-position vectors rij and nodes (or vertices) V corresponding
to atoms. Edges connect nodes that lie within a cutoff radius rc of each other. In periodic systems, rij are
constructed to respect periodic boundary conditions, i.e., if a replica lies closer than an original atom, rij

points to the replica. If more than one replica lies within the cutoff, multiple edges with different labels
are drawn between nodes. By restricting the range of interactions to neighbors on this graph, linear scaling
with the number of atoms N (at constant density) can be achieved; efficient scaling with system size is
required to make MLIPs practical for large-scale simulations. MLIPs typically predict E as a sum over atomic
contributions, E =

∑N
i=1 Ei, predicted from node features.

Invariance and equivariance The potential energy E is invariant under permutations, i.e., reordering, of
atomic positions, as well as global translations and rotations of the coordinate system. In other words, E is
invariant under actions of the (special) Euclidean symmetry group SE(3) applied to all positions (including
replicas).1 MLIPs must respect these symmetries, at least approximately. Translation invariance is respected
by construction in atomistic GNNs through the use of relative-position vectors as edge labels. Permutation
invariance is typically ensured through commutative aggregation functions, for instance sums. Finally, rotation
invariance can either be learned through data augmentation (Pozdnyakov & Ceriotti (2023); Langer et al.
(2024)), or ensured by requiring that internal features remain aware of their geometric meaning, i.e., that
they are equivariant to rotations. While in principle, MLIPs could be constructed from invariant features
only, equivariant internal features have been found to improve accuracy and data efficiency by allowing the

1In fact, the energy is invariant under global inversions as well, i.e., under the action of the full Euclidean group E(3),
composed of translations and rotations+inversions, O(3). To simplify notation in this manuscript, we focus on proper scalars
and tensors, i.e., irreducible representations of SO(3) – all arguments and operations can be readily generalized to O(3).
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model to access orientation information (Thomas et al. (2018); Batzner et al. (2022); Batatia et al. (2022)).
A thorough discussion of equivariance for MLIPs can be found in other works (Smidt, 2021; Unke & Maennel,
2024); essentially, we consider the transformation of internal features of the models under rotations g ∈ SO(3)
applied equally to all geometric inputs (positions and cell vectors), leading to a joint rotation of all bulk
positions. Consider the MLIP up to some hidden layer as a function f : X → Y, where X = R3×(N+3) for
periodic systems and X = R3×N for molecules. Equivariance is defined by f ◦ g = g ◦ f for all g ∈ SO(3):
rotations can be equivalently applied before or after f . To ensure that this is the case, internal features
must be constructed as direct sum of different irreducible representations of SO(3), indexed by l, combined
with a feature (channel) dimension c: Y =

(
⊕lmax

l=0 R2l+1
)
⊗ Rc. Rotations act as linear transformations on

these irreducible representations. We write spherical features as tensor S with the last three indices the
representation order l = 0, ..., lmax, the component m = −l, ..., l, and the channel index c. Such tensors are
therefore ragged: Different l correspond to different numbers of components m. The l = 0 components are
called scalars and are invariant under rotations. Collections of purely scalar features are also denoted as
matrices P . In Appendix A, we describe a number of operations that can be applied to spherical features
without disrupting equivariance.

Long-range interactions The potential energy E arises from the many-body Schrödinger equation, which
involves only Coulomb interactions between electrons and nuclei without any range separation. Efficient
approximations, such as empirical force fields or MLIPs, typically restrict interactions to local environments,
motivated by the nearsightedness principle of electronic matter (Prodan & Kohn (2005)), which states that
electronic properties are insensitive to distant perturbations. In the long-range regime, interactions reduce to
inverse power laws 1/rp of the interatomic distance. Since in nature no fixed nearsightedness length scale
exists, MLIPs must capture both local many-body quantum effects, possibly extending beyond the model’s
cutoff rc, and formally infinite-range electrostatic interactions. Additional complexity arises from charge
distributions that depend on distant atoms and from electron wavefunctions that may delocalize over large
distances; see Section 6.

Ewald summation The evaluation of inverse power-law potentials 1/rp has been the object of much study
in computational physics and chemistry. The general task is to compute the potential Vi = V (ri) at a given
atomic position ri, induced by (generalized) point charges2 qj placed at the position of other atoms j:

Vi =
N∑

j=1

∑
n∈Z3

qj

|ri − (rj + n1c1 + n2c2 + n3c3)|p . (1)

Where | · | denotes the vector norm. In periodic systems, Eq. (1) implies an infinite sum over replicas, denoted
by

∑
n∈Z3 and defined by the cell vectors ca; for non-periodic systems (molecules), this sum and the extra

term in the denominator are omitted. For p ≤ 3, the periodic, infinite, sum converges conditionally, i.e.,
convergence or divergence depends on the summation order. Ewald (1921) summation was developed to
tackle this problem for electrostatics (p = 1) and later extended to other exponents; its basic concept is
to split 1/r into a short-ranged part, which converges fast in real space, and a long-range part, which is
smooth, and therefore converges well, in reciprocal space. A naive implementation of Ewald summation scales
O(N2), which can be brought down to O(N3/2) by choosing the cutoffs to be proportional to the size of the
simulation cell. This is, however, undesirable for MLIPs, which are typically constructed and trained for a
fixed cutoff radius. Particle–mesh Ewald (PME, P3M) algorithms reduce this to O(N log N) by interpolating
charges onto a grid and employing the fast Fourier transform for the reciprocal-space part (Darden et al.,
1993; Hockney & Eastwood, 2021). While such methods are standard in force fields, implementations in
popular machine learning frameworks, PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018), have
only become available recently (Loche et al., 2025). In non-periodic systems, the naive evaluation of Eq. (1)
scales O(N2). However, methods like the fast multipole expansion can reduce this cost to O(N) (Greengard
& Rokhlin, 1987). Another approach is multi-level summation (Hardy et al., 2015), which scales O(N) for
non-periodic and periodic systems and has recently been implemented in JAX (Buchner et al., 2025). For

2For p = 1, i.e., electrostatics, it is common to speak of charges. For p > 1, for example dispersion (p = 6), ‘coefficients’ is
more common.

3



Under review as submission to TMLR

systems with fewer than thousands of atoms, naive implementations—Ewald summation for periodic systems
and direct summation for non-periodic systems—are typically faster than more complex, but better-scaling,
methods; this is benchmarked, for instance, in Loche et al. (2025). Since all systems considered in this work
are smaller than this threshold, we use naive implementations throughout.

3 Related work

Equivariant message passing Bond-order potentials first introduced the idea of repeatedly updating
atomic environments to extend interactions beyond the cutoff radius rc (Tersoff, 1988; Brenner, 1990), a
principle now central to modern MLIPs. In MPNNs (Gilmer et al., 2017), atoms exchange messages over M
steps, so features and energies depend on neighbors within M · rc. Letting kPi denote the features at atom i
and message-passing step k:

k+1Mi =
∑

j

km(kPi,
kPj , rij) (2)

k+1Pi = ku(kPi,
k+1Mi) , (3)

with learned message and update functions m and u. Early models used invariant updates (Schütt et al.,
2017; Xie & Grossman, 2018), later extended to equivariant ones (Gasteiger et al., 2019; Schütt et al., 2021;
Batatia et al., 2022; Batzner et al., 2022; Frank et al., 2024b). Equivariant MPNNs are restricted in the
choice of operations within the network, as they must retain equivariance throughout (see Appendix A).
Recent universal MLIPs trained on big datasets (Batatia et al., 2025; Wood et al., 2025; Mazitov et al.,
2025; Rhodes et al., 2025) sometimes replace message passing with local self-attention. While effective at
capturing semi-local interactions, MPNNs cannot model true long-range effects, since distant atoms without
intermediates never interact, and many steps reduce expressivity (Cai & Wang, 2020; Alon & Yahav, 2020;
Nigam et al., 2022).

Physics-based long-range models Many long-range models explicitly add physics-inspired terms to E
that capture interactions decaying more slowly with distance. A common example of such a form is given by
Eq. (1): Elong =

∑
i qiVi where qi are latent per-atom descriptors (e.g., partial charges or polarizabilities)

predicted by the model and Vi is computed as an inverse power law of interatomic distances. Usually, these
qi are predicted directly as scalar functions of local atomic features (Unke et al., 2021a; Staacke et al., 2021;
Loche et al., 2025; Kim et al., 2024; Ji et al., 2025; Kabylda et al., 2025; Cheng, 2025). A modification
of this approach is to include the qi in an equilibration scheme, thus allowing these descriptors to capture
information otherwise missed due to their initial dependence on local environments (Ko et al., 2021; Pellegrini
et al., 2023; Maruf et al., 2025). Grisafi & Ceriotti (2019); Huguenin-Dumittan et al. (2023) propose to use
physics-inspired kernels to compute long-range features, mathematically equivalent to a multipole expansion,
but find that higher-order features contain little additional information.

Other long-range models Some models avoid handcrafted corrections and instead learn long-range
interactions directly. Ewald message passing augments GNNs with Fourier-space invariants (Kosmala et al.,
2023), while fully connected approaches use all-to-all distances (Chmiela et al., 2018) or global attention (Unke
et al., 2021a), though these lose efficiency or distance information. Linear-scaling attention with geometric
embeddings (Frank et al., 2024a) enables global orientation exchange but needs symmetrization and has
not yet been adapted to periodic systems. Alternatives include virtual nodes for global aggregation (Caruso
et al., 2025) or message passing in spherical harmonics space (Frank et al., 2022). Despite approximations,
most methods still struggle to bridge periodic and non-periodic systems. Some methods outside atomistic
modeling also aim to capture long-range effects (Dwivedi et al., 2022; Bamberger et al., 2025; Moskalev et al.,
2025; Zhdanov et al., 2025), but require further adaptation to include geometric information or periodicity.

4 Equivariant long-range message passing

Ewald summation, as introduced in Section 2 and Eq. (1), allows the efficient, and convergent in period
systems, evaluation of a potential Vi at each atomic position, based on coefficients qj associated with all other
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atoms j and a power of the the inverse distances 1/rp
ij . This computation can be seen as a physics-inspired

form of message passing (Eqs. (2) and (3)), with radial filter 1/rp
ij , neighbor feature qi, and resulting message

Vi; this correspondence was pointed out by Kosmala et al. (2023) and used by Grisafi & Ceriotti (2019) to
compute general long-range features.

To bring it more in line with standard message passing, the operation can be carried out in parallel across an
extra feature dimension, promoting qi to an array qi. This allows to communicate more information, but in
this form, this information is restricted to geometric invariants. We propose to promote qi to an equivariant
tensor instead: Qi,l,m. This results in equivariant messages, or potentials:

Vi,l,m =
N∑

j=1

∑
n∈Z3

Qj,l,m

|ri − (rj + n1c1 + n2c2 + n3c3)|p , (4)

carrying out the Ewald summation over each spherical order l and component m in parallel.

To see that the result is equivariant, recall (see Appendix A) that adding two equivariant objects yields
another equivariant object, and that multiplication with a prefactor, provided that the factor is shared across
all entries for a given l, also retains equivariance. It is then easy to see that multiplying Qi with a factor 1/rp

ij

yields an equivariant quantity, and that the sum in Eq. (4) also yields an equivariant, since all summands
are equivariant objects. We argue and numerically confirm in Appendix B that a compensating background
charge correction preserves equivariance.

Overall, this approach allows the global aggregation of equivariant messages in a way that is amenable to
efficient implementation, scaling O(N log N) in periodic systems and—at least in principle, see Section 2—
O(N) in finite systems. Even more advanced computational methods can bring O(N) scaling to both. The
method also naturally accommodates the long-range effects in physical systems, which decay asymptotically
following a power law.

5 Lorem

Lorem follows the blueprint of equivariant MPNNs, making a few modifications: Scalar and spherical features
are handled separately, following Frank et al. (2022; 2024b), and mixed using a variant of the power spectrum
(Bartók et al., 2013) and a residual update block (He et al., 2015).

Overview Lorem, illustrated in Fig. 1 maps a point cloud of N atomic positions { ri }, potentially
contained in a periodic unit cell c1, c2, c3, and labeled with chemical species {Zi }, to atomic energies {Ei }
which, when summed, yield the total potential energy E. Internally, the point cloud is processed as a graph,
with edges between nodes, the atoms, defined by a cutoff radius rc. Accordingly, edges correspond to vectors
rij = rj − ri connecting atoms i and j. Node features are updated through either short-range message
passing or long-range message passing. Spherical information is used to update scalar features by
computing their spherical norm and passing it through an update block. Updates of scalar features are
followed by a residual prediction of atomic energy contributions. We discuss the main components of Lorem
below; specialized equivariant operations are described in more detail in Appendix A.

Short-range message passing Initial scalar features 0Pi are a learned embedding of chemical species. At
each short-range message passing step k, edge features Kij are obtained from distances rij and scalar features
kPi and kPj through a radial expansion. These edge features are then linearly transformed twice, with
different learned weight matrices: Once to yield scalar messages that are aggregated into scalar updates, and
again to yield pre-factors for the spherical harmonics Yij (angular expansion), which are combined with
neighboring spherical features Sj in a tensor product.3 The results are aggregated into a spherical message,
which updates the spherical features via another tensor product, resulting in k+1Si. The spherical norm of
the updated spherical node features is then used to further update the scalar features, finally yielding k+1Pi.
This process is repeated M times (the total number of short-range message passing steps).

3In the initial message passing step, no spherical node features are available, and therefore the tensor product with Sj is
omitted. Initial spherical node features are obtained via a self tensor product (dotted lines) rather than a tensor product of the
updates with the previous features.
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Figure 1: Sketch of the Lorem architecture.

Long-range message passing We use the method discussed in Section 4 to communicate equivariant
information beyond the effective interaction cutoff of short-range message passing. To minimize computational
cost, which is proportional to the number of channels over which Ewald summation is carried out, node
features are transformed into low-dimensional charges: The scalar features M Pi are transformed into a single
per-atom charge qi, and spherical features M Si are likewise, using a linear transformation followed by a
self tensor product, transformed into Qi,l,m with a low lmax, LR and a singular feature dimension. Unless
otherwise noted, we use lmax, LR = 2. The scalar charge is concatenated with the l = 0 spherical charge,
which yields a total of 10 charge channels for lmax, LR = 2.4 After Ewald summation, which is carried out
in parallel across l and m, the potentials are split back into the purely scalar Vi and the spherical Vi. The
spherical potentials are combined with spherical node features through a tensor product; the spherical norm
of the result is concatenated with the scalar potential to update scalar representations. We find that using
only p=1, i.e., the Coulomb interaction, rather than a set of different exponents, is sufficient in practice.
Experiments for lmax, LR = 0, 1, 2 can be found in Appendix G.

Update block Updates Y to scalar features X use an update block consisting of multi-layer perceptrons
(MLP) and layer normalization (LayerNorm) (Ba et al., 2016), following a residual structure (He et al., 2015):

X ←X + MLP(Y )
X ← LayerNorm(X)
X ←X + MLP(X)
X ← LayerNorm(X) .

4Two with l=0: one from the scalar features and one from the scalar component of the spherical features.
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Table 1: Root mean squared errors for energy E and forces f for datasets and models used in Section 6.1.
Where available, a held-out test set was used; otherwise, the validation set was used instead and indicated
in the table. The lowest error is indicated in bold. The second line after each model name indicates the
number of short-range (SR) message-passing steps and whether some form of long-range (LR) interactions
are included in the model.5

Dataset Lorem
1×SR + LR

Cace-Les
1×SR + LR

Mace
2×SR

Pet
2× SR

4G-NN
1×SR + LR

MgO surface E (meV/at) 0.064 0.071 0.376 0.210 0.219
(Validation set) f (meV/Å) 4.076 7.913 5.971 6.261 66.000

NaCl cluster E (meV/at) 0.112 0.210 1.681 1.517 0.481
(Validation set) f (meV/Å) 1.155 9.784 40.219 42.438 32.780

Biodimers E (meV/at) 0.222 2.259 7.793 6.758 –
f (meV/Å) 1.646 3.163 16.150 16.470 –

Cumulene E (meV/at) 3.309 17.803 12.592 3.205 –
f (meV/Å) 50.084 147.616 104.318 46.905 –

Radial expansion Lorem processes information about the distance between two atoms rij through
learned coefficients for linear transformations of an initial radial basis expansion of rij . Distances rij are
first expanded in Bernstein polynomials multiplied with fcut, the cosine cutoff function (extending from 0 to
rc), yielding initial radial features ρij,c. These features are multiplied with a weight matrix A, which is in
turn obtained through a MLP (and subsequent reshaping operation) applied to the concatenated scalar atom
features Pi and Pj . This allows the model to learn a radial basis based on the features of both atoms i and j.
The resulting edge features are called Kij .

Angular expansion The vectors rij are expanded in spherical harmonics Yij = Y(ri), which are polyno-
mials of vector components that produce outputs in different irreducible representations of SO(3) (Unke &
Maennel, 2024). During message passing, they are multiplied with per-l coefficients: Y ′

ij,l,m,c = Aij,l,cYij,l,m,
where Aij are obtained as linear transformation of Kij , followed by reshaping operation. Since the factors
are shared across m, this preserves equivariance.

6 Experiments

We perform experiments on a number of existing benchmark tasks designed to probe the ability of MLIPs
to model long-range interactions, comparing Lorem to short and long-range MLIPs. The experiments are
divided into two parts: In Section 6.1, we compare Lorem with other models using standardized settings.
We find that Lorem performs well, but also observe that most tasks can be solved by models that do not
consider long-range interactions at all – the effective interaction range of typical message passing models is
sufficient. However, predictions break down beyond this interaction range. In Section 6.2, we probe this limit
of short-range message passing. We find that while careful consideration of the number of message-passing
steps and the cutoff radius is required to resolve long-range interactions with short-range models, Lorem can
solve these benchmarks without adaptation. Additional experiments can be found in the appendix: Runtime
benchmarks with and without the long-range message-passing block in Appendix F and ablations of lmax, LR,
and the long-range block, in Appendix G.

Models We compare Lorem with a number of purely short-ranged MLIPs, Mace and Pet, as well as the
recently introduced Cace-Les model that combines short-range message passing with a scalar long-range
part, and 4G-NN, which includes a physics-based long-range energy contribution and charge equilibration.
Full details on model descriptions and training can be found in Appendix E.

54G-NN training requires DFT-computed charges, which are not available for the biodimers and cumulene datasets.
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The datasets and associated benchmark tasks used in our experiments are briefly introduced below; additional
details are given in Appendix C. An overview of validation or test set (where available) metrics for all datasets
is given in Table 1. Lorem performs very well across datasets, and is competitive with, or more accurate
than, other models.

MgO surface This benchmark task is the first in a series designed by Ko et al. (2021) to highlight the
need for long-range information in MLIPs. Illustrated in Fig. 2A, it consists of a magnesium oxide (MgO)
surface on which a gold (Au2) dimer is placed. Depending on the presence of an aluminum (Al) dopant deep
inside the surface, the lowest-energy position of the gold dimer is either in the ‘wetting’ (flat), or ‘non-wetting’
(standing up), position. The benchmark consists of two parts: Correctly identifying the ordering between
upright and flat geometries in the doped and undoped case, and reproducing the energy-distance curve for
the non-wetting geometry, in particular the local minimum corresponding to the equilibrium distance.

NaCl cluster Similar to the presence of a dopant modifying the potential-energy surface for the gold dimer
in the MgO surface task, this benchmark by Ko et al. (2021) relies on the presence or absence of a sodium
atom at one end of a charged sodium chloride (NaCl) cluster changing the behavior of a sodium atom at the
opposite end: Since one atom is removed while the charge remains constant, the charge must redistribute
over the remaining atoms. The benchmark task consists of reproducing the location of the local minimum
and the energy profile when moving the sodium atom farthest from the removed one, indicated in Fig. 2C.

Cumulene The cumulene benchmark task was proposed by Unke et al. (2021b) as an example of a
long-range problem that is due to a non-local effect of the electronic structure of a molecule. This molecule
consists of a chain of nine carbon atoms, with a pair of hydrogen atoms, the rotors, at the opposite ends. The
orientation of the rotors determines the shape of the atomic orbitals for each carbon, which propagates along
the chain to the other end; in the absence of bending or stretching, the energy is therefore fully determined by
the relative orientation of the rotors. The task is to recover the energy profile of this rotation for an idealized
fully extended geometry, illustrated in Fig. 3.

Biodimers This benchmark dataset by Huguenin-Dumittan et al. (2023) consists of pairs of relaxed organic
molecules placed at distances of 4 Å to 15 Å from each other, illustrated in Fig. 4A. Depending on the chemical
nature of the molecules, interactions between the molecules take different asymptotic power-law forms, ranging
from charge-charge 1/r interactions to apolar-apolar 1/r6 interactions. Here, we simply compare energy and
force prediction errors on test sets stratified by the dominating power-law interaction.

SN2 reactions Finally, the SN2 reactions benchmark was introduced by Frank et al. (2024a) to probe the
ability of MLIPs to model the long-range interactions required to mediate gas-phase chemical reactions. It
consists of the nucleophilic substitution of methyl halides by another halide ion: X– + H3C Y→ X CH3 + Y–

where X,Y = F, Cl, Br, or I. The benchmark task in this case is predicting the energy along the reaction
coordinate, i.e., correctly modeling the potential energy profile as the two reactants approach one another,
react, and separate again.

6.1 Standardized settings

We compare Lorem to other models using standardized settings: Two message-passing steps for short-range
models, one message-passing step for long-range models, and rc = 5 Å for most models (see Appendix E for
details).

MgO surface The results for this experiment can be seen in Fig. 2B: Despite being designed to require
long-range interactions, this benchmark task can be solved by both purely short-range and long-range
message-passing models. In this case, the success of short-range message passing is due to the small size of
this benchmark system: With an effective cutoff radius above 6 Å, centrally located atoms can ‘see’ the full
system and hence, Mace and Pet can solve this task. All models also resolve the orientation preference for
the Au2 dimer between the doped and undoped surfaces.
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0
10

E
−

E
m

in
(m

eV
)

Na8Cl+8

3.3 3.4 3.5
Na-Na Distance d (Å)
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Figure 2: (A) Au2 dimer on MgO surface, showing both wetting and non-wetting geometries, as well as the
Al dopant. (B) Energy over distance d for the non-wetting geometry for the doped and undoped surface.
The minima are indicated with a diamond symbol; the reference energy curve is drawn in grey. Offsets
are added to distinguish the curves and the value at the minimum is subtracted. (C) Na9Cl +

8 (top) and
Na8Cl +

8 (bottom) cluster, the moving atom is marked with transparent copies of itself, and the distance of
interest is labeled with d. (D) Energy over distance for both clusters.
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Figure 3: (A) Illustration of cumulene laid flat, indicating relevant distances between atoms. (B) Energy
profile over a 90◦ rotation of one rotor. The minimum value of each curve is subtracted before plotting. The
inset shows a 3D representation of cumulene, defining the dihedral angle θ.
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Figure 4: (A) Charge-charge pair from the biodimers dataset. (B) Mean absolute error on forces for different
models on the different dimer classes: Apolar-apolar (AA), charge-apolar (CA), charge-charge (CC), charge-
polar (CP), polar-apolar (PA), polar-polar (PP). Note that the vertical axis has been split at 2.75 meV/Å.

NaCl cluster The results of this experiment, seen in Fig. 2D, are drastically different from the previous one:
Here, only models with a long-range component are able to resolve the difference between Na9Cl +

8 and Na8Cl +
8 .

All such models show excellent agreement with reference values. The failure of short-range message-passing is
due to the larger system size compared to the MgO surface: Here, effective cutoff radii exceeding 10.5 Å are
required to solve the benchmark task.

Cumulene Resolving the cumulene energy profile, seen in Fig. 3, requires simultaneous knowledge of the
orientation of both rotors at opposite ends of the molecule. This can be achieved in two ways: Through
equivariant short-range message passing (Mace, Pet), provided that the chain is not too long (see Section 6.2),
or through equivariant long-range message passing (Lorem). For this reason, Cace-Les cannot solve this
benchmark: Scalar charges are not sufficiently expressive to communicate relative orientation. All equivariant
models that are able to access this information can solve this benchmark, achieving good agreement with the
reference data. Pet resolves the dihedral angle as well, but requires long training and an adaptation in the
number of transformer layers to succeed at this benchmark (see Appendix E). We note that the sharp cusp at
180◦ is an artifact of the underlying reference method; it is a desirable behavior of MLIPs to smoothen it out.
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Biodimers Since the pairs of molecules in the biodimers benchmark are placed at separations up to 15 Å,
much beyond the cutoff used for graph construction, high accuracy requires a long-range component. This is
confirmed by the results of this experiment, seen in Fig. 4: The long range Lorem and Cace-Les models
yield lower error than Mace and Pet. Predictive error varies between dimer classes, i.e., the expected type
of inverse power-law interaction, for all models, with the exception for Lorem, which yields consistent, and
in all but one class the highest, accuracy. This may be due to the addition of a nonlinearity after long-range
message passing, which allows the model to correct the mismatch between the power law used for message
passing, 1/r, and the different exponents in the dimer classes.

6.2 Limits of short-range message passing

In the previous experiments, we observed that the performance of models with short-range message passing
strongly depends on the match between the effective interaction cutoff and the problem to be solved. The case
of biodimers, demonstrates clearly that message passing cannot resolve interactions where no intermediate
atoms are present. To study these cases, we perform additional experiments using Lorem, with and without
long-range message passing, and with different cutoffs.
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Figure 5: Energy over the reaction coordinate for the nucleophilic
substitution reaction Cl– + H3C Br→ Cl CH3 + Br–; snapshots
are shown as insets.

SN2 reactions Solving the benchmark
task for the SN2 reactions dataset re-
quires long-range interactions, since it
involves modeling intra-molecular inter-
actions over distances exceeding the typ-
ical cutoffs used for MLIPs. This is con-
firmed by Fig. 5, which compares the
performance of Lorem with and with-
out long-range message passing. The
former can reproduce the energy over
the course of the reaction with excellent
accuracy, including the tails as the reac-
tants approach and separate. The latter,
which does not include long-range inter-
actions, cannot account for the tails and
consequently predicts a constant once
the molecules separate more than 5 Å.

Cumulene with different cutoffs We probe the dependence of the performance of message-passing
models on their hyperparameters by training a set of Lorem models with and without long-range message
passing at different cutoffs (2.5 Å, 3 Å and 3.5 Å) and numbers of short-range message passing steps (1, 2,
3 and 4). Small cutoffs are chosen to simulate the longer chain lengths of real biomolecular systems. The
results are shown in Table 2 with additional plots in Appendix D: In all cases, models that include long-range
message passing are able to resolve the angle. Short-range models, on the other hand, can only resolve the
angle in certain combinations of hyperparameters: One message passing step is never sufficient. For two,
a minimum cutoff of 3.5 Å is required. For three message passing steps, 3.0 Å is required. Therefore, an
effective cutoff substantially larger than the 5.8 Å distance between the central carbon atom in the chain
and the hydrogen rotors is needed. This is because MPNNs rely on the input graph structure (see Fig. 3A)
for information flow: Below rc = 2.6 Å, connections in the graph only extend to nearest neighbors, with the
exception of the rotors and the second-to-last carbon atoms. Consequently, at least four message passing
steps are required. This example illustrates that short-range message passing is difficult to apply to this
class of problems: Parameters have to be adapted to the chain length, with careful consideration of graph
structure. In contrast, long-range message passing is robust, requiring no change in model hyper-parameters
to solve this task.
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Table 2: Ability of different Lorem models, with and without long-range message passing and with different
numbers of short-range message passing steps, to solve the cumulene benchmark task. A tick (✓) indicates
yes, a cross (×) indicates no. Figure 6 shows the full curves.

Cutoff 1×SR
+ LR

2×SR
+ LR 1×SR 2×SR 3×SR 4×SR

2.5 Å ✓ ✓ × × × ✓
3.0 Å ✓ ✓ × × ✓ ✓
3.5 Å ✓ ✓ × ✓ ✓ ✓

7 Discussion

We introduced a simple yet effective equivariant long-range message passing scheme: Latent equivariant
charges are predicted from local node features, and well-established techniques for evaluating inverse power-law
potentials are used to efficiently compute long-range messages in a way that is convergent and well-defined for
periodic systems. Building on this message-passing mechanism, we developed Lorem, a MLIP architecture
that achieves consistently strong performance across benchmarks that require accurate modeling of long-range
interactions.

By construction, our model assumes that interactions decay asymptotically with distance. While it is therefore
not suited for learning truly global representations that have no notion of locality, this limitation is largely
theoretical for physical systems: Electrostatics dominates most long-range behavior in realistic systems, and
even other effects typically do not extend over arbitrary distances.

A more practical limitation arises in non-periodic systems, where the cost of a naive long-range message
evaluation scales as O(N2). Although this is acceptable for small molecules and unit cells, this is a bottleneck
for larger systems. However, linear-scaling methods for the evaluation of inverse power-law potentials are
available: Fast multipole methods (Greengard & Rokhlin, 1987; Andy L Jones) or multi-level summation
(Hardy et al., 2015; Buchner et al., 2025). Being able to leverage such methods is a key advantage of our
proposed physics-inspired message-passing scheme.

We also investigated the capabilities of purely short-range message passing and found that, in many cases,
it performs very well—even on datasets explicitly designed to require long-range interactions or charge
equilibration. However, its success depends on matching the cutoff radius and number of message passing
steps to the specific task, a process that can be both tedious and error-prone. More fundamentally, short-range
methods cannot resolve interactions between distant atoms without intermediaries. Our augmentation with
long-range message passing overcomes these limitations, providing robust results across different tasks without
requiring extensive hyper-parameter tuning.

Finally, our results underscore a broader issue: the lack of challenging long-range benchmarks. Many
current datasets are based on simplified, small-scale systems and fail to capture the complexity of real-world
applications where long-range interactions are essential. Addressing this gap is a key direction for future
work, which requires the development of application-oriented benchmarks.

Reproducibility statement

Code, data, configuration files, and trained models are available at doi:10.5281/zenodo.17789350. Scripts
include data pre-processing, model training, model evaluation, and the creation of figures and tables in this
work. Hyperparameters are also described in Appendix E.
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A Equivariant modules in Lorem

As discussed in Section 2, only certain operations can be applied to equivariant features S without disrupting
equivariance. We briefly discuss the operations used in Lorem; a more thorough discussion can be found
in Smidt (2021); Unke & Maennel (2024). All operations are implemented using the e3x library (Unke &
Maennel, 2024). We work with spherical features S, dropping the atom index i, as operations are typically
broadcast across i or pairs of atoms.

S is a three-dimensional tensor Sl,m,c in which l enumerates the order of the irreducible representation of
SO(3), m the 2l + 1 components of that irreducible representation, and c the channel (feature) dimension.
For a fixed l and c, Sl,:,c can be thought of as a generalised Cartesian vector. Indeed, for l = 1 it is a vector
in three-dimensional space.

Prerequisites A rotation g ∈ SO(3) applied to all inputs causes a corresponding rotation of the spherical
features S expressed in terms of irreducible representations. For a set of features with order l, this rotation is
represented by a matrix R(g) ∈ R2l+1×2l+1 and acts on these features through matrix multiplication along
the m index,

Sl,m,: −→g

l∑
m′=−l

Rm,m′(g)Sl,m′,: . (5)

In other word, the action of rotations on spherical features is a linear map.

Addition, Multiplication, Linear layers Since the action of rotations is linear, adding two spherical
features of equal l together does not disrupt equivariance. By the same logic, any multiplication of spherical
features that is broadcast along the m index, i.e., that scales spherical features of order l equally, is permissible.
Therefore, a linear layer can be applied to spherical features, provided it is only applied to the channel index,
and broadcast along m. We therefore define a learned linear transformation as

Linear(Sl,:,c) =
∑

c′

W l
c,c′Sl,:,c′ (6)

with per-l learned weights W l. A bias term could be applied to l = 0, i.e., the scalar part of the spherical
features, but we choose not to.

Tensor products Two spherical features of order l1 and l2 can be combined into a new spherical feature
with l3 using a specialized tensor product

Tensor(Sl1,m1,:, Ql2,m2,:) = Ul3,m3,: = wl1,l2,l3
:

∑
m1,m2

C l1,l2,l3
m1,m2,m3

Sl1,m1,:Ql2,m2,: (7)

Cl1,l2,l3 are the Clebsch-Gordan coefficients, and wl1,l2,l3 ∈ Rc is a per-channel weight vector for a given
combination of l1, l2, l3. This tensor product can be carried out for every valid combination |l1 − l2| ≤ l3 ≤
|l1 + l2|. In Lorem, unless specified otherwise, tensor products are only carried out to a fixed maximum
dimension lmax, which all spherical features have in common, not the maximum possible one. Some operations,
for example the preparation of the equivariant message-passing block, perform a tensor product only to
a specified target order. If both inputs of the tensor product are the same feature, we call the operation
a self-tensor product. This operation increases the body-order of the representation (Dusson et al., 2022;
Batatia et al., 2022).

Spherical Norm To predict invariant quantities, we require a way to extract invariant information from
spherical, equivariant, features. One way to do achieve this is a tensor product to target order l = 0. Another,
which is used in Lorem, is to take the norm of each irreducible representation

Norm(S) =
√

(2l + 1)1/2
∑
m

S2
l,m,c . (8)
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We found empirically that the prefactor (2l + 1)1/2 helps reduce variance across l. As opposed to a tensor
product to l = 0, this operation, inspired by the power spectrum (Bartók et al., 2013), keeps the norms per l
separate; a tensor product would linearly combine all l into one.

B Invariance of Lorem

As explained in Section 4 and Appendix A, the potential at each atom, Vi is equivariant because the long-range
message passing step consists of equivariant operations: Addition and multiplication with a factor shared per
l. In practical implementations of Ewald summation in periodic systems, there is one extra step: To prevent
divergences, the total charge must be zero, which can be done either by simply subtracting the sum of the
total charge from each charge, or equivalently, by subtracting an analytical correction from the potentials.
Both approaches are equivalent, and since summation is equivariant, also do not break invariance. For this
reason, the total procedure retains equivariance.

To numerically confirm these considerations, we compute the mean absolute error of energy predictions over
a degree L = 3 Lebedev grid of rotations, plus inversions, with respect to the unrotated case, for the first 5
structures of the MgO surface validation set. The errors are in line with precision expectations: For single
precision, 1.031 · 10−6 meV and for double precision 5.913 · 10−15 meV.

C Dataset Construction

MgO surface The MgO surface dataset from Ko et al. (2021) is used without modification. A representative
snapshot of the unit cell is shown in Fig. 2A. The dataset is built from four configuration types, each derived
from a distinct initial structure:

1. A pure MgO surface with the Au2 dimer oriented perpendicular to the surface,

2. A pure MgO surface with the Au2 dimer oriented parallel to the surface,

3. An Al-doped MgO surface with the Au2 dimer perpendicular to the surface, and

4. An Al-doped MgO surface with the Au2 dimer parallel to the surface.

Each of these initial configurations was first geometry optimized. For the two perpendicular, ‘non-wetting’,
cases (1 and 3), the distance between the lower Au atom and the O atom directly beneath it was systematically
varied, displacing the Au2 dimer as a whole. From these distance-dependent samples, a subset was randomly
selected. To introduce structural diversity, Gaussian noise was applied to each configuration: a standard
deviation of 0.02 Å for atoms in the MgO substrate and 0.1 Å for the gold cluster. After perturbation,
1250 structures were selected from each of the four configuration types, yielding a total of 5000 samples.
For these, energies and forces were computed using the FHI-aims code (Abbott et al., 2025) and the
Perdew–Burke–Ernzerhof (PBE) functional (Perdew et al., 1996). A random 90/10 train–validation split was
used, as reported in Ko et al. (2021). Additional energy–distance curves with equal spacing were constructed
for the perpendicular cases and are shown in Fig. 2B.

NaCl cluster The NaCl cluster dataset from Ko et al. (2021) is used without modification. First, the
Na9Cl +

8 cluster was optimized in vacuum. A snapshot is shown in the top panel of Fig. 2C. From this
geometry, the Na atom farthest from all other Na atoms was removed, yielding the Na8Cl +

8 cluster shown in
the bottom panel of Fig. 2C. From these two structures, additional configurations were created by varying the
distance between a selected pair of Na atoms along the line connecting them. In Fig. 2C, this moving atom is
illustrated by transparent copies along its trajectory. Training datasets for both Na9Cl +

8 and Na8Cl +
8 were

constructed by randomly sampling configurations along these trajectories. Gaussian noise with a standard
deviation of 0.05 Å was applied to the atomic coordinates, resulting in 2500 perturbed structures for each
molecule and a total of 5000 instances. Energies and forces were computed using the FHI-aims code and the
PBE functional. A random 90/10 train–validation split was used, as reported by Ko et al. (2021). Additional
energy–distance curves with equal spacing were constructed and are shown in Fig. 2D.
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Cumulenes The cumulene dataset from Unke et al. (2021b) is used without modification. The geometry of
the linear molecule is shown in Fig. 3A. The dataset contains 4500 randomly sampled cumulene structures with
nine carbon atoms, divided into training, validation, and test sets with 2000/500/2000 instances, respectively.
The energy curves shown in Fig. 3B are based on a controlled subset in which only one terminal carbon atom
is rotated, while the rest of the molecule remains fixed. A visualization of this rotational motion is provided
in the inset of Fig. 3B.

Biodimers The Biodimers dataset from Huguenin-Dumittan et al. (2023); Burns et al. (2017) is used
without modification. It consists of 2291 relaxed organic sidechain–sidechain fragments, including small
molecules such as ethanol, acetamide, and others. Based on molecular properties, the dataset is divided into
six categories: each molecule is classified as either polar, apolar, or charged, resulting in the following dimer
types—polar–polar (PP), polar–apolar (PA), polar–charged (PC), apolar–apolar (AA), apolar–charged (AC),
and charged–charged (CC). A representative CC dimer is shown in Fig. 4A. The initial separation between
molecules reflects their positions in protein structures. From this configuration, the intermolecular distance is
incrementally increased up to 15 Å, resulting in a total of 29 783 dimer instances. Instances where the final
separation exceeds the initial distance by more than 4 Å (13 743 samples) are designated as the test set. The
remaining 16 040 instances form the training set. Energies and forces were computed using the FHI-aims code
and the HSE06 hybrid functional. For each of the six dimer types, a random 80/20 train–validation split was
applied. The resulting subsets were then merged into a single training set and a single validation set.

SN2 reactions The SN2 reactions dataset from Unke & Meuwly (2019); Frank et al. (2024a) is used without
modification. It contains molecular structures in vacuum that model nucleophilic substitution (SN2) reactions.
The dataset includes molecules of the types XCH3Y–, CH3X, HX, CHX, CH2X, XY, X, and Y, for all possible
combinations of X, Y ∈ {F, Cl, Br, I}. A representative reaction coordinate with corresponding snapshots is
shown in Fig. 5. Additional species such as H2, CH2, and CH3 are also included in the dataset. Training
configurations were generated using ab initio molecular dynamics simulations at 5000 K, with a time step of
0.1 fs. Full computational details, including the level of theory, are provided in the original publications. The
dataset is randomly split into 405 000 training, 5000 validation, and 42 708 test samples.

D Additional results for cumulene

In Fig. 6, we present the curves related to Table 2. All models where the dihedral information is accessible
can resolve the benchmark, but vary in match to the ground truth. In particular, we note that models with
two short-range message passing steps perform better than a single one. This may be due to the high degree
of degeneracy in atomic environments at short cutoffs, which is alleviated by message passing.

E Model description and training setup

For all models, training parameters, and in some cases, model parameters, vary slightly between datasets.
Where we were unable to use models from previous work, we tuned parameters to minimize the error on
the validation set,6 aiming to perform a similar number of experiments, on the order of ten, per model and
experiment. With this, we aim to report results that reflect a practical degree of hyper-parameter tuning.

Lorem For all experiments, except the ones where variations were tested, the same Lorem model architecture
(Section 5) was used: A cutoff radius of 5 Å, lmax = 6 for spherical features and lmax, LR = 2 for the long-range
message passing, 128 scalar features, 8 channels for spherical features, and 32 radial basis functions. We
perform only the initial short-range message passing step; performing additional steps typically increases
accuracy but hinders comparison of long-range expressivity. This model has 1 021 198 learnable parameters.
It was implemented using the e3x library (Unke & Maennel, 2024). Training is performed entirely in float32

6We note that minimizing the validation error does not always yield the best qualitative agreement: In the cumulene dataset,
it does not readily correlate with ability to predict the dihedral curve in Fig. 3 – while all models below a certain error threshold
are able to resolve the task, the qualitative agreement varies.
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Figure 6: Rotational profile of cumulene for variations of the Lorem model with different rc, different
numbers of short-range message passing steps, and with and without long-range message passing. All curves
that are identical to zero have been collapsed into a single one for readability.
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Dataset Optimizer Initial LR Epochs Batch size E weight f weight Time
MgO surface ADAM 4 · 10−4 4000 32 1000 1.0 17 h

Biodimers ADAM 1 · 10−4 4000 32 0.5 0.5 42 h
Cumulene LAMB 1 · 10−3 2000 32 0.5 0.5 2 h

NaCl cluster ADAM 1 · 10−3 8000 64 0.5 0.5 7 h
SN2 reactions ADAM 1 · 10−4 500 32 0.5 0.5 17 h

Table 3: Training settings for Lorem for different datasets. Training times are given for a single Nvidia H100
SXM5 GPU.

precision; while we find that reduced precision has only a minor effect on training dynamics, it can significantly
alter validation and test results.

Training parameters vary slightly between datasets; the exact parameters can be found in Table 3. We report
errors for the better out of two runs with different seeds; the presented conclusions hold for both models.

In all cases, except NaCl7, the learning rate was decayed linearly after 10 epochs, from the indicated starting
value to 1 · 10−6; the ADAM (Kingma & Ba, 2017) and LAMB (You et al., 2019) optimizers were used. The
loss function was a simple mean squared error, with the energy residuals normalized by number of atoms.
The squared residuals were averaged over the whole batch, including over atoms and components in the
case of forces, and then summed and weighted with a factor. The checkpoint with the lowest summed R2 of
energy and forces, evaluated on the validation set, was used for experiments. Training times are given for the
entire run, not the time until the best checkpoint.

For NaCl and AuMgO, prior work (Kim et al., 2024; Ko et al., 2021) reports error directly on the validation
set, as the benchmark was originally intended as an overfitting exercise. We follow this practice, but verify in
Appendix H that, due to the statistical uniformity of the dataset, there is no significant difference to tuning
hyper-parameters systematically on an inner train/validation split, keeping the data used for Table 1 held
out.

Mace The Mace MLIP (Batatia et al. (2022)) is an equivariant message-passing neural network as described
in Section 2. It is used with the standard setting of two message-passing steps, i.e., an effective cutoff of 10 Å.
Training generally used default hyperparameters, with some adjustments made on hyperparameters related
to training dynamics. Specifically, the cumulene system was trained using the default energy-to-forces loss
weight ratio of 1:100 and ’128x0e + 128x1o + 128x2e’ hidden irreps. All other systems were trained using a
1:10 ratio and ’128x0e + 128x1o’ hidden irreps.

All experiments, except those involving cumulenes and the NaCl cluster, used the SWA protocol, which
swaps the loss weights between energy and forces at a specified epoch. This epoch was set where the energy
RMSE plateaued, with the subsequent training continued until loss saturation. All models were trained with
lmax = 2, a batch size of 32, and utilized cuEquivariance acceleration.

Pet Pet (Pozdnyakov & Ceriotti (2023)) is an unconstrained transformer model, consisting of multiple
edge-to-edge transformer layers within local neighborhoods followed by message passing. Similar to Mace, it
is also used with two message-passing steps and an effective cutoff of 10 Å. To ensure approximate rotational
invariance, it is trained with data augmentation. No inference-time symmetrization is used in our experiments.

Unless otherwise specified, we used default hyperparameters (cutoff radius of 5 Å with cosine smoothing over
the outermost 0.2 Å, dPET = 128, dhead = 128, dfeedforward = 512, with 8 heads per attention layer, and 2
attention layers per GNN layer), with some adjustments made related to training dynamics. Models were
trained using an epoch-based scheduler, which halved the learning rate after 250 epochs. This applies to all
datasets except biodimers. For biodimers, a ReduceLROnPlateau scheduler was used instead, reducing the
learning rate by 20% if the loss did not improve for 100 consecutive epochs. To improve training stability,
biodimers training also employed gradient clipping with a maximum gradient norm of 5. Every training run

7Here, exponential learning rate decay was employed.

23



Under review as submission to TMLR

included 10 warmup epochs, during which the learning rate was linearly increased from zero to the preset
learning rate of 1× 10−4.

For the biodimers and NaCl cluster datasets, the targets were normalized by their standard deviation in the
training set. The energy-to-forces loss weight ratio was set to 1:1 for biodimers and MgO surface datasets,
while the NaCl cluster dataset used a ratio of 1:10.

For cumulene, PET was trained for 20 100 epochs with a batch size of 16, equal energy and forces weight,
and a maximum learning rate of 2 · 10−4. The learning rate was increased linearly from 0 over 100 epochs,
and then reduced by 10% every 500 epochs over the entire training run. Architecturally, 5 attention layers
and cosine cutoff function was employed to resolve the cumulenes. We found that increasing the number of
attention layers, and adapting the cutoff function, were critical to resolve this benchmark task.

Cace-Les The Cace-Les model was originally presented in Cheng (2024), with an additional modification
introducing a long-range component in Cheng (2025). Similar to Mace, Cace-Les is an equivariant message-
passing neural network. After short-range message passing, invariant scalar pseudo-charges are predicted and
passed to the long-range part of Ewald summation; the resulting energy contribution is added to the energy
predictions of the short-range message-passing model. We use this model with the recommended setting of
one message-passing step and, depending on the system, the following corresponding effective cutoff radii:
5.5 Å for the MgO surface, 5.29 Å for the NaCl cluster—these are the settings used in the original paper Kim
et al. (2024)—and we chose a cutoff of 5 Å for biodimers and cumulene.

For the MgO surface and NaCl cluster datasets, models were taken from Kim et al. (2024). For the cumulenes
and biodimers datasets, the hyperparameters were as follows: 6 Bessel radial functions, c = 8, lmax = 3, νmax,
Nembedding = 2, one message-passing layer, one-dimensional hidden variable, σ = 1, and dl = 2. Training
followed the example in the original paper: the first 200 epochs used an energy loss weight of 0.1 and a forces
loss weight of 1000, after which the energy loss weight was changed to 1, 10, and 1000 every 100 epochs,
yielding a total of 500 epochs. The learning rate was 5× 10−3, with a step learning rate schedule decreasing
it by a factor of 2 every 20 steps.

4G-NN The 4G-NN model was designed to tackle the benchmarks introduced by Ko et al. (2021), and
introduced in that work. It consists of a shallow neural network acting on rotationally invariant features,
predicting both a local energy contribution and an electronegativity, which is then used in a charge equilibration
procedure that globally redistributes charges to minimize an energy expression. This process can be seen as a
physics-inspired long-range message passing scheme iterated until a fixed point is reached. As the model
requires charge labels to train, which are not available for all datasets, we did not train this model for our
experiments but instead include results from Ko et al. (2021), which are only available for the NaCl cluster
and MgO surface datasets. The cutoffs used in the original paper are as follows: 4.23 Å for the MgO surface
and 5.29 Å for the NaCl cluster.

F Runtime Benchmark

To estimate the runtime of the LR block, we ran predictions (of energy and forces) for the benchmark
structures used in (Loche et al., 2025) for Lorem models with and without LR block. All benchmarks were
repeated ten times and averaged, and executed on a NVIDIA H100 GPU. The results can be found in Table 4.
For most system sizes and densities (or crystal structures), the LR block accounts for less than 10 % of overall
runtime.

G Ablations of LR block and l

We repeated the experiments on the MgO surface, NaCl cluster, cumulene, and biodimers with Lorem
models with l = 0 and l = 1, as well as without the long-range message-passing block. The parameter counts
for no LR and l = 0, 1, 2 (in that order) are 839129, 1020300, 1020749, and 1021198.
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Table 4: Runtime of Lorem without (SR) and with long-range block (SR+LR), and their absolute and
relative difference ∆, reported for different crystal systems and numbers of atoms N .

N Crystal SR (ms) SR+LR (ms) ∆ (ms) ∆ (%)
16 CsCl 1.4 1.7 0.3 19.2
16 NaCl primitive 1.0 1.3 0.3 23.9
16 zincblende 0.9 1.2 0.3 25.4
32 wurtzite 3.9 4.3 0.4 9.4
48 cu2o 12.1 12.4 0.4 3.1
64 NaCl cubic 2.7 3.0 0.3 11.4
64 wigner bcc 4.2 4.6 0.4 8.5
64 wigner fcc 8.3 8.8 0.5 5.1

128 CsCl 10.1 10.4 0.4 3.4
128 NaCl primitive 4.8 5.1 0.3 6.5
128 zincblende 5.2 5.6 0.4 6.8
256 wurtzite 22.4 22.9 0.5 2.1
384 cu2o 103.8 104.4 0.6 0.5
512 NaCl cubic 18.2 18.8 0.5 2.9
512 wigner bcc 39.7 40.1 0.4 1.0
512 wigner fcc 89.8 90.6 0.8 0.9

1024 CsCl 71.1 72.1 1.0 1.3
1024 NaCl primitive 36.5 38.1 1.5 4.0
1024 zincblende 31.5 33.0 1.6 4.7
4096 NaCl cubic 161.0 170.6 9.7 5.7

Table 5: Root mean squared errors for energy E and forces f for datasets used in Sec. 6.1 of the main text,
for different Lorem variants. See Tab. 1 of the main text for details.

Dataset Lorem
No LR

Lorem
LR l = 0

Lorem
LR l = 1

Lorem
LR l = 2

MgO surface E (meV/at) 2.234 0.063 0.062 0.064
(Validation set) f (meV/Å) 61.487 5.870 5.284 4.076

NaCl cluster E (meV/at) 1.582 0.113 0.111 0.112
(Validation set) f (meV/Å) 50.110 1.243 1.062 1.155

Biodimers E (meV/at) 8.259 0.302 0.329 0.222
f (meV/Å) 16.452 1.677 1.725 1.646

Cumulene E (meV/at) 16.203 15.793 5.576 3.309
f (meV/Å) 126.000 133.092 85.956 50.084

Results can be seen in Table 5 and Figs. 7 to 9. Generally, higher l improve error metrics. For experiments
where only scalar long-range interactions are required (MgO surface, NaCl cluster), higher l do not improve
qualitative agreement. The cumulene example, which requires access to relative orientation between rotors,
requires equivariant long-range interactions with l = 2 to be resolved. Removing the long-range message-
passing block significantly increases error and renders the model unable to solve all the benchmark tasks.
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Figure 7: (A) Au2 dimer on MgO surface, showing both wetting and non-wetting geometries, as well as the
Al dopant. (B) Energy over distance d for the non-wetting geometry for the doped and undoped surface.
The minima are indicated with a diamond symbol; the reference energy curve is drawn in grey. Offsets
are added to distinguish the curves and the value at the minimum is subtracted. (C) Na9Cl +

8 (top) and
Na8Cl +

8 (bottom) cluster, the moving atom is marked with transparent copies of itself, and the distance of
interest is labeled with d. (D) Energy over distance for both clusters.
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before plotting.
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Figure 9: Mean absolute error on forces for different models on the different dimer classes: Apolar-apolar
(AA), charge-apolar (CA), charge-charge (CC), charge-polar (CP), polar-apolar (PA), polar-polar (PP).
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H Hyper-parameter sweep for the NaCl cluster and MgO surface datasets

We report the results of a hyper-parameter sweep for the NaCl cluster and MgO surface datasets on a ‘inner’
train/validation split of the training set used for the experiments in Section 6, aiming to gauge the impact of
hyper-parameter tuning and early stopping on the validation set used for Table 1.

We used random train/validation split (4000 samples / 500 samples) of the NaCl cluster and MgO surface train-
ing datasets, sweeping the following combinations of parameters: Initial learning rate (0.001, 0.0001), learning
rate decay (linear, exponential), batch size (32, 64), and energy/force loss weights (0.5/0.5, 100/1, 1000/1)
over 4000 epochs of training with the ADAM optimizer. From the resulting models, we selected those with
the best ‘inner’ validation RMSE on energy and forces and evaluated the models on the ‘outer’ validation split
used for Table 4. The results are presented in Table 6 and Table 7. The model selected by the best energy
error on the validation set performs best in both cases, similar to the model used in the main text. The
model with the best force error ranks second for the MgO surface task. We also verified that both models are
able to reproduce the curves in Fig. 2. In summary, explicitly tuning the model on an inner train/validation
split, including performing early stopping on this validation set, does not significantly impact benchmark
results as reported in Table 1.

Table 6: Errors on the validation set for the hyperparameter set with the best inner validation metrics for
the MgO task.

Model Test RMSE E (meV/atom) Test RMSE f (meV/Å)
Lorem Table 4 0.064 4.076

Nearest other 0.071 (Cace-Les) 5.971 (Mace)
Best E model 0.064 5.229
Best F model 0.078 3.630

Table 7: Errors on the validation set for the hyperparameter set with the best inner validation metrics for
the NaCl task.

Model Test RMSE E (meV/atom) Test RMSE f (meV/Å)
Lorem Table 4 0.112 1.155

Nearest other 0.210 (Cace-Les) 9.784 (Cace-Les)
Best E model 0.076 2.613
Best F model 0.101 1.473
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