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Figure 1: Fin3R consistently improves the reconstructed geometry quality in DUSt3R, MASt3R,
CUT3R, and VGGT, recovering finer details and producing sharper boundaries.
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Abstract

We present Fin3R, a simple, effective, and general fine-tuning method for feed-
forward 3D reconstruction models. The family of feed-forward reconstruction
model regresses pointmap of all input images to a reference frame coordinate
system, along with other auxiliary outputs, in a single forward pass. However, we
find that current models struggle with fine geometry and robustness due to (i) the
scarcity of high-fidelity depth and pose supervision and (ii) the inherent geometric
misalignment from multi-view pointmap regression. Fin3R jointly tackles two
issues with an extra lightweight fine-tuning step. We freeze the decoder, which
handles view matching, and fine-tune only the image encoder—the component
dedicated to feature extraction. The encoder is enriched with fine geometric details
distilled from a strong monocular teacher model on large, unlabeled datasets, using
a custom, lightweight LoRA adapter. We validate our method on a wide range of
models, including DUSt3R, MASt3R, CUT3R, and VGGT. The fine-tuned models
consistently deliver sharper boundaries, recover complex structures, and achieve
higher geometric accuracy in both single- and multi-view settings, while adding
only the tiny LoRA weights, which leave test-time memory and latency virtually
unchanged. Project page: https://visual-ai.github.io/fin3r

1 Introduction

Recently, neural feed-forward 3D reconstruction models [68, 28, 64, 61, 75, 55, 87, 60] have demon-
strated advantages in certain aspects compared to the traditional Structure from Motion (SfM)
pipeline [48, 41]. These methods can transform a single image—or even hundreds of images—into
pointmaps defined in the reference frame within a single forward pass, thereby eliminating the need
for hand-crafted features and time-consuming iterative optimization. At their core, these architectures
share a common structure: a shared encoder extracts features from input images, followed by a de-
coder correlating these features across views. Subsequent task-specific heads then regress pointmaps
while optionally simultaneously estimating auxiliary outputs like camera parameters and depth.

Despite their efficiency and flexibility, these models still lag behind state-of-the-art monocular
geometry estimation approaches [77, 66, 23, 43] in capturing fine geometric detail and robustness.
While architectures such as CUT3R [65] leverage large-scale data supervision and VGGT [61]
integrates gradient-based losses to capture fine details, the resulting depth and pointmap outputs
remain coarse. Fine structures are frequently over-smoothed, object boundaries become blurred,
and transparent or glossy surfaces are reconstructed with significant inaccuracies, yielding point
clouds that lack crisp geometry. This persistent gap in performance raises a crucial question: why do
these feed-forward models consistently struggle to capture high-fidelity geometry? To answer this,
we identify two primary factors that limit the geometric fidelity of these models: (1) Data quality
constraints: Current real-world datasets providing accurate camera poses and high-fidelity depth
remain limited. Existing non-synthetic depth labels are noisy [77] and predominantly biased toward
indoor environments. (2) Long-sequence pointmap degradation: Inherent ambiguities in multi-view
pointmap regression impede the network’s ability to capture fine details over long sequences.

Motivated by these challenges, we investigate whether extensive unlabelled single-view data can
be used to fine-tune pre-trained models to improve fine geometry recovery and robustness without
sacrificing multi-view performance. This approach relaxes the constraint of high-quality data and
long-sequence degradation. Recalling the common structure of recent feed-forward reconstruction
models, we distill a state-of-the-art monocular geometry estimator (MoGe [66]) into the encoder using
the diverse SA-1B dataset [25], while freezing the decoder to preserve its multi-view performance.

However, we observe that naïve encoder-only distillation, though beneficial for single-frame accuracy,
leads to an increase in encoder feature norms. This drift pushes the features outside the range expected
by the frozen decoder and undermines multi-view capability. To counteract this, we initially combined
LoRA [20] with multi-view data replay, but the shift persisted. We therefore embed customized
re-normalization layers within each LoRA block to dynamically correct this drift. Our solution
achieves crisp depth predictions for single images while maintaining multi-view performance, all
without the need for additional decoder fine-tuning.
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To summarize, we propose a simple, effective, and general fine-tuning approach. By freezing
the decoder and integrating a customized re-normalization LoRA adapter into the encoder, we
distill the model from a high-fidelity monocular teacher using a diverse dataset. Remarkably,
the same implementation is applied to four baselines—DUSt3R’s [68] pairwise prediction with
relative depth, MASt3R’s [28] pairwise prediction with metric depth, CUT3R’s [64] recurrent
network, and VGGT’s [61] parallel transformer—yielding crisper and more robust single-view
depth, while preserving or even slightly improving multi-view performance. Our contributions are
threefold: (i) a general encoder-only distillation strategy that enhances local geometric detail and
overall robustness in feed-forward 3D reconstruction models; (ii) a feature shift mitigation approach
combining customized re-normalization LoRA with multi-view data replay to reduce distribution
shifts over long sequences; and (iii) a comprehensive evaluation on DUSt3R, MASt3R, CUT3R, and
VGGT, demonstrating improved depth fidelity and correspondence accuracy while preserving global
multi-view performance.

2 Related Work

Optimization-based Multi-view Reconstruction For over two decades, mainstream 3D recon-
struction methods [19, 39] treated reconstruction as a large-scale optimization problem. The standard
workflow [53, 1, 14] starts with exhaustive matching, triangulation, and bundle adjustment—structure-
from-motion (SfM)—implemented in toolkits such as COLMAP [48]. SfM yields a sparse, metrically
consistent point cloud that is densified by photo-consistent multi-view stereo (MVS). Early MVS
relied on hand-crafted heuristics [16, 17]; recent variants adopt learned cost volumes [78, 18, 37]
or neural-implicit global optimisation [38, 15]. Deep learning has also upgraded SfM components:
keypoints [82, 12], matchers [47, 31], even the full loop via differentiable Bundle Adjustment
(BA) [57, 62]. Yet these optimization-heavy pipelines remain calibration-sensitive and slow.

Feed-forward 3D Reconstruction Models Recent work removes explicit optimisation loops and
predicts scene geometry in a single network pass. DUSt3R [68] pioneers this trend: from two
uncalibrated images it produces a dense PointMap anchored in the first view, from which pose,
depth, and correspondences are recovered through post-processing. MASt3R [28] retains the same
backbone but adds feature heads for matching. To extend beyond pairs, methods diverge into (i)
recurrent architectures that process frames sequentially, e.g., CUT3R [65] and Span3R [60], and (ii)
fully parallel attention across all views, e.g., MV-DUSt3R++ [55], FLARE [87], Fast3R [76], and
VGGT [61]. Despite their strong implicit multi-view correspondence capability, these feed-forward
models still struggle to capture sharp local geometry and reconstruct complex surfaces. Recent
fine-tuning works [35, 86] rely on test-time optimization, requiring per-scene finetuning for each new
instance. In contrast, our method involves a single, universal finetuning phase to create one model
that generalizes to new scenes in a zero-shot manner.

Monocular Priors for Multi-view Geometry Leveraging monocular cues to assist multi-view
problems has a long history. Dense monocular depth, surface normals and semantics have been used
to assist SLAM [56, 9, 33, 32, 89], to fill in gaps in dense reconstruction [44, 36, 72, 85], and to
guide novel view synthesis [54, 74]. Other works explore monocular priors for relative pose [4, 84],
PnP-RANSAC on depth maps [32], and monocular-assisted SfM [42]. More recently, significant
progress in monocular depth [77, 43, 23, 66] and normal estimation [83, 73, 3] has positioned these
methods as strong priors for a variety of tasks.

Recently, monocular priors have also been injected into the new trend of feed-forward 3D reconstruc-
tion networks. Align3R [34], Pow3R [21], and Mono3R [29] inject single-image depth (or sparse
depth hints) to improve the pointmap prediction of DUSt3R-style models. However, they either (i)
rely on an external geometric estimator or (ii) assume sparse, high-quality depth inputs. In contrast,
our approach keeps the feed-forward pipeline fully self-contained: we do not introduce any extra
heavy inference modules, or runtime overhead. Instead, we focus on training a stronger encoder that
yields markedly more robust multi-view geometry without compromising speed.
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View1 View2

(a) Scale Uncertainty Illustration (b) Error metrics.

Figure 2: Analysis of scale uncertainty and error metrics. (a) Two views of a red cube are
connected by a blue epipolar line. Gaussian distributions overlaid on a foreground point (green)
and a background point (yellow) illustrate their respective scale uncertainties, with the foreground
exhibiting notably larger epipolar dispersion after projection. (b) Reprojection error and Euclidean
distance loss are computed for 10 inputs processed by VGGT [61], with 1,000 samples drawn from
Hypersim.

3 Method

3.1 Observations and Challenges

Our analysis reveals two main challenges in existing datasets and long sequence scenarios that
critically affect training of geometry regression heads:

Data Scarcity. Existing datasets suffer from depth [77] and pose noise, and the limited availability
of multi-view data further restricts the model’s ability to generalize. These noisy and insufficient
labels hinder the model’s capacity to capture fine details and to robustly adapt to diverse scenarios.

Long-Sequence Degradation. Long sequences introduce additional issues for pointmap regression:
(1) Coupled Prediction: Although DUSt3R [68]’s multi-view pointmap regression has enabled feed-
forward 3D reconstruction, it inherently couples pose and depth estimation in pointmap regression,
injecting pose regression error into the geometry heads. (2) Drift: As the views progressively move
further away from the initial reference frame, progressive drift becomes inevitable. This drift results
in increasing errors on non-reference views and negatively affects the preservation of fine structural
details. (3) Scale Uncertainty: During training, both predicted and ground-truth pointmap require
normalization to ensure scale consistency.2 However, this scale uncertainty tends to erode fine
foreground boundary along the epipolar line in views beyond the first frame. This phenomenon is
illustrated in Figure 2a and mathematically validated in the appendix.

Consequently, pointmap regression introduces substantial errors in non-reference views, as evidenced
by the pronounced reprojection error in Figure 2b. Although CUT3R [65] leverages extensive depth
supervision and VGGT [61] employs gradient-based loss to refine local geometry—with both methods
incorporating dedicated self-view pointmap or depth estimation heads—the resulting outputs remain
relatively coarse. We suspect that the multi-view pointmap regression undermines the performance of
these self-view estimation heads, thereby limiting the model’s ability to capture fine-grained details.

These observations not only underscore the necessity for high-quality supervision from diverse
datasets but also highlight the inherent challenges associated with multi-view pointmap regression.

3.2 Fin3R

2Although VGGT [61] circumvents an explicit normalization step by implicitly inferring the prediction scale,
it does not entirely resolve the inherent scale uncertainty in SfM.
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(a) Input Image (b) VGGT
Avg: 9.61

(c) LoRA Only
Avg: 10.53

(d) LoRA+Replay
Avg: 10.34

(e) Full
Avg: 9.73

Figure 3: Heatmaps show spatial variations in L2 norms of encoder patch tokens across
configurations. “Avg” is the average norm of the feature map, and (e) Full indicates the full model
with re-normalization LoRA and multi-view data replay.
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Figure 4: Pipeline of our method. Green
dashed lines denote pointmap supervision; pur-
ple dashed lines indicate distillation supervision.

Based on these observations, we introduce
Fin3R—our solution that integrates a lightweight
fine-tuning stage to simultaneously address both
challenges by monocular knowledge distillation.

3.2.1 Encoder-only Distillation

We aim to enhance our model’s capability to cap-
ture fine details and complex surface geometries
while preserving its multi-view performance. Re-
call that feed-forward 3D reconstruction models
typically consist of a shared encoder, which ex-
tracts features from input images, followed by a decoder that correlates these features across views.
We contend that the limitations in detail recovery primarily originate from the encoder. Therefore, we
enrich the encoder using a robust monocular teacher [66], distilled on a large and diverse dataset [25].
This strategy is designed to improve local geometric detail recovery without compromising the
decoder’s proven matching capabilities.

3.2.2 Monocular Finetuning Needs Feature Re-normalization

An initial exploration into naïve encoder distillation—through full parameter fine-tuning—showed
that while the single-view geometric details were significantly improved, the fine-tuning adversely
affected the multi-view matching capability even when we froze the decoder. Our early attempts to
alleviate this issue involved leveraging LoRA and multi-view data replay. However, these strategies
only partially mitigated the problem, as the degradation in multi-view performance persisted.

A closer examination of the model revealed a key culprit: single-view distillation led to a continuous
increase in feature norms, as shown in Figure 3. This norm shift pushed the feature beyond the range
expected by the frozen decoder, thereby impairing multi-view matching. To directly address this
challenge, we propose a refined integration of LoRA with a re-normalization strategy specifically
designed to constrain feature norm drift. Concretely, given an original weight matrix W and its
corresponding LoRA update ∆W , we re-normalize the combined weight after each update as follows:

W ′ =
(W +∆W ) · ∥W∥2

∥W +∆W∥2
.

Here, ∥ · ∥2 denotes the L2 norm. This operation ensures that the updated weight W ′ maintains the
original norm ∥W∥2, thereby preserving the distribution of feature activations that the frozen decoder
expects. As a result, we retain the crucial multi-view matching capability while still obtaining the
benefits of enhanced local geometry recovery from self-view distillation. Although this method is not
necessarily sufficient to address all feature shifts, we found it generally effective in most cases.

3.3 Training

We optimize two loss functions computed over images indexed by i in the training set. For each
image, the monocular distillation loss refines single-view details by aligning the predicted depth Di

with the high-fidelity pseudo-label D̂i provided by a monocular teacher, weighted by the aleatoric
uncertainty βD

i ; it is defined as L(i)
distill = βD

i ∥Di − D̂i∥22 − λ log βD
i . The pointmap regression loss
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enforces robust multi-view matching while mitigating potential feature shift; to ensure this loss is
applied only to multi-view samples, we introduce an indicator function 1mv(i) that equals 1 if the
i-th image belongs to the multi-view dataset and 0 otherwise, and define the loss as L(i)

pointmap =

1mv(i)
(
βP
i ∥Pi − PGT

i ∥22 − λ log βP
i

)
. The overall training objective is the average loss over all N

images, given by L = 1
N

∑N
i=1

(
L(i)

distill + L(i)
pointmap

)
, with the uncertainty terms modeled as in [24].

4 Experiment

Implementation Details. We use MoGe [66] as the teacher model for pseudo-label generation.
Since the depth predicted by MoGe is affine-invariant, we subtract the shift in the z-component
and then apply the normalization used in DUSt3R. For DUSt3R [68], we use 2-view data with
distillation supervision applied exclusively to the view-1 pointmap head for distillation loss. In
contrast, CUT3R [65] and VGGT [61] utilize 2–8 views, with supervision on either the self-view
head or the depth head. During each epoch, we sample 20,000 images from SA-1B [26], 1,000 from
Hypersim [46], and 1,000 from TartainAir [69]. Training runs for 10 epochs on four NVIDIA L20
GPUs over a single day. Further implementation details are provided in the appendix.

Evaluation Protocol. We evaluate our approach across three settings: single-view, two-view, and
multi-view. In the single-view setting, we focus on monocular depth estimation. The two-view
configuration evaluates relative pose estimation, where we extract pairwise correspondences using
DUSt3R [68]’s matching method for VGGT. In the multi-view setting, we perform multi-view depth
estimation, pointmap estimation, and pose estimation. Since CUT3R [65] is designed for long
sequences and unsuitable for pairwise correspondences, we remove it in the two-view evaluation.

Table 1: Quantitative results for monocular depth estimation. "+Ours" denotes the integration of
our fine-tuning, and MoGe is the teacher model. Best results in each session are highlighted in bold.

Scale-invariant relative depth

Method NYUv2 KITTI ETH3D iBims-1 DDAD DIODE HAMMER Average
Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1 Rel ↓ δ↑1

DUSt3R [68] 3.83 97.7 7.64 91.1 5.35 95.9 3.97 96.5 17.34 75.5 6.85 92.4 4.23 96.9 7.03 92.3
DUSt3R+Ours 3.68 97.8 6.02 94.7 4.41 96.8 3.47 97.4 13.11 83.1 4.70 95.3 3.66 98.7 5.58 94.8
CUT3R [65] 3.73 97.9 7.20 91.7 4.69 96.4 4.06 96.4 15.62 76.9 5.93 93.2 4.01 98.2 6.46 92.9
CUT3R+Ours 3.68 97.9 5.93 94.7 4.67 96.6 3.46 97.7 13.12 82.3 5.08 94.8 3.20 99.3 5.59 94.7
VGGT [61] 3.14 98.3 5.83 94.1 3.64 97.5 3.61 96.8 13.74 81.3 5.24 94.5 5.18 95.2 5.77 94.0
VGGT+Ours 3.10 98.3 4.59 97.2 3.07 98.7 2.73 98.2 10.65 88.1 3.59 96.7 2.31 99.5 4.29 96.7
MoGe [66] 3.02 98.5 4.39 97.4 2.96 98.9 2.65 98.2 9.64 90.0 3.23 97.4 3.09 98.2 4.14 96.9

Metric depth
MASt3R [28] 10.79 89.6 55.11 10.9 46.91 21.3 18.65 61.5 62.90 4.3 55.34 18.3 97.62 5.6 49.62 30.2
MASt3R+Ours 11.71 88.4 10.69 89.1 26.30 56.0 11.29 86.3 26.50 55.5 22.84 50.1 83.89 24.5 27.60 64.3
MoGe-2 [67] 6.92 96.7 16.72 70.1 10.92 88.2 14.08 81.1 15.82 74.1 15.97 71.3 23.30 68.5 14.82 78.6

4.1 Monocular Depth Estimation

We follow the evaluation of MoGe [66] to evaluate our method using standard metrics: relative
absolute difference (rel) and the δ1 score. Specifically, rel = 1

N

∑N
i=1

|di−d∗
i |

d∗
i

, where di and d∗i
denote the predicted and ground truth depths, respectively, while δ1 represents the percentage of
predictions satisfying max

(
di

d∗
i
,
d∗
i

di

)
< 1.25. Table 1 presents quantitative results for affine-invariant

depth evaluation. The table shows that our integrated models consistently achieve lower relative
depth error and higher δ1 scores. Figure 5 shows the qualitative comparison between baselines
and the results from our fine-tuning method. After fine-tuning, our method improves the model’s
ability to capture fine details and complex surfaces such as transparent ones. Fine-tuned VGGT
performs almost as well as the state-of-the-art expert model, MoGe. Interestingly, we observe that
although DUSt3R’s depth estimates rank last among the evaluated models, they exhibit the sharpest
boundaries compared with the other two baseline models. This is likely because CUT3R and VGGT
are trained on long sequences and are consequently more affected by the long-sequence degradation
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Input GT DUSt3R DUSt3R⋆ CUT3R CUT3R⋆ VGGT VGGT⋆

Figure 5: Depth prediction across baseline models. ⋆ indicates integration with our method.

discussed in Section 3.1. We also present the fine-tuned MASt3R model with metric depth prediction,
demonstrating that our method is capable of handling not only relative depth prediction but also
metric depth estimation.

4.2 Relative Pose Estimation

Table 2 summarizes our evaluation of relative pose estimation on the ScanNet dataset [10]. Following
[47], we assess performance using area-under-the-curve (AUC) metrics computed at thresholds of
5, 10, and 20 degrees. The results indicate that our fine-tuning method consistently improves the
baseline model correspondence by improving the geometry. In particular, our fine-tuned VGGT
model outperforms Reloc3r [11] at the 5° threshold, despite Reloc3R being designed only for pose
regression and lacking geometric modeling capability.

4.3 Multi-view Depth Estimation

Following CUT3R [65], we evaluate the performance of our method on video depth estimation.
Table 4 summarizes the results, demonstrating that our method preserves multi-view consistency
and improves single-view accuracy. The fine-tuned versions of CUT3R and VGGT consistently
outperform their respective baselines across datasets spanning diverse domains. Note that VGGT is
not trained on dynamic datasets, so its performance bottleneck may stem from dataset limitations
rather than our fine-tuning method.
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Table 2: Relative Camera Pose Evaluation on
the ScanNet1500 [10, 47] datasets. “Ours” in-
dicates the integration of our distillation method.
Better results are highlighted in bold.

Methods ScanNet1500
AUC@5 AUC@10 AUC@20

Efficient LoFTR [70] 19.20 37.00 53.60
ROMA [13] 28.90 50.40 68.30
NoPoSplat [80] 31.80 53.80 71.70
DUSt3R [68] 31.61 53.77 70.99
DUSt3R+Ours 33.73 55.67 72.66
MASt3R [28] 37.60 59.96 76.24
MASt3R+Ours 37.93 60.21 76.68
VGGT [61] 28.40 47.36 61.51
VGGT+Ours 35.21 56.70 72.80
Reloc3r [11] 34.79 58.37 75.56

Table 3: Quantitative Results for Multi-
view Pose Estimation on RealEstate10k [88].
“Ours” is the fine-tuned model using our method.
Better results are highlighted in bold.

Methods RealEstate10k
RRA@5 RTA@5 AUC@30

DUSt3R [68] 94.01 42.39 62.40
DUSt3R+Ours 95.41 47.07 64.81
MASt3R [28] 94.89 52.21 73.45
MASt3R+Ours 95.02 53.74 73.87
CUT3R [65] 96.66 61.66 78.95
CUT3R+Ours 96.99 62.15 79.13
VGGT [61] 95.28 53.14 74.18
VGGT+Ours 96.27 56.54 75.35

Table 4: Results for Video Depth Estimation. The arrows (↓/↑) indicate whether lower or higher
values are better. Best results are highlighted in bold.

Method ETH3D [49] T&T [27] KITTI [58] Sintel [6] Bonn [40]

rel ↓ δ1 ↑ rel ↓ δ1 ↑ rel ↓ δ1 ↑ rel ↓ δ1 ↑ rel ↓ δ1 ↑
CUT3R [65] 0.126 83.1 0.209 69.5 0.123 87.4 0.428 47.4 0.077 93.9
CUT3R+Ours 0.130 82.8 0.180 76.2 0.112 89.8 0.406 58.4 0.062 96.8
VGGT [61] 0.044 97.9 0.137 85.3 0.072 96.5 0.301 68.4 0.052 97.3
VGGT+Ours 0.041 99.2 0.115 88.0 0.069 96.6 0.252 72.7 0.048 97.5

4.4 Multi-view Pointmap Estimation

Table 5 presents the multi-view reconstruction performance on the 7Scenes [52] and NRGBD [2]
datasets following Spann3R [60]. Note that DUSt3R employs global alignment, while the other
methods operate in a feed-forward manner. Because both DUSt3R and VGGT produce scale-invariant
point maps, we apply Umeyama alignment [59] to align scale. We report mean and median values
for three metrics: accuracy (Acc), completeness (Comp), and normal consistency (NC). The results
indicate that models enhanced with our distillation method consistently achieve lower Acc and Comp
as well as improved NC scores across most baselines. Qualitative results can be found at Figure 6.

VGGT+Ours VGGT 

VGGT+Ours 

VGGT 

VGGT VGGT+Ours 

Figure 6: Additional results of pointmap estimation.
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Table 5: Pointmap Regression on on 7-Scenes [52] and NRGBD [2] Datasets. “+Ours” represents
the integration of our distillation method. The best results at each session are in bold.

7-Scenes [52] NRGBD [2]

Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Method Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

DUSt3R [68] 0.026 0.011 0.033 0.018 0.641 0.725 0.050 0.030 0.036 0.019 0.851 0.983
DUSt3R+Ours 0.024 0.009 0.029 0.015 0.641 0.726 0.043 0.027 0.030 0.017 0.863 0.986
CUT3R [65] 0.024 0.011 0.029 0.010 0.664 0.758 0.075 0.031 0.046 0.019 0.828 0.966
CUT3R+Ours 0.025 0.012 0.026 0.010 0.666 0.762 0.075 0.028 0.043 0.019 0.833 0.968
VGGT [61] 0.017 0.006 0.024 0.011 0.645 0.727 0.019 0.012 0.018 0.009 0.914 0.992
VGGT+Ours 0.012 0.006 0.023 0.011 0.651 0.739 0.021 0.014 0.020 0.011 0.921 0.993

Table 6: Pointmap Regression on the DTU and ETH3D datasets. The arrows (↓/↑) indicate
whether lower or higher values are better. Best results are highlighted in bold.

Method DTU [22] ETH3D [50]

Acc. ↓ Comp. ↓ N.C. ↑ Acc. ↓ Comp. ↓ N.C. ↑
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Pi3 [71] 1.151 0.622 1.793 0.629 0.668 0.754 0.194 0.130 0.220 0.135 0.867 0.965
VGGT [61] 1.187 0.715 2.229 1.309 0.694 0.779 0.290 0.196 0.371 0.230 0.839 0.932
VGGT+Ours 0.948 0.520 1.879 0.905 0.699 0.787 0.209 0.112 0.170 0.085 0.861 0.972

Table 7: Ablation Study for Distillation Mod-
ule. Combining all our strategies yields the high-
est accuracy.

Label Supv. Mono. Teacher SA-1B Rel (↓) δ1 (↑) Acc (↓)
✗ ✗ ✗ 5.68 94.1 0.017
✓ ✗ ✗ 5.21 95.0 0.014
✗ ✓ ✗ 5.00 95.3 0.013
✗ ✓ ✓ 4.35 96.3 0.012

Table 8: Ablation Study on Fine-tuning Strat-
egy. Our proposed components consistently im-
prove matching performance.

Method AUC@5 AUC@10 AUC@20
VGGT 28.40 47.36 61.51
(1) +Dec. Full 28.42 51.59 67.30
(2) +Enc. Full 32.06 52.29 68.04
(3) +Enc.&Dec. Full 26.35 45.90 60.02
(4) +Enc. Lora 32.96 54.21 70.40
(5) +Enc. Lora+Re-norm 35.21 56.70 72.80

Table 6 also compares our method with the concurrent model Pi3 [71] on the DTU [22] and
ETH3D [50] datasets using the pointmap head of VGGT. Our method delivers comparable per-
formance while requiring significantly fewer resources for fine-tuning.

4.5 Multi-view Pose Estimation

Table 3 summarizes the performance of baseline models and our fine-tuned methods on the
RealEstate10k [88] dataset. We evaluate performance using three metrics: Recall of Relative
Angle (RRA@5), Recall of Relative Translation (RTA@5), and AUC@30. These results indicate that
our method primarily refines the geometry head without significantly affecting the pose head. We
attribute this improvement to the decoder functioning as an implicit feature matcher, which allows it
to leverage the enhanced feature details for more accurate pose prediction.

4.6 Ablation Study

Distillation Strategy. Table 7 shows that our distillation pipeline incrementally enhances geometric
accuracy on VGGT [61]. The first two columns report mean monocular depth metrics (see Table 1),
while the final column details the 7-Scenes [52] accuracy. The top row represents VGGT model
without fine-tuning, which can benefit from single-view distillation (second row) on a subset of
training datasets (see appendix) with supervision from dataset depth labels. Replacing the depth labels
with a monocular teacher further improves performance, and changing the dataset to SA-1B yields
the best performance. Together, these results highlight that monocular finetuning with high-quality
pseudo-labels from the diverse dataset improves both single-view and multi-view accuracy.
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Finetuning Strategy. Table 8 evaluates our fine-tuning strategy on ScanNet relative pose estimation
using VGGT. Lines (1), (2), and (3) demonstrate that fine-tuning the decoder with monocular data
harms multi-view consistency, highlighting the effectiveness of our encoder-only fine-tuning design.
Lines (2), (4), and (5) show that full-parametric fine-tuning improves the baseline’s performance,
while integrating the LoRA module further refines the representations. Notably, the re-normalization
LoRA mitigates norm drift, leading to progressively improved matching performance. These results
confirm that our modifications effectively reduce domain shifts while enhancing both fine detail
recovery and multi-view consistency.

4.7 Discussion

Input GT Depth

VGGT Depth VGGT⋆ Depth

VGGT Pointmap VGGT⋆ Pointmap

Figure 7: Depth from depth head and
pointmap head of VGGT. ⋆ denotes
our fine-tuning model.

Confidence and Fine Details: During our experiments,
we observed that models like VGGT often produce blurry
geometry accompanied by low confidence scores, as
shown in Fig 8. After our fine-tuning, the model becomes
more confident in its predictions and is capable of gener-
ating sharper geometry with better calibrated confidence.
We attribute this improvement primarily to the incorpo-
ration of unlabeled datasets, which enhance the model’s
robustness and overall performance. This underscores
the necessity of including in-the-wild data alongside high-
quality datasets during training to achieve optimal results.

Cross-Head Generalization via a Robust Encoder
While our training only distills the depth head of VGGT
with pseudo-label, our findings indicate that the pointmap
head exhibits similar improvements (see Figure 7). This
demonstrates that a robustly trained encoder benefits down-
stream heads even without direct supervision.

Position of Our Method Our approach is a lightweight,
resource-efficient fine-tuning strategy for feed-forward
reconstruction models. By carefully fine-tuning the encoder, it avoids the resource-intensive decoder
tuning, which typically requires long-sequence inputs from diverse datasets with large batch sizes.
Although further decoder tuning may yield additional gains, our method minimizes complexity
without compromising quality. As 3D vision enters the era of large models, we hope our approach
and analysis offer valuable insights into fine-tuning 3D large models with limited resources.

Input Image VGGT Depth Fine-tuned Depth VGGT Conf. Fine-tuned Conf.

Figure 8: Visualization of depth and confidence predictions. The confidence color ranges from
dark purple (low confidence) to bright yellow (high confidence).

5 Conclusion

We introduced Fin3R, a lightweight fine-tuning approach that leverages monocular distillation and
re-normalization LoRA to enhance fine geometry and robustness in feed-forward 3D reconstruction
models. Extensive experiments on DUSt3R, MASt3R, CUT3R, and VGGT validate that our method
sharpens local details while preserving robust cross-view ability. Our results highlight the effective-
ness and efficiency of our fine-tuning strategy, achieving notable performance gains while requiring
minimal computational overhead.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction clearly reflect the main contribution
of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our custom re-normalization Lora can not be merged into models like vanilla
Lora. Although our method enhances fine geometric details, its boundary accuracy remains
inferior to that of MoGe, which produces sharper results. A mixed-teacher strategy or
a more dedicated distillation design may offer further improvements. Additionally, the
current model supports only 512/518 resolution, and scaling to higher resolutions remains a
challenge for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our method is simple and easy to integrate to any baselines. We provide all
details need to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will open-source the code and the model after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details for training and testing are included in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bar is not common in feed-forward 3D reconstruction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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the experiments?

Answer: [Yes]
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the ethics of NeurIPS in every respect.
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misuse in generating synthetic content, and potential biases from teacher models or datasets
must be addressed. Responsible development and ethical guidelines are crucial to navigate
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• If the authors answer NA or No, they should explain why their work has no societal
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from (intentional or unintentional) misuse of the technology.
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Answer: [NA]
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safety filters.
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faith effort.

12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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national license.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
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provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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Answer: [NA] .
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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included in the main paper.
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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Appendix
A Experiment Details

A.1 Training Details

In all experiments, we set both the rank and alpha of LoRA to 8.

DUSt3R. Since DUSt3R doesn’t have a dedicated self-view head for canonical view estimation,
we use DUSt3R’s first viewpoint pointmap regression head for distillation. Training is performed at a
resolution of 512 width, with aspect ratios (e.g., 16:9, 4:3) randomly sampled for each batch. During
each epoch, we randomly sample 20,000 pairs from the SA-1B [25] dataset, 1,000 pairs from the
Hypersim [46] dataset, and 1,000 pairs from the TartanAir [69] dataset. The model is fine-tuned for
10 epochs. The learning rate is initialized at 1e-4 with a one-epoch warm-up phase and is gradually
decayed to a minimum of 1e-6. A batch size of 2 per GPU is used, and gradients are accumulated
over 8 iterations to achieve an effective batch size of 64.

CUT3R/VGGT. We compute the distillation loss using the self-view pointmap head for CUT3R
and the depth head for VGGT, following the same dataset configuration as in DUSt3R fine-tuning.
CUT3R is trained at a resolution of 512 width, while VGGT is trained at a resolution of 518 width.
The model is fine-tuned for 10 epochs with an initial learning rate of 1e-4, which is warmed up for
one epoch and then gradually decayed to a minimum of 1e-6. Additionally, the sequence length is
dynamically selected between 2 and 8, with the product of batch size and sequence length fixed at 8.
The accumulation iteration is changed accordingly to ensure an effective total batch size of 64.

A.2 Evaluation Details

Monocular Depth Estimation. We follow the evaluation protocol from MoGe [66] to assess our
models. For DUSt3R, we duplicate the input images and use the z value from the view-1 pointmap
head as the predicted depth. For CUT3R, depth is obtained from the z value of the self-view pointmap
head, and for VGGT, we use the output of the depth head. Since these models are trained at resolutions
of 512 width (or 518 width for VGGT), the original images are resized accordingly for evaluation.
Although this differs from the standard MoGe protocol, which evaluates at higher resolutions, we
ensure that both the base model and our fine-tuned models share the same settings. Furthermore, we
exclude evaluation datasets such as Sintel and Spring since DUSt3R and VGGT are not designed for
dynamic scenes.

Two-view Evaluation. We extract two-view correspondences using the nearest neighbor matching
strategy from DUSt3R, which leverages geometric distance and is well-suited for assessing our
enhanced geometry. We avoid using VGGT’s tracking head for matching for two main reasons. First,
the current release of VGGT’s tracking head does not perform as well as the version reported in
the original paper3. Second, in the Scannet-1500 relative pose estimation task, our geometry-based
correspondence method outperforms the tracking-based approach described in the original VGGT
paper. Furthermore, we plan to fine-tune the tracking head using our stronger encoder, which we
believe can provide more accurate and robust features to further enhance tracking performance.

Multi-View Pose Estimation. We evaluate our method primarily on the RealEstate10k dataset [88],
following the procedure in VGGSfM [62] that involves randomly sampling 10 frames from each
sequence for pose evaluation. Since some of the original YouTube links in RealEstate10k are
unavailable, our evaluation is conducted on 1,756 out of the original 1,800 scenes.

Ablation Mix Dataset. For the ablation study, we replace the SA-1B dataset [26] with a mixed
dataset composed of MegaDepth [30], CO3Dv2 [45], ARkitScene [5], Scannet++ [81], Scannet [10],
VirtualKIITIv2 [7], BlendedMVS [79], and StaticThings3D [51]. Each dataset is equally weighted,
providing coverage that is comparable to the DUSt3R training set.

3https://github.com/facebookresearch/vggt/issues/83
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Table S1: Quantitative results for multi-view pose estimation on the CO3Dv2 dataset. “Ours”
signifies the integration of our finetuning method. Best results in each session are highlighted in bold.

Methods CO3Dv2
RRA@5 RTA@5 AUC@30

DUSt3R [68] 80.49 75.22 81.03
DUSt3R+Ours 85.75 78.02 82.83
CUT3R [65] 70.83 64.39 74.10
CUT3R+Ours 70.89 63.76 73.74
VGGT [61] 95.20 84.28 88.35
VGGT+Ours 95.47 84.18 88.77

B Additional Experiments

B.1 Multi-view Pose On CO3Dv2

We also conduct experiments on multi-view pose estimation using the CO3Dv2 dataset [45]. Follow-
ing the evaluation protocol in PoseDiffusion [63], we select the first 10 frames from each sequence
for evaluation. The results are presented in Table S1. Our fine-tuning improves DUSt3R by refining
the geometry-based correspondence. However, the performance of CUT3R on CO3Dv2 is negatively
affected, and the impact on VGGT is marginal. We suspect this is primarily because CO3Dv2 is used
to train the pose head, causing it to strongly memorize the dataset.

B.2 Multi-view Feature on Feat2GS

We further provide empirical evidence to demonstrate that our approach successfully maintains
multi-view consistency on Feat2GS [8] benchmark, which directly evaluates the quality of multi-view
features for novel view synthesis. The results are shown in Table S2. Our method not only preserves
but slightly improves multi-view performance, evidenced by the gains in PSNR and LPIPS. It is
important to contextualize these numbers: performance on Feat2GS is typically concentrated within
a very narrow range (e.g., PSNR often between 19.40 and 19.70). This demonstrates our method
successfully improves single-view geometry while preserving the integrity of multi-view features.

Table S2: Quantitative comparison on Feat2GS [8] benchmark.
Geometry Texture All

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DUSt3R 19.56 0.6504 0.3181 18.06 0.6006 0.3221 19.40 0.6477 0.3700
DUSt3R_ft 19.60 0.6512 0.3181 18.05 0.6015 0.3217 19.65 0.6417 0.3669
VGGT_e 19.66 0.6558 0.3123 18.07 0.6003 0.3225 19.61 0.6510 0.3788
VGGT_e_ft 19.70 0.6561 0.3115 18.10 0.6008 0.3224 19.66 0.6514 0.3781

C Additional Visualizations

We provide additional visualizations on diverse, in-the-wild data in Figures S1, S2, and S3 to
demonstrate how our fine-tuning method robustly enhances the original baseline. More visualizations
can be found in the Supplementary Video, which includes fly-through sequences of the multi-view
reconstruction results.
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Input VGGT Depth VGGT+Ours Depth

Figure S1: Additional Visualization of Depth Estimation Results: Input Images, Baseline (VGGT
Depth), and Improved Method (VGGT+Ours Depth)
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Input DUSt3R DUSt3R + Ours

Figure S2: Additional visualization of depth estimation results. From left to right: input image,
baseline (DUSt3R), and our improved method (DUSt3R+Ours).
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Input CUT3R CUT3R + Ours

Figure S3: Additional visualization of depth estimation results. From left to right: input image,
baseline (CUT3R), and our improved method (CUT3R+Ours).
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D Proof for Long-Sequence Scale Uncertainty

Let a 3D point in the world coordinate system be

p =

[
x
y
z

]
,

with a multiplicative scale uncertainty modelled as

p̂ = (1 + δ)p, δ ∼ N (0, σ2),

where δ is a small perturbation. Under a rigid transformation characterized by rotation R and
translation T , the unperturbed point in the second view is given by

p2 = Rp+T.

When the uncertainty is introduced, the perturbed second-view point becomes

p̂2 = Rp̂+T = R
[
(1 + δ)p

]
+T = p2 + δ (Rp).

We define the rotated coordinates by writing

Rp =

[
α
∗
β

]
,

where, due to the relationship p2 = Rp+T, the first and third components satisfy:

α = X2 − Tx, β = Z2 − Tz,

with p2 ≜

[
X2

Y2

Z2

]
.

Assuming a pinhole camera model with focal length f , the unperturbed horizontal image coordinate
is given by

u =
f X2

Z2
.

For the perturbed coordinates we express

Xδ
2 = X2 + δ α, Zδ

2 = Z2 + δ β.

Thus, the image coordinate under perturbation is

u(δ) =
f (X2 + δ α)

Z2 + δ β
.

Our goal is to analyze the induced projection error,

∆u ≜ u(δ)− u,

without using a Taylor expansion. We begin by forming the exact difference:

∆u =
f (X2 + δ α)

Z2 + δ β
− f X2

Z2
.

By combining the terms over a common denominator, we have:

∆u = f

(
(X2 + δ α)Z2 −X2(Z2 + δ β)

Z2 (Z2 + δ β)

)
.

Expanding the numerator yields:

(X2 + δ α)Z2 −X2(Z2 + δ β) = X2Z2 + δ αZ2 −X2Z2 − δ X2 β = δ
(
αZ2 −X2 β

)
.

Thus, the error simplifies to:

∆u = δ f
αZ2 −X2 β

Z2 (Z2 + δ β)
.
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Substituting the expressions α = X2 − Tx and β = Z2 − Tz , we obtain:

αZ2 −X2 β = (X2 − Tx)Z2 −X2(Z2 − Tz) = X2Tz − TxZ2.

Therefore, the error becomes:

∆u = δ f
X2Tz − TxZ2

Z2 (Z2 + δ (Z2 − Tz))
,

since β = Z2 − Tz .

To gain further insight into the dependency on depth Z2, let us assume that along object boundaries
the ratio X2/Z2 remains approximately constant, i.e.,

X2 ≈ cZ2,

for some constant c. Under this assumption, the numerator approximates as

X2Tz − TxZ2 ≈ Z2 (c Tz − Tx).

Substituting this back, we get:

∆u ≈ δ f
Z2 (c Tz − Tx)

Z2 (Z2 + δ (Z2 − Tz))
= δ f

c Tz − Tx

Z2 + δ (Z2 − Tz)
.

For small δ, the term δ (Z2 − Tz) in the denominator is negligible compared to Z2. That is,

Z2 + δ (Z2 − Tz) ≈ Z2.

Thus, we arrive at the simplified expression:

∆u ≈ δ
f (c Tz − Tx)

Z2
.

This result shows that the projection error ∆u is inversely proportional to Z2, meaning that fore-
ground points (with small Z2) experience larger epipolar displacements due to scale uncertainty—a
phenomenon we term foreground erosion. Moreover, our analysis demonstrates that, except for the
first view, the normalization process amplifies minor scale errors in the foreground; this amplification
results in substantial epipolar displacement and the erosion of fine details in these regions.

E Limitations

Although our method enhances fine geometric details, its boundary accuracy remains inferior to
that of MoGe [66], which produces sharper results. A mixed-teacher strategy or a more dedicated
distillation design may offer further improvements. Additionally, the current model supports only
512/518 resolution, and scaling to higher resolutions remains a challenge for future work.
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[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies.
Neural rgb-d surface reconstruction. In CVPR, 2022. 8, 9

[3] Gwangbin Bae and Andrew J. Davison. Rethinking inductive biases for surface normal estima-
tion. In CVPR, 2024. 3

[4] Daniel Barath and Chris Sweeney. Relative pose solvers using monocular depth. In ICPR, 2022.
3

[5] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas
Gebauer, Brandon Joffe, Daniel Kurz, Arik Schwartz, and Elad Shulman. ARKitscenes - a
diverse real-world dataset for 3d indoor scene understanding using mobile RGB-d data. In
NeurIPS, 2021. 23

29



[6] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for
optical flow evaluation. In ECCV, 2012. 8

[7] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2, 2020. 23

[8] Yue Chen, Xingyu Chen, Anpei Chen, Gerard Pons-Moll, and Yuliang Xiu. Feat2gs: Probing
visual foundation models with gaussian splatting. In CVPR, 2025. 24

[9] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J Davison. Deepfactors: Real-time
probabilistic dense monocular slam. RAL, 2020. 3

[10] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, 2017. 7, 8,
23

[11] Siyan Dong, Shuzhe Wang, Shaohui Liu, Lulu Cai, Qingnan Fan, Juho Kannala, and Yanchao
Yang. Reloc3r: Large-scale training of relative camera pose regression for generalizable, fast,
and accurate visual localization. arXiv preprint arXiv:2412.08376, 2024. 7, 8

[12] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and
Torsten Sattler. D2-net: A trainable cnn for joint description and detection of local features. In
CVPR, 2019. 3

[13] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. RoMa:
Robust Dense Feature Matching. CVPR, 2024. 8

[14] Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson, Rahul Raguram,
Changchang Wu, Yi-Hung Jen, Enrique Dunn, Brian Clipp, Svetlana Lazebnik, et al. Building
rome on a cloudless day. In ECCV, 2010. 3

[15] Qiancheng Fu, Qingshan Xu, Yew Soon Ong, and Wenbing Tao. Geo-neus: Geometry-consistent
neural implicit surfaces learning for multi-view reconstruction. NeurIPS, 2022. 3

[16] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. Foundations and
Trends® in Computer Graphics and Vision, 9(1-2):1–148, 2015. 3

[17] Silvano Galliani, Katrin Lasinger, and Konrad Schindler. Massively parallel multiview stereopsis
by surface normal diffusion. In ICCV, 2015. 3

[18] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost
volume for high-resolution multi-view stereo and stereo matching. In CVPR, 2020. 3

[19] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2000. 3

[20] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR,
2022. 2

[21] Wonbong Jang, Philippe Weinzaepfel, Vincent Leroy, Lourdes Agapito, and Jerome Revaud.
Pow3r: Empowering unconstrained 3d reconstruction with camera and scene priors. arXiv
preprint arXiv:2503.17316, 2025. 3

[22] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale
multi-view stereopsis evaluation. In CVPR, 2014. 9

[23] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Kon-
rad Schindler. Repurposing diffusion-based image generators for monocular depth estimation.
In CVPR, 2024. 2, 3

[24] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? NeurIPS, 2017. 6

30



[25] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
ICCV, 2023. 2, 5, 23

[26] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
ICCV, 2023. 6, 23

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Bench-
marking large-scale scene reconstruction. ACM TOG, 2017. 8

[28] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with
mast3r. In ECCV, 2024. 2, 3, 6, 8

[29] Wenyu Li, Sidun Liu, Peng Qiao, and Yong Dou. Mono3r: Exploiting monocular cues for
geometric 3d reconstruction. arXiv preprint arXiv:2504.13419, 2025. 3

[30] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In CVPR, 2018. 23

[31] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature
matching at light speed. arXiv preprint arXiv:2306.13643, 2023. 3

[32] Sheng Liu, Xiaohan Nie, and Raffay Hamid. Depth-guided sparse structure-from-motion for
movies and tv shows. In CVPR, 2022. 3

[33] Shing Yan Loo, Syamsiah Mashohor, Sai Hong Tang, and Hong Zhang. Deeprelativefusion:
Dense monocular slam using single-image relative depth prediction. In IROS, 2021. 3

[34] Jiahao Lu, Tianyu Huang, Peng Li, Zhiyang Dou, Cheng Lin, Zhiming Cui, Zhen Dong, Sai-Kit
Yeung, Wenping Wang, and Yuan Liu. Align3r: Aligned monocular depth estimation for
dynamic videos. arXiv preprint arXiv:2412.03079, 2024. 3

[35] Ziqi Lu, Heng Yang, Danfei Xu, Boyi Li, Boris Ivanovic, Marco Pavone, and Yue Wang. Lora3d:
Low-rank self-calibration of 3d geometric foundation models. arXiv preprint arXiv:2412.07746,
2024. 3

[36] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent
video depth estimation. ACM TOG, 2020. 3

[37] Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with cascaded epipolar raft. In ECCV,
2022. 3

[38] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable
volumetric rendering: Learning implicit 3d representations without 3d supervision. In CVPR,
2020. 3
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