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Abstract

Topological data analysis (TDA) is a powerful tool for detecting hidden structures
in complex data like biological signals and networks. A key TDA algorithm, per-
sistent homology (PH), captures multi-scale topological features in data robust to
noise, as summarized by persistence diagrams (PDs). However, The non-Euclidean
nature of PDs complicates traditional analysis. Recent topological inference meth-
ods use heat kernel (HK) expansion of PDs in multi-group permutation tests.
Extending the topological inference methods, we develop a topological cluster-
ing framework based on HK expansion of PDs. This flexible framework allows
incorporation of Euclidean covariates into topological clustering, as well as an
automated data-driven selection procedure for identifying the optimal number of
topological clusters and most significant covariates associated with them. We
demonstrate our method’s effectiveness in cluster detection with varying degrees
of topological dissimilarity through simulations of signals and point clouds in
comparison to state-of-the-art functional and topological clustering methods, as
well as applications to subtyping and treatment outcome exploration in post-stroke
aphasia.
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1 Introduction

Brain network modeling using electrophysiological and neuroimaging tools leverages the inherent
graph structure of brain connectivity and has traditionally relied on single-scale covariance estimation
[13] or graph-theoretic methods [24, 21]. While effective, these approaches fall short on capturing
the complexity of brain networks, prompting a shift toward multi-scale models [2]. Topological
data analysis (TDA) based on persistence homology has emerged as an effective approach for ro-
bustly identifying topological features across scales [9]. It avoids issues of arbitrary thresholding
[8, 12] by tracking topological changes through filtrations, with the birth and death of homological
structures summarized via persistence descriptors such as barcodes or persistence diagrams. Recent
statistical and learning frameworks using graph filtrations have enabled scalable topological cluster-
ing—especially through 0- and 1-dimensional Betti functions [23, 6]. This study introduces a novel
distance-based topological clustering framework using a heat-kernel representation of persistence dia-
grams derived from Rips filtrations, alongside algorithms for optimal cluster and covariate selection.
Demonstrating greater robustness and sensitivity than existing methods, the framework is validated
through simulations and real-world application to subtyping and treatment outcome prediction in
post-stroke aphasia.

2 Methods

2.1 Brain network filtration and persistence descriptors

Brain networks are typically modeled as a weighted graph, with the edge weights given by a similarity
measure between the measurements on the nodes of the network [1, 3]. Suppose we have a network
represented by the weighted graph G = (V, w) with the node set V' = {1, ..., p} and unique positive
undirected edge weights w = (w;;) constructed from a similarity measure such as the absolute value
of the Pearson’s correlation between the blood oxygen level dependent (BOLD) signals of the i-th
and j-th region of interest (ROI). We define the binary network G, = (V, w,) as a subgraph of G
consisting of the node set V' and the binary edge weights w, defined by
1 ifw;; <e

Wije = { 0 othezwise7 @)
meaning that we connect nodes 7 a j with an edge when the edge weight w;; is under the threshold e.
As we increase €, which we call the filtration value, more edges are included in the binary network
G, and so the size of the edge set increases. Since edges connected in the network do not get
disconnected again, we observe a sequence of nested subgraphs G., C G., C G, C -- -, for any
€0 < €1 < ey < --- . This sequence of nested subgraphs make up a Rips filtration where two nodes
with a weight w;; smaller than ¢ are connected, and the birth and death of homological structures in
the form of cycles in different dimensions are tracked through the filtration [16, 17]. Here we focus
on the 1-cycles (polygons formed with more than three edges in a network). We pair the birth and
death times of the cycles as the coordinates of scatter points on a planar graph {(a;, b;)}£; in the
persistence diagram (PD). The persistence of cycles is measured by the drop from their corresponding
points to the y = x line on the PD. Long persistence indicates that the corresponding cluster or cycle
is more likely to be an underlying feature in the network. Figure 1 shows a point that corresponds to a
1-cycle stands out with high persistence in the PD from the Rips filtration constructed on a 100-point
point cloud sampled from a key shape with a hole.

2.2 Heat kernel representation of persistence diagram

Let 7 be the upper triangular region above y = = where the scatter points {(a;, b;)} £, are located.
The heat kernel (HK) in T is K, (p, q) = Y ooy e 74, (p)¥,.(¢q) with respect to the eigenfunctions
1, of Laplace-Beltrami (LB) operator A satisfying Av,.(p) = A\-4p,.(p) for p € T. The first
eigenvalue \o = 0 corresponds to eigenfunction ¥, = , where 11(7T) is the area of triangle T

i
and o is the bandwidth of the HK. Consider heat diffusion
oh(ao,
L) — An(o, ) @
o

with the initial condition h(c =0,p) = Zle O(as b;) (P), Where &4, 3,) is the Dirac-delta function
at (a;, b;). The scatter points in the PD serve as the heat sources. A unique solution to (2) is thus



given by the HK expansion h(o,p) = [ K, (0 =0,9) du(q) = X 2oe 7 frab,(p),

where f. = [ h(oc =0,¢)9,(q) du(q) = Zi:l 1pr(az, b;) are the Fourier coefficients with respect
to the the LB elgenfunctlons In practice, we include a finite number of terms for PD estimation:

R
=Y e i, (p), 3)
r=0

with sufficiently large degree, e.g. R = 1,000, 000 for convergence. As ¢ — 0, we can completely
recover the initial scatter points. As 0 — oo, we are doing kernel density estimation with uniform
kernel on 7. Figure 1 shows the HK-estimation of a PD with varied bandwidths o.
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Figure 1: Left three: The evolving 1-skeleton of a 100-point point cloud sampled from a key shape
with a distinct 1-cycle. Fourth: PD from the Rips filtration constructed on the 1-skeletons of the point
cloud. The point in the PD that corresponds to the key cycle stands out with high persistence - much
further away from the diagonal (y = z) line than the rest of the points. Right eight: Heat kernel
(HK) smoothing of the PD from the Rips filtration through Laplace-Beltrami (LB) eigenfunctions
with respect to the bandwidths ¢ = 0 (original PD), 0.1, 1, 10. Top: Smoothed PDs. Bottom:
Corresponding Fourier coefficients with respect to the LB eigenfunctions presented in matrix form.

2.3 Topological clustering based on heat kernel representation of persistence diagrams

We start with a truncated HK expansion of a PD as h,(p) = Zf:o e~ h,ab,.(p), where 1,
are eigenfunctions of the Laplace-Beltrami (LB) operator, A, are the eigenvalues and h, are the
corresponding Fourier coefficients. Now the distance between two HK expansions A’ (p) and hZ(p)
can be defined as: d(hL(-),h2(-))2 = |[hL(-) — h2()|3 = S2F e~ > (h! — h2)2. The Fourier
coefficients stay the same at different diffusion scales 0. The HK smoothing can be shown to
reduce the topological variability in the PD. Having defined this distance, given {h% (p)}?_,, where
hi (p) = Zf:o e~ 7 ht by, (p), we propose a K-means type topological clustering algorithm based
on the HK representations of PD to partition them into K disjoint sets S = {51, 52, ..., Sk }. Here,
we define the functional centroid in each cluster by

R 3 R
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where p;, = W The cluster assignments are found to minimize the within-cluster sum of
squares (WCSS)
K
w=3" > lh()—hs()ll5. @
J=1ho(-)€S;

The proposed topological clustering method is presented below in Algorithm 1. Since the objective
function (WCSS) decreases after each iteration, the proposed algorithm is always guaranteed to
converge, but not necessarily to the global optimum.

Selection of optimal number of clusters. The optimal number of clusters, K, is chosen by
maximizing the average silhouette score [20] over a predefined range of possible cluster counts,
[Kmm, K na) and repeating the procedure a large number of times, to select the one yielding the
maximum average silhouette value. The silhouette score for a data point h (-) belonging to cluster Sy
(in a clustering with K., total clusters) is calculated as Sseope (Kepust) = % S s(hi(-)), where

s(hy (+)) = (b(hg () — a(hy (+)))/ max{a(hy (+)), b(hy (+))} GE [Sk| > 1 else s(hy () = 0). We



Algorithm 1 Topological K-means clustering for HK Representations
1: Given: Data { H;}" ; (HK coefficients H; = (hi, ..., h%)), Kciust clusters.
2: Parameters: Eigenvalues {\,}, scale o.
o . 0)\ Kotust ¢ ¢
3: Initialize centroids {M; )}f:“fb , where M§ ) = (,ug’()), cees u](%). Lett < 0.
4: repeat

5: > Assignment Step
6: For each data point H;:

7: Assign H; to cluster Sj(ﬁﬂ), where

. . R _ ; t

8: J* e argminge(r g ) 2o € 7 (h — /~L§;3«)2~

9: > Update Step
10: For each cluster j € {1,..., Kcust}:

11: Let Sj(-H_l) = {H; | H; assigned to cluster j}.

) o a(t+1) .
12: if S is not empty thent 1 |
13: Forr =0,...,R: /‘5: ) ewu%l)leEsml) ht.
( €S

14: else ’

15: M;-Hl) — M;t) > Or re-initialize
16: end if

17: t<—t+1.
18: until centroids converge or max iterations reached.

19: Return Clusters {S](-t)} and Centroids {M;t)}.

denote a(h’ (+))) = ﬁ 2o hi(esi iz UG (), hE(-))) to be the mean intra-cluster distance (if

Skl > 1 else a(hi () = 0) and b(AE (-)) = mingsr { 5y Sy e, AL (D) BE () } 0
be the mean nearest-cluster distance. The whole procedure is repeated a large number (B) of times
(with Kejyst € [Kmin, Kmaz) ), and K,p, is chosen as the value that achieves the highest silhouette
score among the B repetitions.

Covariate selection. We extend the proposed topological clustering algorithm for the selection
of influential covariates for the cluster structure, while discarding the ones that might mask such
structure by adapting the VS-KM algorithm [5] based on the adjusted Rand index (ARI). Briefly,
the algorithm resembles a forward selection process based on the ARI. Given the current set of
included variables and the partition, a new variable is added, if the ARI (capturing agreement)
between the old cluster and a new cluster using only the new variable is higher than a prespecified
threshold, which suggests adding that variable would not mask the existing clustering structure. The
topological clustering with the covariates proceeds in a similar fashion as in Algorithm 1 for a fixed

K c1ust» using the features {v'e=*+7 (hi)}_| and the selected covariates to define a modified distance

d({hL(-),X1},{h2(-),X2}) based on (6). The detailed algorithm is presented as algorithm S1 in
the supplementary material.

3 Simulations

Simulation studies were conducted to assess the performance of the methods. In each of the
studies below, we generated multiple groups of signals or point clouds with underlying topological
similarity or dissimilarity to be clustered with our proposed algorithm and state-of-the-art methods
for comparison. Our simulation settings and assessment criteria are topological in nature and so may
appear somewhat counterintuitive. We will explain them in detail under each setting.

3.1 Simulation studies based on signals

For the signal-based simulations, we compared the performance of the proposed topological clustering
method with three state-of-the-art clustering methods from functional data analysis (FDA): 1) funFEM
[4], a mixture model-based method, 2) FADPclust [19], a method based on an adaptive density peak



detection technique, and 3) fdakmeans [22], a K-means clustering algorithm for functional data.
Signals were fed as functional data input to these methods, whereas HK coefficients were computed
from PDs extracted from sublevel filtrations on signals [27] and fed as input into the proposed
topological clustering algorithm. Note that the Rips filtration cannot be directly constructed on
signals in its 1-dim. form. Two popular approaches to work around this are 1) a sublevel-set
filtration that tracks time segments born at troughs and die at peaks of a signal as a vertical threshold
dynamically filters through the amplitude of the signal [27]; 2) a Rips filtration on point clouds
converted from the signals through a Taken’s embedding [29]. Our method applies to the PDs
generated from both. We opted for the former to simplify computation.

Study 1. Topological similarity. In each of 100 simulations, we generated four groups of frequency-
scaled signals at time interval 0 < 27 < -+ < w1909 < 27 y(2;) = z; sin(wz;), where w varied
between 1) w = 4,2) w = 6,3) w = 8 and 4) w = 10. For each w, we simulated 50 noisy copies of the
signals by adding independent Gaussian noise € ~ N (0,22) to y(x;). Examples of simulated signals
for different groups are shown in Figure 1 of the Supplement. Rationale for why frequency-scaled
signals up to a certain extent share underlying topological similarity is explained in detail in [27].
The range of optimal number of clusters was 2 to 6 for all methods under comparison. The results of
the topological clustering approach in comparison with the FDA methods are summarized in Table 1.
Note that the signals are supposed to be clustered as one group due to their underlying topological
similarity. But we can only obtain two or more clusters through the clustering algorithms. So we
applied the "next best" criterion of the optimal number of clusters being identified as two (random
assignment of signals). An algorithm with the average accuracy closest to 0.5 and the percentage
in all simulations of identifying two optimal clusters being closest to 100% were considered the
best performer. Our method stood out with an average accuracy closest to 0.5, in comparison with
the other methods, and by identifying the optimal number of clusters being two in 98% of 100
simulations, a much higher percentage than the other methods.

Study 2. Topological dissimilarity. In each of 100 simulations, we generated four groups of signals
at time interval 0 < z1 < - -+ < x990 < 27

x;sin(8z;) — 20, 04w < z; <0.8mandj > 2
) x;sin(8xz;) 410, 0.87 <x; <1.2randj > 3
yj(i) = x;sin(8z;) — 30, 127 < x; <1.6randj =4
x; sin(8x;), else
for j =1,...,4. We simulated 50 noisy copies of the signals by adding independent Gaussian noise
€ ~ N(0,2%) to yj(wx;) for j = 1,--- ,4. Examples of simulated signals for different groups are

shown in Figure 1 of the Supplement. The range of optimal number of clusters was 2 to 6. For
performance evaluation, we calculated the mean and standard deviation of accuracy and ARI, as well
as the percentage of the optimal number of clusters selected in 100 simulations. Results summarized
in Table 1 shows that our topological clustering method achieved the highest accuracy and ARI, as
well as the highest success rate in identifying the correct number of clusters (four) compared to the
FDA methods.

3.2 Simulation studies based on point clouds

In each simulation, we generated three groups of 50 (results consistent with 20) 200-point point
clouds. For the first group, the 200 points in each point cloud were generated randomly from the
rectangular image. For the second and third group, the 200 points in each point cloud were generated
randomly with a percentage of 95% of points from the shape of a key and four cycles respectively and
the rest 5% from the white space. Examples of simulated point clouds for different groups are shown
in Figure 1 of the Supplement. Rips and graph filtrations were constructed on the pairwise Euclidean
distance between points of each point cloud. Rips PDs from all point clouds were then fed into the
proposed topological clustering algorithm, whereas Betti functions from the graph filtration were
input for the two state-of-the-art topological clustering methods proposed by [6] and [23]. Results
were compared with these two methods, which do not incorporate an optimal cluster number selection
procedure so the number of clusters is pre-specified as three for these methods. The range of optimal



Signal Simulation
Study 1. Topological Similarity (Frequency Scaling)

Method Accuracy Percentage of Optimal Number of Clusters Selected
2 3 4 5 6

Our Method  0.5778 + 0.0447 98.00% 2.00%  0.00%  0.00% 0.00%

funFEM 0.2500 = 0.0000 0.00%  0.00% 1.00%  36.00% 63.00%

FADPclust ~ 0.2615 + 0.0498 0.00%  4.00%  95.00%  0.00% 1.00%

fdakmeans  0.3866 + 0.1198 1.00%  47.00%  52.00%  0.00% 0.00%

Study 2. Topological Dissimilarity (Topological Tearing)

Method Accuracy ARI Percentage of Optimal Number of Clusters Selected

2 3 4

Our Method  0.9998 £ 0.0001  0.9997 £ 0.0020  0.00% 0.00% 99.00% 1.00% 0.00%
funFEM 0.8442 4 0.0517  0.8685+0.0435 0.00%  0.00%  0.00%  39.00% 61.00%
FADPclust ~ 0.4368 £0.0775 0.2155+0.1169 69.00% 11.00% 3.00%  5.00%  12.00%
fdakmeans  0.9925 £0.0429 0.9913 +0.0495 0.00%  3.00% 97.00% 0.00% 0.00%
Point Cloud Simulation
Our Method Method [6] Method [23]
Accuracy  0.9987 £0.0030  0.9160 £ 0.0286  0.8964 £+ 0.1062
ARI 0.9962 4 0.0089  0.8167 & 0.0504  0.7746 + 0.1624

Table 1: Summary of mean + standard deviation of accuracy and ARI (the latter for topological
dissimilarity only) of topological clustering and the other methods, and percentages of the optimal
number of clusters selected by corresponding methods (for signal simulation only) in 100 simulations.
The actual number of clusters is 4 in under the topological tearing setting.

number of clusters for the proposed method was 2 to 6. Results summarized in Table 1 show that
the proposed topological clustering method achieved the highest accuracy and ARI. In addition, it
consistently clustered the point clouds into three groups for all simulations.

4 Application

Stroke is the leading cause of severe adult disability in the United States [26]. A left-hemisphere
stroke commonly leads to aphasia, a speech-language disorder traditionally studied through behavioral
measures. To what extent brain networks constructed from neuroimaging tools provide insight into
the disorder, particularly in subtyping and identifying factors contributing to treatment outcome,
remains an active research question.

4.1 Data acquisition and preprocessing

Resting-state fMRI data were collected from 103 individuals with aphasia due to a single left-
hemisphere ischemic or hemorrhagic stroke using a Siemens Prisma 3T scanner with a 20-channel
head coil. All procedures were IRB-approved. Using the AAL atlas, 116 ROIs were defined and
used as network nodes. Participants were scheduled for four visits over eight months: baseline,
post-treatment 1 and 2, and six months post-treatment 2. Aphasia severity was assessed at baseline
using the Aphasia Quotient from the Western Aphasia Battery-Revised (WAB-R) [15], along with
WAB-R subscores for fluency, repetition, comprehension, and naming. Philadelphia Naming Test
(PNT) scores were recorded at baseline and final visits. Resting-state functional brain networks were
constructed using Pearson correlations of BOLD signals between the 116 ROIs. A Rips filtration was
applied to each individual’s correlation matrix, and the resulting 1-dimensional persistence diagrams
(PDs) were smoothed via a heat kernel (HK) representation before being input into the methods.

4.2 Aphasia subtyping via topological clustering of functional brain networks

Traditional aphasia subtypes are based on binarized WAB-R subtest scores (fluency, comprehension,
repetition), yielding eight categories such as Broca’s and Wernicke’s aphasia [15]. However, these
labelings—derived from subjective, thresholded scores—have been widely criticized for poor clinical
consistency [10, 7, 14, 11]. While behavioral clustering (e.g., K-means) has been used to refine
subtypes [11], brain network—based clustering remains underexplored. Here, we apply topologi-
cal clustering to baseline resting-state functional networks to uncover connectivity-driven aphasia
subtypes, relating them to WAB-R profiles. Although persistent homology has been used in brain
network studies [25, 6], this is the first applied to aphasia subtyping. Using 1D persistence diagrams
from Rips filtrations, we repeated clustering 100 times (no covariates) and consistently identified
three clusters via silhouette scores. Compared to K-means clusters on WAB-R subscores, lesion maps
revealed that topological clusters were not confounded by lesion extent, unlike the baseline clusters.
Only topological clusters showed distinct connectivity patterns. T-ANOVA [28] confirmed significant



topological differences across topological clusters (ratio statistics = 5.4728, p = 0), but not across
baseline clusters (p = 0.3051). WAB-R subscore trends across topological clusters (see Supplement
Figure 2) revealed low—medium—high medians for Repetition, Comprehension, and Naming, and a
low—high-medium pattern for Fluency, suggesting nuanced behavioral profiles for the new subtypes.

4.3 Treatment outcome exploration with topological clustering of functional brain networks

We examined changes in topological clusters of resting-state functional brain connectivity in 54
participants at Visit 4 (down from 103 at Visit 1 due to dropouts) and the contributing baseline
covariates. PDs from Visit 1 and Visit 4 were clustered separately with covariate selection based on
demographic (age, sex, education), clinical (age at stroke, lesion volume, WAB-R subscores, AQ,
PNT), graph-theoretic (degree, density, efficiency, modularity, clustering coefficient), and topological
features (birth-death count, mean persistence, persistence entropy). Across six non-zero bandwidth
settings (detail in Supplement), the optimal number of clusters was consistently two, indicating a
strong but dynamic binary structure in brain connectivity clusters. Membership changes between
visits suggest treatment-related reorganization. At Visit 4, both within- and between-cluster distances
increased, with within-cluster distance showing stronger significance (p = 0.0001 vs. p = 0.0537)
and between-cluster differences in connectivity maps also increasing over time (Figure 3 in the
Supplement). At baseline, selected covariates included education, average degree, density, and PNT
scores. At Visit 4, more heterogeneous variables were selected, including sex, fluency, comprehension,
naming, baseline PNT, and topological features. These results highlight the evolving nature of post-
stroke brain networks and may inform treatment assessment beyond behavioral scores.

5 Limitations and Solutions

In this study, we explored the longitudinal effect of treatment on aphasic brain networks with
clustering applied at two time points separately. Our framework is not yet able to track individual
changes, but we can incorporate random effects into the clustering framework in a follow-up study to
achieve that. Also, we currently need to implement the selection of optimal number of clusters and
covariates associated with them separately. But we can develop a model-based clustering framework
as in [18] with an EM algorithm and BIC-type criterion to simultaneously select the number of
clusters and scalar variables/covariates. Other important issues like automated bandwidth selection
and scalability with respect to sample size (not network size, as the input to our algorithms are
HK-smoothed PDs) will also be addressed in future studies. Options include generalized cross
validation for bandwidth selection and identifying properties like monotonicity to ensure scalability.

Acknowledgments Funding support: NIHP50DCO014664 (PI: Fridriksson, Project PI: Den Ouden),
NIH ROIDCO017162 and RO1DCO01716202S1 (PI: RHD).
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Supplement

Methods: Algorithm for topological clustering with variable selection

Algorithm. The algorithm for topological clustering with covariate selection is as follows.

Algorithm S1 Topological VS-KM Clustering with HK Representation

1: Given: Data {H;}" ; with H; = (h}), ..., h%;), covariates X € R"*?
2: Parameters: {)\,}, scale o, Guin, Gfacs €cs € Touter

3: One-hot encode covariates X into X € R"*¢

4: Initialize weight matrix WO Lrinxc

5: for ¢t = 1 to Tyyer do

6: for each K € K do

7: Run Algorithm S1 using weighted distance:

R C
AH M) = 30 S WD - N (B g
r=0c=1

8: Compute clustering {S ](-t)} and centroids {M;t)} for current K
9: Evaluate silhouette index sil i

10: end for

11: Kop < argmaxp silg

12: Re-run Algorithm S1 with K, and weights W (*=1) to obtain {S ](-t)} and {J\/l§t)}
13: forc=1to C do ~

14: Compute ARI, = AdjustedRandIndex({S j(t)}, X.c)

15: end for

16: Let S = {c: ARI. > Guin}

17: Initialize w®) € R as all ones

18: for eachc € S do

19:

ARI
® =1 = Grac — 1
We + <maxj63 ARIL; + e) (Grae )
20: end for
21: Construct full weight matrix:
wh=uwl, VYr=0,...,R c=1,...,C
22: Compute average weight change:
1 R C
A= =L S S W -l
(o 22 Ve

23: if A; < €, then
24: break
25: end if
26: end for

27: return Clustering {Sy) }, centroids {M‘gt) }, optimal Ky, final weights W), and ARI scores

{ART,}

Simulations: Figure, parameter settings, stability analysis, and computational time

Examples of simulated signals and point clouds are shown in Fig 1.

Parameter settings. Table 1 summarizes the parameters used in the simulation section.



Group 1 Group 1

Group 1 Group 2 Group 3

100 200 300 100 200 300 100 200 300

Figure 1: Examples of simulated signals after frequency scaling (left) and topological tearing (middle),
and examples of simulated point clouds (right).

Parameter Description Value
o Bandwidth for heat kernel estimation 5

R Degree for heat kernel estimation 10000
Trax Max number of k-means iterations 100

€ Convergence threshold for centroid updates 105
B Number of repetitions of algorithm 10

K = [Kmin, Kmaz] Range of optimal numbers of clusters for algorithm  [2, 6]

Table 1: Parameter settings for simulations.

Stability analysis. We verified the stability of our method by increasing the number of signals/point
clouds from 50 to 100 per group. The results summarized in Table 2 are aligned with those obtained
with 50 signals/point clouds per group, consistently indicating the superior performance of our
approach.

Signal Simulation
Study 1. Topological Similarity (Frequency Scaling)

Method Accuracy Percentage of Optimal Number of Clusters Selected
2 3 4 5 6
Our Method  0.5542 £ 0.0337 100.00%  0.00% 0.00% 0.00%  0.00%
funFEM 0.2500 £ 0.0000 0.00% 0.00% 0.00% 13.00%  87.00%
FADPclust ~ 0.2503 4 0.0035 0.00% 0.00%  100.00%  0.00%  0.00%
fdakmeans ~ 0.3793 £ 0.1230 1.00%  44.00% 55.00%  0.00%  0.00%
Study 2. Topological Dissimilarity (Topological Tearing)
Method Accuracy ARI Percentage of Optimal Number of Clusters Selected
2 3 4 5 6
Our Method  0.9999 + 0.0004  0.9997 £ 0.0013  0.00% 0.00% 100.00% 0.00%  0.00%
funFEM 0.8250 +0.0594  0.8548 4 0.0503  0.00% 0.00% 1.00%  17.00% 82.00%

FADPclust  0.4254 +£0.0785 0.2059 +0.1151  61.00%  14.00%  6.00% 7.00%  12.00%
fdakmeans 0.9825 +0.0641  0.9799 + 0.0737  0.00% 7.00%  93.00% 0.00% 0.00%
Point Cloud Simulation

Our Method Method [1] Method [2]
Accuracy  0.9986 +0.0023 0.9164 £ 0.0263 0.8940 + 0.1070
ARI 0.9957 £+ 0.0068 0.8167 +0.0373  0.7718 4+ 0.1587

Table 2: Summary of mean + standard deviation of accuracy and ARI (the latter for topological
dissimilarity only) of topological clustering and the other methods, and percentages of the optimal
number of clusters selected by corresponding methods (for signal simulation only) in 100 simulations.
The actual number of clusters is 4 in under the topological tearing setting.

Computational time. We summarized the computational time of the proposed topological cluster-
ing method in comparison with two other state-of-the-art topological clustering methods in Table 3.
As we mentioned in Limitations, scalability was not the focal point of the paper but we will explore
options to reduce computational complexity in a follow-up study.



Signal Simulation

Method 50 signals per group 100 signals per group
Our Method 387.46 £ 8.38 1308.10 £ 18.06
funFEM 4.23+1.63 8.24 +£2.34
FADPclust 3.65£0.19 11.58 £ 0.87
fdakmeans 12714.94 £+ 431.53 40446.76 £ 367.43
Point Cloud Simulation
Method 50 point clouds per group 100 point clouds per group
Our Method 131.19 £2.31 492.81 + 23.21
Method [1] 9.26 £1.17 27.68 £+ 3.18
Method [2] 70.27 £ 44.90 145.01 £ 86.25

Table 3: Summary of mean-+tstandard deviation of time (in seconds) in 100 simulations.

Computational Resources. All simulation analyses were conducted in MATLAB R2023a on a
local Windows machine running Microsoft Windows 10 with an Intel(R) Xeon(R) Gold 5218 CPU
(32 processors, 64 logical processors, 2.30 GHz) and 64 GB RAM.

Application: Data processing, results, parameter settings, stability analysis, and computation

Processed resting-state functional magnetic resonance imaging (rs-fMRI) data used in the application
have been made available on Open Neuro. As half of the authors on this paper are listed on the
open-access data page on Open Neuro, we did not include a link here for review to avoid violation
of anonymity. We included here the data processing details and the parameter settings that we used
for the second part of the application (treatment outcome exploration) on the real data, as well as
stability analysis results and computational times.

Data processing. The following imaging parameters of images were used: a multiband sequence
(x2) with a 216 x 216 mm field of view, a 90 x 90 matrix size, and a 72-degree flip angle, 50
axial slices (2 mm thick with 20% gap yielding 2.4 mm between slice centers), repetition time TR
=1650 ms, TE=35 ms, GRAPPA=2, 44 reference lines, interleaved ascending slice order. During
the scanning process, the participants were instructed to stay still with eyes closed. A total of 370
volumes were acquired. The preprocessing procedures of the rs-fMRI data include motion correction,
brain extraction and time correction using a novel method developed for stroke patients [4]. The
Realign and Unwarp procedure in SPM12 with default settings was used for motion correction. Brain
extraction was then performed using the SPM 12 script pm_brain_mask with default settings. Slice
time correction was also done using SPM12. The mean fMRI volume for each participant was then
aligned to the corresponding T2-weighted image to compute the spatial transformation between the
data and the lesion mask. The fMRI data were then spatially smoothed with a Gaussian kernel with
FWHM= 6 mm. To eliminate artifacts driven by lesions, a pipeline proposed by [4] was applied on
the the rs-fMRI. The FSL MELODIC package was used to decompose the data into independent
components (ICs) and to compute the Z-scored spatial maps for the ICs. The spatial maps were
thresholded at p < 0.05 and compared with the lesion mask for the participant. The Jaccard index,
computed as the ratio between the numbers of voxels in the intersection and union, was used to
quantify the amount of spatial overlap between the lesion mask and thresholded IC maps, both of
which were binary. ICs corresponding to Jaccard index greater than 5% were deemed significantly
overlapping with the lesion mask and then regressed out of the fMRI data using the fsl_regfilt script
from the FSL package.

Results in more detail: Aphasia subtyping. Using PDs constructed on resting-state functional
connectivity matrices from Visit 1, we repeated the topological clustering algorithm 100 times,
without covariate selection, and checked for cluster consistency across repetitions through correlation
plots. Three clusters had the overall best fit via Sillouette= indices. The overall lesion map and
average absolute connectivity of three baseline clusters obtained through standard k-means and
three topological clusters obtained through the proposed clustering algorithm with bandwidth O are
shown in Figure 2 (left). The lesion map was created by augmenting stroke lesion damage in the
brain of all subjects within each cluster. Note that the three baseline k-means clusters appear to
be confounded by the overall lesion extent of the subjects as they show distinctly different lesion
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Figure 2: Left: The lesion and average connectivity maps of three topological and baseline k-
means clusters. Top Right: Box plots of subscores for all participants and those in each of the
topological and k-means clusters. Bottom Right: Empirical distribution of the ratio statistic based
on Lo-distances of HK-smoothed 1-dimensional PDs within and between the three clusters over 1
million transpositions, and pattern of median and interquartile range of WAB-R subscores across
three topological clusters/subtypes.

extent (Cluster 1 > Cluster 2 > Cluster 3). This is confirmed by the AQ and subscore distributions
summarized in Figure 2 (top right), where the AQ score is known to positively correlate with lesion
extent and the subscore distributions show a distinct monotone pattern consistent with that of AQ
across clusters. On the other hand, the topological clusters do not appear to be confounded by lesion
extent as the lesion extent do not vary significantly across the clusters and the subscore distributions
do not follow a specific trend with reference to the AQ score. As of the average connectivity, we
see different connectivity patterns in the three topological clusters, whereas the baseline clusters
show similar connectivity pattens. To confirm that the topological clusters did capture significant
statistical difference in brain networks, we also compared the brain networks across different clusters
through the permutation-based topological ANOVA (T-ANOVA) test, proposed by [3], on their
HK-smoothed PDs. Figure 2 (bottom right) shows the empirical distribution of the ratio statistic
based on Ls-distances of HK-smoothed 1-dimensional PDs within and between the three clusters
over 1 million transpositions. The observed value of the ratio statistic was 5.4728, yielding a p-value
of 0 and the conclusion of significant topological difference between the 1-cycle presence in the three
clusters of brain networks.

Results in more detail: Treatment response. We also explored the changes in topological clusters
of resting-state functional brain connectivity of 54 participants at Visit 4 (down from original 103 at
Visit 1 due to dropouts across the course of study) and significant contributing factors to these clusters.
The PDs of resting-state functional brain networks at Visit 1 (baseline visit) and Visit 4 (6 months
after treatment visit 2) underwent topological clustering separately, with covariate selection w.r.t.
variables from the baseline visit: demographic variables - age, sex, and years of education; clinical
variables - age at stroke, lesion volume, WAB-R subscores (fluency, repetition, comprehension,
naming), aphasia quotient, average PNT score; graph-theoretic variables - average degree and density,
efficiency, modularity, and clustering coefficient; topological variables - number of birth-death pairs
and mean persistence in PD, and persistence entropy. We analyzed changes in covariate selection
patterns, cluster membership, and connectivity strength. Across six parameter settings with non-zero
bandwidths (Table 4), the optimal number of clusters selected was consistently two, with agreement
in most cases — indicating a strong underlying binary grouping in the stroke patients. However,
notable membership changes between visits show that this binary structure is not static, but rather
reflects dynamic changes in brain connectivity and behavior over the course of treatment. Within-
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Figure 3: Left: Within- and between-cluster sums of distances (adjusted for cluster sizes) across six
parameter settings and paired ¢-test p-values. Right: Average connectivity maps for each cluster at
baseline and fourth visit.

and between-cluster distances after adjusting for cluster sizes both increased, with the former (p =
0.0001) being more significantly than the latter (p = 0.0537) at the fourth visit (Figure 3 left). Figure
3 (right) confirms the increase in the between-cluster distance change as average connectivity maps
in the two clusters at Visit 4 does appear to be more different than Visit 1. Across the same parameter
settings, our algorithm applied at baseline visit consistently selected education level, average degree,
density and PNT Baseline scores, reflecting preposition, whereas results at the fourth visit showed
more heterogeneity, selecting a broader set of variables, including sex, fluency rating, comprehension
and naming subscores, average PNT at baseline, and number of birth-death pairs in PD. Our findings
may potentially inform clinicians when assessing treatment outcome in post-stroke aphasia beyond
behavioral scores and with regard to various factors.

Parameter settings. We applied the heat kernel estimation of persistence diagrams (PDs) and
proposed topological clustering method under six parameter settings at Visit 1 and Visit 4. For each
parameter setting, the proposed topological clustering method was applied to the same set of PDs 100
times. Table 4 and 5 respectively summarize the six parameter settings and the other input parameters
for heat kernel estimation of PDs and proposed topological clustering method under each parameter
setting.

Settings o Gmin  Grac

1 5 001 09
2 10 0.005 0.9
3 5 001 09
4 10 0.005 09
5 5 0.01 1.5
6 10 0.005 1.5

* g: bandwidth for the heat kernel estimation. * Gin and Gfac: thresholding factors controlling sparsity in
covariate selection. Covariates with corresponding ARI. > Gmin and ARI. < Gf, are selected.

Table 4: Six parameter settings of heat kernel estimation of persistence diagrams (PDs) and proposed
topological clustering method in second part of the application section.

Parameter Description Value

R Degree of heat kernel estimation of PDs 10000

Trnaz Max number of k-means iterations with selected covariates 100

Touter Max number of VS-KM iterations 100

€centroid Convergence threshold for centroid updates 10~4

Eweight Convergence threshold for weight updates 1074
Number of repetitions of algorithm 100

K = [Kpmin, Kmaz] Range of optimal numbers of clusters for algorithm K =127

Table 5: The other input parameters for heat kernel estimation of PDs and proposed topological
clustering under each parameter setting in Table 4.



Stability analysis. Table 6a summarizes the distribution of the optimal number of clusters (K)
chosen across 100 replicates at Visit 1 and Visit 4. For Visit 1, all settings consistently select K = 2,
suggesting highly stable clustering structure. In contrast, Visit 4 exhibits variability, with Settings 2,
4, and 6 producing a mixture of K = 2, 3, and 4. Covariate selection results are summarized in Table
6b. Visit 1 had perfect consistency of selected covariates across four settings, whereas Visit 4 had
more varied subsets of covariates being selected across the settings.

Visit 1 Visit 4
Parameter K—2 K—=3 K=4 Parameter K=2 K=3 K=4
Setting Setting
1 100 0 0 1 100 0 0
2 100 0 0 2 75 23 2
3 100 0 0 3 100 0 0
4 100 0 0 4 74 25 1
5 100 0 0 5 100 0 0
6 100 0 0 6 70 29 1

(a) The optimal number of clusters (K') over 100 runs for each parameter setting at Visit 1 and Visit 4.

Parameter Parameter Parameter Parameter Parameter Parameter

Data of Visit  Covariates Setting I~ Setting2  Setting3  Setting4  Setting5  Setting 6

Education level 100 100 100 100 100 100
Density - - 100 100 100 100
Visit 1 Average degree - - 100 100 100 100
PNT baseline score - - 100 100 100 100
# Runs with selection 100 100 100 100 100 100
Education level 0 18 0 25 0 29
Density 0 18 94 50 93 58
Average degree 0 18 94 50 93 58
PNT baseline score 0 0 0 49 0 43
Comprehension subscore 0 28 51 43
Visit 4 Fluency rating 0 16 0 22 0 26
Number of birth-death pairs 0 2 0 51 0 43
Sex 0 3 0 4 0 4
Repetition subscore 0 0 0 1 0 4
Naming subscore 0 0 0 0 0 3
# Runs with selection 0 47 94 99 93 99

(b) Covariate selection frequencies (out of 100 runs) across visits and parameter settings.

Table 6: Clustering results at Visit 1 and Visit 4.

Internal clustering stability was assessed using two agreement metrics—ARI and Normalized Mutual
Information (NMI)—computed over 100 replicate runs for each parameter setting (restricted to runs
with K = 2) in Table 7. At Visit 1, all settings yielded perfectly stable clustering solutions (ARI =
1.00, NMI = 1.00), whereas Visit 4 showed varying degrees of stability (ARI = 0.65-0.67; NMI =
0.66-0.69), with Parameter Settings 2 and 6 showing the lowest clustering consistency at Visit 4 (ARI
and NMI), likely due to their relaxed variable selection thresholds. Setting 2 led to low selection
frequency and high variability in covariate subsets across runs, while Setting 6 included a larger set
of covariates (Table 6b). Both factors may have introduced additional noise and inconsistency into
the clustering process.



Visit Metri Parameter Parameter Parameter Parameter Parameter Parameter
181 etries Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6
Number of runs with K = 2 100 100 100 100 100 100
Visit 1 ARI 1.00 £0.00 1.00£0.00 1.00+0.00 1.00=+0.00 1.00=+0.00 1.00=0.00
NMI 1.00 +0.00 1.00+0.00 1.004+0.00 1.0040.00 1.00=+0.00 1.00 =+ 0.00
Number of runs with K = 2 100 75 100 74 100 70
Visit4 ARI 0.84 £0.16 0.65+0.27 0.86+0.16 0.73+0.28 0.86+0.15 0.67+0.29
NMI 0.81 £0.19 0.66+0.24 0.83+0.18 0.74+026 0.83+0.18 0.69+0.27

Table 7: Internal clustering stability metrics (ARI and NMI: mean + standard deviation) over the
runs with K = 2 for each parameter setting at Visit 1 and Visit 4.

Figure 4 shows the silhouette scores over 100 runs across visits and parameter settings. Each subplot
shows the silhouette scores under different values of K from individual runs, with the best-performing
run highlighted—selected as the one with the highest total silhouette score across all data points.
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Figure 4: Silhouette scores under varying numbers of clusters (K) across 100 runs for each parameter

setting at Visit 1 (left) and Visit 4 (right). Gray lines show individual runs; the highlighted curve
indicates the best-performing run, selected based on the highest total silhouette scores.



Computational time. Table 8§ includes the computational time averaged in 100 clustering runs with
each setting for Visit 1 and Visit 4.

Parameter Setting 1 2 3 4 5 6
Visit 1 5.6397 £0.6862  6.5224 £0.5094 59230 +0.4791  6.1054 +0.5867  4.5677 £ 0.2991  4.8382 £ 0.4147
Visit 4 2.5554 £0.3581 20.7167 & 20.8751  5.9926 & 1.4001  21.5791 4+ 20.4974  5.7110 + 1.5227  25.5473 £ 17.9320

Table 8: Mean=+ standard deviation of computational time (in seconds) over 100 runs for clustering
at Visit 1 and Visit 4 under each parameter setting.

Computational Resources. All treatment outcome exploration application analyses were conducted
in MATLAB R2023b on a local Windows machine running Microsoft Windows 11 Pro with an
Intel(R) Core(TM) Ultra 7 165U CPU (12 cores, 14 logical processors, 1.70 GHz) and 32 GB RAM.
Brain connectivity visualizations were realized through Surf Ice (6-October-2021 release).
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