
SADAS: State-Aware Dynamic Attention Scheduling for Temporally
Switching Computational Modes

Anonymous ACL submission

Abstract001

The quadratic complexity of self-attention002
poses a significant decoding bottleneck for003
large language models (LLMs) when generat-004
ing lengthy Chain-of-Thought (CoT) sequences005
for complex reasoning tasks. We observe that006
the reasoning process naturally involves func-007
tionally distinct phases: an exploratory ’think-008
ing’ phase and an integrative ’answering’ phase.009
A single, monolithic attention mechanism is010
suboptimal for both. To address this, we pro-011
pose State-Aware Dynamic Attention Schedul-012
ing (SADAS), a novel framework that enables013
LLMs to dynamically adapt their computa-014
tional mode at the token level during gener-015
ation. SADAS leverages control tokens to au-016
tonomously switch to efficient Sliding Window017
Attention for intermediate thought steps, maxi-018
mizing decoding speed. It then transitions back019
to Full attention to consolidate global context020
and produce the final answer, preserving high021
fidelity. Experimental results demonstrate that022
SADAS significantly enhances long-sequence023
inference efficiency. Crucially, it maintains024
competitive performance on challenging rea-025
soning benchmarks like AIME, demonstrat-026
ing effective preservation of reasoning accu-027
racy. Our work suggests that dynamic attention028
scheduling, tailored to the generative phase,029
offers a promising direction for building next-030
generation efficient inference models that effec-031
tively balance computational cost and reason-032
ing fidelity.033

1 Introduction034

The paradigm of Natural Language Processing035

(NLP) is being profoundly reshaped by Large Lan-036

guage Models (LLMs). Currently, a major research037

direction clearly points towards endowing models038

with complex reasoning capabilities, a cutting-edge039

field exemplified by works such as OpenAI’s o1040

(Jaech et al., 2024), Alibaba’s Qwen3 (Yang et al.,041

2025), and DeepSeek’s DeepSeek-R1 (Guo et al.,042

2025). The core mechanism of these models in- 043

volves simulating and executing complex cogni- 044

tive tasks by generating explicit Chain-of-Thought 045

(CoT) sequences (Wei et al., 2022), leading to 046

breakthrough progress in various logic-intensive 047

benchmarks. 048

However, this evolution towards generative rea- 049

soning fundamentally shifts the location of the 050

computational bottleneck. The demand for deep 051

reasoning renders LLMs increasingly decoding- 052

oriented. Before generating the final answer, mod- 053

els must produce lengthy internal thought processes 054

token-by-token, a stark contrast to prompt prefill- 055

ing, which only requires a single forward pass. 056

For a Chain-of-Thought of length N , the decod- 057

ing process of a standard Transformer model ne- 058

cessitates N forward passes. Each pass involves 059

self-attention computation with O(N2) complexity, 060

leading to a dramatic increase in overall computa- 061

tion (Chou et al., 2024). This makes decoding 062

efficiency a critical bottleneck limiting model in- 063

ference performance and application deployment. 064

Analyzing its output structure more deeply, this 065

process functionally bifurcates the model’s gener- 066

ation task into two implicit stages: an exploratory 067

intermediate thought stage, which focuses on rapid 068

generation and path exploration; and an integra- 069

tive final answer stage, which emphasizes review- 070

ing and precisely consolidating global information. 071

This raises a core architectural design question: Is a 072

single, homogeneous attention architecture optimal 073

for these two functionally distinct computational 074

stages? 075

The Linear Attention mechanism (Shen et al., 076

2021; Han et al., 2024; Ma et al., 2021) offers 077

a highly promising direction for addressing this 078

challenge, with its O(N) computational complex- 079

ity being significantly superior to the O(N2) of 080

standard attention mechanisms. However, linear 081

attention models exhibit a crucial bottleneck: their 082

limited ability in contextual information recall. Per- 083
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formance significantly degrades, particularly in084

tasks requiring precise retrieval of specific facts085

or maintenance of long-term dependencies (Fan086

et al., 2025). This inherent forgetfulness charac-087

teristic makes them unsuitable for independently088

undertaking complex reasoning tasks that require a089

global perspective.090

To address this inherent architectural contra-091

diction, we propose a novel framework, SADAS,092

which enables state-aware dynamic attention mech-093

anism switching at the token granularity. SADAS094

can dynamically reconfigure its core computational095

mode during its generation process. Utilizing pre-096

defined control tokens, the model can seamlessly097

transition between efficiency-prioritizing Linear098

Attention and fidelity-prioritizing Full Attention099

(Zhang et al., 2019). Specifically, during the ex-100

ploratory phase of generating intermediate thought101

steps, the model employs Sliding Window Atten-102

tion (Fu et al., 2025) to maximize computational103

efficiency; while in the integrative phase, when104

global information needs to be consolidated to pro-105

duce the final answer, it switches back to the Full106

Attention mechanism to ensure maximum accu-107

racy and coherence. Compared to the severe la-108

tency faced by standard Full Attention models dur-109

ing long sequence decoding and the performance110

degradation of approximate attention models due111

to information loss, SADAS achieves a superior112

balance between inference speed and output qual-113

ity by dynamically switching computation modes.114

This offers a new path for large-scale deployment115

of complex reasoning models, combining feasibil-116

ity with reliability. Our main contributions can be117

summarized as follows:118

• We propose and implement a novel dynamic119

inference framework that allows models to120

adaptively switch between different attention121

mechanisms based on the intrinsic phase of122

the generation task, thereby optimizing the123

trade-off between inference speed and output124

quality.125

• We validate the effectiveness of this approach126

across models of various parameter scales,127

from 1.7B to 8B. Experimental results demon-128

strate that this hybrid architecture significantly129

boosts inference efficiency while maintaining130

comparable performance to the original Full131

Attention models on key reasoning tasks, prov-132

ing its potential as a foundational architecture133

for next-generation reasoning models.134

• We conduct comprehensive ablation studies to 135

deconstruct the contributions of each compo- 136

nent within the framework. We also quantita- 137

tively analyze the impact of different sliding 138

window widths and maximum inference out- 139

put lengths on model performance, providing 140

critical empirical data for future research in 141

this field. 142

2 Related Work 143

2.1 Reasoning Models 144

The integration of advanced reasoning capabilities 145

into Large Language Models (LLMs) has become a 146

key research area (Zhao et al., 2023). Early efforts 147

focused on leveraging instruction fine-tuning and 148

in-context learning to unlock models’ inherent rea- 149

soning potential (Zhang et al., 2023, 2025). A sig- 150

nificant breakthrough came with Chain-of-Thought 151

(CoT) prompting (Wei et al., 2022), which notably 152

improved performance on complex reasoning tasks 153

by guiding models to generate explicit, step-by- 154

step reasoning paths. While CoT’s effectiveness is 155

widely recognized, its training process can be chal- 156

lenged by inefficient stochastic gradient estimation 157

(Yao et al., 2025), and some studies even question 158

the absolute necessity of lengthy thought processes 159

for certain tasks (Ma et al., 2025). 160

Current state-of-the-art reasoning models, such 161

such as OpenAI’s o3 (Liu et al., 2025b), Alibaba’s 162

Qwen3 (Yang et al., 2025), and DeepSeek-R1 (Guo 163

et al., 2025), commonly integrate CoT with self- 164

reflection and advanced search-based reinforce- 165

ment learning. Despite their exceptional perfor- 166

mance, these powerful capabilities incur substantial 167

computational overhead, especially when generat- 168

ing long reasoning chains, making decoding effi- 169

ciency a severe challenge (Jiang et al., 2025). Al- 170

though some attempts, like Hunyuan-TurboS (Liu 171

et al., 2025a), combine architectures to enable dy- 172

namic switching between simple query and deep 173

thinking modes, they do not fundamentally address 174

the inherent redundancy of excessively long rea- 175

soning chains, which remains a core impediment 176

to model application efficiency and usability. Our 177

work aims to mitigate this by dynamically adapt- 178

ing the attention mechanism to the stage of the 179

reasoning process itself. 180

2.2 Efficient Attention Mechanisms 181

The primary computational bottleneck of the stan- 182

dard Transformer architecture arises from its self- 183

attention mechanism, which exhibits O(N2) time 184
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Figure 1: Architectural Overview of SADAS

and space complexity with respect to sequence185

length N (Ho et al., 2024). Various efficient atten-186

tion mechanisms have been developed to alleviate187

this limitation.188

One prominent category is Linear Attention,189

which aims to reduce computational complexity190

to O(N). These methods typically approximate191

the full attention matrix using techniques like ker-192

nel function approximation or low-rank decom-193

position. Examples include RWKV (Peng et al.,194

2023), Mamba (Gu and Dao, 2023), and Light-195

ning Attention-2 (Qin et al., 2024). While offering196

significant efficiency gains, linear attention often197

trades off model performance, particularly in tasks198

requiring high-fidelity information recall and pre-199

cise long-range dependency modeling (Sun et al.,200

2025).201

Another important class is Sparse Attention,202

where a predefined sparse connection pattern limits203

each token’s attention to a subset of the sequence.204

Sliding Window Attention (SWA) (Fu et al., 2025)205

is a straightforward and effective sparse attention206

variant that reduces complexity to O(N) by restrict-207

ing attention to a fixed-size local window. However,208

SWA’s limited receptive field leads to notable per-209

formance degradation in tasks requiring global de-210

pendencies or precise retrieval of long-distance in-211

formation, making it challenging for SWA alone to212

handle complex global reasoning tasks (Fan et al.,213

2025).214

To bridge the gap between efficiency and per-215

formance, Hybrid Attention mechanisms have216

emerged. Approaches like Mixture of Block At-217

tentions (MoBA) (Lu et al., 2025) and MoM (Du218

et al., 2025) combine sparse attention with dynamic219

selection or multiple memory states to reduce com- 220

putational load while aiming to maintain perfor- 221

mance. While these hybrid frameworks offer valu- 222

able paradigms for balancing computation and per- 223

formance, their application to multi-stage reason- 224

ing models is often insufficient. Existing hybrid 225

methods typically do not fully leverage the unique, 226

stage-specific structure inherent in reasoning tasks, 227

limiting their effectiveness in realizing the full cog- 228

nitive potential of models in such scenarios, which 229

SADAS specifically addresses. 230

3 Method 231

To achieve an optimal balance between the ex- 232

ploratory and integrative stages of reasoning, we 233

propose a State-Aware Dynamic Attention Mech- 234

anism (SADAS). The core idea of this framework 235

is to enable the model to reconfigure its core at- 236

tention computation paradigm in real-time at the 237

token level during autoregressive generation, based 238

on its current cognitive task. 239

3.1 Architectural Overview 240

The overall architectural design of SADAS is based 241

on a key insight: complex reasoning processes are 242

naturally divided into two cognitive stages – ex- 243

ploratory thinking and integrative answering. To 244

map this cognitive model onto a computational ar- 245

chitecture, we designed a dynamic switching frame- 246

work, as depicted in Fig. 1. This framework seam- 247

lessly integrates two computation modes: computa- 248

tionally efficient SWA for the exploratory phase 249

of quickly generating a Chain-of-Thought, and 250

information-fidelity preserving Full Attention for 251
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the final answer stage, which requires integrating252

global information.253

To enable autonomous switching between254

modes, we introduce a set of predefined control255

tokens: <think> and </think>. These tokens256

serve as explicit signals for the model’s internal257

state. When the model generates <think>, it auto-258

matically enters the computationally efficient SWA259

mode; upon generating </think>, it switches back260

to the high-fidelity Full Attention mode. This de-261

sign empowers the model with autonomous control262

over its computational flow.263

At the implementation level, SADAS utilizes a264

unified and append-only KV cache (Zhou et al.,265

2024). In SWA mode, attention computation only266

accesses the most recent portion of the cache;267

whereas in Full Attention mode, it can access the268

entire historical data within the cache. This de-269

sign significantly simplifies architectural complex-270

ity, avoiding performance overhead associated with271

managing multiple or variable caches, and ensures272

a high degree of continuity and parallelism in the273

computational process.274

The complete workflow of SADAS is as follows:275

when the model needs to perform complex reason-276

ing, it first generates the <think> token, which277

triggers the framework to switch its computational278

core to the SWA Attention Layer. In this mode,279

the model efficiently generates a series of interme-280

diate thought steps. When the thinking process281

concludes, the model generates the </think> to-282

ken, marking the completion of the exploratory283

phase. At this point, the framework seamlessly284

switches the computational core back to the Full285

Attention Layer, and the model begins to integrate286

all contextual information, including the thought287

chain, to finally generate an accurate answer.288

3.2 State-Aware Dynamic Attention289

Mechanism290

To realize the architecture described, we designed291

a dynamic scheduling mechanism that relies on292

precise tracking of each sequence’s cognitive state293

and is formalized by dynamic attention computa-294

tion graph reconfiguration. For the i-th sequence295

in a batch, at each generation timestep t, we de-296

fine its cognitive state S
(i)
t and a termination state297

latch F
(i)
t , where S

(i)
t , F

(i)
t ∈ {0, 1}. S

(i)
t indi-298

cates whether the model is currently in thinking299

mode and F
(i)
t marks whether the entire thinking300

process has concluded.301

3.2.1 State Transition Dynamics 302

The model’s state evolution is driven by the previ- 303

ously generated token y
(i)
t−1. Let ythink and yend_think 304

denote the IDs of the control tokens, respectively. 305

The cognitive state S
(i)
t represents whether the 306

model is in the thinking mode. Its transition logic 307

is defined as follows: 308

S
(i)
t =


1 if y(i)t−1 = ythink

0 if y(i)t−1 = yend_think

S
(i)
t−1 otherwise

(1) 309

where S
(i)
t = 1 corresponds to the thinking mode, 310

and S
(i)
t = 0 to the integrative mode. To ensure 311

that once reasoning is complete, the model stably 312

enters the high-fidelity integrative mode, we in- 313

troduce the termination state latch F
(i)
t . This is a 314

unidirectional trigger that, once activated, remains 315

persistent. Its update rule is as follows: 316

F
(i)
t = F

(i)
t−1 ∨ (y

(i)
t−1 = yend_think) (2) 317

where ∨ denotes the logical OR operation, with 318

initial state F (i)
0 = 0. This latch ensures that after a 319

complete reasoning chain, the model will be locked 320

into the integrative mode and will not switch back 321

to SWA. 322

3.2.2 State-Dependent Attention Selection 323

The computation of the standard self-attention 324

mechanism can be abstractly represented as: 325

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (3) 326

The core innovation of our mechanism lies in 327

transforming the key (K) and value (V) matrices 328

provided to this function from static, undifferenti- 329

ated historical records into a dynamically config- 330

ured context set based on the cognitive state F
(i)
t . 331

This process can be viewed as a real-time reconfig- 332

uration of the attention computation graph at each 333

decoding step. 334

For the complete key-value history of se- 335

quence i at timestep t, we define it as H(i)
t = 336

{(k(i)j , v
(i)
j )}tj=1. When the model enters the high- 337

fidelity integrative mode, F (i)
t = 1, it must have 338

access to the global context for accurate recall and 339

integration. In this computational path, the atten- 340

tion mechanism is granted unrestricted access to 341

the complete history H(i)
t . At this point, the effec- 342

tive key-value pairs (K
(i)
Full,V

(i)
Full) are formed by 343
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concatenating all key and value tensors from H(i)
t344

along the sequence dimension.345

Conversely, when the model is in the computa-346

tionally more efficient exploratory thinking stage,347

F
(i)
t = 0, to accelerate thinking, its context ac-348

cess is actively restricted to a local window of a349

predefined size Wc. In this path, the effective key-350

value pairs (K(i)
SWA,V

(i)
SWA) consist only of the most351

recent subset of the history H(i)
t . This dynamic con-352

straint on historical records is crucial for achieving353

a trade-off between computational efficiency and354

model performance.355

Therefore, the final key-value set (K(i)
eff ,V

(i)
eff )356

used by the effective attention computation357

Attn(l,i,t)eff of the l decoding layer can be formally358

described as a conditional selection function con-359

trolled by the state F
(i)
t :360

(K
(i)
eff ,V

(i)
eff ) =

{
(K

(i)
SWA,V

(i)
SWA) if F (i)

t = 0

(K
(i)
Full,V

(i)
Full) if F (i)

t = 1
(4)361

Finally, the output of this layer h(l,i)t is computed362

based on this dynamically selected context set:363

h
(l,i)
t = Attention(q(l,i)t ,K

(i)
eff ,V

(i)
eff ) (5)364

In terms of implementation, this high-level state-365

ful logic is elegantly mapped onto low-level com-366

putational optimizations. The state variable Ft367

is propagated across model layers via a boolean368

flag, ultimately passing a concrete window size to369

the underlying attention implementation to execute370

the logic of Equation 4. This achieves a direct371

mapping from abstract semantic states to concrete372

hardware-accelerated computational paths, thereby373

enabling dynamic control over the model’s compu-374

tation mode without introducing significant archi-375

tectural complexity.376

4 Experiments377

To empirically evaluate the effectiveness and ef-378

ficiency of the SADAS framework, this section379

presents a series of experiments. We first detail the380

experimental setup, including model initialization,381

fine-tuning scheme, and evaluation benchmarks.382

Subsequently, we present a performance compari-383

son of SADAS with current mainstream reasoning384

models and architectural variants. Finally, through385

a series of ablation studies, we deeply analyze the386

impact of the framework’s key components and387

hyperparameters.388

4.1 Experimental Setup 389

4.1.1 Model Initialization and Baselines 390

SADAS was initialized by distilling and mapping 391

weights from the pre-trained Qwen3 model (Yang 392

et al., 2025). For comprehensive assessment, we 393

compared SADAS against a representative set of 394

baseline models, including top-tier closed-source 395

models like GPT-4o (Hurst et al., 2024) and Claude- 396

3.5-Sonnet. Open-source baselines included ad- 397

vanced reasoning models such as DeepSeek-R1- 398

Distill-Llama-8B (Guo et al., 2025), Qwen3 (Yang 399

et al., 2025), its pure Sliding Window Attention 400

(SWA) variant (SWAQwen), and the latest hybrid 401

architecture reasoning model M1-3B (Wang et al., 402

2025). 403

4.1.2 Training Configuration 404

To enable SWA layer adaptation, light fine-tuning 405

was performed using the Ring-sft-data (Team, 406

2025). This dataset comprises over 2 million En- 407

glish and Chinese samples spanning mathemat- 408

ics, programming, and science. Training was con- 409

ducted for one epoch on a server equipped with 410

8 A800 GPUs. Key hyperparameters included 411

a maximum sequence length of 2048 tokens, a 412

global batch size of 0.1M, an initial learning rate 413

of 2 × 10−5 with a cosine decay schedule, and a 414

weight decay of 0.01. 415

4.1.3 Benchmarks 416

Our models were evaluated on AIME24 and 417

AIME25 datasets using pass@k as the metric, with 418

k = 8 (Chen et al., 2021; Brown et al., 2024). We 419

also utilized Math_500 (Hendrycks et al., 2021), a 420

collection of 500 diverse mathematical problems. 421

All evaluations were conducted with EvalScope, 422

scoring problems based on mathematical equiva- 423

lence. For consistency, the SWA layer window size 424

was fixed at 2048 tokens across all comparisons. 425

To quantify computational efficiency, an end-to- 426

end latency test was conducted on a single A800 427

GPU. With a fixed prompt length of 2048 tokens 428

and a batch size of 16, models generated output 429

sequences of varying lengths (from 512 to 32768 430

tokens) to measure total generation time. Decoding 431

parameters were set to: temperature 0.7, top-p 0.8, 432

top-k 20, and a maximum output length of 32,768 433

tokens, aligning with recent practices for reason- 434

ing model evaluation (Guo et al., 2025; Luo et al., 435

2025). Baseline model results were adopted from 436

their original reported data. 437
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Figure 2: Comparison of SADAS and baseline Qwen3 variants on AIME24 and AIME25 datasets.

Table 1: Reasoning Evaluation Results for SADAS and Baseline Models

Model Math500 AIME24 (pass@k) AIME25 (pass@k)

GPT-4o-0513 74.6 9.3 -
Claude-3.5-Sonnet-1022 78.3 16.0 -
Qwen3-1.7B 89.0 48.3 36.8
DeepSeek-R1-Distill-Qwen-1.5B 83.9 28.9 23.5
M1-3B 81.7 23.0 22.0
DeepSeek-R1-Distill-Llama-8B 89.1 50.4 32.9
SADAS-1.7B 89.4 56.7 36.6
SADAS-4B 91.8 73.3 63.3

4.2 Main Results Comparing with Baselines438

As shown in Table 1, SADAS shows excellent per-439

formance on all benchmarks. On relatively founda-440

tional benchmarks like Math500, SADAS performs441

comparably with other high-performance models,442

showing a slight improvement. However, SADAS’s443

advantage becomes particularly prominent when444

evaluated on benchmarks requiring deeper reason-445

ing capabilities, such as AIME24 and AIME25.446

SADAS-4B achieved 73.3 on AIME24 and 63.3 on447

AIME25, significantly outperforming all compara-448

ble and even much larger models. Even at the 1.7B449

parameter scale, SADAS-1.7B’s performance sur-450

passed that of other larger models, demonstrating451

improvements across all three datasets compared452

to the 8B-parameter DeepSeek-R1-Distill-Llama.453

This validates the effectiveness of our proposed454

framework in preserving the cognitive potential of455

reasoning models.456

To further clarify the specific contributions of457

the SADAS framework, we conducted a direct com-458

parison with the Full Attention model Qwen3 and459

its pure SWA variant, SWAQwen. As illustrated460

Table 2: Completion Token Lengths on AIME24

Model Ave Max Min

Qwen3-1.7B 16737 28248 4771
SADAS-1.7B 18883 32768 5544

in Fig. 2, the performance of SADAS consistently 461

positions it between Qwen3 and SWAQwen. No- 462

tably, at the 1.7B scale, SADAS achieved a nearly 463

16% lead over Qwen3 on AIME24, representing 464

a substantial improvement. As shown in Table 2, 465

under the same 32k maximum output length con- 466

straint, SADAS demonstrated an approximate 12% 467

improvement in the average length of generated 468

answers compared to Qwen3, with maximum and 469

minimum lengths increasing by nearly 16%. This 470

confirms that SADAS successfully achieves an ef- 471

fective trade-off between computational efficiency 472

and model fidelity, and to some extent, unlocks 473

stronger reasoning potential. This is achieved by 474

employing SWA during the thinking phase to ac- 475

celerate reasoning and utilizing Full Attention for 476
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Figure 3: Relationship between Generation Length and Score Accuracy

Table 3: End-to-end inference latency of SADAS and Qwen3 variants under different output lengths (seconds)

Model 512 1024 2048 4096 8192 16384 32768

Qwen3-1.7B 17.16 34.60 72.24 183.34 595.11 1427.36 4937.93
SADAS-1.7B 18.90 37.84 75.31 163.97 417.68 1271.93 4316.15
SWAQwen-1.7B 16.87 33.65 71.73 192.53 508.92 1419.33 4617.54
Qwen3-4B 22.14 43.70 94.77 224.73 604.05 1862.90 -
SADAS-4B 25.86 47.99 97.64 214.26 547.98 1644.21 -
SWAQwen-4B 27.52 55.44 107.70 216.82 567.08 1800.73 -
Qwen3-8B 23.76 47.47 100.73 237.90 628.27 2097.96 -
SADAS-8B 26.28 52.30 106.53 248.72 616.95 1813.29 -
SWAQwen-8B 30.30 60.10 125.63 281.58 699.16 1963.14 -

global information integration during the synthesis477

phase, resulting in only minor performance loss, far478

superior to pure SWA architectures that completely479

sacrifice global context.480

Table 3 presents a detailed comparison of end-to-481

end inference latency across various output lengths.482

SADAS exhibits a minor overhead at shorter output483

lengths (< 2048 tokens) due to its state-switching484

mechanism. However, for longer output sequences,485

where attention computation becomes the domi-486

nant bottleneck, SADAS’s advantages emerge. By487

utilizing SWA during the model’s thinking phase,488

SADAS achieves faster end-to-end inference times489

than Qwen3 and its pure SWA variant SWAQwen490

across all tested parameter scales (1.7B, 4B, 8B).491

Specifically, SADAS demonstrates a substantial492

speedup: approximately 12.6% over Qwen3-1.7B493

and 6.5% over SWAQwen at 32768 tokens. For494

4B and 8B models, SADAS achieves up to 11.9%495

and 13.6% acceleration respectively over Qwen3 at496

16384 tokens. This highlights SADAS’s effective497

trade-off: it precisely optimizes the computation-498

ally intensive thinking phase, confirming its critical499

role in long sequence efficiency, while maintaining500

high reasoning fidelity.501

Why does a pure SWA mechanism sometimes 502

result in slower inference speeds? Our investi- 503

gation into why a pure SWA mechanism some- 504

times results in slower inference speeds revealed 505

that its core bottleneck lies in the SlidingWindow- 506

Cache’s management. To maintain a fixed win- 507

dow size, it necessitates frequent eviction of the 508

oldest Key-Value (KV) pairs at each generation 509

step. This non-trivial, often unparallelizable, over- 510

head—especially against highly optimized atten- 511

tion computations can negate the theoretical gains 512

from reduced attention scope, leading to a "theoret- 513

ically fast, practically slow" outcome. In contrast, 514

SADAS bypasses this issue by using a globally 515

unified DynamicCache. This cache is append-only, 516

meaning KV pairs are simply added without costly 517

eviction or rolling. This design simplifies data 518

flow, eliminates cache management overhead, and 519

ensures high computational continuity and paral- 520

lelism. Consequently, the inherent speed benefits 521

of linear attention methods like SWA are fully real- 522

ized in SADAS, leading to substantial real-world 523

acceleration despite potentially higher memory con- 524

sumption for very long sequences compared to 525

fixed-window caches. 526
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4.3 Ablation Study527

4.3.1 Impact of Output Length528

Figure 3 illustrates the impact of increased out-529

put length on complex reasoning. While all530

models benefit from extended reasoning depth,531

SADAS demonstrates the most significant effi-532

ciency gains. Quantitatively, extending the max-533

imum output length from 4096 to 32768 tokens,534

SADAS’s performance on Math500 improved535

by 39.7%, outperforming DeepSeek-R1-Distill-536

Llama-8B (30.6%) and SWAQwen (33.9%). On537

the more challenging AIME25, SADAS showed a538

remarkable 175.2% increase, significantly exceed-539

ing DeepSeek-R1-Distill-Llama-8B’s 97.0% and540

SWAQwen’s 133.0%.541

This superior performance extension stems from542

SADAS’s dynamic switching, which efficiently543

generates long reasoning paths with SWA during544

the thinking phase and then leverages Full Atten-545

tion for lossless global recall and integration in the546

final synthesis. This allows SADAS to optimally547

translate reasoning depth into problem-solving ca-548

pabilities, particularly for complex tasks requiring549

a global perspective, where its performance curve550

exhibits the steepest growth.551

4.3.2 Impact of Window Size552

Table 4: Performance under Different Window Sizes

Model Window Size Math500 AIME24 AIME25

1024 53.7 16.7 13.3
SADAS 2048 76.2 26.7 23.3

4096 89.4 56.7 36.6

1024 32.4 6.6 3.3
SWAQwen 2048 62.8 10.0 16.7

4096 83.8 26.7 23.3

Table 4 presents performance results across dif-553

ferent window sizes, investigating how the width554

of local context in SADAS’s thinking phase affects555

model performance. The maximum output length556

was set to 32,768 tokens. Analysis reveals that in-557

creasing the window size significantly benefits both558

SADAS and pure SWA architectures, underscoring559

the importance of a wider local receptive field dur-560

ing exploratory thinking. For instance, on AIME24,561

SADAS’s score surged by 239.5% (from 16.7 to562

56.7) when the window expanded from 1024 to563

4096.564

Crucially, SADAS utilizes this expanded con-565

text much more efficiently than pure SWA. The566

performance gap between SADAS and SWAQwen567

systematically widens with increasing window size. 568

On AIME24, SADAS’s lead over SWAQwen grew 569

from 10.1 points (1024 window) to 30.0 points 570

(4096 window), demonstrating SADAS’s perfor- 571

mance more than doubling SWAQwen’s at the 572

largest window size. This widening gap confirms 573

SADAS’s hybrid mechanism maximizes the value 574

of the SWA window. The SWA efficiently gener- 575

ates high-quality thought content, which the subse- 576

quent Full Attention layer, with its global access, 577

meticulously processes for the final answer. This 578

paradigm, which allocates computational resources 579

to a stage that can be fully leveraged by a subse- 580

quent high-fidelity module, is more effective than 581

universally employing a single approximate atten- 582

tion mechanism. 583

5 Conclusion 584

This paper addresses the issue of low decoding 585

efficiency in large inference models caused by gen- 586

erating long thought chains by proposing a novel 587

dynamic inference framework, SADAS. Our core 588

idea is that the inference process naturally com- 589

prises two distinct phases, exploration and integra- 590

tion, which should employ different computational 591

modes. The SADAS framework, by introducing 592

control tokens, enables the model to adaptively 593

switch between computationally efficient sliding 594

window attention and high-fidelity full attention. 595

This design aims to optimize the trade-off between 596

inference speed and output quality. Experimental 597

results indicate that SADAS, while maintaining 598

high reasoning accuracy, significantly improves 599

the efficiency of long sequence decoding. Com- 600

pared to purely approximate attention methods, 601

SADAS avoids significant performance degrada- 602

tion because it can more effectively utilize contex- 603

tual information during the thinking process. Our 604

work demonstrates that dynamically scheduling at- 605

tention mechanisms based on the intrinsic structure 606

of a task is an effective path towards building next- 607

generation efficient inference models. 608

Limitations 609

While our proposed SADAS framework demon- 610

strates significant improvements in balancing in- 611

ference efficiency and reasoning accuracy, we ac- 612

knowledge several limitations that offer avenues 613

for future research. 614

1. Dependence on Control Tokens and Fine- 615

Tuning: The core mechanism of SADAS re- 616
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lies on the model’s ability to autonomously617

generate predefined control tokens (<think>618

and </think>) to switch between computa-619

tional modes. This dependency has two main620

implications. First, it necessitates a dedi-621

cated fine-tuning phase for the model to learn622

this specific “think-then-answer” generation623

rhythm. This adds an extra step and compu-624

tational cost, making SADAS less of a “plug-625

and-play” solution for off-the-shelf models.626

Second, the framework’s performance is sen-627

sitive to the correct placement of these tokens.628

An error in generation—such as failing to629

produce a </think> token or generating it630

prematurely—could lock the model in a sub-631

optimal attention mode, potentially degrading632

the quality of the final answer.633

2. Memory Consumption of the KV Cache:634

Our implementation of SADAS prioritizes635

inference speed and architectural simplicity636

by utilizing a unified, append-only KV cache637

(DynamicCache). While this approach avoids638

the latency overhead associated with cache639

eviction in standard sliding window attention,640

it comes at the cost of increased memory con-641

sumption. The KV cache grows linearly with642

the length of the entire generated sequence.643

For extremely long reasoning chains (e.g., far644

exceeding 32k tokens), this could become a645

practical bottleneck on hardware with lim-646

ited VRAM, representing a direct trade-off647

between speed and memory footprint.648

3. Rigidity of the Bipartite Cognitive Model:649

The current SADAS framework is built upon650

a binary model of cognition, bifurcating the651

generation process into a single “exploratory652

thinking” phase (SWA) and a final “integra-653

tive answering” phase (Full Attention). How-654

ever, complex reasoning may not always fol-655

low such a linear path. It could be iterative,656

requiring the model to switch back and forth657

between exploration and integration multiple658

times. Our current design, with its unidirec-659

tional termination latch (F (i)), does not sup-660

port such complex, multi-turn cognitive state661

transitions, potentially limiting its effective-662

ness on tasks that require more sophisticated663

reasoning patterns.664

4. Generalizability to Other Long-Context665

Tasks: Our experiments have primarily fo-666

cused on mathematical and logical reason- 667

ing benchmarks, where the Chain-of-Thought 668

paradigm is well-established. The applicabil- 669

ity and effectiveness of the SADAS frame- 670

work for other long-context tasks, such as 671

long-form document summarization, narrative 672

generation, or complex question-answering 673

over large texts, remain to be thoroughly in- 674

vestigated. The “think-then-answer” struc- 675

ture may not be as naturally suited or as ben- 676

eficial for these domains, and adapting the 677

framework might require designing new task- 678

specific control mechanisms. 679
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A Analysis of the Necessity for847

Fine-tuning848

In our research, to activate and stabilize SADAS’s849

dynamic switching capability, we performed con-850

tinuous full-parameter fine-tuning on the base851

model. We did not adopt parameter-efficient fine-852

tuning (PEFT) methods such as LoRA. Our primary853

considerations were to provide an unconstrained854

upper bound for evaluating the potential of the855

SADAS architecture and to ensure all model param-856

eters adapted to the new framework, thereby avoid-857

ing potential performance bottlenecks that PEFT858

methods might introduce. To validate the necessity859

of fine-tuning, we designed a set of comparative860

experiments, directly testing performance under861

an initial setup where only model weights were862

imported and no fine-tuning was performed. The863

model parameters were set to 1.7B, and training864

settings referred to Section 4.1.865

Table 5: Performance Comparison of SADAS under
Fine-tuned and Non-Fine-tuned Settings

Scheme AIME-24 AIME-25 COT Stability
Fine-tuned 56.7 36.6 High
Non-Fine-tuned 12.3 8.7 Low

From the data in Table 5, it is clearly evident866

that fine-tuning is a prerequisite for the successful867

operation of the SADAS framework. The non-fine-868

tuned SADAS model exhibited significant perfor-869

mance degradation across all key metrics, which870

can be attributed to the following reasons:871

• Cognitive Mismatch: The internal weights872

of the non-fine-tuned model have not learned873

the "think-answer" rhythm. Forcing attention874

mode switching disrupts its inherent genera-875

tion logic, leading to incoherent model outputs876

and even complete disorientation in complex 877

reasoning tasks, as evidenced by the substan- 878

tial drop in AIME-24 scores. 879

• Generation Instability: As the model does 880

not understand the semantics of control tokens 881

and has not adapted to the dynamic changes 882

in the attention calculation range, its genera- 883

tion process becomes highly unstable. We ob- 884

served numerous instances of repetition, logi- 885

cal interruptions, or premature generation ter- 886

mination, which explains its "low" rating in 887

CoT generation stability. 888

• Reduced Computational Efficiency: Al- 889

though SWA is theoretically faster, the actual 890

inference speed of the non-fine-tuned model 891

was lower than that of the end-to-end opti- 892

mized fine-tuned model. This is due to unco- 893

ordinated internal states during mode switch- 894

ing, which leads to frequent interruptions in 895

the GPU computation flow. 896

In summary, a targeted fine-tuning phase is cru- 897

cial for SADAS. It not only teaches the model how 898

to autonomously utilize control tokens but, more 899

importantly, reshapes the model’s internal computa- 900

tion flow, enabling it to transition smoothly and ef- 901

ficiently between the two attention modes, thereby 902

truly converting SADAS’s architectural advantages 903

into practical performance gains. 904

B Exploration and Trade-offs of 905

Alternative Cache Management 906

Schemes 907

The core of the SADAS framework lies in its 908

dynamic nature, and KV cache management is 909

the technical cornerstone for achieving this dy- 910

namism. The globally unified DynamicCache 911

scheme adopted in the main text is the optimal solu- 912

tion we derived after comprehensive consideration 913

of speed, accuracy, and implementation complex- 914

ity. To more comprehensively illustrate our design 915

decision process, this section will detail two other 916

alternative schemes we explored, analyzing their 917

advantages and limitations with experimental data. 918

Similarly, all experiments in this section were 919

conducted with 1.7B model parameters, and all 920

throughput tests used a batch size of 16, performing 921

inference on a single A100 GPU. 922
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Table 6: Performance Evaluation of the Hybrid Cache Scheme

Scheme
Output Length

512 1024 2048 4096 8192 16384 32768

Hybrid Cache
Speed (token/s) 17.09 33.65 71.93 169.41 453.71 1421 4853
Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221

SADAS
Speed (token/s) 18.9 37.84 75.31 163.97 417.68 1271.93 4316.15
Peak Memory (GB) 0.889 1.765 3.515 7.016 14.019 28.02 55.808

Table 7: Performance Evaluation of the Truncated Dynamic Cache Scheme

Scheme
Output Length

512 1024 2048 4096 8192 16384 32768

Truncated Cache
Speed (token/s) 17.08 33.34 71.54 168.37 451.59 1418 4833
Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221

SADAS
Speed (token/s) 18.9 37.84 75.31 163.97 417.68 1271.93 4316.15
Peak Memory (GB) 0.889 1.765 3.515 7.016 14.019 28.02 55.808

Table 8: Performance Evaluation of Alternative Schemes Integrating Sink Attention

Scheme
Output Length

512 1024 2048 4096 8192 16384 32768

Truncated Cache
Speed (token/s) 16.76 33.22 71.20 168.97 452.74 1416.22 4814
Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221

Hybrid Cache
Speed (token/s) 17.02 34.08 72.13 167.74 535.11 1418.22 4821
Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221

Truncated Cache + Sink
Speed (token/s) 17.08 33.34 71.54 168.37 451.59 1418 4833
Peak Memory (GB) 0.889 1.764 1.764 1.765 1.766 1.768 3.223

Hybrid Cache + Sink
Speed (token/s) 17.09 33.65 71.93 169.41 453.71 1421 4853
Peak Memory (GB) 0.889 1.764 1.764 1.765 1.766 1.768 3.223

B.1 Scheme 1: Hybrid Cache923

This scheme aims to minimize GPU memory foot-924

print. Its core mechanism involves using a fixed-925

size sliding window attention cache (SWA Cache)926

during the thinking phase. Upon transitioning to927

the answering phase, the contents of the SWA928

Cache are migrated to a new, infinitely growing929

dynamic cache (Dynamic Cache) via a one-time930

cache copy operation.931

As shown in Table 6, the Hybrid Cache scheme932

demonstrates a significant advantage in peak GPU933

memory usage. For example, at an output length934

of 32768, it reduced memory demand by approxi-935

mately 94.2% compared to SADAS. However, this936

advantage comes at the cost of sacrificing critical937

Table 9: Reasoning Accuracy Evaluation of the Hybrid
Cache Scheme

Scheme AIME-24 AIME-25

Hybrid Cache 36.6 26.7
SADAS 56.7 36.6

performance. Its speed significantly decreased, pri- 938

marily due to the substantial latency introduced by 939

the cache copying operation, which represents a 940

difficult-to-optimize serial bottleneck on the GPU. 941

More critically, as shown in Table 9, its accu- 942

racy also suffered significantly, because the context 943

for the final answering phase was limited to only 944
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the latter part of the thinking process, leading the945

model to lose a large amount of crucial early in-946

formation and fail to complete complex reasoning947

tasks requiring long-range recall.948

B.2 Scheme 2: Truncated Dynamic Cache949

To address the speed issues of the Hybrid Cache950

scheme, we designed the Truncated Dynamic951

Cache. This scheme uses a single global cache,952

but during the thinking phase, it logically truncates953

access to older cache entries outside the window954

through attention masks.955

Table 10: Reasoning Accuracy Evaluation of the Trun-
cated Dynamic Cache Scheme

Scheme AIME-24 AIME-25

Truncated Cache 36.6 26.7
SADAS 56.7 36.6

As can be seen from the data in Table 7, this956

scheme avoids data copying, and its speed per-957

formance is close to that of our final adopted958

scheme. Its memory footprint is the same as the959

final scheme, as it still retains all KV pairs at the960

underlying level. However, as shown in Table 10,961

during the thinking phase, the model is similarly962

unable to recall early thinking steps outside the963

window, resulting in its accuracy still being lower964

than the final scheme. While this involves less965

information loss than the Hybrid Cache scheme,966

this limitation remains critical in complex reason-967

ing chains that require repeated backtracking and968

verification.969

Through a rigorous evaluation of the three970

schemes discussed, we concluded that while the971

alternative schemes offer attractive benefits in972

terms of memory savings, they all compromise973

the model’s peak reasoning ability by introducing974

some form of permanent information loss during975

the thinking phase. The globally unified Dynamic-976

Cache scheme we ultimately adopted has its core977

advantage in ensuring information completeness978

and flexible access. It allows the model to recall the979

entire history at any time by modifying attention980

masks, a capability that proved crucial for achiev-981

ing efficient inference without sacrificing accuracy.982

Although it demands higher GPU memory, it pro-983

vides the best overall performance in terms of both984

speed and accuracy, which is fully consistent with985

the original design philosophy of SADAS.986

C Future Work: Exploration of 987

Integrating Sink Attention 988

Building upon the success of the SADAS frame- 989

work, our future work will focus on exploring 990

token-level dynamic inference models with im- 991

proved performance, higher efficiency, and lower 992

memory footprint. A promising direction is to com- 993

bine the cache optimization schemes we explored 994

in Appendix B with cutting-edge long-sequence in- 995

ference techniques, particularly the Attention Sink 996

concept proposed in StreamingLLM. 997

The Attention Sink mechanism posits that in 998

autoregressive models, the initial few tokens are 999

crucial for maintaining attention stability and in- 1000

tegrating global information, even when they fall 1001

outside the attention window. Retaining these ini- 1002

tial tokens can effectively mitigate performance 1003

degradation caused by window sliding in long se- 1004

quences. Inspired by this, we improved the two 1005

alternative schemes discussed in Appendix B: 1006

1. Hybrid Cache + Sink: Building upon the 1007

original Hybrid Cache scheme, we perma- 1008

nently retained the initial few sink tokens 1009

within the SWA Cache. During cache copy- 1010

ing, these sink tokens, along with the tokens 1011

within the sliding window, were copied to the 1012

new dynamic cache. 1013

2. Truncated Dynamic Cache + Sink: In the 1014

Truncated Dynamic Cache scheme, we mod- 1015

ified the attention mask to allow it to perma- 1016

nently attend to the initial sink tokens during 1017

the thinking phase, in addition to the tokens 1018

within the sliding window. 1019

We conducted preliminary experiments on these 1020

two improved schemes, also using 1.7B model pa- 1021

rameters, and all models underwent the same fine- 1022

tuning procedure. 1023

Table 11: Reasoning Accuracy Evaluation of Alternative
Schemes Integrating Sink Attention

Scheme AIME-24 AIME-25

SADAS 56.7 36.6

Hybrid Cache 36.6 26.7
Hybrid Cache+Sink 46.6 32.9

Truncated Cache 36.6 26.7
Truncated Cache+Sink 46.6 32.9
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From the results in Table 11, we can observe that1024

by introducing the Attention Sink mechanism, the1025

accuracy of both alternative schemes significantly1026

improved, showing an increase of approximately1027

27.3% (relative to their non-Sink counterparts) on1028

AIME-24. This demonstrates the importance of1029

retaining initial global information for maintain-1030

ing long-range reasoning capabilities, even un-1031

der cache-constrained conditions. Despite the im-1032

proved accuracy, these enhanced schemes did not1033

show an advantage in inference speed. As shown1034

in Table 8, versions integrating Sink attention even1035

exhibited slightly slower inference speeds. The1036

speed bottleneck for the Hybrid Cache scheme re-1037

mains the costly cache copying operation, while1038

the Truncated Dynamic Cache scheme experienced1039

a slight increase in computational complexity af-1040

ter introducing additional attention to sink tokens,1041

leading to a marginal decrease in speed.1042

This preliminary exploration points us towards1043

a clear direction for future work. We have demon-1044

strated that Attention Sink can effectively com-1045

pensate for the accuracy shortcomings of cache-1046

optimized schemes. Therefore, our core future1047

research will focus on fundamentally addressing1048

the speed bottleneck while preserving Sink infor-1049

mation and optimizing memory usage. Possible1050

exploration paths include designing more efficient,1051

copy-free cache update mechanisms, or leveraging1052

hardware-aware algorithms to optimize access to1053

non-contiguous caches (sliding window + Sink).1054

The ultimate goal is to build a next-generation dy-1055

namic inference architecture that achieves state-of-1056

the-art performance in accuracy, speed, and mem-1057

ory efficiency.1058
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