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Abstract

The quadratic complexity of self-attention
poses a significant decoding bottleneck for
large language models (LLMs) when generat-
ing lengthy Chain-of-Thought (CoT) sequences
for complex reasoning tasks. We observe that
the reasoning process naturally involves func-
tionally distinct phases: an exploratory ’think-
ing’ phase and an integrative ’answering’ phase.
A single, monolithic attention mechanism is
suboptimal for both. To address this, we pro-
pose State-Aware Dynamic Attention Schedul-
ing (SADAS), a novel framework that enables
LLMs to dynamically adapt their computa-
tional mode at the token level during gener-
ation. SADAS leverages control tokens to au-
tonomously switch to efficient Sliding Window
Attention for intermediate thought steps, maxi-
mizing decoding speed. It then transitions back
to Full attention to consolidate global context
and produce the final answer, preserving high
fidelity. Experimental results demonstrate that
SADAS significantly enhances long-sequence
inference efficiency. Crucially, it maintains
competitive performance on challenging rea-
soning benchmarks like AIME, demonstrat-
ing effective preservation of reasoning accu-
racy. Our work suggests that dynamic attention
scheduling, tailored to the generative phase,
offers a promising direction for building next-
generation efficient inference models that effec-
tively balance computational cost and reason-
ing fidelity.

1 Introduction

The paradigm of Natural Language Processing
(NLP) is being profoundly reshaped by Large Lan-
guage Models (LLMs). Currently, a major research
direction clearly points towards endowing models
with complex reasoning capabilities, a cutting-edge
field exemplified by works such as OpenAI’s ol
(Jaech et al., 2024), Alibaba’s Qwen3 (Yang et al.,
2025), and DeepSeek’s DeepSeek-R1 (Guo et al.,

2025). The core mechanism of these models in-
volves simulating and executing complex cogni-
tive tasks by generating explicit Chain-of-Thought
(CoT) sequences (Wei et al., 2022), leading to
breakthrough progress in various logic-intensive
benchmarks.

However, this evolution towards generative rea-
soning fundamentally shifts the location of the
computational bottleneck. The demand for deep
reasoning renders LL.Ms increasingly decoding-
oriented. Before generating the final answer, mod-
els must produce lengthy internal thought processes
token-by-token, a stark contrast to prompt prefill-
ing, which only requires a single forward pass.
For a Chain-of-Thought of length N, the decod-
ing process of a standard Transformer model ne-
cessitates N forward passes. Each pass involves
self-attention computation with O(N?) complexity,
leading to a dramatic increase in overall computa-
tion (Chou et al., 2024). This makes decoding
efficiency a critical bottleneck limiting model in-
ference performance and application deployment.
Analyzing its output structure more deeply, this
process functionally bifurcates the model’s gener-
ation task into two implicit stages: an exploratory
intermediate thought stage, which focuses on rapid
generation and path exploration; and an integra-
tive final answer stage, which emphasizes review-
ing and precisely consolidating global information.
This raises a core architectural design question: Is a
single, homogeneous attention architecture optimal
for these two functionally distinct computational
stages?

The Linear Attention mechanism (Shen et al.,
2021; Han et al., 2024; Ma et al., 2021) offers
a highly promising direction for addressing this
challenge, with its O(/N') computational complex-
ity being significantly superior to the O(N?) of
standard attention mechanisms. However, linear
attention models exhibit a crucial bottleneck: their
limited ability in contextual information recall. Per-



formance significantly degrades, particularly in
tasks requiring precise retrieval of specific facts
or maintenance of long-term dependencies (Fan
et al., 2025). This inherent forgetfulness charac-
teristic makes them unsuitable for independently
undertaking complex reasoning tasks that require a
global perspective.

To address this inherent architectural contra-
diction, we propose a novel framework, SADAS,
which enables state-aware dynamic attention mech-
anism switching at the token granularity. SADAS
can dynamically reconfigure its core computational
mode during its generation process. Utilizing pre-
defined control tokens, the model can seamlessly
transition between efficiency-prioritizing Linear
Attention and fidelity-prioritizing Full Attention
(Zhang et al., 2019). Specifically, during the ex-
ploratory phase of generating intermediate thought
steps, the model employs Sliding Window Atten-
tion (Fu et al., 2025) to maximize computational
efficiency; while in the integrative phase, when
global information needs to be consolidated to pro-
duce the final answer, it switches back to the Full
Attention mechanism to ensure maximum accu-
racy and coherence. Compared to the severe la-
tency faced by standard Full Attention models dur-
ing long sequence decoding and the performance
degradation of approximate attention models due
to information loss, SADAS achieves a superior
balance between inference speed and output qual-
ity by dynamically switching computation modes.
This offers a new path for large-scale deployment
of complex reasoning models, combining feasibil-
ity with reliability. Our main contributions can be
summarized as follows:

* We propose and implement a novel dynamic
inference framework that allows models to
adaptively switch between different attention
mechanisms based on the intrinsic phase of
the generation task, thereby optimizing the
trade-off between inference speed and output
quality.

* We validate the effectiveness of this approach
across models of various parameter scales,
from 1.7B to 8B. Experimental results demon-
strate that this hybrid architecture significantly
boosts inference efficiency while maintaining
comparable performance to the original Full
Attention models on key reasoning tasks, prov-
ing its potential as a foundational architecture
for next-generation reasoning models.

* We conduct comprehensive ablation studies to
deconstruct the contributions of each compo-
nent within the framework. We also quantita-
tively analyze the impact of different sliding
window widths and maximum inference out-
put lengths on model performance, providing
critical empirical data for future research in
this field.

2 Related Work
2.1 Reasoning Models

The integration of advanced reasoning capabilities
into Large Language Models (LLMs) has become a
key research area (Zhao et al., 2023). Early efforts
focused on leveraging instruction fine-tuning and
in-context learning to unlock models’ inherent rea-
soning potential (Zhang et al., 2023, 2025). A sig-
nificant breakthrough came with Chain-of-Thought
(CoT) prompting (Wei et al., 2022), which notably
improved performance on complex reasoning tasks
by guiding models to generate explicit, step-by-
step reasoning paths. While CoT’s effectiveness is
widely recognized, its training process can be chal-
lenged by inefficient stochastic gradient estimation
(Yao et al., 2025), and some studies even question
the absolute necessity of lengthy thought processes
for certain tasks (Ma et al., 2025).

Current state-of-the-art reasoning models, such
such as OpenAl’s 03 (Liu et al., 2025b), Alibaba’s
Qwen3 (Yang et al., 2025), and DeepSeek-R1 (Guo
et al., 2025), commonly integrate CoT with self-
reflection and advanced search-based reinforce-
ment learning. Despite their exceptional perfor-
mance, these powerful capabilities incur substantial
computational overhead, especially when generat-
ing long reasoning chains, making decoding effi-
ciency a severe challenge (Jiang et al., 2025). Al-
though some attempts, like Hunyuan-TurboS (Liu
et al., 2025a), combine architectures to enable dy-
namic switching between simple query and deep
thinking modes, they do not fundamentally address
the inherent redundancy of excessively long rea-
soning chains, which remains a core impediment
to model application efficiency and usability. Our
work aims to mitigate this by dynamically adapt-
ing the attention mechanism to the stage of the
reasoning process itself.

2.2 Efficient Attention Mechanisms

The primary computational bottleneck of the stan-
dard Transformer architecture arises from its self-
attention mechanism, which exhibits O(NN?) time
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Figure 1: Architectural Overview of SADAS

and space complexity with respect to sequence
length N (Ho et al., 2024). Various efficient atten-
tion mechanisms have been developed to alleviate
this limitation.

One prominent category is Linear Attention,
which aims to reduce computational complexity
to O(N). These methods typically approximate
the full attention matrix using techniques like ker-
nel function approximation or low-rank decom-
position. Examples include RWKV (Peng et al.,
2023), Mamba (Gu and Dao, 2023), and Light-
ning Attention-2 (Qin et al., 2024). While offering
significant efficiency gains, linear attention often
trades off model performance, particularly in tasks
requiring high-fidelity information recall and pre-
cise long-range dependency modeling (Sun et al.,
2025).

Another important class is Sparse Attention,
where a predefined sparse connection pattern limits
each token’s attention to a subset of the sequence.
Sliding Window Attention (SWA) (Fu et al., 2025)
is a straightforward and effective sparse attention
variant that reduces complexity to O(N') by restrict-
ing attention to a fixed-size local window. However,
SWA’s limited receptive field leads to notable per-
formance degradation in tasks requiring global de-
pendencies or precise retrieval of long-distance in-
formation, making it challenging for SWA alone to
handle complex global reasoning tasks (Fan et al.,
2025).

To bridge the gap between efficiency and per-
formance, Hybrid Attention mechanisms have
emerged. Approaches like Mixture of Block At-
tentions (MoBA) (Lu et al., 2025) and MoM (Du
et al., 2025) combine sparse attention with dynamic

selection or multiple memory states to reduce com-
putational load while aiming to maintain perfor-
mance. While these hybrid frameworks offer valu-
able paradigms for balancing computation and per-
formance, their application to multi-stage reason-
ing models is often insufficient. Existing hybrid
methods typically do not fully leverage the unique,
stage-specific structure inherent in reasoning tasks,
limiting their effectiveness in realizing the full cog-
nitive potential of models in such scenarios, which
SADAS specifically addresses.

3 Method

To achieve an optimal balance between the ex-
ploratory and integrative stages of reasoning, we
propose a State-Aware Dynamic Attention Mech-
anism (SADAYS). The core idea of this framework
is to enable the model to reconfigure its core at-
tention computation paradigm in real-time at the
token level during autoregressive generation, based
on its current cognitive task.

3.1 Architectural Overview

The overall architectural design of SADAS is based
on a key insight: complex reasoning processes are
naturally divided into two cognitive stages — ex-
ploratory thinking and integrative answering. To
map this cognitive model onto a computational ar-
chitecture, we designed a dynamic switching frame-
work, as depicted in Fig. 1. This framework seam-
lessly integrates two computation modes: computa-
tionally efficient SWA for the exploratory phase
of quickly generating a Chain-of-Thought, and
information-fidelity preserving Full Attention for



the final answer stage, which requires integrating
global information.

To enable autonomous switching between
modes, we introduce a set of predefined control
tokens: <think> and </think>. These tokens
serve as explicit signals for the model’s internal
state. When the model generates <think>, it auto-
matically enters the computationally efficient SWA
mode; upon generating </think>, it switches back
to the high-fidelity Full Attention mode. This de-
sign empowers the model with autonomous control
over its computational flow.

At the implementation level, SADAS utilizes a
unified and append-only KV cache (Zhou et al.,
2024). In SWA mode, attention computation only
accesses the most recent portion of the cache;
whereas in Full Attention mode, it can access the
entire historical data within the cache. This de-
sign significantly simplifies architectural complex-
ity, avoiding performance overhead associated with
managing multiple or variable caches, and ensures
a high degree of continuity and parallelism in the
computational process.

The complete workflow of SADAS is as follows:
when the model needs to perform complex reason-
ing, it first generates the <think> token, which
triggers the framework to switch its computational
core to the SWA Attention Layer. In this mode,
the model efficiently generates a series of interme-
diate thought steps. When the thinking process
concludes, the model generates the </think> to-
ken, marking the completion of the exploratory
phase. At this point, the framework seamlessly
switches the computational core back to the Full
Attention Layer, and the model begins to integrate
all contextual information, including the thought
chain, to finally generate an accurate answer.

3.2 State-Aware Dynamic Attention
Mechanism

To realize the architecture described, we designed
a dynamic scheduling mechanism that relies on
precise tracking of each sequence’s cognitive state
and is formalized by dynamic attention computa-
tion graph reconfiguration. For the -th sequence
in a batch, at each generation timestep ¢, we de-
fine its cognitive state Sf) and a termination state
latch F\”, where S, i\ € {0,1}. S indi-
cates whether the model is currently in thinking

(@)

mode and Fti marks whether the entire thinking
process has concluded.

3.2.1 State Transition Dynamics

The model’s state evolution is driven by the previ-

ously generated token yt(l_)l Let ythink and Yend_think

denote the IDs of the control tokens, respectively.
The cognitive state St(i) represents whether the
model is in the thinking mode. Its transition logic
is defined as follows:

. 1 if yt@l = Ythink
St(z) =0 if yﬁ?l = Yend_think (1)

St(z_)l otherwise

where St(i) = 1 corresponds to the thinking mode,

and St(z) = 0 to the integrative mode. To ensure
that once reasoning is complete, the model stably
enters the high-fidelity integrative mode, we in-
troduce the termination state latch Ft(l). This is a
unidirectional trigger that, once activated, remains
persistent. Its update rule is as follows:

Ft(i) - Ft(i)l v (yii)l = Yend_think) @)

where V denotes the logical OR operation, with
initial state FO(Z) = (. This latch ensures that after a
complete reasoning chain, the model will be locked
into the integrative mode and will not switch back
to SWA.

3.2.2 State-Dependent Attention Selection

The computation of the standard self-attention
mechanism can be abstractly represented as:

QK"
Vi

The core innovation of our mechanism lies in
transforming the key (K) and value (V) matrices
provided to this function from static, undifferenti-

ated historical records into a dynamically config-

ured context set based on the cognitive state Ft(i).

This process can be viewed as a real-time reconfig-
uration of the attention computation graph at each
decoding step.

For the complete key-value history of se-

)

quence i at timestep t, we define it as H,"” =

{(k‘](l) , vj(.i)) “_1. When the model enters the high-

fidelity integrative mode, Ft(z) = 1, it must have
access to the global context for accurate recall and
integration. In this computational path, the atten-
tion mechanism is granted unrestricted access to

Attention(Q, K, V') = softmax ( ) vV (3

the complete history %f). At this point, the effec-
tive key-value pairs (Kl(fu)“, Vgu)“) are formed by



concatenating all key and value tensors from ’HEZ)
along the sequence dimension.

Conversely, when the model is in the computa-
tionally more efficient exploratory thinking stage,
Ft(i) = 0, to accelerate thinking, its context ac-
cess is actively restricted to a local window of a
predefined size W.. In this path, the effective key-
value pairs (K(SZ\)NA, Véz\?VA) consist only of the most
recent subset of the history ’ng). This dynamic con-
straint on historical records is crucial for achieving
a trade-off between computational efficiency and
model performance.

Therefore, the final key-value set (Kég,Véig)
used by the effective attention computation
Attnéfc’fz’t) of the [ decoding layer can be formally
described as a conditional selection function con-

trolled by the state F,”:

0 vy _ [ K Vg iR =0
(Ketts Vett) = 7el) @)y ce i)
(K Vi) i F7 =1
| 4)
Finally, the output of this layer hgl’l) is computed
based on this dynamically selected context set:
h{ = Attention(g{"”, K&, V) (5)
In terms of implementation, this high-level state-
ful logic is elegantly mapped onto low-level com-
putational optimizations. The state variable F;
is propagated across model layers via a boolean
flag, ultimately passing a concrete window size to
the underlying attention implementation to execute
the logic of Equation 4. This achieves a direct
mapping from abstract semantic states to concrete
hardware-accelerated computational paths, thereby
enabling dynamic control over the model’s compu-
tation mode without introducing significant archi-
tectural complexity.

4 Experiments

To empirically evaluate the effectiveness and ef-
ficiency of the SADAS framework, this section
presents a series of experiments. We first detail the
experimental setup, including model initialization,
fine-tuning scheme, and evaluation benchmarks.
Subsequently, we present a performance compari-
son of SADAS with current mainstream reasoning
models and architectural variants. Finally, through
a series of ablation studies, we deeply analyze the
impact of the framework’s key components and
hyperparameters.

4.1 Experimental Setup
4.1.1 Model Initialization and Baselines

SADAS was initialized by distilling and mapping
weights from the pre-trained Qwen3 model (Yang
et al., 2025). For comprehensive assessment, we
compared SADAS against a representative set of
baseline models, including top-tier closed-source
models like GPT-40 (Hurst et al., 2024) and Claude-
3.5-Sonnet. Open-source baselines included ad-
vanced reasoning models such as DeepSeek-R1-
Distill-Llama-8B (Guo et al., 2025), Qwen3 (Yang
et al., 2025), its pure Sliding Window Attention
(SWA) variant (SWAQwen), and the latest hybrid
architecture reasoning model M1-3B (Wang et al.,
2025).

4.1.2 Training Configuration

To enable SWA layer adaptation, light fine-tuning
was performed using the Ring-sft-data (Team,
2025). This dataset comprises over 2 million En-
glish and Chinese samples spanning mathemat-
ics, programming, and science. Training was con-
ducted for one epoch on a server equipped with
8 A800 GPUs. Key hyperparameters included
a maximum sequence length of 2048 tokens, a
global batch size of 0.1M, an initial learning rate
of 2 x 1075 with a cosine decay schedule, and a
weight decay of 0.01.

4.1.3 Benchmarks

Our models were evaluated on AIME24 and
AIME2S5 datasets using pass @k as the metric, with
k = 8 (Chen et al., 2021; Brown et al., 2024). We
also utilized Math_500 (Hendrycks et al., 2021), a
collection of 500 diverse mathematical problems.
All evaluations were conducted with EvalScope,
scoring problems based on mathematical equiva-
lence. For consistency, the SWA layer window size
was fixed at 2048 tokens across all comparisons.

To quantify computational efficiency, an end-to-
end latency test was conducted on a single A800
GPU. With a fixed prompt length of 2048 tokens
and a batch size of 16, models generated output
sequences of varying lengths (from 512 to 32768
tokens) to measure total generation time. Decoding
parameters were set to: temperature 0.7, top-p 0.8,
top-k 20, and a maximum output length of 32,768
tokens, aligning with recent practices for reason-
ing model evaluation (Guo et al., 2025; Luo et al.,
2025). Baseline model results were adopted from
their original reported data.
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Figure 2: Comparison of SADAS and baseline Qwen3 variants on AIME24 and AIME25 datasets.

Table 1: Reasoning Evaluation Results for SADAS and Baseline Models

Model Math500 AIME24 (pass@k) AIME2S5 (pass@k)
GPT-40-0513 74.6 9.3 -
Claude-3.5-Sonnet-1022 78.3 16.0 -
Qwen3-1.7B 89.0 48.3 36.8
DeepSeek-R1-Distill-Qwen-1.5B 83.9 28.9 23.5
MI1-3B 81.7 23.0 22.0
DeepSeek-R1-Distill-Llama-8B 89.1 50.4 32.9
SADAS-1.7B 89.4 56.7 36.6
SADAS-4B 91.8 73.3 63.3

4.2 Main Results Comparing with Baselines

As shown in Table 1, SADAS shows excellent per-
formance on all benchmarks. On relatively founda-
tional benchmarks like Math500, SADAS performs
comparably with other high-performance models,
showing a slight improvement. However, SADAS’s
advantage becomes particularly prominent when
evaluated on benchmarks requiring deeper reason-
ing capabilities, such as AIME24 and AIME25.
SADAS-4B achieved 73.3 on AIME24 and 63.3 on
AIME2S, significantly outperforming all compara-
ble and even much larger models. Even at the 1.7B
parameter scale, SADAS-1.7B’s performance sur-
passed that of other larger models, demonstrating
improvements across all three datasets compared
to the 8B-parameter DeepSeek-R1-Distill-Llama.
This validates the effectiveness of our proposed
framework in preserving the cognitive potential of
reasoning models.

To further clarify the specific contributions of
the SADAS framework, we conducted a direct com-
parison with the Full Attention model Qwen3 and
its pure SWA variant, SWAQwen. As illustrated

Table 2: Completion Token Lengths on AIME24

Model Ave Max Min
Qwen3-1.7B 16737 28248 4771
SADAS-1.7B 18883 32768 5544

in Fig. 2, the performance of SADAS consistently
positions it between Qwen3 and SWAQwen. No-
tably, at the 1.7B scale, SADAS achieved a nearly
16% lead over Qwen3 on AIME24, representing
a substantial improvement. As shown in Table 2,
under the same 32k maximum output length con-
straint, SADAS demonstrated an approximate 12%
improvement in the average length of generated
answers compared to Qwen3, with maximum and
minimum lengths increasing by nearly 16%. This
confirms that SADAS successfully achieves an ef-
fective trade-off between computational efficiency
and model fidelity, and to some extent, unlocks
stronger reasoning potential. This is achieved by
employing SWA during the thinking phase to ac-
celerate reasoning and utilizing Full Attention for
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Table 3: End-to-end inference latency of SADAS and Qwen3 variants under different output lengths (seconds)

Model 512 1024 2048 4096 8192 16384 32768
Qwen3-1.7B 17.16 34.60 72.24 183.34 595.11 1427.36 4937.93
SADAS-1.7B 1890 37.84 7531 163.97 417.68 1271.93 4316.15
SWAQwen-1.7B  16.87 33.65 71.73 192.53 50892 1419.33 4617.54
Qwen3-4B 22.14 4370 9477 22473 604.05 1862.90 -
SADAS-4B 25.86 4799 97.64 21426 54798 1644.21 -
SWAQwen-4B 27.52 5544 107.70 216.82 567.08 1800.73 -
Qwen3-8B 2376 4747 100.73 23790 628.27 2097.96 -
SADAS-8B 26.28 5230 106.53 24872 61695 1813.29 -
SWAQwen-8B 30.30 60.10 125.63 281.58 699.16 1963.14 -

global information integration during the synthesis
phase, resulting in only minor performance loss, far
superior to pure SWA architectures that completely
sacrifice global context.

Table 3 presents a detailed comparison of end-to-
end inference latency across various output lengths.
SADAS exhibits a minor overhead at shorter output
lengths (< 2048 tokens) due to its state-switching
mechanism. However, for longer output sequences,
where attention computation becomes the domi-
nant bottleneck, SADAS’s advantages emerge. By
utilizing SWA during the model’s thinking phase,
SADAS achieves faster end-to-end inference times
than Qwen3 and its pure SWA variant SWAQwen
across all tested parameter scales (1.7B, 4B, 8B).
Specifically, SADAS demonstrates a substantial
speedup: approximately 12.6% over Qwen3-1.7B
and 6.5% over SWAQwen at 32768 tokens. For
4B and 8B models, SADAS achieves up to 11.9%
and 13.6% acceleration respectively over Qwen3 at
16384 tokens. This highlights SADAS’s effective
trade-off: it precisely optimizes the computation-
ally intensive thinking phase, confirming its critical
role in long sequence efficiency, while maintaining
high reasoning fidelity.

Why does a pure SWA mechanism sometimes
result in slower inference speeds? Our investi-
gation into why a pure SWA mechanism some-
times results in slower inference speeds revealed
that its core bottleneck lies in the SlidingWindow-
Cache’s management. To maintain a fixed win-
dow size, it necessitates frequent eviction of the
oldest Key-Value (KV) pairs at each generation
step. This non-trivial, often unparallelizable, over-
head—especially against highly optimized atten-
tion computations can negate the theoretical gains
from reduced attention scope, leading to a "theoret-
ically fast, practically slow" outcome. In contrast,
SADAS bypasses this issue by using a globally
unified DynamicCache. This cache is append-only,
meaning KV pairs are simply added without costly
eviction or rolling. This design simplifies data
flow, eliminates cache management overhead, and
ensures high computational continuity and paral-
lelism. Consequently, the inherent speed benefits
of linear attention methods like SWA are fully real-
ized in SADAS, leading to substantial real-world
acceleration despite potentially higher memory con-
sumption for very long sequences compared to
fixed-window caches.



4.3 Ablation Study
4.3.1 Impact of Output Length

Figure 3 illustrates the impact of increased out-
put length on complex reasoning. While all
models benefit from extended reasoning depth,
SADAS demonstrates the most significant effi-
ciency gains. Quantitatively, extending the max-
imum output length from 4096 to 32768 tokens,
SADAS’s performance on Math500 improved
by 39.7%, outperforming DeepSeek-R1-Distill-
Llama-8B (30.6%) and SWAQwen (33.9%). On
the more challenging AIME25, SADAS showed a
remarkable 175.2% increase, significantly exceed-
ing DeepSeek-R1-Distill-Llama-8B’s 97.0% and
SWAQwen’s 133.0%.

This superior performance extension stems from
SADAS’s dynamic switching, which efficiently
generates long reasoning paths with SWA during
the thinking phase and then leverages Full Atten-
tion for lossless global recall and integration in the
final synthesis. This allows SADAS to optimally
translate reasoning depth into problem-solving ca-
pabilities, particularly for complex tasks requiring
a global perspective, where its performance curve
exhibits the steepest growth.

4.3.2 Impact of Window Size

Table 4: Performance under Different Window Sizes

Model Window Size Math500 AIME24 AIME25
1024 53.7 16.7 133

SADAS 2048 76.2 26.7 23.3
4096 89.4 56.7 36.6
1024 32.4 6.6 33

SWAQwen 2048 62.8 10.0 16.7
4096 83.8 26.7 23.3

Table 4 presents performance results across dif-
ferent window sizes, investigating how the width
of local context in SADAS’s thinking phase affects
model performance. The maximum output length
was set to 32,768 tokens. Analysis reveals that in-
creasing the window size significantly benefits both
SADAS and pure SWA architectures, underscoring
the importance of a wider local receptive field dur-
ing exploratory thinking. For instance, on AIME24,
SADAS’s score surged by 239.5% (from 16.7 to
56.7) when the window expanded from 1024 to
4096.

Crucially, SADAS utilizes this expanded con-
text much more efficiently than pure SWA. The
performance gap between SADAS and SWAQwen

systematically widens with increasing window size.
On AIME24, SADAS’s lead over SWAQwen grew
from 10.1 points (1024 window) to 30.0 points
(4096 window), demonstrating SADAS’s perfor-
mance more than doubling SWAQwen’s at the
largest window size. This widening gap confirms
SADAS’s hybrid mechanism maximizes the value
of the SWA window. The SWA efficiently gener-
ates high-quality thought content, which the subse-
quent Full Attention layer, with its global access,
meticulously processes for the final answer. This
paradigm, which allocates computational resources
to a stage that can be fully leveraged by a subse-
quent high-fidelity module, is more effective than
universally employing a single approximate atten-
tion mechanism.

5 Conclusion

This paper addresses the issue of low decoding
efficiency in large inference models caused by gen-
erating long thought chains by proposing a novel
dynamic inference framework, SADAS. Our core
idea is that the inference process naturally com-
prises two distinct phases, exploration and integra-
tion, which should employ different computational
modes. The SADAS framework, by introducing
control tokens, enables the model to adaptively
switch between computationally efficient sliding
window attention and high-fidelity full attention.
This design aims to optimize the trade-off between
inference speed and output quality. Experimental
results indicate that SADAS, while maintaining
high reasoning accuracy, significantly improves
the efficiency of long sequence decoding. Com-
pared to purely approximate attention methods,
SADAS avoids significant performance degrada-
tion because it can more effectively utilize contex-
tual information during the thinking process. Our
work demonstrates that dynamically scheduling at-
tention mechanisms based on the intrinsic structure
of a task is an effective path towards building next-
generation efficient inference models.

Limitations

While our proposed SADAS framework demon-
strates significant improvements in balancing in-
ference efficiency and reasoning accuracy, we ac-
knowledge several limitations that offer avenues
for future research.

1. Dependence on Control Tokens and Fine-
Tuning: The core mechanism of SADAS re-



lies on the model’s ability to autonomously
generate predefined control tokens (<think>
and </think>) to switch between computa-
tional modes. This dependency has two main
implications. First, it necessitates a dedi-
cated fine-tuning phase for the model to learn
this specific “think-then-answer” generation
rhythm. This adds an extra step and compu-
tational cost, making SADAS less of a “plug-
and-play” solution for off-the-shelf models.
Second, the framework’s performance is sen-
sitive to the correct placement of these tokens.
An error in generation—such as failing to
produce a </think> token or generating it
prematurely—could lock the model in a sub-
optimal attention mode, potentially degrading
the quality of the final answer.

. Memory Consumption of the KV Cache:
Our implementation of SADAS prioritizes
inference speed and architectural simplicity
by utilizing a unified, append-only KV cache
(DynamicCache). While this approach avoids
the latency overhead associated with cache
eviction in standard sliding window attention,
it comes at the cost of increased memory con-
sumption. The KV cache grows linearly with
the length of the entire generated sequence.
For extremely long reasoning chains (e.g., far
exceeding 32k tokens), this could become a
practical bottleneck on hardware with lim-
ited VRAM, representing a direct trade-off
between speed and memory footprint.

. Rigidity of the Bipartite Cognitive Model:
The current SADAS framework is built upon
a binary model of cognition, bifurcating the
generation process into a single “exploratory
thinking” phase (SWA) and a final “integra-
tive answering” phase (Full Attention). How-
ever, complex reasoning may not always fol-
low such a linear path. It could be iterative,
requiring the model to switch back and forth
between exploration and integration multiple
times. Our current design, with its unidirec-
tional termination latch (F(i)), does not sup-
port such complex, multi-turn cognitive state
transitions, potentially limiting its effective-
ness on tasks that require more sophisticated
reasoning patterns.

. Generalizability to Other Long-Context
Tasks: Our experiments have primarily fo-

cused on mathematical and logical reason-
ing benchmarks, where the Chain-of-Thought
paradigm is well-established. The applicabil-
ity and effectiveness of the SADAS frame-
work for other long-context tasks, such as
long-form document summarization, narrative
generation, or complex question-answering
over large texts, remain to be thoroughly in-
vestigated. The “think-then-answer” struc-
ture may not be as naturally suited or as ben-
eficial for these domains, and adapting the
framework might require designing new task-
specific control mechanisms.
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A Analysis of the Necessity for
Fine-tuning

In our research, to activate and stabilize SADAS’s
dynamic switching capability, we performed con-
tinuous full-parameter fine-tuning on the base
model. We did not adopt parameter-efficient fine-
tuning (PEFT) methods such as LoRA. Our primary
considerations were to provide an unconstrained
upper bound for evaluating the potential of the
SADAS architecture and to ensure all model param-
eters adapted to the new framework, thereby avoid-
ing potential performance bottlenecks that PEFT
methods might introduce. To validate the necessity
of fine-tuning, we designed a set of comparative
experiments, directly testing performance under
an initial setup where only model weights were
imported and no fine-tuning was performed. The
model parameters were set to 1.7B, and training
settings referred to Section 4.1.

Table 5: Performance Comparison of SADAS under
Fine-tuned and Non-Fine-tuned Settings

Scheme AIME-24 AIME-25 COT Stability
Fine-tuned 56.7 36.6 High
Non-Fine-tuned 12.3 8.7 Low

From the data in Table 5, it is clearly evident
that fine-tuning is a prerequisite for the successful
operation of the SADAS framework. The non-fine-
tuned SADAS model exhibited significant perfor-
mance degradation across all key metrics, which
can be attributed to the following reasons:

* Cognitive Mismatch: The internal weights
of the non-fine-tuned model have not learned
the "think-answer" rhythm. Forcing attention
mode switching disrupts its inherent genera-
tion logic, leading to incoherent model outputs
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and even complete disorientation in complex
reasoning tasks, as evidenced by the substan-
tial drop in AIME-24 scores.

* Generation Instability: As the model does
not understand the semantics of control tokens
and has not adapted to the dynamic changes
in the attention calculation range, its genera-
tion process becomes highly unstable. We ob-
served numerous instances of repetition, logi-
cal interruptions, or premature generation ter-
mination, which explains its "low" rating in
CoT generation stability.

* Reduced Computational Efficiency: Al-
though SWA is theoretically faster, the actual
inference speed of the non-fine-tuned model
was lower than that of the end-to-end opti-
mized fine-tuned model. This is due to unco-
ordinated internal states during mode switch-
ing, which leads to frequent interruptions in
the GPU computation flow.

In summary, a targeted fine-tuning phase is cru-
cial for SADAS. It not only teaches the model how
to autonomously utilize control tokens but, more
importantly, reshapes the model’s internal computa-
tion flow, enabling it to transition smoothly and ef-
ficiently between the two attention modes, thereby
truly converting SADAS’s architectural advantages
into practical performance gains.

B Exploration and Trade-offs of
Alternative Cache Management
Schemes

The core of the SADAS framework lies in its
dynamic nature, and KV cache management is
the technical cornerstone for achieving this dy-
namism. The globally unified DynamicCache
scheme adopted in the main text is the optimal solu-
tion we derived after comprehensive consideration
of speed, accuracy, and implementation complex-
ity. To more comprehensively illustrate our design
decision process, this section will detail two other
alternative schemes we explored, analyzing their
advantages and limitations with experimental data.

Similarly, all experiments in this section were
conducted with 1.7B model parameters, and all
throughput tests used a batch size of 16, performing
inference on a single A100 GPU.



Table 6: Performance Evaluation of the Hybrid Cache Scheme

Scheme Output Length
512 1024 2048 4096 8192 16384 32768
Hvbrid Cache Speed (token/s) 17.09 33.65 71.93 169.41 453.71 1421 4853
y Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221
SADAS Speed (token/s) 189 37.84 7531 163.97 417.68 127193 4316.15
Peak Memory (GB) 0.889 1.765 3.515 7.016 14.019 28.02 55.808
Table 7: Performance Evaluation of the Truncated Dynamic Cache Scheme
Scheme Output Length
512 1024 2048 4096 8192 16384 32768
Truncated Cache Speed (token/s) 17.08 33.34 71.54 168.37 451.59 1418 4833
Peak Memory (GB) 0.889 1.763 1.763 1.764 1.766 1.768 3.221
SADAS Speed (token/s) 189 37.84 7531 163.97 417.68 127193 4316.15
Peak Memory (GB) 0.889 1.765 3.515 7.016 14.019 28.02 55.808
Table 8: Performance Evaluation of Alternative Schemes Integrating Sink Attention
Scheme Output Length
512 1024 2048 4096 8192 16384 32768
Truncated Cache Speed (token/s) 16.76 3322 7120 168.97 452774 1416.22 4814
Peak Memory (GB) 0.889 1.763 1.763 1.764  1.766 1.768 3.221
Hvbrid Cache Speed (token/s) 17.02 34.08 72.13 167.74 535.11 1418.22 4821
y Peak Memory (GB) 0.889 1.763 1.763 1.764  1.766 1.768 3.221
. Speed (token/s) 17.08 33.34 71.54 168.37 451.59 1418 4833
Truncated Cache + Sink  p\ Memory (GB) 0889 1764 1764 1765 1766 1768 3223
. . Speed (token/s) 17.09 33.65 7193 169.41 453.71 1421 4853
Hybrid Cache + Sink - 5\ Memory (GB) 0889 1764 1764 1765 1766 1768 3223

B.1 Scheme 1: Hybrid Cache

This scheme aims to minimize GPU memory foot-
print. Its core mechanism involves using a fixed-
size sliding window attention cache (SWA Cache)
during the thinking phase. Upon transitioning to
the answering phase, the contents of the SWA
Cache are migrated to a new, infinitely growing
dynamic cache (Dynamic Cache) via a one-time
cache copy operation.

As shown in Table 6, the Hybrid Cache scheme
demonstrates a significant advantage in peak GPU
memory usage. For example, at an output length
of 32768, it reduced memory demand by approxi-
mately 94.2% compared to SADAS. However, this
advantage comes at the cost of sacrificing critical
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Table 9: Reasoning Accuracy Evaluation of the Hybrid
Cache Scheme

Scheme AIME-24 AIME-25
Hybrid Cache 36.6 26.7
SADAS 56.7 36.6

performance. Its speed significantly decreased, pri-
marily due to the substantial latency introduced by
the cache copying operation, which represents a
difficult-to-optimize serial bottleneck on the GPU.
More critically, as shown in Table 9, its accu-
racy also suffered significantly, because the context
for the final answering phase was limited to only



the latter part of the thinking process, leading the
model to lose a large amount of crucial early in-
formation and fail to complete complex reasoning
tasks requiring long-range recall.

B.2 Scheme 2: Truncated Dynamic Cache

To address the speed issues of the Hybrid Cache
scheme, we designed the Truncated Dynamic
Cache. This scheme uses a single global cache,
but during the thinking phase, it logically truncates
access to older cache entries outside the window
through attention masks.

Table 10: Reasoning Accuracy Evaluation of the Trun-
cated Dynamic Cache Scheme

Scheme AIME-24 AIME-25
Truncated Cache 36.6 26.7
SADAS 56.7 36.6

As can be seen from the data in Table 7, this
scheme avoids data copying, and its speed per-
formance is close to that of our final adopted
scheme. Its memory footprint is the same as the
final scheme, as it still retains all KV pairs at the
underlying level. However, as shown in Table 10,
during the thinking phase, the model is similarly
unable to recall early thinking steps outside the
window, resulting in its accuracy still being lower
than the final scheme. While this involves less
information loss than the Hybrid Cache scheme,
this limitation remains critical in complex reason-
ing chains that require repeated backtracking and
verification.

Through a rigorous evaluation of the three
schemes discussed, we concluded that while the
alternative schemes offer attractive benefits in
terms of memory savings, they all compromise
the model’s peak reasoning ability by introducing
some form of permanent information loss during
the thinking phase. The globally unified Dynamic-
Cache scheme we ultimately adopted has its core
advantage in ensuring information completeness
and flexible access. It allows the model to recall the
entire history at any time by modifying attention
masks, a capability that proved crucial for achiev-
ing efficient inference without sacrificing accuracy.
Although it demands higher GPU memory, it pro-
vides the best overall performance in terms of both
speed and accuracy, which is fully consistent with
the original design philosophy of SADAS.
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C Future Work: Exploration of
Integrating Sink Attention

Building upon the success of the SADAS frame-
work, our future work will focus on exploring
token-level dynamic inference models with im-
proved performance, higher efficiency, and lower
memory footprint. A promising direction is to com-
bine the cache optimization schemes we explored
in Appendix B with cutting-edge long-sequence in-
ference techniques, particularly the Attention Sink
concept proposed in StreamingL.LM.

The Attention Sink mechanism posits that in
autoregressive models, the initial few tokens are
crucial for maintaining attention stability and in-
tegrating global information, even when they fall
outside the attention window. Retaining these ini-
tial tokens can effectively mitigate performance
degradation caused by window sliding in long se-
quences. Inspired by this, we improved the two
alternative schemes discussed in Appendix B:

1. Hybrid Cache + Sink: Building upon the
original Hybrid Cache scheme, we perma-
nently retained the initial few sink tokens
within the SWA Cache. During cache copy-
ing, these sink tokens, along with the tokens
within the sliding window, were copied to the
new dynamic cache.

Truncated Dynamic Cache + Sink: In the
Truncated Dynamic Cache scheme, we mod-
ified the attention mask to allow it to perma-
nently attend to the initial sink tokens during
the thinking phase, in addition to the tokens
within the sliding window.

We conducted preliminary experiments on these
two improved schemes, also using 1.7B model pa-
rameters, and all models underwent the same fine-
tuning procedure.

Table 11: Reasoning Accuracy Evaluation of Alternative
Schemes Integrating Sink Attention

Scheme AIME-24 AIME-25
SADAS 56.7 36.6
Hybrid Cache 36.6 26.7
Hybrid Cache+Sink 46.6 32.9
Truncated Cache 36.6 26.7
Truncated Cache+Sink 46.6 32.9




From the results in Table 11, we can observe that
by introducing the Attention Sink mechanism, the
accuracy of both alternative schemes significantly
improved, showing an increase of approximately
27.3% (relative to their non-Sink counterparts) on
AIME-24. This demonstrates the importance of
retaining initial global information for maintain-
ing long-range reasoning capabilities, even un-
der cache-constrained conditions. Despite the im-
proved accuracy, these enhanced schemes did not
show an advantage in inference speed. As shown
in Table 8, versions integrating Sink attention even
exhibited slightly slower inference speeds. The
speed bottleneck for the Hybrid Cache scheme re-
mains the costly cache copying operation, while
the Truncated Dynamic Cache scheme experienced
a slight increase in computational complexity af-
ter introducing additional attention to sink tokens,
leading to a marginal decrease in speed.

This preliminary exploration points us towards
a clear direction for future work. We have demon-
strated that Attention Sink can effectively com-
pensate for the accuracy shortcomings of cache-
optimized schemes. Therefore, our core future
research will focus on fundamentally addressing
the speed bottleneck while preserving Sink infor-
mation and optimizing memory usage. Possible
exploration paths include designing more efficient,
copy-free cache update mechanisms, or leveraging
hardware-aware algorithms to optimize access to
non-contiguous caches (sliding window + Sink).
The ultimate goal is to build a next-generation dy-
namic inference architecture that achieves state-of-
the-art performance in accuracy, speed, and mem-
ory efficiency.
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