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Abstract

Segmentation of biomedical images is often ambiguous and complicated by noise, varying
contrasts, and imaging artifacts. We address the challenge of segmenting images of brain
tissue in which gene expression has been localized using in situ hybridization. Since gene
expression patterns differ widely between genes, it can be difficult to correctly discriminate
pixels positive for gene expression. In testing different segmentation networks, we observed
that each network had its own trade-offs between sensitivity and precision. To exploit
the benefits of all trained networks, we developed a meta-network that learns to combine
multiple segmentation maps from diverse segmentation architectures to generate a final
segmentation that best matches the ground-truth label. In our experiments, the meta-
network outperforms ensembles that simply average segmentation maps.
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1. Introduction

The brain is rich in cell diversity. Cell populations can be characterized by clustering cells
based on differential gene expression. Gene expression brain atlases are invaluable resources
for understanding cell diversity. In situ hybrization (ISH) is the gold standard technique for
localizing gene expression at a single-cell resolution in fixed tissue sections. To create a gene
expression brain atlas from ISH images, segmentation is necessary. However, variations in
gene expression patterns as well as data acquisition parameters, such as tissue processing
methods, animal age, and microscope settings, result in large variations in staining intensity
and profiles between ISH images, presenting a challenging task for segmentation (Figure 1).
Thus, while it is possible to segment ISH images using manual thresholding techniques or
hand-engineered features, results will be subject to human bias and error. Our proposed
method uses a deep learning network to combine several segmentation maps, which were
themselves generated by deep learning networks, which may be useful for segmenting images
in which signals are ambiguous.

Previous efforts to segment ambiguous signals from biomedical images include nnU-Net
(Isensee et al., 2020), which automatically configures its own parameters, probabilistic U-
Net (Kohl et al., 2018), which generates a distribution of segmentations for each input, and

© 2024 CC-BY 4.0, C. Poon, M. Byra, T. Shimogori & H. Skibbe.

https://creativecommons.org/licenses/by/4.0/


Poon Byra Shimogori Skibbe

network ensembles. However, nnU-Net and probabilistic U-Net require use of the specified
architectures in isolation, and ensembles have limited discriminative power.

We propose a simple meta-learning network that learns to combine multiple segmen-
tation maps into a final segmentation map (Figure 1). We show that the meta-learning
network results in better segmentations than simply averaging the segmentation maps (en-
sembles). This network can be used as a postprocessing step following generation of seg-
mentation maps for ambiguous images (Figure 2).

Figure 1: Left: Examples of ISH images from 3 genes and corresponding ground truth
labels. Right: Schematic of Meta-Net (dotted red line).

2. Methods

The meta-learning network (Meta-Net) is a five-level U-Net (Ronneberger et al., 2015).
Meta-Net takes as input the original ISH image and multiple corresponding segmentation
maps to create pixel-level weight matrices. The weight matrices are softmaxed on a per-
pixel level across all segmentation maps, and a dot product is applied between the resulting
matrices and the corresponding segmentation maps to produce a final segmentation map.

We used ISH images of the neonate marmoset brain from 16 genes (947 images) in a
4:2:4 train:validation:test split, obtained from the Marmoset Gene Atlas (Shimogori et al.,
2018), which is created by the Molecular Mechanisms for Brain Development lab at the
RIKEN Center for Brain Science, Japan. Ground-truth labels were created using the GePS
system, a grid-based manual thresholding system (Kita et al., 2021). In our experience,
GePS produces adequate labels for images with consistent and minimal noise.

ISH images of single hemispheres of coronal brain sections were used, with a pixel size of
1440x840 and a pixel resolution of ∼ 18 µm/pixel. Images, labels, and segmentations were
downscaled to 256x128 pixels for processing. To correct for variations in intensity and colour
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Table 1: Evaluation of segmentations of predictions from Meta-Net compared to averaging
all predictions (mean ± sd, paired t-tests).

Meta-Net Ensembles t-statistic p-value
dice 0.410 ± 0.161 0.388 ± 0.172 4.826 2e-06
precision 0.495 ± 0.263 0.484 ± 0.262 6.273 1e-09
recall 0.194 ± 0.108 0.161 ± 0.092 14.099 3e-36
f1 0.260 ± 0.139 0.223 ± 0.125 14.705 1e-38

profiles between images within the same dataset, we applied histogram matching as a pre-
processing step. Augmentations for colour, brightness, contrast, and hue were then stochas-
tically applied. Each image had 25 segmentation maps generated from 25 models from 5
unique architectures: 2D and 3D U-Net (Ronneberger et al., 2015), and 2D and 3D Swin-
UNETR (Hatamizadeh et al., 2022) networks, from (MONAI Consortium, 2023) and devel-
oped in-house. Inputs to 3D networks were concatenated 2D sections. We chose U-Net for
its simple design but impressive performance in biomedical image segmentation tasks, and
SwinUNETR to assess if its incorporation of long range information would result in better
segmentations. Our code is available at https://github.com/BrainImageAnalysis/MetaNet.

3. Results

We evaluated the results of Meta-Net using the Dice metric, precision, recall, and the F1
score (Table 1). Segmentation maps generated from Meta-Net were superior to averaging
all prediction maps across all scores quantitatively and qualitatively (Table 1, Figure 2).

4. Conclusion

Our results show preliminary evidence that a carefully designed meta-learning network can
be used to combine segmentation maps to create a superior segmentation compared to
ensembling, which is particularly important for biomedical images with ambiguous signals.
Meta-Net can be easily used as a postprocessing step following generation of segmentation
maps from any segmentation model. This may be useful as it is becoming increasingly
simple to test diverse models using tools such as MONAI (MONAI Consortium, 2023).

Figure 2: Left: Qualitative results. Right: Segmentation maps from single models are
shown in black-and-white; ambiguity in labelling can be observed. Gene: LRRN3.
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