
On the Statistical Efficiency of Mean Field RL with
General Function Approximation

Jiawei Huang Batuhan Yardim Niao He
Department of Computer Science

ETH Zurich
{jiawei.huang, alibatuhan.yardim, niao.he}@inf.ethz.ch

Abstract

In this paper, we study the statistical efficiency of Reinforcement Learning in
Mean-Field Control (MFC) and Mean-Field Game (MFG) with general function
approximation. We introduce a new concept called Mean-Field Model-Based
Eluder Dimension (MBED), which subsumes a rich family of Mean-Field RL
problems. Additionally, we propose algorithms based on Optimistic Maximal
Likelihood Estimation, which can return an ε-optimal policy for MFC or an ε-
Nash Equilibrium policy for MFG, with sample complexity polynomial w.r.t.
relevant parameters and independent of the number of states, actions and the
number of agents. Notably, our results only require a mild assumption of Lipschitz
continuity on transition dynamics comparing with previous works. Finally, in the
tabular setting, given the access to a generative model, we establish an exponential
lower bound for MFC setting, while providing a novel sample-efficient model
elimination algorithm to approximate equilibrium in MFG setting. Our results
reveal a fundamental separation between RL for single-agent, MFC, and MFG
from the sample efficiency perspective.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) is a fundamental model that addresses how multiple
autonomous agents cooperate or compete with each other in a shared environment, and it is widely
applied for practical problems in many areas, including autonomous driving [53], finance [37], and
robotics control [29]. Although MARL has attracted growing attention in nowadays RL research
[26, 33, 34], when the number of agents is in hundreds or thousands, MARL already becomes
challenging. However, in scenarios where agents exhibit high symmetry, like humans in crowds or
individual cars in the traffic flow, the Mean-Field theory can be employed to approximate the system
dynamics, which results in the Mean-Field RL (MFRL) setting. In MFRL, the interactions within
large populations are modeled by the additional dependence of state density of agents (population
distribution) of the transition function in the Mean-Field Markov Decision Process (MF-MDP). Such
mathematical model has achieved success in various domains, including economics [15, 4], finance
[11], industrial engineering [18], etc.

Depending on the objectives, MFRL can be divided into two categories: Mean-Field Control (MFC)
and Mean-Field Game (MFG) [36, 28, 10]. MFC, similar to the single-agent RL, aims to find a
policy maximizing the expected return, while MFG focuses on identifying the Nash Equilibrium
(NE) policy, where no agent has the incentive to deviate. Compared with the single-agent RL, one of
the main challenges in MFRL is the exploration in the joint space of state, action, and state density,
especially given that the density belongs to an infinite and continuous space. Due to this challenge,
existing literature primarily focuses on the tabular setting, and most results rely on strong assumptions
like contractivity [24, 59], monotonicity [50, 49, 20], or population-independent dynamics [41, 22].
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[Theorem 4.1] Sample-Efficient for both MFC and MFG

[Theorem 5.2] GM-Inefficient for MFC 
[Theorem 5.3] GM-Efficient for MFG

MF-MDP with Function Approximation

Figure 1: Highlight of Main Results (Dependence on Lipschitz factors are omitted): “Sample-
Efficient” means the problem can be solved with polynominal samples by Data Collection Process in
Def. 2.2. “GM-Efficient/Inefficient” means the problem can/cannot be solved with polynomial queries
to the Generative Model (GM) in Def. 5.1.

Recent work [48] considered function approximation in MFC, while they did not study MFG setting
(see Sec. 1.1 for more comparison). Overall, efficiently solving MFRL, especially MFG, with general
function approximation under mild structural assumptions remains an open problem.

In this paper, our goal is to investigate the statistical efficiency of Mean Field RL with model-based
function approximation. We summarize our main results in Fig. 1 and highlight our contributions
in threefold. Firstly, in Sec. 3, we introduce a new complexity measure called Model-Based Eluder
Dimension for MFRL (MBED), and contribute concrete classes of MFRL problems with low MBED,
including (generalized) linear MF-MDP, deterministic transition with Gaussian noise, and etc. To our
knowledge, the understanding of MBED is limited in both single-agent RL and MARL literature.

Secondly, in Sec. 4, we develop efficient model-learning algorithms for MFRL based on Optimism-
Maximal Likelihood Estimation (O-MLE), and prove that, if the model class has bounded MBED,
polynomial sample complexity can be achieved in both MFC and MFG setting. As we will see, the
dependence on state density in transition function causes unique challenges, and we overcome them
by establishing close connections between model class complexity, MLE error, and the learning error
for MFC and MFG objectives. Notably, our results do not require strong structural assumptions like
previous work [24, 50, 49, 20]. As a by-product, our results imply sample efficiency for model-based
RL with function approximation in the single-agent setting, which might be of independent interest.

Given the results in Sec. 4, where we identify a structural condition under which both MFC and
MFG can be solved efficiently, one natural question arises regarding whether the two objectives share
the same statistical efficiency or inefficiency in general. As our third contribution, in Sec. 5, we
provide evidence for the exponential separation between MFC and MFG given the generative model
(GM) [24, 20]. In tabular setting with function approximation, for MFC, even with access to GM, we
establish an exponential lower bound for finding an near-optimal solution. In contrast, for MFG, by
identifying the special property implied by “local alignment” (Lem. 5.4), we propose a novel model
elimination algorithm, which can approximate the NE policy with polynomial queries to GM. To the
best of our knowledge, this is the first result indicating the separation between MFC and MFG from
the sample efficiency perspective. In general, finding NE or establishing sample complexity lower
bound for NE is believed to be hard in many MARL/MFRL cases, we believe our results provide
important insights on these directions.

1.1 Closely Related Work

For the lack of space, we only highlight the most related works here and defer the others to Appx. A.2.
In general, the theoretical understanding of MFRL in the finite horizon setting is still limited,
especially in terms of statistical efficiency. We present and compare with several lines of work.

Finite-horizon MFG. The finite-horizon framework considered here is closely related to Lasry-Lions
games [50, 49, 22], where continuous-time dynamics were analyzed without exploration considera-
tions under monotonicity assumptions on rewards. While [22] proves discrete time convergence for
rewards admitting a potential, they have not considered exploration. Our work focuses on understand-
ing the fundamental exploration guarantees and bottlenecks associated with finite-horizon MFC and
MFG, hence applies also to MFG and MFC not satisfying restrictive conditions. Working in a similar
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setting, [20] requires a planning oracle that can return a trajectory for arbitrary density, even if it can
not be induced by any policy.

Comparison to stationary MFG equilibrium. Alternative to the finite-horizon formulation, there
exists work on the stationary MFG formulation where one aims to find policies which keep the
population stationary [3, 24, 59, 63, 16]. In this formulation, results typically require strong Lipschitz
continuity assumptions as well as non-vanishing regularization [24, 3, 16]. In [24], strong Lipschitz
assumptions (like Assump. 1 and 2) are required, which is unclear when it can be true. Furthermore,
they also assume a stronger generator model which can infer the trajectory for arbitrary density
function. Besides, their regret bound will have a dependence on the covering time, which potentially
scales with O(|S||A|), and their convergence rate scales at O(ε−5), while ours can achieve the
optimal rate at O(ε−2). They also require assumptions on the gap of value functions induced by the
epsilon net of the density. [59] has the same smoothness requirements, which might not be avoidable
[16, 63]. Furthermore, the common formalization that the transition and reward function in each step
conditions on the stationary density instead of the density evolved across time could be a limitation.

Comparing with statistical efficiency results for MFC. In terms of statistical efficiency consid-
erations, a similar work in MFC has been [48]. But our results capture a different learnable function
class, with some overlap. As our advantages, our low MBED can capture multimodal transition
distribution (e.g. by linear setting), while their algorithm and analysis is specified for deterministic
transition with random noise (unimodal transition distribution). Besides, our framework can include
some speical cases in [48]. For those near-deterministic transition functions modeled by Gaussian
Process with additive uncorrelated Gaussian noise, ours can predict its sample efficiency, as a result
of our Prop. 3.5 and the equivalence between Eluder Dimension and Information Gain in RKHS
space [32]. As our insufficiency, [48] can handle the cases when the noise is sub-gaussian besides
pure gaussian, as long as they can get access to the full information of the noise, while it is unclear
whether such function class has low MBED. It would be an interesting direction to propose more
general complexity measure and algorithms, which can unify the frameworks in both papers together.

Besides, we also analyze the MFG setting while they only focused on MFC. Furthermore, they
only considers with the deterministic policy class, while in many cases, the optimal policy or the
equilibrium policy can only be stochastic. In contrast, we allow stochastic policy, do not assume the
knowledge of density (this is also reflected in the policy we compete with).

Other MFG/MFC settings. There also exists a variety of different settings in which MFG formal-
ism has been utilized, for instance in linear quadratic MFG [25] and MFG on graphs [62, 23]. [5]
studies a unified view of MFG and MFC, however, they do not take the evolution of density into
consideration and do not provide guarantees for the non-tabular setting. Several works on MFC also
work on the lifted MDP where population state is observable [12]. In our work, we do not assume the
observability of the population.

2 Preliminary

2.1 Setting and Frequently Used Notations

We consider the finite-horizon Mean-Field Markov Decision Process (MF-MDP) specified by a tuple
M := (µ1,S,A, H,PT ,Pr). Here µ1 is the fixed initial distribution known to the learner, S and A
are the state and action space, respectively, which can be discrete or continuous and compact. Besides,
we assume the state action space are the same for each step h, i.e., Sh = S and Ah = A for all h.
PT := {PT,h}Hh=1 and Pr := {Pr,h}Hh=1 are the transition and (normalized) deterministic reward
function, with PT,h : Sh×Ah×∆(Sh)→ ∆(Sh+1) and Pr,h : Sh×Ah×∆(Sh)→ [0, 1

H ]. To be
concise in analysis, we assume that the reward function is known, but our techniques can be extended
when it is unknown. We use M∗ to denote the true model with transition function PT∗ .
In this paper, we only consider the non-stationary Markov policy π := {π1, ..., πH} with πh : Sh →
∆(Ah), ∀ h ∈ [H]. Starting from the initial state s1 ∼ µ1 until the fixed final state sH+1 is reached,
the trajectory is generated by:

∀h ∈ [H] ah ∼ πh(·|sh), sh+1 ∼ PT,h(·|sh, ah, µπh), rh ∼ Pr,h(·|sh, ah, µπM,h), µπM,h+1 = ΓπM,h(µπM,h),
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with ΓπM,h(µh)(·) :=
∑∫
sh,ah

µh(sh)π(ah|sh)PT,h(·|sh, ah, µh), (1)

where we use µπM,h to denote the density induced by π in M and ΓπM,h : ∆(Sh) → ∆(Sh+1)
is an mapping from densities in step h to step h + 1 under M and π. We will use bold font
µ := {µ1, ..., µH} to denote the collection of density for all time steps, and use rh(sh, ah, µh) to
denote the expected reward at sh, ah, µh. Besides, we denote V πM,h(·;µ) to be the value function at
step h if the agent deploys policy π in model M conditioning on µ, defined by:

V πM,h(sh;µ) := E

[
H∑

h′=h

rh′(sh′ , ah′ , µh′)
∣∣∣ah̃∼πh̃, sh̃+1

∼P
T,h̃

(·|s
h̃
,a
h̃
,µ
h̃

), ∀h̃ ≥ h

]
.

We use JM (π;µ) := Es1∼µ1
[V πM,1(s1;µ)] to denote the expected return of policy π in model M

conditioning on µ. When the policy is specified, we use µπM := {µπM,1, ..., µ
π
M,H} to denote the

collection of mean fields w.r.t. π. We will omit µ and use JM (π) in shorthand when µ = µπM . For

the simplicity, in the rest of the paper, we use Eπ,M |µ[·] := E
[
·
∣∣∣ s1∼µ1

∀h≥1, ah∼πh(·|sh)
sh+1∼PT,h(·|sh,ah,µh)

]
as a shortnote

of the expectation over trajectories induced by π under transition PT,h(·|·, ·, µh), and we omit the
conditional density µ if µ = µπM . As examples, V πM,h(sh;µ) = Eπ,M |µ[

∑H
h′=h r(sh′ , ah′ , µh′)|sh]

and JM (π) = Eπ,M [
∑H
h=1 r(sh′ , ah′ , µ

π
M,h′)].

Given a measure space (Ω,F) and two probability measures P and Q defined on (Ω,F), we denote
TV(P,Q) (or ‖P − Q‖TV):= supA∈F |P (A) − Q(A)| as the total variation distance, and denote

H(P,Q) :=
√

1− ∑∫
x

√
P (x)Q(x) as the Hellinger distance. In general, we have

√
2H(P,Q) ≥

TV(P,Q). When Ω is countable, TV(P,Q) = 1
2‖P −Q‖1, where ‖ · ‖1 is the l1-distance.

Mean-Field Control: In MFC, similar to single-agent RL, we are interested in finding a policy π̂∗Opt

to approximately minimize the optimality gap EOpt(π) := maxπ̃ JM∗(π̃;µπ̃M∗)− JM∗(π;µπM∗), i.e.,

EOpt(π̂
∗
Opt) ≤ ε. (2)

Mean-Field Game: In MFG, we instead want to find a NE policy s.t., when all the agents follow
that same policy, no agent tends to deviate it for better policy value. We denote ∆M (π̃, π) :=
JM (π̃;µπM )−JM (π;µπM ) given a modelM , and denote ENE(π) := maxπ̃ ∆M∗(π̃, π), which is also
known as the exploitability. The NE in M∗ is defined to be the policy π∗NE satisfying ENE(π∗NE) = 0.
Our MFG objective is to find an approximate NE π̂∗NE such that:

ENE(π̂∗NE) ≤ ε. (3)

2.2 Assumptions

In this paper, we consider the general function approximation setting, where the learner can get access
to a model classM satisfying the following assumptions.
Assumption A (Realizability). M∗ ∈M.
Assumption B (Lipschitz Continuity). For arbitrary h ∈ [H], sh ∈ S, ah ∈ A and arbitrary valid
density µh, µ′h ∈ ∆(S), and arbitrary model M := (PT ,Pr) ∈M, we have: 1

H(PT,h(·|sh, ah, µh),PT,h(·|sh, ah, µ′h)) ≤ LT · ‖µh − µ′h‖TV. (4)

‖Pr,h(·|sh, ah, µh)− Pr,h(·|sh, ah, µ′h)‖TV ≤ Lr · ‖µh − µ′h‖TV (5)

Assumption C (Existence of NE). For any M ∈M, there exists at least one NE policy.

Although we treat Assump. C as an assumption, in Prop. 2.1 below, we show it is implied by
Assump. B for discrete environments, and the proof can be generalized to many continuous cases.

1Here we consider the Lipschitz continuity w.r.t. H just in order to coordinate with our formulation of MBED
in Def. 3.3. In fact, Eq. (4) can be relaxed to ‖PT,h(·|sh, ah, µh),PT,h(·|sh, ah, µ′

h)‖TV ≤ LT · ‖µh − µ′
h‖TV

if we only consider TV distance in Eq. (6).
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Proposition 2.1 (Existence of NE in MFG; Informal Version of Prop. E.7). For every MF-MDP with
discrete S and A, satisfying Assump. B, there exists at least one NE policy.

We also note that the existence of NE is established in previous literature [52] under the same
conditions as our Prop. E.7. Our contribution here is a different proof based on the conjugate function
and non-expansiveness of the proximal point operator. Moreover, [52] studied infinite-horizon MDP
with discounted reward, which is different from our setting.

Besides, we formalize the Data Collection Process in the following.
Definition 2.2 (Data Collection Process (DCP)). We assume the environment consists of an extremely
large number of agents and a central controller (our algorithm/learner), and there is a probe agent
Agt, whose observation we can receive. The central controller can compute an arbitrary policy tuple
(π̃, π), where π and π̃ are not necessarily the same, distribute π̃ to Agt but π to the others, and
receive the trajectory of Agt following π̃ under PT∗,h(·|·, ·, µπh) and Pr,h(·|·, ·, µπh).

Our formulation above is reasonable, since the deviation of one agent only causes neglectable
perturbation on density. Besides, it is much weaker than the assumption in [24, 20], which requires a
planning oracle that can return a trajectory conditioning on arbitrary (even unachievable) density.

3 Model-Based Eluder Dimension for Mean-Field RL

We first introduce our definition for Model-Based Eluder-Dimension in MFRL.
Definition 3.1 (α-weakly-ε-independent sequence). Denote X := S × A ×∆(S) to be the joint
space of state, action and state density. Let D : ∆(S) ×∆(S) → [0, C] be a distribution distance
measure bounded by some constant C. Given a function class F ⊂ {f : X → ∆(S)}, a fixed α ≥ 1
and a sequence of data points x1, x2, ..., xn ∈ X , we say x is α-weakly-ε-independent of x1, ..., xn
w.r.t. F and D if there exists f1, f2 ∈ F such that

∑n
i=1 D2(f1, f2)(xi) ≤ ε2 but D(f1, f2)(x) > αε.

Definition 3.2 (Longest α-weakly-ε-independent sequence). We use dimEα(F ,D, ε) to denote the
the longest sequence {xi}ni=1 ∈ X , such that for some ε′ ≥ ε, xi is α-weakly-ε′-independent of
{x1, ..., xi−1} for all i ∈ [n] w.r.t. F and D.
Definition 3.3 (Model-Based Eluder-Dimension in MFRL). Given a model classM, α ≥ 1 and
ε > 0, the Model-Based Eluder Dimension in MFRL (abbr. MBED) ofM is defined to be:

dimEα(M, ε) := maxh∈[H] minD∈{TV,H} dimEα(Mh,D, ε). (6)

We only consider D to be TV(P,Q) or H(P,Q), mainly because of our MLE-based loss function.
With slightly abuse of notation, theM (orMh) here refers the collection of transition functions of
models inM. The main difference comparing with value function approximation setting [51, 32]
is that, because the output of model functions are distributions instead of scalar, we use distance
measure to compute the model prediction difference. Besides, we use αε as threshold instead of ε,
which does not lead to a fundamentally different complexity measure, but simplifies the process to
absorb some practical examples into our framework. Also note that dimEα1

(F , ε) ≤ dimEα2
(F , ε)

for α1 ≥ α2, because any α1-weakly-ε-independent sequence must be α2-weakly-ε-independent.

Comparison with previous work regarding MBED To our knowledge, only few literature has
focused on Model-Based Eluder Dimension (MBED). [46] requires additional assumption that, given
two transition distributions in the function class, the difference between their induced future value
function is Lipschitz continuous w.r.t. the their mean difference, which is quite restrictive. In a more
recent work, [38] presented extension of MBED to general bounded metrics, however, their results
still depend on the number of states actions, and concrete examples with low MBED are not provided.

Concrete Examples Next, we introduce some concrete examples with low MBED, and defer
formal statements and their proofs to Appx. B.2. The first one is generalized from the linear MDP in
single-agent RL [35]. In Appx. B.2, we also include a linear mixture type model, and other more
general examples, such as, kernel MF-MDP and the generalized linear MF-MDP. However, since
the output of the model function is a probability distribution rather than a scalar, low TV-distance
between predictions does not necessarily imply they are uniformly close for each output dimension,
which causes technical challenges. To overcome it, we utilize data-dependent sign functions to pave
ways to establish the connection between the prediction error and the elliptical potential lemma.
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Proposition 3.4 (Low-Rank MF-MDP with Known Representation; Informal Version of Prop. B.4).
Given a feature φ : S × A × ∆(S) → Rd and a function class Ψ, the model class PΨ :=

{Pψ|Pψ(s′|s, a, µ) := φ(s, a, µ)>ψ(s′), ψ ∈ Ψ} has dimEα(PΨ,TV, ε) = Õ(d) for α ≥ 1.

The second example is deterministic transition with random noise, in order to accommodate the
function class in [48] (see a detailed comparison in Sec. 1.1). Here we consider the Hellinger
distance because given two Gaussian distribution P ∼ N (µP ,Σ) and Q ∼ N (µQ,Σ) with the
same covariance, H(P,Q) = 1− exp(− 1

8‖µP − µQ‖
2
Σ−1). Therefore, with the connection between

H(P,Q) and the l2-distance between their mean value, we are able to subsume more important model
classes into low MBED framework, as we state below.
Proposition 3.5. [Deterministic Transition with Gaussian Noise] Suppose S ⊂ Rd. Given a
function class G ⊂ {g|g : S × A × ∆(S) × N∗ → R} and convert it to FG := {fg|fg(·, ·, ·) :=
[g(·, ·, ·, 1), ..., g(·, ·, ·, d)]> ∈ Rd, g ∈ G}. Consider the model class PG := {Pf |Pf (·|s, a, µ) ∼
f(s, a, µ) + N (0,Σ), f ∈ FG}, where N (0,Σ) is the Gaussian noise with Σ := Diag(σ, ..., σ).
For ε ≤ 0.3, we have dimE√2(PG ,H, ε) ≤ dimE(FG , 4σε), dimE√2d(PG ,H, ε) ≤ dimE(G, 4σε),
where dimE is the Eluder Dimension for scalar or vector-valued functions [51, 46].

4 Learning in Mean-Field RL: An Optimistic-MLE Approach

In this section, we introduce our O-MLE based algorithm for MFRL. We highlight the algorithm
design and main results in Sec. 4.1, and introduce key techniques to results in Sec. 4.2.

4.1 Main Algorithm and Results

We provide our main algorithm in Alg. 1, where we omit the rewards in samples to avoid redundancy
in analysis. Similar to previous work for function approximation setting in single-agent RL [32, 19]
or MARL [26], we mainly focus on the statistical complexity and leave the computational efficiency
to future work. Our algorithm is based on Optimistic Maximial Likelihood Estimation. The algorithm
includes two parts: policy selection (Line 8-14) and data collection (Line 4-7). In each iteration k,
we fit the model with data Z1, ...,Zk collected so far and construct a model confidence set M̂k. The
confidence level is carefully chosen, so that with high probability, we can ensure M∗ ∈ M̂k for all k.

In MFC, similar to the single-agent setting, we pick πk+1 to be the policy achieving the maximal total
return among models in the confidence set, and then use it to collect new samples for exploration. In
the end, we use Regret2PAC conversion algorithm (Alg. 3, deferred to Appx. D.3) to select policy.

For MFG, the learning process is slightly more complicated. For the policy selection part, we compute
two policies. We first randomly pick Mk+1 from M̂k, and compute its equilibrium policy πk+1 to be
our guess for the equilibrium of the true model M∗. Next, we find a model M̃k+1 and an adversarial
policy π̃k+1, which result in an optimistic estimation for ENE(πk+1). Besides, for the data collection
part, in addition to the trajectories generated by deploying πk+1, we also collect trajectories sampled
by policy π̃k+1 conditioning on the density induced by πk+1. As we will explain in Lem. 4.6, those
additional samples are necessary to control the estimation error of exploitability. Finally, we return
the policy with the minimal optimistic exploitability among {πk+1}Kk=1.

We state our main results below, and defer its formal version (Thm. D.5 and Thm. D.6) and the proofs
to Appx. D. As a side contribution, our results can recover sample complexity in single-agent RL by
letting LT , Lr → 0, which is only studied by few literatures.

Theorem 4.1 (Main Results (Informal)). Under Assump.A, B and C, by choosing2 K = Õ
(

(1 +

LrH)2(1 + LTH)2
(

(1+LT )H−1
LT

)2 dimEα(M,ε0)
ε2

)
, with ε0 = O( LT ε

αH(1+LrH)(1+LTH)((1+LT )H−1)
),

(i) for the MFC branch, after consuming HK trajectories in Alg. 1 and additional O( 1
ε2 log2 1

δ )
trajectories in Alg. 3, w.p. 1− 5δ, we have EOpt(π̂

∗
Opt) ≤ ε.

(ii) for the MFG branch, after consuming 2HK trajectories, w.p. 1− 3δ, we have ENE(π̂∗NE) ≤ ε.
2We omit log-dependence on ε, δ, dimE, |M|, H and Lipschitz factors in Õ.
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Exponential Dependence on LT : As we can see, there is an exponential dependence of LT in
sample complexity, while similar result has been reported in previous literatures [48]. Besides a
trivial observation that the exponential factor reduces to constant when LT = O( 1

H ), in Appx. D.1,
we introduce Assump. D about the contraction of Γπ operator, which is frequently considered in
previous literature [3, 63]. In the full version theorem, we show that with that additional assumption,
the sample complexity only depends on a contractive factor without exponential terms.

Algorithm 1: A General O-MLE Learning Framework for Mean-Field RL
1 Input: Model function classM; ε, δ,K.
2 Initialize: Randomly pick π1 and π̃1; Zk ← {}, ∀k ∈ [K].
3 for k = 1, 2, ...,K do
4 for h = 1, ...,H do
5 Sample zkh := {skh, akh, s′kh+1} with (πk, πk); Zk ← Zk ∪ zkh.
6 if MFG then Sample z̃kh := {s̃kh, ãkh, s̃′kh+1} with (π̃k, πk); Zk ← Zk ∪ z̃kh ;
7 end
8 For each M ∈M, define:

lkMLE(M) :=
∑k
i=1

∑H
h=1 logPT,h(s′ih+1|sih, aih, µπ

i

M,h) + logPT,h(s̃′ih+1|s̃ih, ãih, µπ
i

M,h)︸ ︷︷ ︸
MFG only

.

9 M̂k ← {M ∈M|lkMLE(M) ≥ maxM∈M lkMLE(M)− log 2|M|KH
δ }.

10 if MFC then πk+1,Mk+1 ← arg max
π,M∈M̂k JM (π;µπM ) ;

11 if MFG then
12 Randomly pick Mk+1 from M̂k; Find a NE of Mk+1 denoted as πk+1.
13 π̃k+1, M̃k+1 ← arg max

π̃;M∈M̂k ∆M (π̃, πk+1).
14 end
15 end
16 if MFC then return π̂∗Opt ← Regret2PAC({πk+1}Kk=1, ε, δ) ;
17 if MFG then return π̂∗NE ← πk

∗
NE with k∗NE ← mink∈[K] ∆

M̃k+1(π̃k+1, πk+1) ;

4.2 Proof Sketch

The high-level ideas for proving Thm. 4.1 can be mainly divided into two parts. Firstly, we provide
an upper bound for the accumulative model prediction error by the model-based eluder dimension,
which we further connect with our learning objective in the second step.

Step 1: Upper Bound Model Prediction Error with MBED First of all, in Thm. 4.2 below, we
show that, with high probability, models in M̂k predict well under the distribution of data collected
so far. We defer the proof to Appx. C.
Theorem 4.2. [Guarantees for MLE] By running Alg. 1 with any δ ∈ (0, 1), with probability 1− δ,
for all k ∈ [K], we have M∗ ∈ M̂k; for each M ∈ M̂k with transition PT and any h ∈ [H]:

k∑
i=1

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))] ≤ 2 log(
2|M|KH

δ
).

Besides, for MFG branch, we additionally have:

k∑
i=1

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))] ≤ 2 log(
2|M|KH

δ
).

The key difficulty in Mean-Field setting is the dependence of density in transition function. Since
we do not know µπM∗,h, in Line 8 in Alg. 1, we compute the likelihood conditioning on µπM,h,
which is accessible for each M . Therefore, in Thm. 4.2, we can only guarantee M aligns with M∗
conditioning on their own density µπM and µπM∗ , respectively. However, to ensure low MBED can
indeed capture important practical models, the MBED in Def. 3.3 is established on shared density,
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which is also the main reason we additional consider Hellinger distance in Assump. B. To close this
gap, in Thm. 4.3 below, we present how the model difference conditioning on the same or different
densities can be converted to each other. The proof is defered to Appx. D.
Theorem 4.3 (Model Difference Conversion; Short Version of Thm. D.3). Given two model M and
M̃ with transition PT and PT̃ , respectively, and an arbitrary policy π, under Assump. B, we have:

Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

≤(1 + LTH)Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV], (7)

Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

≤Eπ,M [

H∑
h=1

(1 + LT )H−h‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]. (8)

In the final lemma, we show if the model predicts well in history, then the growth rate of the
accumulative error on new data can be controlled by MBED. We defer the proof to Appx. B.3.
Lemma 4.4. Under the condition as Def. 3.1, consider a fixed f∗ ∈ F , and suppose we have a
sequence {fk}Kk=1 ∈ F and {xk}Kk=1 ⊂ S×A×∆(S), s.t., for all k ∈ [K],

∑k−1
i=1 D2(fk, f

∗)(xi) ≤
β, then for any ε > 0, we have

∑K
k=1 D(fk, f

∗)(xk) = O(
√
βKdimEα(M, ε) + αKε).

Step 2: Relating Learning Objectives with Model Prediction Error First of all, we provide the
simulation lemma for Mean-Field Control setting.
Lemma 4.5. [Simulation Lemma for MFC] Given an arbitrary model M with transition function
PT , and an arbitrary policy π, under Assump. B, we have:

|JM∗(π)− JM (π)| ≤Eπ,M∗ [
H∑
h=1

(1 + LrH)‖PT∗,h(·|sh, ah, µπM∗,h)− PT,h(·|sh, ah, µπM,h)‖TV].

By Thm. 4.2 and Eq. (7) in Thm. 4.3, with high probability, all the models in M̂k will agrees with
each other on the dataset Dk conditioning on the same density µπ

1

M∗ , ..., µ
πk

M∗ . On good concentration
events, the condition for Lem. 4.4 is satisfied, and as a result of Thm. 4.5 and Eq. (8), we can
upper bound the accumulative sub-optimal gap

∑K
k=1 EOpt(π

k+1). With the regret to PAC convertion
process in Alg. 3, we can establish the sample complexity guarantee in Thm. 4.1.

For MFG, we first provide an upper bound for ENE(πk+1). On the event of M∗ ∈ M̂k+1, we have:

ENE(πk+1) = max
π

∆M∗(π, π
k+1) ≤ ∆

M̃k+1(π̃k+1, πk+1) ≤ ∆
M̃k+1(π̃k+1, πk+1)−∆Mk+1(π̃k+1, πk+1)

≤|∆
M̃k+1(π̃k+1, πk+1)−∆M∗(π̃

k+1, πk+1)|+ |∆M∗(π̃
k+1, πk+1)−∆Mk+1(π̃k+1, πk+1)|.

where the first inequality is because of optimism, and the second one is because πk+1 is the equili-
birum of Mk+1. Next, we provide a key lemma to upper bound the RHS.

Lemma 4.6. Given two arbitrary model M and M̃ , and two policies π and π̃, we have:

|∆M (π̃, π)−∆
M̃

(π̃, π)| ≤Eπ̃,M |µπM [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

+(2LrH + 1)Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]. (9)

As we can see, to control the exploitability, we require the model can predict well on the data
distribution induced by both πk+1 and π̃k+1 conditioning on µπ

k+1

M∗ , which motivates our formulation
of Def. 2.2. By combining Lem. 4.6 and theorems in the first part, we finish the proof.
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5 Exponential Separation between RL in MFC and MFG

In this section, we establish the separation between RL in MFC and MFG by investigating the sample
complexity lower and upper bounds in tabular setting with function approximation. Our results
are based on the generative model defined below, which is also frequently considered in previous
Mean-Field [24, 20] or single-agent literatures [2]. We show that, under Assump. A and B, identifying
ε-NE in MFG is exponentially more GM-efficient than finding ε-optimal policy in MFC.
Definition 5.1 (Generative Model). The Generative Model (abbr. GM) can be queried by arbitrary
h ∈ [H], sh ∈ Sh, ah ∈ Ah, µh ∈ ∆(Sh), and return a sample from distribution PT∗,h(·|sh, ah, µh).

5.1 Exponential Lower Bound in Tabular Mean-Field Control

In the following theorem, we establish an exponential sample complexity lower bound for tabular
MFC (with function approximation) given access to both GM in Def. 5.1 and DCP in Def. 2.2, which
indicates a separation with tabular single-agent RL. Intuitively, in the worst case, the agent should
explore the entire S ×A×∆(S) space to identify the policy achieving the maximal return because
of the dependence on µ in transition probabilities. We defer the proof for Thm. 5.2 to Appx. F.
Theorem 5.2. [Exponential Lower Bound for MFC] Given arbitrary LT > 0 and d ≥ 2, consider
tabular MF-MDPs satisfying Assump. B with Lipschitz coefficient LT , |S| = |A| = d and H = 3.
For any algorithm Alg, and any ε ≤ LT

d+1 , there exists an MDP M∗ and a model classM satisfying
M∗ ∈ M, and |M| = Ω((LTdε )d−1), s.t., if Alg only queries GM or DCP for at most K times with
K ≤ |M|/2− 1, the probability that Alg produces an ε-near-optimal policy is less than 1/2.

Our hard instance can be regarded as representation learning in low-rank MF-MDP generalized from
single-agent setting [1, 42, 56]. In contrast, as we shown in Prop. 3.4, if the representation φ is known
to the learner, the model class has low MBED regardless of the function class of ψ, and therefore,
can be solved with polynomial samples by Alg. 1.

In single-agent RL, however, efficient learning is possible no matter the representation is available
or not [35, 64, 1, 42, 56], although the sample complexity in representation learning has additional
dependence on the number of actions |A| [1, 42, 56]. This separation becomes significant after
generalizing to MFRL, where a “uniform cover” over the density space (similar role as the “uniform
cover” over the action space) is required in the worst case.

5.2 Generative Model Efficient Learning in Tabular Mean-Field Game

In the previous section, we showed that MFC is sample-inefficient even when H = 3. In this section,
we show that regardless of computational complexity, there exists an algorithm that can find an
approximate NE policy consuming just polynomial samples from the GM. We state our algorithm in
Alg. 2 and main result in Thm. 5.3, and defer its formal version and the proof to Appx. G.
Theorem 5.3 (GM-Efficiency; Informal). Under Assump. A and Assump. B, with appropriate hyper-
parameter choices, w.p. at least 1− δ, Alg. 2 returns an ε-approximate NE for M∗ by consuming at
most O(S

3AH
ε2 log2 SAH|M|

δ ) queries to GM (dependence on Lipschitz factors are omitted).

Algorithm Design and Highlight of Novelty We first introduce a new notation. Given a model
classM and an arbitrary M ∈ M with transition function PT , given any h ∈ [H], sh ∈ Sh, ah ∈
Ah, µh ∈ ∆(Sh), we use BMsh,ah,µh(M ; ε̄) to denote the collection of models inM, whose transition
functions are ε̄-close to M given sh, ah, µh. More concretely,

BMsh,ah,µh(M ; ε̄) := {M̃ ∈M|‖PT̃ ,h(·|sh, ah, µh)− PT,h(·|sh, ah, µh)‖1 ≤ ε̄}.

The basic idea of Alg. 2 is to find policies to gradually eliminate out inaccurate models inM. In
order to eliminate as much as possible inaccurate model, in the If-branch (line 3), we first try to
find a (sh, ah, µh)-tuple, s.t., every model inMk has significant number of models that disagree
with it conditioning on (sh, ah, µh). In this case, by querying GM with Õ(ε̄2) samples, we can use
PT̂∗(≈ PT∗) to eliminate models not in BMk

sh,ah,µh
(M∗; ε̄), which is at least 1

2 |M
k|.

The more challenging part is the Else-branch (line 7), when the models inMk are not so easy to
distinguish. Technically speaking, the separation between MFG and MFC is reflected by whether
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it is possible to efficiently eliminate models in this case. In the following Lemma, we provide a
perspective to understand the tractability of MFG, where we show that the NE policy of model M is
also the NE policy of M∗ as long as they are “locally aligned” at that policy. In contrast, in MFC
setting, such local alignment provides no information about whether the policy has optimal value.
Lemma 5.4. [Implication of Local Alignment in MFG] Given a model M with transition PT ,
suppose M and M∗ are locally aligned at policy π w.r.t. the density induced in M , i.e.
∀h, PT∗,h(·|·, ·, µπM,h) = PT,h(·|·, ·, µπM,h), if π is a NE in M , then it must be a NE in M∗.

As our key technical novelty and contribution, in Else-branch, we propose Alg. 4 and prove that,
Alg. 4 can construct a “Bridge Model” Mk

Br based onMk, such that (i) Mk
Br has at least one NE

policy, denoted as πBr,k
NE ; (ii) most of the models inMk are (approximately) locally aligned at πBr,k

NE

w.r.t. the density µNE,k
Br induced in Mk

Br. As a result, either we can expect πBr,k
NE is the approximate

NE of M∗, or we can eliminate all the models locally aligned at this policy, which is at least 1
2 |M

k|.

In summary, under good concentration events, either the loop continues but |Mk+1| ≤ 1
2 |M

k|, or it
returns an approximate NE. Therefore, we can conclude polynominal sample complexity to GM.

Algorithm 2: Equilibrium Finding by Model Elimination with Bridge Model

1 Input: Model ClassM, ε̄, ε̃, K, N, N̄, Ñ . Initialize:M1 ←M.
2 for k = 1, 2, ...,K do
3 if ∃(h, sh, ah, µh), s.t. maxM∈Mk |BMk

sh,ah,µh
(M ; ε̄)| ≤ 1

2 |M
k| then

4 Query GM with (h, sh, ah, µh) for N̄ samples, and compute empirical average as
PT̂∗,h(·|sh, ah, µh).

5 Mk+1 ← {M ∈Mk|‖PT,h(·|sh, ah, µh)− PT̂∗,h(·|sh, ah, µh)‖1 ≤ ε̄
2}

6 end
7 else
8 Mk

Br, π
Br,k
NE ,µNE,k

Br ← BridgeModel(Mk, N). // Alg. 4 in Appx. G
9 For any (h, sh, ah), query GM with (h, sh, ah, µ

NE,k
Br,h ) for Ñ samples, and compute

empirical average as PT̂∗,h(·|sh, ah, µNE,k
Br,h ).

10 if ∃h, sh, ah, s.t., ‖PTkBr,h
(·|sh, ah, µNE,k

Br,h )− PT̂∗,h(·|sh, ah, µNE,k
Br,h )‖1 ≥ ε̃ then

11 Mk+1 ← {M ∈Mk|‖PT,h(·|sh, ah, µNE,k
Br,h )− PT̂∗,h(·|sh, ah, µNE,k

Br,h )‖1 ≤ ε̃
2}

12 end
13 else return πBr,k

NE ;
14 end
15 end

6 Conclusion and Open Problems

In this paper, we study the statistical efficiency of function approximation in MFRL. We propose the
notion of MBED and an O-MLE based algorithm, which can guarantee to efficiently solve MFC and
MFG given realizable function classes with bounded MBED. Besides, we provide evidence for the
exponential separation between RL for MFC and MFG from an information-theoretic perspective. In
the future, one important direction is to combine our results with optimization techniques to design
computationally efficient algorithms. Moreover, it remains an open problem whether it is possible to
extend our Alg. 2 and its guarantees to more general setting only with access to trajectory samples
like Def. 2.2 instead of a Generative Model.
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Rémi Munos, and Olivier Pietquin. Concave utility reinforcement learning: the mean-field
game viewpoint. arXiv preprint arXiv:2106.03787, 2021.

[23] Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field multi-agent reinforcement
learning: A decentralized network approach. arXiv preprint arXiv:2108.02731, 2021.

[24] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. Advances in
Neural Information Processing Systems, 32, 2019.

[25] Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. Entropy regularization for mean field games
with learning. Mathematics of Operations Research, 2022.

[26] Baihe Huang, Jason D Lee, Zhaoran Wang, and Zhuoran Yang. Towards general function
approximation in zero-sum markov games. arXiv preprint arXiv:2107.14702, 2021.

[27] Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu. Towards deployment-
efficient reinforcement learning: Lower bound and optimality. arXiv preprint arXiv:2202.06450,
2022.
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A Extended Introduction

A.1 Motivation for Model-Based instead of Model-Free Algorithms

MFRL methods can be divided into two categories: model-based and model-free methods. Ours is
the former, where we try to explicitly estimate the model. For the latter, it can be further divided into
pure value-based (a value-function class is provided) and policy-based methods (a value function
class and a policy class are provided). Although we can not assert model-based methods are the only
solutions for MFRL, there are some special challenges for value-based methods that seem intractable,
especially in function approximation setting.

For the pure value-based methods: In mean-field RL, the well-defined value function should be a
function mapping from the joint space of states (or states, actions) and population density. Therefore,
if one does not estimate the model, then it is not possible to track the density for each step and
therefore, even if the true optimal value function is provided, one cannot convert it to the optimal
policy since the density information is missing. In contrast, in single-agent setting, we can do that by
simply taking argmax.

For the policy-based methods: Policy-based methods [24, 63], which repeatedly do the “policy
improvement” step and “policy evaluation” step for the fixed policy, are not rare in MFRL in the
tabular setting. However, one key difficulty is that this approach requires that the value function class
can well approximate the value functions of all the possible policies encountered during the learning
process. This assumption is feasible in the tabular setting because of finite states and actions, but
it can be an extremely strong assumption in the non-tabular setting. Moreover, especially in MFG,
strong assumptions, e.g. contractivity [24, 63], seems necessary to make sure the evaluated value
function can provide useful information to optimize the policy to NE.

A.2 Other Related Work

Single-Agent RL with General Function Approximation Recently, in single agent setting,
beyond tabular RL [6, 8, 31], there are significant progress on linear function approximation
setting [35, 64, 1, 42, 56, 27] or more general conditions for efficient learning framework
[51, 30, 55, 32, 19, 60, 21, 13, 67, 7] However, the MFRL setting is significantly different from
single agent RL because of the dependence on density in transition and reward model. The function
complexity measure, especially for value-based function class, and the corresponding algorithms in
single-agent RL cannot be trivially generalized to MFRL.

Besides, the previous literatures discussing Model-Based Eluder Dimension is limited. Besides [38]
which we compared with in Sec. 3, [46] considered the function class and their Eluder Dimension
w.r.t. l2 distance, which restricted the function classes it can capture.

Multi-Agent RL Sample complexity of learning in Markov Games has been studied extensively in
a recent surge of works [33, 9, 14, 65, 66, 61]. A few recent works also consider learning Markov
Games with linear or general function approximation [58, 26, 34, 45]. None of these results can be
directly extended to Mean-Field RL.

Recently, [57, 17] also studied how to “break the curse of multi-agency” by decentralized learning
in MARL setting. Although they consider a more general setting from ours, where they did not
employ mean field assumption and allowed the agents can be largely different, there are still some
restrictions when applying to our mean-field setting. First of all, their algorithm can only guarantee
the convergence to the Coarse Correlated Equilibria or the Correlated Equilibria, while ours can
converge to Nash Equilibrium in MFG. Moreover, and more importantly, their algorithms have sample
complexity depending on the number of agents (although polynominal instead of exponential), which
still suffer from the “curse of multi-agency” when the number of agents is exponentially large.

Other Related Works In this paper, we consider MLE based model estimation algorithm. Similar
ideas has been adopted in POMDP [39] or Partial Observable Markov Games [40].
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B Proofs for Eluder Dimension Related

B.1 Missing Details of Eluder Dimension Related

In the following, we recall the Eluder Dimension in Value Function Approximation Setting [51].
Definition B.1 (ε-Independence for Scalar Function). Given a domain Y and a function class
F ⊂ {f |f : Y → R}, we say y is ε-independent w.r.t. y1, y2, ..., yn, if there exists f1, f2 ∈ F
satisfying

√∑n
i=1 |f1(yi)− f2(yi)|2 ≤ ε but |f1(y)− f2(y)| > ε.

Definition B.2 (Eluder Dimension for Scalar Function). Given a function class F ⊂ {g|g : Y → R},
we use dimE(F , ε) to denote the length of the longest sequence y1, ..., yn ∈ Y , such that, for any
i ∈ [n], yi is ε-independent w.r.t. y1, ..., yi−1.

Remarks on Assump. B The main reason we require the Lipschitz continuity w.r.t. Hellinger
distance is to handle the distribution shift issue. In Thm. 4.2, we show that MLE regression can only
guarantee the learned model aligns with M∗ under different density. In order to guarantee efficient
learning, we need to convert it to upper bound for model error under the same density.

Besides, although in general H and TV distance between two distribution can be largely different.
For our example in Prop. 3.5, given two function f1, f2, we have:

H(Pf1
,Pf2

) = O(
1

σ2
‖f1 − f2‖2) = O(

1

σ2
‖f1 − f2‖1).

Therefore, Assump. B can be ensured when f ∈ F is Lipschitz w.r.t. l1 distance, which is reasonable.

Moreover, in fact, if we only consider dimEα(M,TV, ε) as model-based eluder dimension in our
framework, we only require Lipschitz continuity w.r.t. l1-distance (or TV distance).

B.2 Concrete Examples Satisfying Finite Eluder Dimension Assumption

B.2.1 Example 1: Linear Combined Model

Proposition B.3 (Linearly Combined Model). Consider the linear combined model class with known
state action feature vector φ(s, a, µ, s′) ∈ Rd, such that for arbitrary s ∈ S, a ∈ A and arbitrary
g : S → [0, 1], we have ‖∑∫

s′∈S φ(s, a, µ, s′)g(s′)‖2 ≤ Cφ3

P := {Pθ|Pθ(·|s, a, µ) := θ>φ(s, a, µ, s′), ‖θ‖2 ≤ Cθ; ∀s, a, µ,
∑∫
s′∈S

P(s′|s, a, µ) = 1, P(·|s, a, µ) ≥ 0}.

For α ≥ 1, we have: dimEα(P,TV, ε) = O(d log(1 +
dCθCφ
ε )).

Proof. We focus on the case when α = 1 since which directly serves as upper bound for α > 1. For
arbitrary θ1, θ2 with ‖θ1‖2 ≤ Cθ, ‖θ2‖2 ≤ Cθ, we have:

TV(Pθ1 ,Pθ2)(s, a, µ) = sup
S̄
|
∑∫
s′

(θ1 − θ2)>φ(s, a, µ, s′)| = 1

2
(θ1 − θ2)>

∑∫
s′

φ(s, a, µ, s′)gθ1,θ2(s, a, µ, s′).

where we define:

gθ1,θ2(s, a, µ, s′) :=

{
1, if (θ1 − θ2)>φ(s, a, µ, s′) ≥ 0;

−1, otherwise.

In the following, for simplicity, we use

vθ1,θ2(s, a, µ) :=
∑∫
s′

φ(s, a, µ, s′)gθ1,θ2(s, a, µ, s′).

as a short note. Also note that,

‖vθ1,θ2(s, a, µ)‖2 ≤ ‖
∑∫
s′

φ(s, a, µ, s′)gθ1,θ2(s, a, µ, s′)‖2 ≤ Cφ, ∀π, µ, θ1, θ2 ∈ B(0;Cθ).

3Similar normalization assumptions is common in previous literatures [1, 43, 56]
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Suppose we have a sequence of samples x1, .., xn with xi := (si, ai, µi), such that xi is ε-independent
of {x1, ..., xi−1} for all i ∈ [n]. Then, by definition, for each i, there exists θi1, θ

i
2 such that:

4ε2 ≤4‖Pθi1(·|si, ai, µi)− Pθi2(·|si, ai, µi)‖2TV

=
(

(θi1 − θi2)>vθi1,θi2(si, ai, µi)
)2

≤ ‖θi1 − θi2‖2Λi‖vθi1,θi2(si, ai, µi)‖2(Λi)−1 .

where we denote

Λi :=λI +

i−1∑
t=1

vθt1,θt2(st, at, µt)>vθt1,θt2(st, at, µt).

Meanwhile,

‖θi1 − θi2‖2Λi =λ‖θi1 − θi2‖2 +

i−1∑
t=1

(
(θi1 − θi2)>vθt1,θt2(st, at, µt)

)2

≤4λC2
θ +

i−1∑
t=1

(
(θi1 − θi2)

∑∫
s′

Φ(st, at, µt)ψ(s′)gθt1,θt2(st, at, µt, s′)
)2

=4λC2
θ + 4

i−1∑
t=1

‖Pθt1(·|st, at, µt),Pθt2(·|st, at, µt)‖TV (|gθt1,θt2(·, ·, ·, ·)| = 1)

≤4λC2
θ + 4ε2.

By choosing λ = ε2/C2
θ , we further have:

‖vθi1,θi2(si, ai, µi)‖2(Λi)−1 ≥
4ε2

4λC2
θ + 4ε2

=
1

2
.

On the one hand,

det Λn+1 = det(Λn + vθn1 ,θn2 (sn, an, µn)vθn1 ,θn2 (sn, an, µn)>)

=(1 + vθn1 ,θn2 (sn, an, µn)>(Λn)−1vθn1 ,θn2 (sn, an, µn)) · det Λn

≥3

2
det Λn ≥ (

3

2
)n det Λ1 = λd(

3

2
)n.

On the other hand,

λd(
3

2
)n ≤ det Λn+1 ≤ (

Tr(Λn)

d
)d ≤ (λ+

nC2
φ

d
)d.

which implies n = O(d log(1 +
dCθCφ
ε )). �

Linear Combined Model with State-Action-Dependent Weights In [43], the authors introduced
another style of linear combined model with state-action dependent weights, which can be generalized
to MFRL setting by:

PW (s′|s, a, µ) :=

d∑
i=1

[Wφ(s, a, µ, s′)]kPi(s′|s, a, µ).

where W ∈ Rd×d is an unknown matrix, φ(s, a) are known feature class, {Pi}di=1 are d known
models to combine. If we further define ψ(s, a, µ, s′) := [P1(s′|s, a, µ), ...,Pd(s′|s, a, µ)]> ∈ Rd,
we can rewrite the model by:

PW (s′|s, a, µ) = φ(s, a, µ, s′)>W>ψ(s, a, µ, s′) = vec(W>)>vec(ψ(s, a, µ, s′)φ(s, a, µ, s′)>).

Therefore, by treating θ = vec(W>) to be the parameter and vec(ψ(s, a, µ, s′)φ(s, a, µ, s′)>) to be
the feature taking place the role of φ(s, a, µ, s′) in Prop. B.3, we can absorb this model class into
linearly combined model framework, and Õ(d2) will be an upper bound for its MBED.
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B.2.2 Example 2: Linear MDP with Known Feature

Proposition B.4 (Low-Rank MF-MDP; Formal Version of Prop. 3.4). Consider the Low-Rank MF-
MDP with known feature φ : S × A ×∆(S)→ Rd satisfying ‖φ‖ ≤ Cφ, and unknown next state
feature ψ : S → Rd. Given a next state feature function class Ψ satisfying ∀ψ ∈ Ψ, ∀s′ ∈ S, ∀g :
S → {−1, 1}, ‖∑∫

s′
ψ(s′)g(s′)‖2 ≤ CΨ, consider the following model class:

PΨ := {Pψ|Pψ(·|s, a, µ) := φ(s, a, µ)>ψ(s′); ∀s, a, µ,
∑∫
s′∈S

Pψ(s′|s, a, µ) = 1, Pψ(s′|s, a, µ) ≥ 0;ψ ∈ Ψ},

for α ≥ 1, we have dimEα(PΨ,TV, ε) = O(d log(1 +
dCφCΨ

ε )).

Proof. Again we focus on the case when α = 1. Suppose there is a sequence of samples x1, ..., xn
(with xi := (si, ai, µi)) such that for any i ∈ [n], xi is ε-independent w.r.t. x1, ..., xi−1 w.r.t. PΨ

and TV, then for each i ∈ [n], there should exists ψi, ψ̃i ∈ Ψ, such that:

ε2 ≥
i−1∑
t=1

‖Pψi(·|st, at, µt),Pψ̃i(·|s
t, at, µt)‖2TV.

and

ε2 ≤‖Pψi(·|si, ai, µi)− Pψ̃i(·|s
i, ai, µi)‖2TV

= sup
S̄⊂S

( ∑∫
s′∈S̄

φ(si, ai, µi)>(ψi(s′)− ψ̃i(s′))
)2

=
1

4

(
φ(si, ai, µi)>

∑∫
s′∈S

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)

)2

≤1

4
‖φ(si, ai, µi)‖2(Λi)−1‖

∑∫
s′∈S

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)‖2Λi .

where we define:

Λi := λI +

i−1∑
t=1

φ(si, ai, µi)φ(si, ai, µi)>; gψi,ψ̃i(s, a, µ, s
′) :=

{
1, if φ(si, ai, µi)>(ψi(s′)− ψ̃i(s′)) ≥ 0;

−1, otherwise.

For simplicity, we use vψ,ψ̃(s, a, µ) :=
∑∫
s′

(ψ(s′)− ψ̃(s′))gψ,ψ̃(s, a, µ, s′) as a shortnote. Therefore,
for each i,

‖vψi,ψ̃i(s
i, ai, µi)‖2Λi =λ‖vψi,ψ̃i(s

i, ai, µi)‖2 +

i−1∑
t=1

(
φ(st, at, µt)>vψi,ψ̃i(s

i, ai, µi)
)2

=λ‖vψi,ψ̃i(s
i, ai, µi)‖2 +

i−1∑
t=1

(
φ(st, at, µt)>

∑∫
s′

(ψi(s)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)

)2

=4λC2
Ψ + 4

i−1∑
t=1

‖Pψi(·|st, at, µt)− Pψ̃i(·|s
t, at, µt)‖2TV

≤4λC2
Ψ + 4ε2.

By choosing λ = ε2/C2
Ψ, we have:

‖φ(si, ai, µi)‖2(Λi)−1 ≥
4ε2

4λC2
Ψ + 4ε2

=
1

2
.

On the one hand,

det Λn+1 = det(Λn + φ(sn, an, µn)φ(sn, an, µn)>) = (1 + ‖φ(sn, an, µn)‖2(Λn)−1) · det Λn
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≥3

2
det Λn ≥ (

3

2
)n det Λ1 = λd(

3

2
)n.

Therefore,

λd(
3

2
)n ≤ det Λn+1 ≤ (

Tr(Λn)

d
)d ≤ (λ+

nC2
φ

d
)d.

which implies n = O(d log(1 +
dCφCΨ

ε )). �

B.2.3 Example 3: Kernel Mean-Field MDP

We first introduce the notion of Effective Dimension, which is also known as the critical information
gain in [19]:
Definition B.5 (Effective Dimension). The ε-effective dimension of a set Y is the minimum integer
deff(Y, ε) = n, such that,

sup
y1,...,yn∈Y

1

n
log det(I +

1

ε2

n∑
i=1

yiy
>
i ) ≤ 1

e
.

In the next theorem, we show that, the MBED of kernel MF-MDP generalized from kernel MDP in
single-agent setting [32] can be upper bounded by the effiective dimension in certain Hilbert spaces.
Proposition B.6 (Kernel MF-MDP). Given a separable Hilbert space H, a feature mapping φ :
S × A ×∆(S) → H such that ‖φ(s, a, µ)‖H ≤ Cφ for all s ∈ S, a ∈ A, µ ∈ ∆(S), and a next
state feature class Ψ ⊂ {ψ : S → H} satisfying the normalization property that ∀ ψ ∈ Ψ and
g : S → {−1, 1}, ‖∑∫

s′∈S ψ(s′)g(s′)‖H ≤ 1 4. Consider the model class PΨ,H defined by:

PΨ,H := {Pψ|Pψ(s′|s, a, µ) = 〈φ(s, a, µ), ψ(s′)〉H,
∑∫
s′∈S

Pψ(s′|s, a, µ) = 1, Pψ(·|s, a, µ) ≥ 0, ψ ∈ Ψ}.

For α ≥ 1, we have

dimEα(PΨ,H,TV, ε) = O(deff(φ(X ), ε)),

where we use X := S ×A×∆(S) as a short note, and φ(X ) := {φ(x)|x ∈ X}.

Proof. The proof idea is similar to the proof of Prop. B.4. Again, we only focus on the case when
α = 1. Suppose there is a sequence of samples x1, ..., xn (with xi := (si, ai, µi)) such that for any
i ∈ [n], xi is ε-independent w.r.t. x1, ..., xi−1 w.r.t. PΨ,H and TV, then for each i ∈ [n], there should
exists ψi, ψ̃i ∈ Ψ, such that:

ε2 ≥
i−1∑
t=1

‖Pψi(·|st, at, µt)− Pψ̃i(·|s
t, at, µt)‖2TV.

and

4ε2 ≤4‖Pψi(·|si, ai, µi)− Pψ̃i(·|s
i, ai, µi)‖2TV

=
(
〈φ(si, ai, µi),

∑∫
s′

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)〉H

)2

≤‖φ(si, ai, µi)‖2(Λi)−1‖
∑∫
s′

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)‖2Λi .

where we define:

Λi := λI +

i−1∑
t=1

φ(si, ai, µi)φ(si, ai, µi)>; gψi,ψ̃i(s, a, µ, s
′) :=

{
1, if 〈φ(si, ai, µi), ψi(s′)− ψ̃i(s′)〉H ≥ 0;

−1, otherwise.

4To align with [32], we assume ψ is normalized.
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Based on a similar discussion and choice of λ = ε2, as Prop. B.4, we have:

(
3

2
)n det Λ1 ≤ det Λn+1 = det(ε2I +

n∑
i=1

φ(si, ai, µi)φ(si, ai, µi)>),

Therefore,

n log
3

2
≤ det Λn+1

det Λ1
= det(I +

1

ε2

n∑
i=1

φ(si, ai, µi)φ(si, ai, µi)>) ≤ 1

e
deff(φ(X ), ε),

which implies n = O(deff(φ(X ), ε)). �

B.2.4 Example 4: Generalized Linear Function Class

In this section, we extend the Generalized Linear Models in single-agent RL [51] to MF-MDP.
Proposition B.7 (Generalized Linear MF-MDP). Given a differentiable and strictly increasing
function h : R → R satisfying 0 < h ≤ h′ ≤ h, where h′ is its derivative, suppose we have
a feature mapping φ : S × A × ∆(S) → Rd satisfying ‖φ(·, ·, ·)‖2 ≤ Cφ and a feature class
Ψ ⊂ {ψ|ψ : S → R} such that for anyψ ∈ Ψ, ‖∑∫

s′∈S ψ(s′)g(s′)‖2 ≤ CΨ for any g : S → {−1, 1}.
Consider the model class:

Ph,Ψ := {Pψ|Pψ(·|s, a, µ) := h(φ(s, a, µ)>ψ(s′));∀s, a, µ, ‖Pψ(·|s, a, µ)‖1 = 1, Pψ(s′|s, a, µ) ≥ 0;ψ ∈ Ψ},

For any α ≥ 1, we have dimEα(Ph,Ψ,TV, ε) = Õ(dr2), where r := h/h.

Proof. The proof is similar to Prop. B.4. Suppose there is a sequence of samples x1, ..., xn (with
xi := (si, ai, µi)) such that for any i ∈ [n], xi is ε-independent w.r.t. x1, ..., xi−1 w.r.t. PΨ and TV,
then for each i ∈ [n], there should exists ψi, ψ̃i ∈ Ψ, such that:

ε2 ≥
i−1∑
t=1

‖Pψi(·|st, at, µt)− Pψ̃i(·|s
t, at, µt)‖2TV

=

i−1∑
t=1

sup
S̄⊂S

( ∑∫
s′∈S̄

h(φ(st, at, µt)>ψi(s′))− h(φ(st, at, µt)>ψ̃i(s′))
)2

≥h2
i−1∑
t=1

sup
S̄⊂S

( ∑∫
s′∈S̄

φ(st, at, µt)>(ψi(s′)− ψ̃i(s′))
)2

. (Mean Value Theorem)

Besides,

4ε2 ≤4‖Pψi(·|si, ai, µi)− Pψ̃i(·|s
i, ai, µi)‖2TV

=4 sup
S̄⊂S

( ∑∫
s′∈S̄

h(φ(si, ai, µi)>ψi(s′))− h(φ(si, ai, µi)>ψ̃i(s′))
)2

≤4h
2

sup
S̄⊂S

( ∑∫
s′∈S̄

φ(si, ai, µi)>(ψi(s′)− ψ̃i(s′))
)2

=h
2
( ∑∫
s′∈S̄

φ(si, ai, µi)>(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)

)2

≤h2‖φ(si, ai, µi)‖2(Λi)−1‖
∑∫
s′

(ψi(s′)− ψ̃i(s′))gψi,ψ̃i(s
i, ai, µi, s′)‖2Λi .

where in the second inequality, we use the mean value theorem and the fact that h′ ≤ h; Λi and gψi,ψ̃i
are the same as those in Prop. B.4. By denoting vψ,ψ̃(s, a, µ) :=

∑∫
s′

(ψ(s′)− ψ̃(s′))gψ,ψ̃(s, a, µ, s′),
similar to the proof in Prop. B.4, we have the following upper bound:

‖vψi,ψ̃i(s
i, ai, µi)‖2Λi ≤ 4λC2

Ψ + 4ε2/h2.
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By choosing λ = ε2/h2C2
Ψ, we have:

‖φ(si, ai, µi)‖2(Λi)−1 ≥
4ε2

h(4λC2
Ψ + 4ε2/h2)

=
1

r2
.

By a similar discussion, we have:

(1 +
1

r2
)n det Λ1 ≤ det Λn+1 ≤ (λ+

nC2
φ

d
)d.

which implies:

n = O(d log(1 +
hdCφCΨ

ε
)/ log(1 +

1

r2
)) = O(dr2 log(1 +

hdCφCΨ

ε
)).

�

B.2.5 Example 3: Deterministic Transition with Gaussian Noise

Proposition 3.5. [Deterministic Transition with Gaussian Noise] Suppose S ⊂ Rd. Given a
function class G ⊂ {g|g : S × A × ∆(S) × N∗ → R} and convert it to FG := {fg|fg(·, ·, ·) :=
[g(·, ·, ·, 1), ..., g(·, ·, ·, d)]> ∈ Rd, g ∈ G}. Consider the model class PG := {Pf |Pf (·|s, a, µ) ∼
f(s, a, µ) + N (0,Σ), f ∈ FG}, where N (0,Σ) is the Gaussian noise with Σ := Diag(σ, ..., σ).
For ε ≤ 0.3, we have dimE√2(PG ,H, ε) ≤ dimE(FG , 4σε), dimE√2d(PG ,H, ε) ≤ dimE(G, 4σε),
where dimE is the Eluder Dimension for scalar or vector-valued functions [51, 46].

Proof. First of all, consider the function h(x) = 1− exp(−x/8), in general, we have:
x

8
≥ h(x).

Besides, for x ∈ [0, 1], we have 0 ≤ h(x) ≤ 1− exp(−1/8) and

h(x) = 1− exp(−x
8

) = exp(0)− exp(−x
8

) ≥ −
exp(− 1

8 )− exp(0)

1− 0
x >

1

16
x.

Given ε ≤ 0.3 <
√

1− exp(−1/8), suppose we have a sequence of samples x1, ..., xn ∈ X :=
S ×A×∆(S), with xi := (si, ai, µi) , such that for any i ∈ [n], xi is α-weakly-ε-independent w.r.t.
x1, ..., xi−1. For any i ∈ [n], there must exists g1

i , g
2
i ∈ G such that, fg1

i
, fg2

i
∈ FG , and

ε2 ≥
i−1∑
j=1

H2(Pf
g1
i

(·|sj , aj , µj),Pf
g2
i

(·|sj , aj , µj))

=

i−1∑
j=1

h(‖fg1
i
(sj , aj , µj)− fg2

i
(sj , aj , µj)‖2Σ−1)

≥
i−1∑
j=1

1

16σ2
‖fg1

i
(sj , aj , µj)− fg2

i
(sj , aj , µj)‖22.

=
1

16σ2

i−1∑
j=1

d∑
t=1

|g1
i (sj , aj , µj , t)− g2

i (sj , aj , µj , t)|2.

and

α2ε2 <H2(Pf
g1
i

(·|si, ai, µi),Pf
g2
i

(·|si, ai, µi))

≤ 1

8σ2
‖fg1

i
(si, ai, µi)− fg2

i
(si, ai, µi)‖22

=
1

8σ2

d∑
t=1

|g1
i (si, ai, µi, t)− g2

i (si, ai, µi, t)|2
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≤ d

8σ2
max
t∈[d]
|g1
i (si, ai, µi, t)− g2

i (si, ai, µi, t)|2.

By choosing α =
√

2, we know that, for any i ∈ [n], xi is 4σε-independent w.r.t. {x1, ..., xi−1} on
function class FG . Therefore,

dimEα=
√

2(PG ,H, ε) ≤ dimEα=1(FG , 4σε).
Besides, considering the sequence t1, t2, ..., tn with

ti := arg max
t∈[d]

|g1
i (si, ai, µi, t)− g2

i (si, ai, µi, t)|2,

and choosing α =
√

2d, we have (si, ai, µi, ti) is 4σε-independent w.r.t.
{(s1, a1, µ1, t1), ..., (si−1, ai−1, µi−1, ti−1)} for any i ∈ [n]. Therefore,

dimEα=
√

2d(PG ,H, ε) ≤ dimE(G, 4σε).

�

B.3 From Eluder Dimension to Regret Bound

Lemma B.8. Under the condition and notation as Def. 3.1, consider a fixed f∗ ∈ F , and suppose
we have a sequence {fk}Kk=1 ∈ F and {xk}Kk=1 with xk := (sk, ak, µk) ∈ S ×A×∆(S) satisfying
that, for all k ∈ [K],

∑k−1
i=1 D2(fk, f

∗)(xi) ≤ β. Then for all k ∈ [K], and arbitrary ε > 0, we
have:

K∑
k=1

I[D(fk, f
∗)(xk) > αε] ≤ (

β

ε2
+ 1)dimEα(F , ε).

Proof. We first show that, for some k, if D(fk, f
∗)(xk) > αε, then xk is ε-dependent on at most

β/ε2 disjoint sub-sequence in {x1, ..., xk−1}. To see this, by Def. 3.3, if D(fk, f
∗)(xk) > αε and

xk is α-weakly-ε-dependent w.r.t. a sub-sequence {xk1 , ..., xkκ} ⊂ {xi}k−1
i=1 , we must have:

κ∑
i=1

D2(fk, f
∗)(xki) ≥ ε2.

Given that
∑k−1
i=1 D2(fk, f

∗)(xi) ≤ β, the number of such kind of disjoint sub-sequence is upper
bounded by β/ε2.

On the other hand, for arbitrary sub-sequence {xk1
, ..., xkκ} ⊂ {xi}k−1

i=1 , there exists j ∈ [κ] such that
xkj is α-weakly-ε-dependent on L := bκ/dimEα(F , ε)c disjoint sub-sequence of {xk1 , ...xkj−1}.
To see this, we first construct L bins B1 = {xk1

}, ..., BL = {xkL}. Then, we start with j = L+ 1,
and if xkj is already α-weakly-ε-dependent w.r.t. sequences B1, ..., BL, then we finish directly.
Otherwise, there must exists Bl for some l ∈ [L] such that xkj is α-weakly-ε-independent w.r.t.
Bl, and we set Bl ← Bl ∪ {xkj} and j ← j + 1. Because the MBED is bounded, Bl can not be
larger than dimEα(F , ε) if the above process continues. Therefore, the process must stop before
j ≤ L · dimEα(F , ε) ≤ κ.

For arbitrary fixed k ∈ [K], we use {xk1
, ..., xkκ} ⊂ {x1, ..., xk−1} to denote the elements such

that D(fi, f
∗)(xki) > αε for i ∈ [κ]. There must exists j ∈ [κ], such that, on the one hand, xkj

is α-weakly-ε-dependent with at most β/ε2 disjoint sub-sequence of {xk1
, ...xkj−1

}, and on the
other hand, xkj is α-weakly-ε-dependent on at least L := bκ/dimEα(F , ε)c disjoint sub-sequence
of {xk1

, ...xkj−1
}. Therefore, we have:

β

ε2
≥ bκ/dimEα(F , ε)c ≥ κ/dimEα(F , ε)− 1.

which implies κ ≤ ( βε2 + 1)dimEα(F , ε). �
Lemma 4.4. Under the condition as Def. 3.1, consider a fixed f∗ ∈ F , and suppose we have a
sequence {fk}Kk=1 ∈ F and {xk}Kk=1 ⊂ S×A×∆(S), s.t., for all k ∈ [K],

∑k−1
i=1 D2(fk, f

∗)(xi) ≤
β, then for any ε > 0, we have

∑K
k=1 D(fk, f

∗)(xk) = O(
√
βKdimEα(M, ε) + αKε).
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Proof. We first sort the sequence {D(fk, f
∗)(xk)}Kk=1 and denote them by e1, e2, ..., ek with e1 ≥

e2... ≥ eK . For t ∈ [K], given any ε > 0, by Lem. B.8, for those et > αε, we should have:

t ≤
K∑
k=1

I[ek ≥ et] ≤ (
β

e2
t

+ 1)dimEα(F , ε).

which implies et ≤
√

βdimEα(F,ε)
t−dimEα(F,ε) . Therefore, for any ε, we have:

K∑
k=1

ek ≤αKε+

K∑
k=1

I[ek > αε]ek

≤αKε+ (dimEα(F , ε) + 1)C +

K∑
k=dimEα(F,ε)+2

√
βdimEα(F , ε)
t− dimEα(F , ε)

(Recall the constant C is the upper bound for D(f, f∗)(x))

≤αKε+ (dimEα(F , ε) + 1)C +
√
βdimEα(F , ε)

K∑∫
t=dimEα(F,ε)+1

1√
t− dimEα(F , ε)

dt

=O(
√
βKdimEα(F , ε) + αKε).

�

C Proofs for MLE Arguments

In this section, we only provide the proof for the MLE arguments of the algorithm flow for Mean
Field Game, where in each iteration, we collect two data w.r.t. two policies in two modes. One can
easily obtain the proof for the DCP of MFC by directly assigning π̃ = π and removing the discussion
for data {s̃, ã, s̃′}, so we omit it.

In the following, given the data collected at iteration k, Zk := {{skh, akh, s′kh+1}Hh=1 ∪
{s̃kh, ãkh, s̃′kh+1}Hh=1}, we use fπ

k,π̃k

M (Zk) to denote the conditional probability w.r.t. model M
with transition function {PT,h}Hh=1, i.e.:

fπ
k,π̃k

M (Zk) =
∏
h∈[H]

PT,h(s′kh+1|skh, akh, µπ
k

M,h)PT,h(s̃′kh+1|s̃kh, ãkh, µπ
k

M,h).

For the simplicity of notations, we divide the random variables in Zk into two parts depending on
whether they are conditioned or not:

Zkcond := {(skh, akh)Hh=1 ∪ (s̃kh, ã
k
h)Hh=1}, Zkpred := {(s′kh+1)Hh=1 ∪ (s̃′kh+1)Hh=1}.

Note that for different h ∈ [H], (skh, a
k
h, s
′k
h+1) or (s̃kh, ã

k
h, s̃
′k
h+1) are sampled from different trajecto-

ries. Therefore, there is no correlation between skh, a
k
h (or s̃kh, ã

k
h) with s′kh′ , a

′k
h′ (or s̃′kh′ , ã

′k
h′ ) for those

h 6= h′.
Lemma C.1. In the following, for the data Z1, ...,Zk collected in Alg. 1 in M∗, for any δ ∈ (0, 1):

Pr( max
M∈M

k∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
≥ log

|M|K
δ

) ≤ δ, ∀k ∈ [K].

Proof. We denote Ek := E[·|{(πi, π̃i,Zi)}k−1
i=1 ∪ {πk, π̃k},M∗]. First of all, for any M ∈ M, we

have:

E[exp(

k∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
)] =E[exp(

k−1∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
)Ek[exp(log

fπ
k,π̃k

M (Zk)

fπ
k,π̃k

M∗ (Zk)
)]]

=E[exp(

k−1∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
)Ek[

fπ
k,π̃k

M (Zk)

fπ
k,π̃k

M∗ (Zk)
]]
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=E[exp(

k−1∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
)]

=1.

Here the last but two step is because:

Ek[
fπ

k,π̃k

M (Zk)

fπ
k,π̃k

M∗ (Zk)
] =EZkcond [EZkpred [

fπ
k,π̃k

M (Zk)

fπ
k,π̃k

M∗ (Zk)
|Zkcond,µπ

k

M∗ ,M
∗]|πk, π̃k,M∗]

=EZkcond [
∑
Zkpred

fπ
k,π̃k

M∗ (Zk)
fπ

k,π̃k

M (Zk)

fπ
k,π̃k

M∗ (Zk)
|πk, π̃k,M∗]

=EZkcond [
∑
Zpred

fπ
k,π̃k

M (Zk)|πk, π̃k,M∗] = EZkcond [1||πk, π̃k,M∗] = 1.

where
∑
Zkpred

means summation over all possible value of Zkpred.

Therefore, by Markov Inequality, for any fixed M ∈M and fixed k ∈ [K], and arbitrary δ ∈ (0, 1),
we have:

Pr(

k∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
≥ log

1

δ
) ≤ δ · E[exp(

k∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
)] = δ.

By taking union bound over all M ∈M and all k ∈ [K], we have:

Pr( max
M∈M

k∑
i=1

log
fπ

i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
≥ log

|M|K
δ

) ≤ δ, ∀k ∈ [K].

�

Given dataset Dk := {(πi, π̃i,Zi)}ki=1, we use D̄k to denote the “tangent” sequence
{(πi, π̃i, Z̄i)}ki=1 where the policies are the same as Dk while each Z̄i is independently sampled
from the same distribution as Zi conditioning on πi and π̃i.

Lemma C.2. Let l : Π×Π×(S×A×S)H×(S×A×S)H → R be a real-valued loss function which
maps from the joint space of two policies and space of Zk to R. Define L(Dk) :=

∑k
i=1 l(π

i, π̃i,Zi)
and L(D̄k) :=

∑k
i=1 l(π

i, π̃i, Z̄i). Then, for arbitrary k ∈ [K],

E[exp(L(Dk)− logE[exp(L(D̄k))|Dk])] = 1.

Proof. We denote Ei := EZi [exp(l(πi, π̃i,Zi))|πi, π̃i,M∗]. By definition of Z̄i, we should also
have:

ED̄k [exp(

k∑
i=1

l(πi, π̃i, Z̄i))|Dk] =

k∏
i=1

Ei.

Therefore,

EDk [exp(L(Dk)− logED̄k [exp(L(D̄k))|Dk])]

=EDk−1∪{πk,π̃k}[EZk [
exp(

∑k
i=1 l(π

i, π̃i,Zi))
ED̄k [exp(

∑k
i=1 l(π

i, π̃i, Z̄i))|Dk]
|Dk−1 ∪ {πk, π̃k}]]

=EDk−1∪{πk,π̃k}[EZk [
exp(

∑k
i=1 l(π

i, π̃i,Zi))∏k
i=1E

i
|Dk−1 ∪ {πk, π̃k}]]

=EDk−1∪{πk,π̃k}[
exp(

∑k−1
i=1 l(π

i, π̃i,Zi))∏k−1
i=1 E

i
· EZk [

l(πk, π̃k,Zk)

Ek
|Dk−1 ∪ {πk, π̃k}]]
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=EDk−1∪{πk,π̃k}[
exp(

∑k−1
i=1 l(π

i, π̃i,Zi))∏k−1
i=1 E

i
]

=EDk−1 [
exp(

∑k−1
i=1 l(π

i, π̃i,Zi))∏k−1
i=1 E

i
] = ... = 1.

�
Theorem 4.2. [Guarantees for MLE] By running Alg. 1 with any δ ∈ (0, 1), with probability 1− δ,
for all k ∈ [K], we have M∗ ∈ M̂k; for each M ∈ M̂k with transition PT and any h ∈ [H]:

k∑
i=1

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))] ≤ 2 log(
2|M|KH

δ
).

Besides, for MFG branch, we additionally have:

k∑
i=1

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))] ≤ 2 log(
2|M|KH

δ
).

Proof. Given a model M ∈M, we consider the loss function:

lM (π, π̃,Z) :=

log
fπ,π̃M (Z)

fπ,π̃
M∗ (Z)

, if fπ,π̃M∗ (Z) 6= 0

0, otherwise

Define Mk
MLE ← arg maxM∈M lkMLE(M). Considering the event E :

E := {lkMLE(Mk
MLE)− lkMLE(M∗) ≤ log

2|M|KH
δ

, ∀k ∈ [K]}.

and the event E ′ defined by:

E ′ := {− logED̄k [expLM (D̄k)|Dk] ≤ −LM (Dk) + log(
2|M|KH

δ
), ∀M ∈M, k ∈ [K]}.

where we define LM (Dk) :=
∑k
i=1 lM (πi, π̃i,Zi) and LM (D̄k) :=

∑k
i=1 lM (πi, π̃i, Z̄i). By

Lem. C.1, we have Pr(E) ≥ 1− δ
2H . Besides, by applying Lem. C.2 on lM defined above and applying

Markov inequality and the union bound over all M ∈M and k ∈ [K], we have Pr(E ′) ≥ 1− δ
2H .

On the event E ∩ E ′, for any k ∈ [K], we have M∗ ∈ M̂k, and for any M ∈ M̂k:

− logED̄k [expLM (D̄k)|Dk] ≤− LM (Dk) + log(
2|M|KH

δ
)

=lkMLE(M∗)− lkMLE(M) + log(
2|M|KH

δ
)

≤lkMLE(Mk
MLE)− lkMLE(M) + log(

2|M|KH
δ

)

≤2 log(
2|M|KH

δ
).

Therefore, for any k and any M ∈ M̂k,

2 log(
2|M|KH

δ
) ≥−

k∑
i=1

logEZi [

√√√√fπ
i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
|πi, π̃i,M∗]

≥
k∑
i=1

1− EZi [

√√√√fπ
i,π̃i

M (Zi)
fπ

i,π̃i

M∗ (Zi)
|πi, π̃i,M∗] (− log x ≥ 1− x)
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=

k∑
i=1

EZicond [1−
∑
Zipred

√
fπ

i,π̃i

M (Zi)fπi,π̃iM∗ (Zi)|πi, π̃i,M∗].

For any i ∈ [k] and for arbitrary random variable sih, a
i
h ∈ Zicond and s′ih+1 ∈ Zipred, we have:

EZicond [1−
∑
Zipred

√
fπ

i,π̃i

M (Zi)fπi,π̃iM∗ (Zi)|πi, π̃i,M∗]

=EZicond [1−
∑∫
s′ih+1

√
PT,h(s′ih+1|sih, aih, µπ

i

M,h)PT∗,h(s′ih+1|sih, aih, µπ
i

M∗,h)
∑

Zipred\{s
′i
h+1}

√
fπ

i,π̃i

M (Zi)fπi,π̃iM∗ (Zi)|πi, π̃i,M∗]

(Independence between s′ih+1 and Zi \ {s′ih+1} conditioning on Zicond)

≥EZicond [1−
∑∫
s′ih+1

√
PT,h(s′ih+1|sih, aih, µπ

i

M,h)PT∗,h(s′ih+1|sih, aih, µπ
i

M∗,h)|πi, π̃i,M∗]

(
√
ab ≤ a+b

2 )

=Esih,aih [1−
∑∫
s′ih+1

√
PT,h(s′ih+1|sih, aih, µπ

i

M,h)PT∗,h(s′ih+1|sih, aih, µπ
i

M∗,h)|πi, π̃i,M∗]

=Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))].

Similarly, for arbitrary random variable s̃ih, ã
i
h ∈ Zicond and s̃′ih+1 ∈ Zipred, we have:

EZicond [1−
∑
Zipred

√
fπ

i,π̃i

M (Zi)fπi,π̃iM∗ (Zi)|πi, π̃i,M∗] ≥ E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))].

Therefore, on the event E ′, for any k ∈ [K], M ∈ M̂k, and a fixed h ∈ [H], we have:

2 log(
2|M|KH

δ
) ≥

k∑
i=1

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))]

2 log(
2|M|KH

δ
) ≥

k∑
i=1

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))].

By taking the union bound for all h ∈ [H], we finish the proof for DCP of MFG. The analysis and
results for MFC is similar and easier so we omit it here. �
Corollary C.3. Under the same event in Thm. 4.2, for any k ∈ [K], M ∈ M̂k, and a fixed h ∈ [H],
we have:

k∑
i=1

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M∗,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))] ≤(4 + 8L2
TH

2) log(
2|M|KH

δ
),

k∑
i=1

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M∗,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))] ≤(4 + 8L2
TH

2) log(
2|M|KH

δ
).

Proof. By Assump. B, for any i, we have:

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M∗,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))]

≤2Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))] + 2L2
T ‖µπ

i

M,h − µπ
i

M∗,h‖2TV
≤2Eπi,M∗ [H2(PT,h(·|sih, aih, µπ

i

M,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))]

+ 4L2
THEπ,M [

h−1∑
h′=1

H2(PT,h′(·|sih′ , aih′ , µπ
i

M,h′), PT∗,h′(·|sih′ , aih′ , µπ
i

M∗,h′))].

(Lem. D.1; Cauchy-Schwarz inequality; ‖P −Q‖TV ≤
√

2H(P,Q))
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Therefore, on the event E ′, for any k ∈ [K], M ∈ M̂k, and a fixed h ∈ [H], we have:

k∑
i=1

Eπi,M∗ [H2(PT,h(·|sih, aih, µπ
i

M∗,h), PT∗,h(·|sih, aih, µπ
i

M∗,h))] ≤ (4 + 8L2
TH

2) log(
2|M|KH

δ
).

Similarly, we have:

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))]

≤2E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M∗,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))] + 2L2
T ‖µπ

i

M,h − µπ
i

M∗,h‖2TV.

By similar discussion, we have:

k∑
i=1

E
π̃i,M∗|µπi

M∗
[H2(PT,h(·|s̃ih, ãih, µπ

i

M∗,h), PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h))] ≤ (4 + 8L2
TH

2) log(
2|M|KH

δ
).

�

Theorem C.4. [Accumulative Model Difference] For any δ ∈ (0, 1), with probability 1− 3δ, for any
sequence {M̂k+1}k∈[K] with M̂k+1 ∈ M̂k+1 for all k ∈ [K], and any h ∈ [H], we have:

K∑
k=1

Eπk+1,M∗ [‖PT̂k+1,h(·|sh, ah, µπ
k+1

M∗,h)− PT∗,h(·|sh, ah, µπ
k+1

M∗,h)‖TV]

= O
(

(1 + LTH)

√
KdimEα(M, ε0) log

2|M|KH
δ

+ αKε0

)
K∑
k=1

E
π̃k+1,M∗|µπk+1

M∗
[‖PT̂k+1,h(·|sh, ah, µπ

k+1

M∗,h)− PT∗,h(·|sh, ah, µπ
k+1

M∗,h)‖TV]

= O
(

(1 + LTH)

√
KdimEα(M, ε0) log

2|M|KH
δ

+ αKε0

)
.

Proof. We first take a look at the data (s̃kh, ã
k
h, s̃
′k
h+1) collected by (π̃i, πi) and the Eluder Dimension

w.r.t. the Hellinger distance. On the event in Thm. 4.2 and Lem. D.4, there exists an absolute constant
cH, s.t., w.p. 1− δ

2 , for any h ∈ [H], and any M̂k+1 ∈ M̂k+1, we have:

k∑
i=1

H2(PT∗,h(·|s̃ih, ãih, µπ
i

M∗,h),PT̂k+1,h(·|s̃ih, ãih, µπ
i

M∗,h)) ≤ cH(1 + L2
TH

2) log
2|M|KH

δ
.

(10)

By Lem. 4.4, there exists some constant c′H, for any ε0, we have:

K∑
k=1

H(PT∗,h(·|s̃k+1
h , ãk+1

h , µπ
k+1

M∗,h),PT̂k+1,h(·|s̃k+1
h , ãk+1

h , µπ
k+1

M∗,h))

≤ c′H
(

(1 + LTH)

√
KdimEα(M,H, ε0) log

2|M|KH
δ

+ αKε0

)
.

By applying Lem. D.4 again, w.p. 1− δ
2 , we have:

K∑
k=1

E
π̃k+1,M∗|µπk+1

M∗
[H(PT∗,h(·|sh, ah, µπ

k+1

M∗,h),PT̂k+1,h(·|sh, ah, µπ
k+1

M∗,h))]

≤3c′H

(
(1 + LTH)

√
KdimEα(M,H, ε0) log

2|M|KH
δ

+ αKε0

)
+ log

2|M|H
δ

≤(3c′H + 1)
(

(1 + LTH)

√
KdimEα(M,H, ε0) log

2|M|KH
δ

+ αKε0

)
.

29



By the relationship that TV(P,Q) ≤
√

2H(P,Q), on the one hand, the above implies an upper
bound for the accumulative model difference measured by TV-distance; on the other hand, we can
conduct similar discussion for the Eluder dimension dimE(M,TV, ε0) and derive another upper
bound. Combine them together, for some constant c, we have:

K∑
k=1

E
π̃k+1,M∗|µπk+1

M∗
[‖PT∗,h(·|sh, ah, µπ

k+1

M∗,h),PT̂k+1,h(·|sh, ah, µπ
k+1

M∗,h)‖TV]

≤(3c+ 1)
(

(1 + LTH)

√
KdimEα(M, ε0) log

2|M|KH
δ

+ αKε0

)
.

where we use that dimα(M, ε0) = min{dimEα(M,H, ε0), dimEα(M,TV, ε0)}.

Then, we can conduct similar discussion for the data (sih, a
i
h, s

i
h+1) collected by (πk+1, πk+1), and

for some constant c′, we have:

K∑
k=1

Eπk+1,M∗ [‖PT∗,h(·|sh, ah, µπ
k+1

M∗,h),PT̂k+1,h(·|sh, ah, µπ
k+1

M∗,h)‖TV]

≤(3c′ + 1)
(

(1 + LTH)

√
KdimEα(M, ε0) log

2|M|KH
δ

+ αKε0

)
.

We finish the proof by noting that the total failure rate can be upper bounded by δ+δ/2·2·2 = 3δ. �

D Proofs for Mean-Field Reinforcement Learning

D.1 Missing Details

Assumption D (Contraction Operator). For arbitrary h, and arbitrary valid density µh, µ′h ∈ ∆(S),
and arbitrary model M := (PT ,Pr) ∈M, there exists LΓ < 1, such that,

‖ΓπM,h(µh)− ΓπM,h(µ′h)‖TV ≤ LΓ‖µh − µ′h‖TV.

where ΓπM,h(µh) is defined in Eq. (1). According to [63], Assump. D is implied by some Lipschitz
continuous assumption on the transition function w.r.t. the Dirac distance d(s, s′) := I[s 6= s′] (at
least when S and A are countable). As we will see later, although Assump. D is not necessary to
derive sample complexity bound, it can be useful to get rid of exponential dependence on LT .

Algorithm 3: Regret to PAC Conversion

1 Input: Policy sequence π1, ..., πK ; Accuracy level ε; Confidence level δ.
2 N ← dlog 3

2

1
δ e.

3 Randomly select N policies from π1, ..., πK , denoted as πk1 , ...πkN .
4 for n ∈ [N ] do
5 Sample 16

ε2 log 2N
δ trajectories by deploying πkn .

6 Compute empirical estimation ĴM∗(πkn) by averaging the return in trajectories.
7 end
8 return π := πkn∗ with n∗ ← arg maxn∈[N ] ĴM∗(π

kn).

D.2 Proofs for Basic Lemma

Lemma D.1. [Density Estimation Error] Given two model M and M̃ and a policy π, we have:

‖µπM,h+1 − µπM̃,h+1
‖TV ≤Eπ,M [

h∑
h′=1

‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ
π
M̃,h′

)‖TV].

(11)
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Besides, under Assump. B, we have:

‖µπM,h+1 − µπM̃,h+1
‖TV ≤ Eπ,M [

h∑
h′=1

(1 + LT )h−h
′
‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ

π
M,h′)‖TV].

(12)

Moreover, under Assump. B and Assump. D, we have:

‖µπM,h+1 − µπM̃,h+1
‖TV ≤ Eπ,M [

h∑
h′=1

Lh−h
′

Γ ‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ
π
M,h′)‖TV].

(13)

Proof. In the following, we will use S̄ or S̄ ′ to denote a subset of S.

Proof for Eq. (11)

‖µπM,h+1 − µπM̃,h+1
‖TV

= sup
S̄⊂S
|
∑∫

sh+1∈S̄

( ∑∫
sh,ah

µπM,h(sh)π(ah|sh)PT,h(sh+1|sh, ah, µπM,h)−
∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh)PT̃ ,h(sh+1|sh, ah, µπM̃,h
)
)
|

= sup
S̄⊂S
|
∑∫

sh+1∈S̄

∑∫
sh,ah

(µπM,h(sh)− µπ
M̃,h

(sh))π(ah|sh)PT,h(sh+1|sh, ah, µπM,h)|

+ sup
S̄′⊂S

|
∑∫

sh+1∈S̄′

∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh)(PT,h(sh+1|sh, ah, µπM,h)− PT̃ ,h(sh+1|sh, ah, µπM̃,h
))|.

For the first part, we have:

sup
S̄⊂S
|
∑∫

sh+1∈S̄

∑∫
sh,ah

(µπM,h(sh)− µπ
M̃,h

(sh))π(ah|sh)PT,h(sh+1|sh, ah, µπM,h)|

≤ sup
S̄⊂S
|
∑∫
sh

(µπM,h(sh)− µπ
M̃,h

(sh))
∑∫
ah

π(ah|sh)
∑∫

sh+1∈S̄

PT,h(sh+1|sh, ah, µπM,h)|

≤ sup
S̄⊂S
|
∑∫
sh∈S̄

µπM,h(sh)− µπ
M̃,h

(sh)|

=‖µπM,h − µπM̃,h
‖TV.

For the second part, we have:

sup
S̄′⊂S

|
∑∫

sh+1∈S̄′

∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh)(PT,h(sh+1|sh, ah, µπM,h)− PT̃ ,h(sh+1|sh, ah, µπM̃,h
))|

≤
∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh) sup
S̄′⊂S

|
∑∫

sh+1∈S̄′

(PT,h(sh+1|sh, ah, µπM,h)− PT̃ ,h(sh+1|sh, ah, µπM̃,h
))|

=Esh∼µπM,h,ah∼π(·|sh)[‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].

Therefore,

‖µπM,h+1 − µπM̃,h+1
‖TV ≤‖µπM,h − µπM̃,h

‖TV + Esh∼µπM,h,ah∼π(·|sh)[‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

≤... ≤ Eπ,M [

h∑
h′=1

‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ
π
M̃,h′

)‖TV].

(14)

Proof for Eq. (12) Starting with the first inequality of Eq. (14) and applying the Assump. B, we
directly have:

‖µπM,h+1 − µπM̃,h+1
‖TV ≤(1 + LT )‖µπM,h − µπM̃,h

‖TV + Esh∼µπh,ah∼π[‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]
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≤Eπ[

h∑
h′=1

(1 + LT )h−h
′
‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ

π
M,h′)‖TV].

Proof for Eq. (13) Under Assump. D, we can use a different way to decompose the density
difference.

‖µπM,h+1 − µπM̃,h+1
‖TV

= sup
S̄⊂S
|
∑∫

sh+1∈S̄

( ∑∫
sh,ah

µπM,h(sh)π(ah|sh)PT,h(sh+1|sh, ah, µπM,h)−
∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh)PT̃ ,h(sh+1|sh, ah, µπM̃,h
)
)
|

= sup
S̄⊂S
|
∑∫

sh+1∈S̄

( ∑∫
sh,ah

µπM,h(sh)π(ah|sh)PT̃ ,h(sh+1|sh, ah, µπM,h)−
∑∫
sh,ah

µπ
M̃,h

(sh)π(ah|sh)PT̃ ,h(sh+1|sh, ah, µπM̃,h
)
)
|

+ sup
S̄⊂S
|
∑∫

sh+1∈S̄

∑∫
sh,ah

µπM,h(sh)π(ah|sh)
(
PT,h(sh+1|sh, ah, µπM,h)− PT̃ ,h(sh+1|sh, ah, µπM,h)

)
|

≤‖Γπ
M̃,h

(µπM,h)− Γπ
M̃,h

(µπ
M̃,h

)‖TV + Esh∼µπM,h,ah∼π[‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

≤LΓ‖µπM,h − µπM̃,h
‖TV + Esh∼µπh,ah∼π[‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

≤Eπ[

h∑
h′=1

Lh−h
′

Γ ‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ
π
M,h′)‖TV].

�

As implied by Lem. D.1, we have the following corollary.
Corollary D.2. In general,

H∑
h=1

‖µπM,h − µπM̃,h
‖TV ≤Eπ,M [

H∑
h=1

(H − h)‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].

Besides, under Assump. B, we have:

H∑
h=1

‖µπM,h − µπM̃,h
‖TV ≤

H∑
h=1

Eπ,M [

h−1∑
h′=1

(1 + LT )h−h
′−1‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ

π
M,h′)‖TV]

=

H∑
h=1

(1 + LT )H−h − 1

LT
Eπ,M [‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

Moreover, with additional Assump. D, we have:

H∑
h=1

‖µπM,h − µπM̃,h
‖TV ≤

H∑
h=1

Eπ,M [

h−1∑
h′=1

Lh−h
′−1

Γ ‖PT,h′(·|sh′ , ah′ , µπM,h′)− PT̃ ,h′(·|sh′ , ah′ , µ
π
M,h′)‖TV]

≤
H∑
h=1

1

1− LΓ
Eπ,M [‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV].

(LΓ < 1)

Theorem D.3 (Transition Difference Transformation; Full Version of Thm. 4.3). Given two arbi-
trary model M = (S,A, H,PT ,Pr) and M̃ = (S,A, H,PT̃ ,Pr), and arbitrary policy π, under
Assump. B, we have:

Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

≤(1 + LTH)Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV], (15)
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and

Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

≤Eπ,M [

H∑
h=1

(1 + LT )H−h‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]. (16)

Moreover, additionally under Assump. D, we have:

Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

≤(1 +
LT

1− LΓ
)Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]. (17)

Proof. By Assump. B, we have:∣∣∣Eπ,M [
H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM,h)‖TV]

− Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

∣∣∣ ≤ LT H∑
h=1

‖µπM,h − µπM̃,h
‖TV.

(18)

Then, by applying Corollary D.2, and plugging into the above equation, we can finish the proof. �
Lemma D.4 (Concentration Lemma). Let X1, X2, ... be a sequence of random variable taking value
in [0, C] for some C ≥ 1. Define Fk = σ(X1, .., Xk−1) and Yk = E[Xk|Fk] for k ≥ 1. For any
δ > 0, we have:

Pr(∃n
n∑
k=1

Xk ≤ 3

n∑
k=1

Yk + C log
1

δ
) ≤ δ, Pr(∃n

n∑
k=1

Yk ≤ 3

n∑
k=1

Xk + C log
1

δ
) ≤ δ.

Proof. Define Zk := E[exp(t
∑k
i=1Xi − 3Yi)]. By taking t ∈ [0, 1/C], we have:

E[Zk|Fk] = exp(t

k−1∑
i=1

(Xi − 3Yi))E[exp(t(Xk − 3Yk))|Fk]

≤ exp(t

k−1∑
i=1

(Xi − 3Yi)) exp(−3Yk)E[1 + tXk + 2t2X2
k |Fk]

≤ exp(t

k−1∑
i=1

(Xi − 3Yi)) exp(−3Yk) · (1 + 3tYk) (0 ≥ tXk ≤ 1)

≤ exp(t

k−1∑
i=1

(Xi − 3Yi)) · exp(−3Yk + 3tYk) (1 + x ≤ exp(x))

≤ exp(t

k−1∑
i=1

(Xi − 3Yi)) = Zk−1.

We augment the sequence by set X0 = Y0 = 0, which implies Z0 = 1. Therefore, {Zk}k≥0 is a
super-martingale w.r.t. {Fk}k≥1. Denote τ to be the smallest t such that

∑t
i=1(Xi−3Yi) > C log 1

δ ,
we have:

Zk∧τ =E[exp(t

k∧τ∑
i=1

(Xi − 3Yi))]
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=E[

k∑
j=1

I[τ = j] exp(t

τ∑
i=1

(Xi − 3Yi))] + E[I[τ > k] exp(t

k∑
i=1

(Xi − 3Yi))]

≤ exp(tC)E[

k∑
j=1

I[τ = j] exp(t

τ−1∑
i=1

(Xi − 3Yi))] + E[I[τ > k] exp(t

k∑
i=1

(Xi − 3Yi))]

(exp(t(Xi − 3Yi)) ≤ exp(tC))

≤ exp(tC + tC log
1

δ
)

k∑
j=1

E[I[τ = j]] + exp(tC log
1

δ
)E[I[τ > k]]

≤ exp(tC + tC log
1

δ
).

which is upper bounded. Therefore, by the optimal stopping theorem, and choosing t = 1/C, we
have:

Pr(∃k ≤ K,
k∑
i=1

Xk − 3Yk ≥ C log
1

δ
) = Pr(τ ≤ K) ≤ Pr(ZK∧τ ≥ exp(tl log

1

δ
))

≤ E[ZK∧τ ]

exp(tC log 1
δ )
≤ Z0

exp(tC log 1
δ )

= δ.

Since the above holds for arbitrary K, by setting K → +∞, we have:

Pr(∃n
n∑
k=1

Xk ≤ 3

n∑
k=1

Yk + C log
1

δ
) ≤ δ.

The other inequality can be proved similarly by considering Z ′k = E[exp(t
∑k
i=1(Yk − 3Xk)]. �

D.3 Proofs for RL for Mean-Field Control

Lemma 4.5. [Simulation Lemma for MFC] Given an arbitrary model M with transition function
PT , and an arbitrary policy π, under Assump. B, we have:

|JM∗(π)− JM (π)| ≤Eπ,M∗ [
H∑
h=1

(1 + LrH)‖PT∗,h(·|sh, ah, µπM∗,h)− PT,h(·|sh, ah, µπM,h)‖TV].

Proof. We first prove the value difference for the general case. The lemma can be proved by directly
assign M̃ = M∗ and π = π̃.
|JM (π̃;µπM )− J

M̃
(π̃;µπ

M̃
)|

=|Es1∼µ1
[V π̃M,1(s1;µπM )− V π̃

M̃,1
(s1;µπ

M̃
)]|

=|Es1∼µ1,a1∼π̃[r1(s1, a1, µ
π
M,1)− r1(s1, a1, µ

π
M̃,1

)

+
∑∫
s2

PT,1(s2|s1, a1, µ
π
M,1)V π̃M,2(s2;µπM )−

∑∫
s2

PT̃ ,1(s2|s1, a1, µ
π
M̃,1

)V π̃
M̃,2

(s2;µπ
M̃

)]|

≤Lr‖µπM,1 − µπM̃,1
‖TV + |Es1∼µ1,a1∼π̃[

∑∫
s2

(
PT,1(s2|s1, a1, µ

π
M,1)− PT̃ ,1(s2|s1, a1, µ

π
M̃,1

)
)
V π̃
M̃,2

(s2;µπ
M̃

)]|

+ |Es1∼µ1,a1∼π̃[
∑∫
s2

PT,1(s2|s1, a1, µ
π
M,1)

(
V π̃M,2(s2;µπM )− V π̃

M̃,2
(s2;µπ

M̃
)
)

]|

≤Lr‖µπM,1 − µπM̃,1
‖TV + Es1∼µ1,a1∼π̃[‖PT,1(·|s1, a1, µ

π
M,1)− PT̃ ,1(·|s1, a1, µ

π
M̃,1

)‖TV]

+ |Es1∼µ1,a1∼π̃,s2∼PT,1(·|s1,a1,µπM )[V
π̃
M,2(s2;µπM )− V π̃

M̃,2
(s2;µπ

M̃
)]|

≤
H∑
h=1

Lr‖µπM,h − µπM̃,h
‖TV + Eπ̃,M |µπM [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].

(19)
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we finish the proof by applying Corollary D.2. �
Theorem D.5 (Result for MFC; Full Version of Thm. 4.1). Under Assump.A, B, by running Alg. 1
with the MFC branch, after consuming HK trajectories in Alg. 1 and additional O( 1

ε2 log2 1
δ )

trajectories in the policy selection process in Alg. 3, where K is set to

K = Õ
(

(1 + LrH)2(1 + LTH)2
( (1 + LT )H − 1

LT

)2 dimEα(M, ε0)

ε2

)
with

ε0 = O(
LT ε

αH(1 + LrH)(1 + LTH)((1 + LT )H − 1)
).

or set to the following under additional Assump. D:

K = Õ
(

(1 + LrH)2(1 + LTH)2
(

1 +
LT

1− LΓ

)2 dimEα(M, ε0)

ε2

)
,

with

ε0 = O(
ε

αH(1 + LrH)(1 + LTH)
(1 +

LT
1− LΓ

)−1).

with probability at least 1− 5δ, we have EOpt(π̂
∗
Opt) ≤ ε.

Proof. On the event of Thm. 4.2, by Lem. 4.5, we have:

K∑
k=1

EOpt(π
k+1) ≤

K∑
k=1

JMk+1(πk+1)− JM∗(πk+1) (M∗ ∈ M̂k+1)

≤
K∑
k=1

Eπk+1,M∗ [

H∑
h=1

(1 + LrH)‖PT∗,h(·|sh, ah, µπ
k+1

M∗,h)− PTk+1,h(·|sh, ah, µπ
k+1

Mk+1,h)‖TV].

Next, by applying Thm. 4.3 and Thm. C.4, w.p. 1− 3δ, for any ε0 > 0, we have:

K∑
k=1

EOpt(π
k+1) = O

(
(1 + LTH)(1 + LrH)

(1 + LT )H − 1

LT

(√
KdimEα(M, ε0) log

2|M|KH
δ

+ αHKε0

))
.

Now take a look at Alg. 3, for each n ∈ [N ], by Markov inequality, with probability at least 2
3 :

EOpt(π
kn) = JM∗(π

∗
Opt)− JM∗(πkn) (20)

≤3 · 1

K
·O
(

(1 + LTH)(1 + LrH)
(1 + LT )H − 1

LT

(√
KdimEα(M, ε0) log

2|M|KH
δ

+ αHKε0

))
.

(21)

=O
(

(1 + LTH)(1 + LrH)
(1 + LT )H − 1

LT

(√ 1

K
dimEα(M, ε0) log

2|M|KH
δ

+ αHε0

))
.

(22)

Since πk1 , ..., πkN are i.i.d. randomly selected, by choosing:

K = Õ
(

(1 + LTH)2(1 + LrH)2
( (1 + LT )H − 1

LT

)2 dimEα(M, ε0)

ε2

)
with ε0 = O( LT ε

αH(1+LTH)(1+LrH)((1+LT )H−1)
), to make sure the RHS of Eq. (22) is less than ε

2 .
Therefore, in Alg. 3, with probability 1− δ, we have

∃n ∈ [N ], EOpt(π
kn) ≤ ε

2
.
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Then, by Hoeffding inequality, and note that the total return is upper bounded by 1, on good events of
concentration, with probability 1− δ, we have:

∀n ∈ [N ], |ĴM∗(πkn)− JM∗(πkn)| ≤ ε

4
.

which implies
JM∗(π̂

∗
Opt) ≥ max

n∈[N ]
JM∗(π

kn)− ε

2
≥ JM∗(π∗Opt)− ε.

Combining all the failure rate together, the above holds with probability at least 1− 5δ.

The analysis is similar with additional Assump. D, where we have:
K∑
k=1

EOpt(π
k+1) = O

(
(1 + LTH)(1 + LrH)(1 +

LT
1− LΓ

)
(√

KdimE(M, ε0) log
2|M|KH

δ
+ αHKε0

))
,

and we should choose

K = Õ
(

(1 + LTH)2(1 + LrH)2
(

1 +
LT

1− LΓ

)2 dimEα(M, ε0)

ε2

)
,

with ε0 = O( ε
αH(1+LTH)(1+LrH) (1 + LT

1−LΓ
)−1). �

D.4 Proofs for RL for Mean-Field Game

Lemma 4.6. Given two arbitrary model M and M̃ , and two policies π and π̃, we have:

|∆M (π̃, π)−∆
M̃

(π̃, π)| ≤Eπ̃,M |µπM [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

+(2LrH + 1)Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]. (9)

Proof. First of all,

|∆M (π̃, π)−∆
M̃

(π̃, π)| =|JM (π̃;µπM )− JM (π;µπM )− J
M̃

(π̃;µπ
M̃

) + J
M̃

(π;µπ
M̃

)|
≤|JM (π̃;µπM )− J

M̃
(π̃;µπ

M̃
)|+ |JM (π;µπM )− J

M̃
(π;µπ

M̃
)|.

From Eq. (19) of Lem. 4.5, we have:

|JM (π̃;µπM )− J
M̃

(π̃;µπ
M̃

)|

≤
H∑
h=1

Lr‖µπM,h − µπM̃,h
‖TV + Eπ̃,M |µπM [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].

By choosing π̃ = π, the above implies

|JM (π;µπM )− J
M̃

(π;µπ
M̃

)|

≤
H∑
h=1

Lr‖µπM,h − µπM̃,h
‖TV + Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV

]
.

Therefore,

|∆M (π̃, π)−∆
M̃

(π̃, π)| ≤2

H∑
h=1

Lr‖µπM,h − µπM̃,h
‖TV

+ Eπ̃,M |µπM [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV]

+ Eπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].
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where we have:
H∑
h=1

‖µπM,h − µπM̃,h
‖TV ≤ HEπ,M [

H∑
h=1

‖PT,h(·|sh, ah, µπM,h)− PT̃ ,h(·|sh, ah, µπM̃,h
)‖TV].

As a result of Corollary. D.2, and we finish the proof. �
Theorem D.6 (Result for MFG; Full Version of Thm. 4.1). Under Assump. A and B, by running
Alg. 1 with the MFG branch, after consuming 2HK trajectories, where K is set to

K = Õ
(

(1 + LTH)2(1 + LrH)2
( (1 + LT )H − 1

LT

)2 dimEα(M, ε0)

ε2

)
,

where ε0 = O( LT ε
αH(1+LTH)(1+LrH)((1+LT )H−1)

); or set to the following with additional Assump. D:

K = Õ
(

(1 + LTH)2(1 + LrH)2
(

1 +
LT

1− LΓ

)2 dimEα(M, ε0)

ε2

)
,

where ε0 = O( ε
αH(1+LTH)(1+LrH) (1 + LT

1−LΓ
)−1), with probability at least 1 − 5δ, we have

ENE(π̂∗NE) ≤ ε.

Proof. In the following, we use EMNE(π) := maxπ̃ ∆M (π̃, π) to denote the exploitability in model
M . Recall Mk+1 denotes the model such that πk+1 is one of its equilibrium policies satisfying
EMk+1

NE (πk+1) = 0. On the event in Thm. 4.2, ∀k ∈ [K], we have M∗ ∈ M̂k, which implies

ENE(πk+1) ≤EM̃
k+1

NE (πk+1)

=∆
M̃k+1(π̃k+1, πk+1)

≤∆
M̃k+1(π̃k+1, πk+1)−∆Mk+1(π̃k+1, πk+1)

(πk+1 is an equilibrium policy of Mk+1 so ∆Mk+1(π̃k+1, πk+1) ≤ 0)

≤|∆
M̃k+1(π̃k+1, πk+1)−∆M∗(π̃

k+1, πk+1)|+ |∆M∗(π̃
k+1, πk+1)−∆Mk+1(π̃k+1, πk+1)|.

By applying Lem. 4.6, Coro. D.2, and Thm. C.4, under Assump. B, we have:

K∑
k=1

ENE(πk+1) ≤
K∑
k=1

EM̃
k+1

NE (πk+1)

=O
(

(1 + LTH)(1 + LrH)
(1 + LT )H − 1

LT

(√
KdimEα(M, ε0) log

2|M|KH
δ

+ αKHε0

))
.

For the choice of π̂∗NE, since

ENE(π̂∗NE) ≤ min
k∈[K]

EM̃
k+1

NE (πk+1) ≤ 1

K

K∑
k=1

EM̃
k+1

NE (πk+1),

ENE(π̂∗NE) ≤ ε can be ensured by:

K = Õ
(

(1 + LTH)2(1 + LrH)2
( (1 + LT )H − 1

LT

)2 dimEα(M, ε0)

ε2

)
,

where ε0 = O( LT ε
αH(1+LTH)(1+LrH)((1+LT )H−1)

).

Given additional Assump. D, we have:

K∑
k=1

ENE(πk+1) ≤
K∑
k=1

EM̃
k+1

NE (πk+1)

=O
(

(1 + LTH)(1 + LrH)(1 +
1

1− LΓ
)
(√

KdimEα(M, ε0) log
2|M|KH

δ
+ αKHε0

))
.
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ENE(π̂∗NE) ≤ ε can be ensured by

K = Õ
(

(1 + LTH)2(1 + LrH)2
(

1 +
LT

1− LΓ

)2 dimEα(M, ε0)

ε2

)
,

where ε0 = O( ε
αH(1+LTH)(1+LrH) (1 + LT

1−LΓ
)−1).

We finish the proof by noting that the total failure rate would be 1 − 3δ, and the total sample
complexity would be 2HK. �

E Questions Concerning Existence and Imposed Conditions

In this section, we analyze the existence of MFG-NE in the game described and discuss when
the presented conditions might be satisfied. For clarity in notation, we fix the model M =
({PT,h}Hh=1, {Pr,h}Hh=1) and the initial distribution µ1, and also for simplicity denote the deter-
ministic expected rewards

rh(s, a, µ) := Er∼Pr,h(·|s,a,µ) [r] ,

since the probabilistic distribution of rewards will not be significant for existence results. In the
presented MFG-NE problem, the goal is to find a sequence of policies π := {πh}Hh=1 and a sequence
of population distributions µ = {µh}Hh=1 such that

Consistency: µh+1 = Γpop,h(µh, πh),∀h = 1, . . . ,H − 1,

Optimality: JM (π,µ) = max
π′

JM (π′,µ)

where µ1 is fixed and for any µ = {µh}Hh=1, π := {πh}Hh=1, with µh ∈ ∆(Sh) and πh ∈ Πh :=
{πh : Sh → ∆(Ah)}. We define:

Γpop,h(µh, πh) :=
∑∫
sh∈Sh

∑∫
ah∈Ah

µh(sh)πh(ah|sh)PT,h(·|sh, ah, µh),

JM (π,µ) := E

[
H∑
h=1

rh(sh, ah, µh)

∣∣∣∣∣ s1∼µ1, ah∼πh
sh+1∼PT,h(·|sh,ah,µh), ∀h ≥ 1

]
.

As a general strategy, we formulate in this section the two MFG-NE conditions above as fixed point
problems. Throughout this section, we will assume the following:
Assumption E (Continuous rewards and dynamics). For each h ∈ [H], (sh, ah, sh+1) ∈ Sh×Ah×
Sh+1, the mappings

µ→ rh(sh, ah, µ); µ→ PT,h(sh+1|sh, ah, µ)

are continuous, where ∆(S) is equipped with the total variation distance TV.

E.1 MFG-NE as a Fixed Point

We use the standard definition of Q-value functions on finite horizon MF-MDPs, for any h̄, s, a, π,µ
given by

Qπh̄(sh̄, ah̄,µ) := E

[
H∑
h=h̄

rh(sh, ah, µh)

∣∣∣∣∣ah ∼ πh(sh), sh+1 ∼ PT,h(·|sh, ah, µh), ∀ h > h̄

]
.

(23)

Observe that the set of policies and ∆(S) are both convex and closed sets (in fact, polytopes), given
by {∆(Sh)}h∈[H], {Πh}h∈[H]. We equip these sets with the metrics

∀π, π′ ∈ {Πh}h∈[H], d1(π, π′) := sup
h
‖πh − π′h‖2

∀µ,µ′ ∈ {∆(Sh)}h∈[H], d2(µ,µ′) := sup
h
‖µh − µ′h‖2.
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We also define the operators Γpop : {Πh}h∈[H] → {∆(Sh)}h∈[H] and Γpp : {Πh}h∈[H] ×
{∆(Sh)}h∈[H] → {Πh}h∈[H] as

Γpop(π) := {µ1} ∪ {µh+1 := (Γpop(πh, . . .Γpop,2(π2,Γpop,1(π1, µ1)))︸ ︷︷ ︸
from 1 to h

}H−1
h=1 ,

Γpp(π,µ) := {π′h(·|sh) := arg max
u∈∆A

Qπh(sh, ·,µ)>u− ‖πh(·|sh)− u‖22}Hh=1,

where Qπh is the Q-value function defined in Eq. (23). The motivation for these operators is given by
the following lemma:
Lemma E.1 (MFG-NE as fixed point). The tuple π∗,µ∗ is a MFG-NE if and only if the following
conditions hold:

1. π∗ = Γpp(π
∗,Γpop(π

∗)), that is, π∗ is a fixed point of ΓNE(·) := Γpp(·,Γpop(·)).

2. µ∗ = Γpop(π
∗).

Proof. First, assume (π∗,µ∗) is a MFG-NE, i.e., it satisfies the consistency and optimality conditions.
By consistency, we have Γpop(π

∗) = µ∗, and since this implies Γpp(π
∗,µ∗) = π∗, the optimality

condition implies for each h, s,

π∗h(·|s) = arg max
u∈∆A

Qπ
∗

h (s, ·,µ∗)>u.

which implies that

π∗h(·|s) = arg max
u∈∆A

Qπ
∗

h (s, ·,µ∗)>u− ‖π∗h(·|s)− u‖22,

that is, ΓNE(π∗) = π∗.

Conversely, assume π∗ = ΓNE(π∗), that is, π∗ is a fixed point of the operator ΓNE . We claim that
(π∗,µ∗ = Γpop(π

∗)) is a MFG-NE. For this pair, the consistency condition is satisfied by definition,
and the fixed point condition reduces to Γpp(π

∗,µ∗) = π∗. Writing out the definition of the Γpp
operator, we obtain for each h and sh,

π∗h(·|s) = arg max
u∈∆A

Qπ
∗

h (s, ·,µ∗)>u− ‖π∗h(·|s)− u‖22,

π∗h(·|s) = arg max
u∈∆A

Qπ
∗

h (s, ·,µ∗)>u,

by the first-order optimality conditions of the term Qπ
∗

h (s, ·,µ∗)>u− ‖πh(·|s)− u‖22. Then, by the
optimality conditions of MDPs, π∗ is also the optimal policy with respect to µ∗, that is, JM (π∗,µ∗) =

maxπ′ JM (π′,µ∗). �

In the lemma above, the second condition is trivial to satisfy/compute once π∗ is known, hence the
primary challenge will be in proving that the map ΓNE admits a fixed point.

E.2 Existence of MFG-NE

We use the Brower fixed point method to prove the existence of a MFG-NE, and Assump. E is
sufficient. The strategy will be to show that ΓNE is a continuous function on the compact and convex
policy/population distribution space.

We will prove several continuity results, in order to be able to apply Brouwer’s fixed point theorem.
Lemma E.2 (Continuity of Qπh). For any s, a, h, the map

π,µ→ Qπh(s, a,µ) ∈ R
is continuous.

Proof. The proof follows from the fact that Qπh is a function of sum and multiplications of continuous
functions of the policies and population distributions {πh}h∈[H], {µh}h∈[H]. The compositions,
additions and multiplications of continuous functions are continuous. �
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For the next continuity result, we will need the following well-known Fenchel conjugate definition
and duality.
Definition E.3 (Fenchel conjugate). Assume that f : Rd → R ∪ {∞} is a convex function, with
domain X ⊂ Rd. The Fenchel conjugate f∗ : Rd → R ∪ {∞} is defined as

f∗(y) = sup
x∈X
〈x, y〉 − f(x).

For further details regarding the Fenchel conjugate, see [44]. The Fenchel conjugate is useful due to
the following well-known duality result.
Lemma E.4. Assume that f : Rd → R∪{∞} is differentiable and τ -weakly convex and has domain
X ⊂ Rd. Then,

1. f∗ is differentiable on Rd,

2. ∇f∗(y) = arg maxx∈X 〈x, y〉 − f(x),

3. f∗ is 1
τ -smooth with respect to ‖ · ‖2, i.e., ‖∇f∗(y)−∇f∗(y′)‖ ≤ 1

τ ‖y−y
′‖2,∀y, y′ ∈ Rd.

Proof. See Lemma 15 of [54] or Lemma 6.1.2 of [44]. �

Finally, we will also need the non-expansiveness of the proximal point operator, presented below.
Lemma E.5 (Proximal operator is non-expansive [47]). Let X ⊂ Rd be a compact convex set, and
f : X → R be a convex function. The proximal map proxf : X → X defined by

proxf (x) := arg min
y∈X

f(y) + ‖x− y‖22

is non-expansive (hence continuous).

With the presented tools, we can prove the following statement.
Lemma E.6 (Continuity of Γpop,Γpp). With the metrics d1, d2, the operators Γpop,Γpp are Lipschitz
continuous mappings.

Proof. The continuity of Γpop w.r.t. π is straightforward by definition, as multiplications and additions
of continuous functions are continuous.

For the continuity of Γpp, we can either explicitly write the solution of the arg max problem in
terms of an affine function and a projection of terms Qπhh , πh, or more generally use Fenchel duality
combined with the non-expansiveness of the proximal point operator. By Lemma E.5, the map

u→ arg max
u′∈∆A

q>u′ − ‖u− u′‖22 = −prox−q>(·)(u)

is a continuous map for any q ∈ R|A|. Similarly, by Lemma E.4, the map

q → arg max
u∈∆A

q>u− ‖u− u0‖22

is differentiable hence continuous for any u0 ∈ ∆A, as the map ‖u0 − ·‖22 is weakly convex. By the
continuity of Qπh (see Lemma E.2), we can conclude that Γpp is also a continuous map, as it is the
composition of continuous functions. �

With this continuity characterization, we invoke Brouwer’s fixed point theorem to prove existence.
Proposition E.7 (Existence of MFG-NE; Formal Version of Prop. 2.1). Under Assump. E (which is
implied by Assump. B), the map ΓNE has a fixed point in the set {Πh}h∈[H], that is, there exists a π∗

such that ΓNE(π∗) = π∗, and the tuple (π∗,Γpop(π
∗)) is a MFG-NE.

Proof. With the continuity of Γpop,Γpp, the know that the composition ΓNE is continuous. It maps
the closed, convex polytope {Πh}h∈[H] to a subset of itself, hence by Brouwers fixed point theorem
it must admit a fixed point. By Lemma E.1, this fixed point must constitute a MFG-NE. �
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F Proofs for Lower Bound for Mean-Field Control in Tabular Setting

We first introduce the notion of Strong Query Model (SQM), which is a strictly stronger notion than
both GM and DCP, since it can return the entire conditional distribution for any policy or arbitrary
density sequence. Our lower bound will be established based on SQM, which directly implies an
lower bound for GM or DCP setting.
Definition F.1 (Strong Query Model (SQM)). The Strong Generative Model (abbr. SGM) either can
be queried by a policy π and return the entire transition distribution of the true model conditioning
on µπM∗ , i.e.: {PT∗,h(·|·, ·, µπM∗,h)}h∈[H]; or can be queried by an arbitrary sequence of density
µ := {µ1, ..., µH} and return the entire transition distribution of the true model conditioning on µ,
i.e., {PT∗,h(·|·, ·, µh)}h∈[H].

Figure 2: Construction of Lower Bound

Theorem 5.2. [Exponential Lower Bound for MFC] Given arbitrary LT > 0 and d ≥ 2, consider
tabular MF-MDPs satisfying Assump. B with Lipschitz coefficient LT , |S| = |A| = d and H = 3.
For any algorithm Alg, and any ε ≤ LT

d+1 , there exists an MDP M∗ and a model classM satisfying
M∗ ∈ M, and |M| = Ω((LTdε )d−1), s.t., if Alg only queries GM or DCP for at most K times with
K ≤ |M|/2− 1, the probability that Alg produces an ε-near-optimal policy is less than 1/2.

Proof. Our proof is divided into three parts: construction of hard MF-MDP instance, construction of
model classM, and the proof of lower bound.

Part 1: Construction of Hard Examples We construct a three layer MDP as shown in Fig. 2. The
initial state distribution is fixed to be µ1(s1) = 1, and we have S states andA actions available at each
layer with S = A = d. The transition at initial state is deterministic, i.e., P(si2|s1, a

i
1, µ1) = 1. At

the second layer, given LT ≤ 1, there exists an optimal state density µ∗2, such that, ∀i ∈ [S], j ∈ [A]
and ∀µ2 ∈ ∆(S):

P(s1
3|si2, a

j
2, µ2) =

1

2
+ 2ε ·

[
1− LT

4ε
‖µ2 − µ∗2‖1

]+
, P(s2

3|si2, a
j
2, µ2) =

1

2
− 2ε ·

[
1− LT

4ε
‖µ2 − µ∗2‖1

]+
.

where [x]+ = max{x, 0}. As for the reward function, we have zero reward at each state action in the
previous two layers, and for the third layer, we have only have non-zero reward at r3(s1

3, ·, ·) = 1 and
r3(si3, ·, ·) = 0 for all i 6= 1.

As we can see, for arbitrary policy π, we have µπ2 (si2) = π(ai1|s1). Besides, the optimal policy should
be taking action to make sure µ2 = µ∗2, which can be achieved by setting π∗(ai1|s1) = µ∗2(si2), and
then take arbitrary policy at the second layer. Even if the agent just wants to achieve ε-near-optimal
policy, it at least has to determine the position of set {µ : ‖µ− µ∗2‖1 ≤ 4ε

LT
}. The key difficulty here

is to explore and gather information which can be used to infer µ∗2.

We further reduce the difficulty of the exploration by providing for the learner with the transition
at initial state and the third layer (or equivalently, the available representation function for the first
and third layers is unique) and all the information of reward function. All the learner need to do is to
identify the correct feature for the second layer and use it to obtain the optimal policy (at the initial
state) to maximize the return.
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Next, we verify the above model belongs to the low-rank Mean-Field MDP. For h = 1, it’s easy to
see P(si2|s1, a

j
1, µ1) = φ1(s1, a

j
1, µ1)>ψ1(si2), where φ1(s1, a

j
1, µ1) = ej and ψ1(si2) = ei, and e(·)

is the one-hot vector with the (·)-th element equal 1. For the second layer, given a density µ ∈ ∆(S),
we use φµ,LT to denote the following feature function class that, ∀i ∈ [S], j ∈ [A], µ′ ∈ ∆(S),

φµ,LT (si2, a
j
2, µ
′) := (

1

2
+ 2ε ·

[
1− LT

4ε
‖µ′ − µ‖1

]+
,

1

2
− 2ε ·

[
1− LT

4ε
‖µ′ − µ‖1

]+
, 0, .., 0)> ∈ Rd.

and the next state feature function is ψ(si3) = e>i , ∀i ∈ [d]. It’s easy to verify that the transition can
be decomposed to φµ∗2 ,LT (·, ·, µ2)>ψ(si3), and the above feature satisfies the normalization property:

‖
∑
i∈[d]

ψ(si3)g(si3)‖ ≤
√

2d, ∀g : S → {−1, 1}.

Besides, we verify that for any choice of µ, the induced transition function is LT -Lipschitz:

‖Pµ,LT (·|si2, a
j
2, µ
′)− Pµ,LT (·|si2, a

j
2, µ
′′)‖1

=
∑
l∈[S]

|φµ,LT (si2, a
j
2, µ
′)>ψ(sl3)− φµ,LT (si2, a

j
2, µ
′′)ψ(sl3)|

=2 · 2ε|
[
1− LT

4ε
‖µ− µ′′‖1

]+
−
[
1− LT

4ε
‖µ− µ′‖1

]+
|

≤LT |‖µ− µ′‖1 − ‖µ− µ′′‖1| ≤ LT ‖µ′ − µ′′‖1

Part 2: Construction of Model Class Given an integer ζ, we denote Nζ := {µ|µ(si2) =
N(si2)/ζ, N(si2) ∈ N,

∑
i∈[S]N(si2) = ζ}. In another word, Nζ includes all state density with

resolution 1/ζ. Now, consider NbLT5ε c. For each µ, µ′ ∈ NbLT5ε c, we should have:

‖µ− µ′‖1 ≥ 2/bLT
5ε
c ≥ 10ε

LT
>

8ε

LT
.

Therefore, if we consider the set B(µ, 4ε
LT

) := {µ′ ∈ ∆(S)|‖µ − µ′‖1 ≤ 4ε
LT
}, we can expect

B(µ, 4ε
LT

)∩B(µ′, 4ε
LT

) = ∅ for any µ, µ′ ∈ NbLT5ε c. Given arbitraryN ≤ |NbLT5ε c| =
(bLT5ε c+d−1)!

(bLT5ε c)!(d−1)!
=

Ω((LTdε )d−1), we can find N − 1 different elments {µ1
2, ..., µ

N
2 } ⊂ NbLT5ε c and construct (here we

only specify the representation at the second layer, since we assume the other layers are known)

M[N ] := {Mn := (φµn2 ,LT , ψ)|n ∈ [N ]}.

For analysis, we introduce another model M̄ which shares the transition and reward function as Mns
but for the transition of second layer, it has:

P(s1
3|si2, a

j
2, µ2) = P(s2

3|si2, a
j
2, µ2) =

1

2
, ∀i ∈ [S], j ∈ [A], µ2 ∈ ∆(S).

We define:

φ̄(·, ·, ·) = (
1

2
, ...,

1

2
) ∈ Rd.

and define:

M :=M[N ] ∪ {(φ̄, ψ)}.

Note that M̄ = (φ̄, ψ) ∈M.

Part 3: Establishing Lower Bound Now, we consider the following learning setting: the environ-
ment randomly select one model M fromM and provide the entire representation feature classM
(which is also the entire model class) to the learner; then, the learner can repeatedly use gathered
information to compute a policy πk and query it with SQM for each iteration, and output a final
policy after K steps. We want to show that, for arbitrary algorithm, there exists at least one model in
M which cost number of queries linear w.r.t. N before identifying the optimal policy.
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In the following, we use Ek,Mn to denote the event that in the first k trajectories, there is at least one
policy (or equivalently, density µπ2 ) used to query SQM resulting in ‖µπ2 − µn‖1 ≤ 4ε

LT
. The key

observation is that, given arbitrary algorithm Alg, for arbitrary fixed n ∈ [N ], if Alg never deploy a
policy π (or equivalently, query an density µπ2 ) satisfying ‖µπ2 − µn‖1 ≤ 4ε

LT
, the algorithm can not

distinguish between Mn and M̄ , and should behave similar in both Mn and M̄ . Therefore,

PrMn,Alg(E{k,Mn) = PrM̄,Alg(E{k,Mn), ∀k ∈ [K].

which also implies:

PrMn,Alg(Ek,Mn) = PrM̄,Alg(Ek,Mn), ∀k ∈ [K].

We use Alg(K) to denote the policy output by the algorithm in the final. Besides, we use Π(µ, b0) :=
{π|‖µπ2 − µ‖1 ≤ b0} to denote the set of policies, which can lead to a density µπ2 close to µ. Then,
we have:∑
n∈[N ]

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
))− PrM̄,Alg(Alg(K) ∈ Π(µn,

4ε

LT
))

=
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {EK,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {EK,Mn})

+
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {E{K,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {E{K,Mn})

=
∑
n∈[N ]

PrMn,Alg({Alg(K) ∈ Π(µn,
4ε

LT
)} ∩ {EK,Mn})− PrM̄,Alg({Alg(K) ∈ Π(µn,

4ε

LT
)} ∩ {EK,Mn})

≤
∑
n∈[N ]

PrMn,Alg(Ek,Mn)
(

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
)|EK,Mn)− PrM̄,Alg(Alg(K) ∈ Π(µn,

4ε

LT
)|EK,Mn)

)
≤
∑
n∈[N ]

PrMn,Alg(Ek,Mn) =
∑
n∈[N ]

PrM̄,Alg(Ek,Mn) ≤ K.

where the last step is because,

∑
n∈[N ]

PrM̄,Alg(Ek,Mn) ≤
∑
n∈[N ]

K∑
k=1

PrM̄,Alg(‖µπ
k

2 − µn‖1 ≤
4ε

LT
) =

K∑
k=1

∑
n∈[N ]

PrM̄,Alg(‖µπ
k

2 − µn‖1 ≤
4ε

LT
) ≤

K∑
k=1

1 = K.

(B(µi, 4ε
LT

) ∩ B(µj , 4ε
LT

) = ∅ for all i 6= j)

Therefore, the average success probability would be:

Pr(M = M̄) +
∑
n∈[N ]

Pr({M = Mn} ∩ {Alg(K) ∈ Π(µn,
4ε

LT
)})

(Each policy is optimal in M̄ .)

=
1

|M|
+

1

|M|
∑
n∈[N ]

PrMn,Alg(Alg(K) ∈ Π(µn,
4ε

LT
))

≤K + 1

|M|
.

As a result, even if K = |M|
2 − 1 = O(N), there exists n ∈ [N ], such that, the failure rate

PrMn,Alg(Alg(K) 6∈ B(π∗Mn ,
4ε

LT
)) ≥ 1

2
.

�
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Algorithm 4: Bridge Model Construction
1 Input: Model ClassM; Integer N .
2 for h ∈ [H], sh ∈ Sh, ah ∈ Ah do
3 for µh ∈ UN do
4 MCentral

sh,ah,µh
← arg maxM∈M BM(M ; ε̄)[sh, ah, µh].

5 fsh,ah(µh)← PT Central
sh,ah,µh

,h(·|sh, ah, µh).

6 // Here PT Central
sh,ah,µh

denotes the transition function of MCentral
sh,ah,µh

.
7 end
8 Construct transition for sh, ah by:

∀µ′h ∈ ∆(Sh), PTBr,h(·|sh, ah, µ′h) :=

∑
µh∈UN [ 2S

N − ‖µ
′
h − µh‖1]+fsh,ah(µh)∑

µh∈UN [ 2S
N − ‖µ

′
h − µh‖1]+

.

9 end
10 Define MBr to be the model with transitoin {PTBr,h}h∈[H].
11 Compute an equilibrium policy πBr

NE for MBr and its induced density in MBr denoted as µNE
Br .

12 return MBr, πBr
NE, µNE

Br .

G Learning Mean Field Game with Generative Model in Tabular Setting

We first introduce the algorithm for bridge model construction, where [x]+ = max{0, x}. In this
section, given an integer N , we define the set:

UN := {µ = (
x1

N
,
x2

N
...,

xS
N

) ∈ RS |∀i ∈ [S], xi ∈ N;

S∑
i=1

x1 = N} (24)

First we show that UN forms an S
N -cover for the density space.

Lemma G.1. For any µh ∈ ∆(Sh), there exists at least one µ ∈ UN , s.t. ‖µh(sh)− µ(sh)‖1 ≤ S
N .

Proof. We make the proof by construction, and we only consider the case when µh 6∈ UN . First of
all, we define µ+

h to be the density vector, such that, µh(sh)+ := bµh(sh) ·Nc/N for any sh ∈ Sh.
We should have µh(sh) − µ+

h (sh) ≥ 0 for any sh, and
∑
sh
µh(sh) − µ+

h (sh) = i/N for some
i ∈ {1, 2, ..., S−1} since µh 6∈ UN . Then, we can construct µ̄h by assigning µ̄h(sh)← µ+

h (sh)+ 1
N

for arbitrary i states sh ∈ Sh. Easy to check µ̄h ∈ UN , and ‖µ̄h − µh‖1 ≤
∑
sh

1
N = S

N . �
Lemma G.2. When the Else-branch in Line 7 is activated, for any h ∈ [H], sh ∈ Sh, ah ∈ Ah,
and any µ1

h, µ
2
h ∈ ∆(Sh), there exists at least one model M ∈M s.t.,

M ∈ BM(MCentral
sh,ah,µ1

h
; ε̄)[sh, ah, µ

1
h] ∩ BM(MCentral

sh,ah,µ2
h
; ε̄)[sh, ah, µ

2
h],

which further implies:

‖PT Central
sh,ah,µ

1
h

,h(·|sh, ah, µ1
h)− PT Central

sh,ah,µ
2
h

,h(·|sh, ah, µ2
h)‖1 ≤ ε̄+ LT ‖µ1

h − µ2
h‖1.

Proof. When the Else-branch in Line 7 is activated, we have:

|BM(MCentral
sh,ah,µ1

h
; ε̄)[sh, ah, µ

1
h]|+ |BM(MCentral

sh,ah,µ2
h
; ε̄)[sh, ah, µ

2
h]| > |M|.

which implies that those two sets share at least one common model denoted as M . Let’s use PT to
denote the transition function of M , we have:
‖PT Central

sh,ah,µ
1
h

,h(·|sh, ah, µ1
h)− PT Central

sh,ah,µ
2
h

,h(·|sh, ah, µ2
h)‖1 ≤2ε̄+ ‖PT,h(·|sh, ah, µ1

h)− PT,h(·|sh, ah, µ2
h)‖1

(Definition of BM)

≤2ε̄+ LT ‖µ1
h − µ2

h‖1.
(by Assump. B)

�
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Lemma 5.4. [Implication of Local Alignment in MFG] Given a model M with transition PT ,
suppose M and M∗ are locally aligned at policy π w.r.t. the density induced in M , i.e.
∀h, PT∗,h(·|·, ·, µπM,h) = PT,h(·|·, ·, µπM,h), if π is a NE in M , then it must be a NE in M∗.

Proof. Note that µπM,1 = µπM∗,1 = µ1, by inducation, for any h ∈ [H], we have:

PT,h(sh+1|sh, ah, µπM,h) =PT∗,h(sh+1|sh, ah, µπM∗,h)

µπM,h+1(sh+1) =
∑∫
sh,ah

πh(ah|sh)PT,h(sh+1|sh, ah, µπM,h)

=
∑∫
sh,ah

πh(ah|sh)PT∗,h(sh+1|sh, ah, µπM∗,h)

=µπM∗,h+1(sh+1).

Therefore, if π is the NE of M , for any π̃, we have:

0 ≤JM (π;µπM )− JM (π̃;µπM ) = JM∗(π;µπM∗)− JM∗(π̃;µπM∗),

which implies π is also the NE of M∗. �

Theorem G.3. [Formal version of Thm. 5.3] Under Assump. A and B, and hyper-parameter choices
K = dlog2 |M|e, ε̄ = ε̃

10 , N = ε̃
10LTS

, N̄ = O(S
2

ε̄2 log SAHK
δ ), Ñ = O(S

2

ε̃2 log SAHK
δ ), with

probability 1− δ, by choosing

ε̃ =
1

H
(3 + 2(Lr + LT ) · (1 + LT )H − 1

LT
)−1ε,

and consuming number of queries to GM at most:

K · (N̄ + SAHÑ) = O(
S3AH log

ε2
(1 + (Lr + LT )

(1 + LT )H − 1

LT
)2 log2 SAH|M|

δ
);

or under additional Assump. D, by choosing

ε̃ =
1

H
(3 + 2(Lr + LT ) · 1

1− LΓ
)−1ε,

and consuming number of queries to GM at most:

K · (N̄ + SAHÑ) = O(
S3AH

ε2
(1 + (Lr + LT )

1

1− LΓ
)2 log2 SAH|M|

δ
),

Alg. 2 can return us an ε-approximation NE within K iterations.

Proof.

Concentration Events Considering the random variables:

Xk := I[If-branch] ·
(
PT∗,h(·|sh, ah, µh)− PT̂∗,h(·|sh, ah, µh)

)
,

and

Y kh,sh,ah := I[Else-branch] ·
(
PT∗,h(·|sh, ah, µNE,k

Br,h )− PT̂∗,h(·|sh, ah, µNE,k
Br,h )

)
.

where I[If-branch] equals 1 if the algorithm does not terminate at step k and enters the if-branch,
otherwise equals 0; the definition for I[Else-branch] is similar. For our choice of ε̄ and ε̃, consider the
events Econ defined by:

Econ :=

K⋂
k=1

(
{‖Xk‖1 ≤

ε̄

2
} ∩

⋂
h∈[H],sh∈Sh,ah∈Ah

{‖Y kh,sh,ah‖1 ≤
ε̃

2
}
)
.
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Let’s first focus on Xk. Note that the samples from generative models are i.i.d. from the distribution
PT∗,h(·|sh, ah, µh), and PT̂∗,h is computed by empirical mean. Therefore, no matter I[If-branch]

equals 0 or 1, by Hoeffding inequality, w.p. 1− δ0, we have:

‖Xk‖ =
∑
sh+1

|I[If-branch] ·
(
PT∗,h(sh+1|sh, ah, µh)− PT̂∗,h(sh+1|sh, ah, µh)

)
| ≤ S

√
1

2N̄
log

S

δ0
.

Similarly, for Y k, for any fixed h, sh, ah, we have ‖Y kh,sh,ah‖ ≤ S
√

1

2Ñ
log S

δ0
. By choosing

δ0 = δ/(2SAHK) to take the union bound for all stepsK and all h, sh, ah for Y k, Pr(Econ) ≥ 1−δ
can be satisfied by:

N̄ = O(
S2

ε̄2
log

SAHK

δ
), Ñ = O(

S2

ε̃2
log

SAHK

δ
).

Next, we separately analyze the If and Else branch in Alg. 2 on the event Econ. Obviously, on the
event of Econ, we have M∗ ∈Mk for all k ∈ [K].

The If-branch: Line 3 In this case, there exists h ∈ [H], sh ∈ Sh, ah ∈ Ah, µh ∈ ∆(Sh):

max
M
|BM(M ; ε̄)[sh, ah, µh]| ≤ 1

2
|M|.

With our choice of N̄ , we have: ‖PT∗,h(·|sh, ah, µh)− PT̂∗,h(·|sh, ah, µh)‖1 ≤ ε̄
2 . Therefore, for

those M 6∈ BM(M∗; ε̄)[sh, ah, µh], we must have:

‖PT,h(·|sh, ah, µh)− PT̂∗,h(·|sh, ah, µh)‖1 >
ε̄

2

which implies |Mk+1| ≤ |BM(M∗; ε̄)[sh, ah, µh]| ≤ 1
2 |M

k|.

The Else-branch: Line 7 If the If-branch is not activated, then for any fixed h ∈ [H], sh ∈
Sh, ah ∈ Ah, µh ∈ ∆(Sh), there exists a “Central Model” M ∈M, such that,

|BM(M ; ε̄)[sh, ah, µh]| > 1

2
|M|.

Now, consider a fixed h ∈ [H], sh ∈ Sh, ah ∈ Ah. As described in Alg. 4, for each µh ∈ UN , we
use Mµh to denote the “Central Model” model has the most number of ε̄-similar models inM with
transtion function PT Central

sh,ah,µh
:= {PT Central

sh,ah,µh
,h}h∈[H]. Besides, we introduce the function fsh,ah

defined on the density space ∆(Sh):

∀µh ∈ ∆(Sh), fsh,ah(µh) := PT Central
sh,ah,µh

,h(·|sh, ah, µh)

In the following, let’s use gsh,ah(·) as a short note of PTBr,h(·|sh, ah, µ′h) constructed from the values
of fsh,ah on UN in Alg. 4:

∀µ′h ∈ ∆(Sh), gsh,ah(µ′h) :=

∑
µh∈UN [ 2S

N − ‖µ
′
h − µh‖1]+fsh,ah(µh)∑

µh∈UN [ 2S
N − ‖µ

′
h − µh‖1]+

,

By Lem. G.1, there always exists a µh ∈ UN such that [ 2S
N −‖µ

′
h−µh‖1]+ ≥ S

N > 0, so g is always
well-defined. Therefore, we have:

∀µ′h ∈ ∆(Sh), ‖gsh,ah(µ′h)− fsh,ah(µ′h)‖1

=‖
∑
µh∈UN [ 2S

N − ‖µ
′
h − µh‖1]+(fsh,ah(µh)− fsh,ah(µ′h))∑

µh∈UN [ 2S
N − ‖µ

′
h − µh‖1]+

‖1

≤
∑
µh∈UN [ 2S

N − ‖µ
′
h − µh‖1]+‖fsh,ah(µh)− fsh,ah(µ′h)‖1∑

µh∈UN [ 2S
N − ‖µ

′
h − µh‖1]+

≤
∑
µh∈UN [ 2S

N − ‖µ
′
h − µh‖1]+(2ε̄+ LT ‖µh − µ′h‖1)∑

µh∈UN [ 2S
N − ‖µ

′
h − µh‖1]+

(Lem. G.2)
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≤2ε̄+ 2LT
S

N
. (25)

where the last step is because [ 2S
N − ‖µ

′
h − µh‖1]+ > 0 implies ‖µ′h − µh‖1 ≤ 2S

N . We can conduct
similar discussion for for any h ∈ [H], sh ∈ Sh, ah ∈ Ah.

As stated in Alg. 2, We use Mk
Br and πkNE to denote the bridge model and its equilibrium policy

at iteration k if the Else-branch is activated. Since both [·]+ and ‖ · ‖1 are continuous, g is
continuous w.r.t. µ′h ∈ ∆(Sh). By Prop. E.7, the equilibrium policy πkNE should always exist.

The Else-If-branch: Line 10 If Line 10 in Alg. 2 is activated at some h, sh, ah, for any
M ∈ BMk(Mµh ; ε̄)[sh, ah, µ

NE,k
Br,h ], where Mµh denotes the Central Model, we have:

‖PT,h(·|sh, ah, µNE,k
Br,h )− PT̂∗,h(·|sh, ah, µNE,k

Br,h )‖1
≥‖PTkBr,h

(·|sh, ah, µNE,k
Br,h )− PT̂∗,h(·|sh, ah, µNE,k

Br,h )‖1 − ‖PT,h(·|sh, ah, µNE,k
Br,h )− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1

≥ε̃− (2ε̄+ 2LT
S

N
) ≥ 2ε̃

5
>
ε̃

2
. (Eq. (25); Our choice of N and ε̄)

which implies |Mk+1| ≤ |Mk| − |BMk(Mµh ; ε̄)[sh, ah, µ
NE,k
Br,h ]| ≤ 1

2 |M
k|.

The Else-Else-branch: Line 13 If this branch is activated, we must have:

‖PT∗,h(·|sh, ah, µNE,k
Br,h )− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1

≤‖PT∗,h(·|sh, ah, µNE,k
Br,h )− PT̂∗,h(·|sh, ah, µNE,k

Br,h )‖1 + ‖PT̂∗,h(·|sh, ah, µNE,k
Br,h )− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1

≤2ε̃. (26)

In the following, we use EMNE(π) := maxπ̃ ∆M (π̃, π) to denote the exploitability in model M . As a
result:

ENE(πBr,k
NE )

=ENE(πBr,k
NE )− EM

k
Br

NE (πBr,k
NE )

= max
π

JM∗(π;µNE,k
M∗ )− JM∗(πBr,k

NE ;µNE,k
M∗ )− (max

π
JMk

Br
(π;µNE,k

Br )− JMk
Br

(πBr,k
NE ;µNE,k

Br ))

≤2 max
π
|JM∗(π;µNE,k

M∗ )− JMk
Br

(π;µNE,k
Br )|

≤2 max
π

( H∑
h=1

Lr‖µNE,k
M∗,h − µ

NE,k
Br,h ‖1 + Eπ,Mk

Br|µ
NE,k
Br

[

H∑
h=1

‖PT∗,h(·|sh, ah, µNE,k
M∗,h)− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1]

)
(Eq. (19) in the proof of Lem. 4.5)

≤2 max
π

( H∑
h=1

(Lr + LT )‖µNE,k
M∗,h − µ

NE,k
Br,h ‖1 + Eπ,Mk

Br|µ
NE,k
Br

[

H∑
h=1

‖PT∗,h(·|sh, ah, µNE,k
Br,h )− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1]

)
.

(Assump. B)

For any fixed π, the second part can be upper bounded by Eq. (26), while for the first part, by
Coro. D.2, under Assump. B, we have:

H∑
h=1

‖µNE,k
M∗,h − µ

NE,k
Br,h ‖1 ≤

H∑
h=1

(1 + LT )H−h − 1

LT
EπBr,k

NE ,Mk
Br

[‖PT∗,h(·|sh, ah, µNE,k
Br,h )− PTkBr,h

(·|sh, ah, µNE,k
Br,h )‖1]

≤2Hε̃
(1 + LT )H − 1

LT
.

which implies ENE(πBr,k
NE ) ≤ Hε̃(3 + 2(Lr + LT ) · (1+LT )H−1

LT
). Therefore, by choosing

ε̃ =
1

H
(3 + 2(Lr + LT ) · (1 + LT )H − 1

LT
)−1ε,
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we can ensure πBr,k
NE is an ε-approximation NE for M∗.

Similarly, with additional Assump. D, we have:
∑H
h=1 ‖µ

NE,k
M∗,h − µNE,k

Br,h ‖1 ≤ 2Hε̃ 1
1−LΓ

, which

implies ENE(πBr,k
NE ) ≤ Hε̃(3 + 2(Lr + LT ) · 1

1−LΓ
), and by choosing

ε̃ =
1

H
(3 + 2(Lr + LT ) · 1

1− LΓ
)−1ε,

we can also ensure πBr,k
NE is an ε-approximation NE for M∗.

Summary From the discussion above, we know that, on the event of Econ, either we have |Mk+1| ≤
1
2 |M

k|, or the algorithm can return an ε-approximate NE. Therefore, by choosing K = dlog2 |M|e,
with probability 1− δ, after consuming number of queries to GM at most:

K · (N̄ + SAHÑ) = O(
S3AH

ε2
(1 + (Lr + LT )

(1 + LT )H − 1

LT
)2 log2 SAH|M|

δ
),

or under Assump. D, at most

K · (N̄ + SAHÑ) = O(
S3AH

ε2
(1 + (Lr + LT )

1

1− LΓ
)2 log2 SAH|M|

δ
),

Alg. 2 can return us an ε-approximation NE. �
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