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ABSTRACT

Model merging based on task vectors, i.e., the parameter differences between
fine-tuned models and a shared base model, provides an efficient way to integrate
multiple models without retraining. This approach can be used to combine task-
specific models into a multitask model, improve generalization, or address model
deficiencies. One of the significant challenges faced by model merging is the con-
flicts between task vectors. Existing works aim to mitigate these conflicts through
sparsification; however, two issues observed in our experiments significantly limit
their performance: high parameter overlap and unbalanced weight distribution.
To address these issues, we propose a simple yet effective framework called CABS
(Conflict-Aware and Balanced Sparsification), consisting of Conflict-Aware Spar-
sification (CA) and Balanced Sparsification (BS). CA can reduce parameter over-
lap by applying masks during sequential pruning, ensuring that each task vector
retains distinct, non-overlapping parameters. BS leverages n:m pruning to pre-
serve critical weights while maintaining an even distribution across layers. Our
comprehensive experiments demonstrate that CABS outperforms state-of-the-art
methods across a range of diverse tasks and model sizes. Notably, in experiments
with 7B-parameter language models, CABS surpasses the average performance
of an “ideal” model, a virtual model that selects the highest score from individual
fine-tuned models for each task (CABS: 76.50 vs. Ideal Model: 76.30 vs. Base-
line: 76.02 vs. Fine-tuned Model: 75.86). Our results highlight the importance
of addressing both high parameter overlap and unbalanced weight distribution to
achieve robust and high-performance model merging.

1 INTRODUCTION

Model merging has gained increasing attention in the deep learning community, particularly in the
context of using task vectors for model merging in large language models (LLMs) (Ilharco et al.,
2022; Li et al., 2023; Wortsman et al., 2022; Jin et al., 2022; Matena & Raffel, 2022; Singh & Jaggi,
2020; Akiba et al., 2024). This technique has become especially popular for merging homologous
models—those fine-tuned from the same base models—to create better-performing models. Many
top-performing models on the LLM leaderboard (Beeching et al., 2023) are built by fine-tuning base
models and subsequently merging them to optimize task-specific performance. Additionally, major
enterprises have employed model merging techniques in the development of pretraining models,
such as LLaMA3 (Dubey et al., 2024) and Qwen2 (Yang et al., 2024; Lu et al., 2024), to enhance
generalization capabilities and improve performance across a range of tasks.

Recent studies have further shown that sparsifying task vectors before merging can mitigate pa-
rameter conflicts between different task vectors, leading to measurable improvements in merging
performance (Yu et al., 2024; Yadav et al., 2024; Davari & Belilovsky, 2023; He et al., 2024). These
conflicts can be categorized into two types: (a) conflicts due to redundant parameters, where pa-
rameters that contribute little to performance are unnecessarily retained, and (b) conflicts due to
overlapping parameters, where task vectors retain parameters that overlap, potentially with signifi-
cantly different magnitudes or signs. These overlaps make the merging process less efficient.

Sparsifying can be achieved by selectively or randomly dropping part of a task vector. This process
is similar to one-shot pruning, with the former aiming to reduce conflicts in model merging and
the latter targeting model compression. Magnitude-based pruning (Liang et al., 2021) is one of the
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Figure 1: Illustration of the CABS framework, which enhances model merging by addressing pa-
rameter overlap and weight imbalance. By integrating Conflict-Aware Sparsification (CA) and Bal-
anced Sparsification (BS), CABS delivers more effective merging compared to standard merging
with magnitude-based pruning (MP), leading to improved model performance.

mainstream pruning techniques, which can efficiently estimate the importance of weights and selec-
tively preserve the essential weights, thus rightfully superior to random pruning. Inspired by pruning
techniques, recent model merging studies (Yadav et al., 2024) applied magnitude-based pruning for
sparsifying task vectors with the important weights retained. However, as pointed out by DARE (Yu
et al., 2024), the results are counterintuitive —magnitude-based pruning underperforms compared
to random weight-dropping methods. This unexpected phenomenon contradicts the observations
of widely studied pruning techniques, which demonstrate that retaining important weights helps
preserve model performance.

Our research explores the reasons behind this discrepancy, especially in a setting where magnitude-
based pruning is expected to perform well. Addressing these issues is key to advancing model
merging and developing high-performance merged models. Specifically, by analyzing the weight
distribution and overlap in task vectors produced by DARE and magnitude-based pruning, we iden-
tified two key factors contributing to the underperformance of magnitude-based pruning:

High Parameter Overlap: After magnitude-based pruning, the retained weights of different task
vectors often exhibit significant overlap, particularly compared to random methods like DARE. This
leads to increased conflicts between task vectors during model merging, ultimately affecting the
resulting model performance.

Unbalanced Weight Distribution: Magnitude-based pruning tends to distribute retained weights
unevenly across the model’s weight matrices, with some regions retaining significantly more weights
than others. After pruning, the model merging process applies a uniform rescaling factor globally
across the model to restore performance. However, this process amplifies the existing imbalance,
ultimately leading to suboptimal performance. In contrast, random pruning methods like DARE can
avoid this problem, which maintain better balance across the model by distributing weights more
uniformly.

To address the issues uncovered above, we propose a novel framework: Conflict-Aware and Bal-
anced Sparsification (CABS). As illustrated in Figure 1, CABS distinguishes itself from existing
methods by introducing two key strategies:

Conflict-Aware (CA) Sparsification: CA addresses conflicts between task vectors by employing
a sequential pruning approach, ensuring no overlap between the retained weights of different task
vectors. As shown in Figure 1 (a), CA first applies pruning to task vector A (blue, τA), and then
masks the overlapping weights when pruning task vector B (yellow, τB). This masking technique
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minimizes conflicts during the merging process by removing shared weights, allowing for more
effective task vector merging and improving the final model performance.

Balanced Sparsification (BS): BS addresses the issue of unbalanced weight distribution by apply-
ing n:m pruning, which selectively retains n weights out of every m consecutive weights based on
magnitude (Zhou et al., 2021). As demonstrated in Figure 1 (a), BS is applied first to τA, followed
by another application to Remaining τB after CA has eliminated overlapping weights. This en-
sures a more uniform distribution of weights across layers, reducing the adverse effects of weight
concentration in certain regions.

These strategies are straightforward, yet highly effective. Our extensive experiments on both
decoder-based Mistral-7B (Jiang et al., 2023) and encoder-based RoBERTa-Base (Liu, 2019) mod-
els, spanning tasks from the LLM leaderboard and the GLUE (Wang et al., 2018) dataset respec-
tively, demonstrate that CABS effectively addresses the issues associated with magnitude-based
pruning. In Mistral-7B experiments, CABS achieved an average performance of 76.50, outperform-
ing the “ideal” virtual model (76.30), which is a hypothetical model that picks the highest score from
each fine-tuned model for every task. with previous SOTA methods scoring 76.02 and fine-tuned
models at 75.86. In RoBERTa-Base experiments, CABS improved task performance to 81.49, out-
performing previous SOTA method (80.65) and the baseline task-arithmetic score (80.15). While
absolute improvements may appear small, they consistently confirm CABS’s superiority across dif-
ferent architectures. Furthermore, an ablation study verifies the validity of each strategy.

Our contributions are as follows:

• We identify two key issues encountered by magnitude-based pruning in the context of task
vector sparsification, i.e., high parameter overlap and unbalanced weight distribution.

• We propose the CABS framework, consisting of conflict-aware sparsification and balanced
sparsification strategies, which can effectively address the two identified issues.

• We conduct comprehensive experiments across a variety of tasks and model sizes, showing
that CABS outperforms state-of-the-art methods.

• We are the first to introduce an “ideal” yet rigorous baseline for evaluation, where CABS
outperforms this virtual baseline while all existing methods fall short.

Resources and implementation details of our approach are available at https://anonymous.
4open.science/r/CABS-027B.

2 RELATED WORK

Model merging has become a vital strategy for combining multiple fine-tuned models into a single
multitask model without requiring additional training. Fine-tuned models from the same pre-trained
model often share part of the optimization trajectory, making them suitable for merging. This pro-
cess can enhance performance on target tasks, improve out-of-domain generalization, and support
applications such as federated learning, model compression, and continual learning.

The simplest merging technique involves directly averaging the model parameters (Izmailov et al.,
2018; Wortsman et al., 2022). However, this naive approach often fails to account for task-specific
variations, leading to suboptimal performance. A more refined approach, Task Arithmetic (Ilharco
et al., 2022), was introduced as a pioneering method in the realm of task vector-based merging. In
Task Arithmetic, task vectors—computed as the difference between fine-tuned model parameters
and their initial pre-trained values—are combined using weighted sums to create a multitask model.
Although this approach effectively integrates knowledge from different models, it may struggle with
issues such as parameter redundancy and sign conflicts, which may degrade the performance of the
merged model.

To address some of these issues, TIES-Merging (Yadav et al., 2024) introduces a more sophisti-
cated approach that operates in two key ways: first, by pruning parameters that are not significantly
impactful, thereby reducing the influence of redundant parameters; and second, by resolving sign
conflicts during the merging process. This dual approach minimizes interference between task vec-
tors and ensures that the most critical parameters are preserved and properly aligned during the
merge. DARE (Yu et al., 2024), a technique inspired by Dropout (Srivastava et al., 2014), reveals
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the high redundancy in task vectors by randomly dropping 90% of the parameters and rescaling the
remaining ones. Using random pruning, DARE has been shown to outperform magnitude-based
pruning methods in model merging. However, DARE does not fully explain the reasons for this
improvement. Our analysis suggests that DARE helps mitigate some of the overlap and imbalance.
Nevertheless, the random nature of the approach may potentially sacrifice precision.

Network pruning techniques, particularly magnitude pruning (Zhu & Gupta, 2018), have been
extensively studied for their role in optimizing model performance and reducing computational
costs (Liu et al., 2019; Frankle & Carbin, 2018; Gale et al., 2019; Zhu & Gupta, 2018). Magni-
tude pruning retains parameters based on their magnitude, assuming that larger magnitudes corre-
spond to more critical information (Kovaleva et al., 2021; Puccetti et al., 2022; Yin et al., 2023).
However, when applied in the context of model merging, this approach can lead to an unbalanced
distribution of retained weights, which exacerbates conflicts during the merging process and results
in suboptimal performance.

To address this issue, while n:m pruning (Zhou et al., 2021; Xia et al., 2022)was originally de-
signed for structured pruning and inference acceleration, we discovered that it can be repurposed
to control the balance of sparsified task vectors in model merging. Although n:m pruning may not
perform as well as unstructured pruning in traditional scenarios, our findings demonstrate that it
effectively mitigates weight imbalance, leading to improved performance in merged models. This
insight forms a key contribution of our work, highlighting the potential of n:m pruning in enhancing
model merging outcomes.

Our proposed CABS method builds upon prior works by introducing CA, a novel approach designed
to eliminate parameter overlap during model merging. Additionally, it repurposes the existing n:m
pruning technique to mitigate unbalanced weight distribution. Together, CABS effectively enhances
the stability and performance of model merging.

3 ISSUES IN TASK VECTOR SPARSIFICATION FOR MODEL MERGING

In the domain of model merging, particularly when using sparse task vectors to combine models
fine-tuned for different tasks, an unexpected phenomenon has emerged: magnitude-based pruning,
which typically retains weights with larger absolute values, often underperforms compared to ran-
dom pruning methods like DARE (Yu et al., 2024). This result contradicts the intuition that preserv-
ing critical knowledge, rather than randomly retaining information, within the task vectors should
enhance the performance of the merged model. Our investigation into this phenomenon reveals two
key issues: the overlap between retained weights and their unbalanced distribution within each task
vector.
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Figure 2: The trend of overlap rate along the spar-
sity ratio shows that the overlap rate achieved by
magnitude-based pruning decreases more slowly
than that of random pruning, with the gap widen-
ing progressively.

High Parameter Overlap. By comparing the
overlap rate between magnitude-based and ran-
dom pruning methods, our analysis demon-
strates that magnitude-based pruning results in
a significantly higher parameter overlap be-
tween task vectors compared to random prun-
ing methods. As shown in Figure 2, although
the overlap rate of magnitude-pruned task vec-
tors decreases gradually with increasing spar-
sity, it remains significantly higher than that of
randomly pruned vectors, especially at higher
sparsity levels. This disparity highlights the
key issue with magnitude-based pruning, where
high overlap persists even as the model be-
comes sparser.

This elevated overlap in magnitude-pruned vec-
tors introduces conflicts during model merg-
ing, as overlapping parameters may have sig-
nificantly different magnitudes or signs between task vectors. These conflicts reduce the efficiency
of the merging process and hinder the model’s ability to perform optimally on individual tasks,
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ultimately leading to suboptimal task-specific performance. The performance implications of these
overlapping parameters are explored in detail in 5.4. For details on how the overlap rate is calculated,
please refer to Appendix A.1.
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Figure 3: Magnitude pruning results in a
more concentrated and unbalanced distribution of
weights compare to random pruning.

Unbalanced Weight Distribution. By visual-
izing the weight distribution shown in Figure 3,
we identified another critical issue: the unbal-
anced distribution of retained weights caused
by magnitude-based pruning. Magnitude prun-
ing often leads to weight concentration in spe-
cific regions of the model’s weights. This im-
balance is further exacerbated by the rescaling
process, where certain weights gain dispropor-
tionate influence over the model’s output, of-
ten resulting in suboptimal performance. This
uneven distribution is particularly detrimental
after sparsification, as it hampers the merged
model’s ability to generalize effectively. The
performance implications of these unbalanced weights are discussed in detail in 5.4.

To comprehensively analyze this issue, we further examined the weight distributions across different
layers of the model, including the query-key-value (QKV) projection and MLP layers, at various
sparsity levels (e.g., 50%, 75%, and 90%). These experimental results are provided in Appendix A.2,
demonstrating the pervasive nature of the imbalance across different layers and sparsity levels.

4 METHODOLOGY

4.1 OVERVIEW OF CABS FRAMEWORK

To address the aforementioned issues, we propose the CABS (Conflict-Aware and Balanced Spar-
sification) framework. As illustrated in Figure 1, CABS resolves parameter conflicts and ensures
balanced weight distribution so as to enhance the performance of the merged model. The framework
integrates two core strategies: Conflict-Aware Sparsification (CA) and Balanced Sparsification (BS),
which will be detailed in the following sections. Algorithm 1 demonstrates how these strategies are
implemented in CABS.

Algorithm 1 CABS

Input: Task vectors τA, τB , base model Wbase, sparsity level n , m, rescale factors λA , λB

Output: Parameters of the merged model Wfinal
1: Apply n:m pruning to τA and compute maskA // include BS
2: τB remaining = τB ⊙ (1− maskA) to eliminate overlap with τA // core step of CA
3: Apply n:m pruning to τB remaining to compute maskB // include BS
4: Merge the pruned vectors with the base model:

Wfinal = Wbase + λA × maskA ⊙ τA + λB × maskB ⊙ τB

5: return Wfinal

4.2 CONFLICT-AWARE SPARSIFICATION (CA)

Motivation. During model merging, overlapping task vectors can lead to performance degradation
of the merged model because different task vectors may update the same parameters inconsistently,
often with differing magnitudes or signs.By minimizing these overlaps, it is expected to enhance the
stability and performance of the merged model.

Sequential Pruning and Mask Application. CA aims to eliminate parameter overlap during model
merging by employing a sequential pruning strategy. The process begins with the first vector τA
being pruned, producing a mask maskA that marks the positions of the retained weights. This mask
is then used to guide the pruning of the second task vector τB , ensuring that there is no overlap
between the parameters of τA and τB .

5
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For the second task vector τB , the prior mask maskA is applied in an inverted form to determine the
remaining weights that do not overlap with the first pruned task vector. Specifically, the remaining
weights of τB are calculated as:

τB remaining = τB ⊙ (1− maskA).

This ensures that only the non-overlapping weights in τB are retained in the subsequent pruning
process. Afterward, a second round of pruning is performed on τB remaining, generating a new sparse
mask maskB , which can then be merged with the prior pruned task vector without any parameter
overlap.

Minimizing Overlap When Sparsity Limits are Exceeded. When the sum of the sparsity levels
across all task vectors exceeds 1 (e.g., when each vector retains 75% of its parameters), it becomes
impossible to achieve zero overlap. In such cases, the objective shifts from eliminating overlap to
minimizing it as much as possible. Additional pruning steps are applied selectively to reduce the
extent of overlap between task vectors. For the detailed implementation of this process, please refer
to Appendix A.3.

4.3 BALANCED SPARSIFICATION (BS)

Motivation. While CA can effectively reduce overlap, it does not address the imbalance in weight
distribution that can arise within task vectors. These imbalances often lead to suboptimal perfor-
mance in the merged model, affecting both its stability and efficiency. To mitigate this problem, we
propose the Balanced Sparsification (BS) strategy, which enhances CA by addressing these imbal-
ances and further improving the model’s overall performance.

Balanced Sparsification. In BS, the weight matrix is divided into disjoint blocks of m consecutive
weights, and within each block, the n weights with the largest absolute magnitude are retained,
while the rest are pruned. This strategy is applied uniformly across all layers to ensure a more
even weight distribution within each task vector. Minimizing imbalances prevents performance
degradation of the merged models. For a more detailed discussion about the differences between
Balanced Sparsification (BS) and n:m pruning, please refer to Appendix A.4.

We also discuss the flexibility and efficiency of the CABS framework in Appendix A.5. CABS can
be integrated with other model merging techniques, where CA and BS can be applied independently
or combined with other approaches to further enhance model merging. Additionally, our analysis
of computational cost shows that CABS introduces virtually no additional overhead compared to
standard merging methods, making it an efficient and adaptable solution for various model merging
scenarios.

5 EXPERIMENTS

We conducted extensive experiments to evaluate the effectiveness of CABS in model merging. Our
goal was to demonstrate that CABS can enhance both performance and stability across models of
various scales, covering a diverse range of tasks.

5.1 EXPERIMENTAL SETUP

Datasets and Models for Decoder-based Language Model Experiments. For large-scale model
evaluation, we utilized the LLM Leaderboard benchmark, encompassing six key tasks: AI2 Rea-
soning Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2022), Winogrande (Sakaguchi et al., 2021), and GSM8K (Cobbe
et al., 2021). These tasks were assessed using the Eleuther AI Language Model Evaluation Har-
ness (Gao et al., 2024), a standardized framework designed to test generative language models across
various tasks. The decoder-based models used in our experiments were based on the Mistral-7b-v0.1
backbone and included fine-tuned variants such as WildMarcoroni-Variant1-7B and WestSeverus-
7B-DPO-v2. For more detailed information on these datasets and models, please refer to Ap-
pendix A.6.

Datasets and Models for Encoder-based Language Model Experiments. For evaluating small-
scale models, we utilized the GLUE benchmark, which includes a diverse set of tasks that can
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be broadly categorized into four types: (1) acceptability judgments (e.g., CoLA (Warstadt et al.,
2019)), (2) sentiment analysis (e.g., SST-2 (Socher et al., 2013)), (3) paraphrase detection (e.g.,
MRPC (Dolan & Brockett, 2005)), and (4) natural language inference (e.g., RTE (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009)). Each of these tasks
was chosen to represent a distinct aspect of natural language understanding for our model merging
experiments. Due to the unavailability of test labels for GLUE, we utilized the original validation
sets as test sets in our experiments. The models used for these tasks were pre-trained and fine-tuned
versions of RoBERTa, obtained from Hugging Face. Further details regarding the models and tasks
are provided in Appendix A.7.

Evaluation Metrics. Performance was evaluated primarily using accuracy for GLUE tasks, includ-
ing CoLA, where MCC is typically recommended. This choice was made to maintain consistency
across the GLUE benchmark and simplify averaging across tasks. For tasks from the LLM Leader-
board, we used task-specific metrics, such as success rates and accuracy, depending on the default
evaluation metric for each task. Detailed explanations of the evaluation metrics and the rationale
behind these choices can be found in Appendix A.8.

Baselines. We compared CABS against several baseline methods in two main categories: conflict
handling and sparsification strategies. For conflict handling, we used Task Arithmetic (averaging
task vectors) (Ilharco et al., 2022), TIES-Merging (pruning low-magnitude deltas and resolving sign
conflicts) (Yadav et al., 2024), and our Conflict-Aware (CA) method, which sequentially prunes
and masks overlapping weights. For sparsification, we compared DARE (random weight dropping
with rescaling) (Yu et al., 2024), Magnitude Pruning (retaining highest-magnitude weights) (Zhu &
Gupta, 2018), and our Balanced Sparsification (BS) method, which applies n:m pruning to balance
weight distribution.

Grid Search of Rescale Factor λ. For small-scale tasks, we performed a fine-grained λ parameter
search with an interval of 0.01 (compared to the 0.1 used in previous works) to ensure fair compar-
isons across methods. In contrast, because of the high computational cost of large-scale experiments
(e.g., with 7B models), we followed prior work by adopting a coarser grid interval of 0.1, with equal
λ values for all vectors. The impact of lambda grid intervals is discussed in Appendix A.9, showing
how coarser intervals may lead to unfair comparisons by missing optimal values. Detailed steps for
our grid search strategy are outlined in Appendix A.10.

Implementation Details. The model evaluations were performed on A100-40GB GPUs. For small-
scale and discriminative tasks in GLUE, we conducted a single evaluation per model, as minimal
variance was observed across repeated runs. In contrast, for generative tasks involving large models,
where results can be more variable, inference was implemented via the lm-evaluation-harness v0.4.0.
To ensure consistency and robustness, we performed three evaluations and reported the average
outcome. As for the hyperparameters of generative LMs, we set the maximum generation token
limit to 256, the temperature to 1.0 for sampling, and the maximum context length to 2048 tokens.

5.2 PERFORMANCE OF CABS ON ENCODER-BASED LMS

This experiment validates the effectiveness of CABS in merging small-scale encoder-based models,
such as RoBERTa, on tasks from the GLUE benchmark. For example, we merge two models fine-
tuned on RTE and MRPC tasks, respectively, using CABS and baseline methods.

Table 1 presents the accuracy achieved by each method. Among the baselines, “Task Arithmetic”
serves as a vanilla approach without any pruning, while the other four baselines incorporate prun-
ing. We observe that all the pruning-enhanced baselines outperform the vanilla version, with an
improvement of up to 0.50 achieved by “TIES-Merging + DARE”, highlighting the effectiveness of
the pruning technique in model merging. Furthermore, the baselines enhanced by random pruning
(i.e., “+ DARE”) surpass those enhanced by magnitude pruning (i.e., “+ Magnitude” and “TIES-
Merging”), indicating that magnitude pruning underperforms random pruning due to the issues we
have identified (see Section 3). By addressing these issues, CABS achieves a significant perfor-
mance improvement over all baselines.

CABS achieves a performance gain of 1.34 over “Task Arithmetic”, which is 168% greater than
the improvement of 0.50 achieved by the SOTA baseline “TIES-Merging + DARE” Additionally, in
normalized accuracy (shown in column “AVG-N”), CABS showed a relative improvement of 202%
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over the best-performing enhanced baseline (+1.57 vs. +0.52). For similar results on the CoLA and
SST-2 tasks, please refer to Table 8 in the appendix A.11.

Table 1: Performance comparison on RTE-MRPC task pair using different methods (sparsity=0.9).

METHOD RTE MRPC AVG RTE-N MRPC-N AVG-N
Fine-tuned model on RTE 79.42 25.98 52.70 100.00 28.51 64.26
Fine-tuned model on MRPC 47.29 91.18 69.24 59.54 100.00 79.77

Task Arithmetic 73.29 87.01 80.15 92.23 95.42 93.82
Task Arithmetic + Magnitude 74.73 86.03 80.38(+0.23) 94.12 94.35 94.24(+0.42)
Task Arithmetic + DARE 72.92 88.24 80.58(+0.43) 91.82 96.78 94.30(+0.48)
TIES-Merging 74.37 86.03 80.20(+0.05) 93.64 94.35 94.00(+0.18)
TIES-Merging + DARE 72.56 88.73 80.65(+0.50) 91.36 97.31 94.34(+0.52)

CABS (Ours) 74.01 88.97 81.49(+1.34) 93.20 97.58 95.39(+1.57)

5.3 PERFORMANCE OF CABS ON DECODER-BASED LMS

The “AVG” columns in Tables 2 and 3 present the average performance of each method across six
tasks, demonstrating that CABS outperforms all baselines on generative LMs. Table 2 shows the
results at a sparsity level of 0.25, where CABS can minimize the overlap, reaching an accuracy of
76.48%. In Table 3, at a sparsity level of 0.75, where CABS can eliminate overlap entirely, resulting
in a performance improvement compared to the 0.25 sparsity level (76.50 vs. 76.48).

It is worth mentioning that, to figure out how far current model merging methods are from the ex-
pectation of the research field, we introduce an “ideal model” as a strict and meaningful baseline.
The ideal model represents a hypothetical scenario where the merged model achieves optimal perfor-
mance for each task, which is “constructed” by selecting the best-performing individual task-specific
model for each task.

Table 2: Performance comparison on LLM Leaderboard using different methods (sparsity=0.25).

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
ideal model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
Task Arithmetic + Magnitude 71.67 89.15 63.42 74.05 84.37 73.53 76.03(-0.27)
Task Arithmetic + DARE 72.30 88.77 63.84 72.08 84.40 74.40 75.96(-0.34)
TIES-Merging 72.41 89.34 63.40 74.03 83.64 73.69 76.09(-0.21)
TIES-Merging + DARE 72.30 88.63 63.76 72.16 85.06 74.37 76.05(-0.25)

TIES-Merging + CABS 72.97 89.20 63.46 74.00 85.16 74.50 76.44(+0.14)
CABS (Ours) 72.75 89.17 63.48 74.08 84.66 74.73 76.48(+0.18)

In the “AVG” columns of Tables 2 and 3, the numbers in parentheses indicate the difference be-
tween the method’s average accuracy and that of the ideal model. On the one hand, the outcome
highlights a significant advantage of model merging: the enhancement of generalization. While
the merged model may not surpass the ideal model on every individual task, it often achieves su-
perior performance on specific tasks due to improved generalization capabilities. For example, in
the TruthfulQA task (see column “TQA” in Table 3), the fine-tuned models scored 72.72 and 70.07,
whereas the vanilla baseline reached 74.00, and CABS further boosted the score to 74.41. On the
other hand, we can see, CABS achieved an average performance of 76.50, exceeding the ideal vir-
tual model’s performance of 76.30. In comparison, the highest-performing baseline scored 76.09,
with a drop of 0.21 compared to the ideal model. The results demonstrate the effectiveness of CABS
in enhancing model generalization and robustness. This success underscores the value of CABS for
model merging in large-scale models.
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Table 3: Performance comparison on LLM Leaderboard using different methods (sparsity=0.75).

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
ideal model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
Task Arithmetic + Magnitude 71.93 89.32 63.18 73.85 84.12 72.22 75.77(-0.53)
Task Arithmetic + DARE 72.64 88.86 63.54 72.82 84.03 73.44 75.89(-0.41)
TIES-Merging 71.42 89.17 63.16 73.82 84.74 73.01 75.89(-0.41)
TIES-Merging + DARE 71.87 88.95 63.56 72.87 84.61 73.21 75.85(-0.46)

CABS (Ours) 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)

5.4 ABLATION STUDIES AND DISCUSSION

Within the CABS framework, we first analyze the independent contributions of Conflict-Aware Spar-
sification(CA) and Balanced Sparsification (BS) by examining the impact of parameter overlap and
unbalanced weight distribution on model merging. Next, we perform ablation studies to isolate the
contributions of CA and BS, demonstrating the importance of both strategies for achieving optimal
results.

Performance Impact of Overlap Rate. We examined the impact of varying overlap rates on final
model performance to validate the importance of CA. The experiment was conducted on two task
pairs (RTE-MRPC and CoLA-SST2) with a fixed sparsity level of 0.50, using random pruning for
fair comparison. We first pruned one task vector, then adjusted the pruning of second vector by
controlling the ratio of retained weights in the overlapping and non-overlapping regions to achieve
target overlap rate, ranging from 0% (no overlap, CA) to 100% (full overlap).

0 20 40 60 80 100

Overlap Rate (%)
0.874

0.875

0.876

0.877

0.878

0.879

0.880

AV
G.

AC
C 

wi
th

 C
oL

A-
SS

T2

No Overlap, CA

DARE

Full Overlap

AVG.ACC with CoLA-SST2
AVG.ACC with RTE-MRPC

0.800

0.801

0.802

0.803

0.804

0.805

0.806

AV
G.

AC
C 

wi
th

 R
TE

-M
RP

C

No Overlap, CA

DARE

Full Overlap

Figure 4: Merged model performance
decreases as overlap rate increases, un-
derscoring the importance of CA in re-
ducing conflicts.

Figure 4 shows that lower overlap generally leads to bet-
ter performance, underscoring the importance of reduc-
ing parameter overlap, as achieved through CA. The 50%
overlap point, which corresponds to the expected overlap
rate of DARE, is noteworthy but does not perform as well
as the no overlap condition (CA). This, along with the
0% and 100% overlap points, has been specifically high-
lighted in the figure for clarity.

CA becomes particularly critical at lower sparsity levels.
For example, at 0.5 sparsity, the number and rate of over-
lapping parameters are much higher than at 0.9 sparsity.
This makes CA especially valuable at lower sparsity lev-
els, where task vectors retain more parameters and are
thus more likely to result in significant overlap.

Performance Impact of Balanced Sparsification. Next,
we evaluated BS’s effectiveness by comparing different sparsity strategies, including layer-wise
magnitude pruning, row-wise magnitude pruning, and n:m magnitude pruning. Table 4 presents the
results at a sparsity level of 0.9, demonstrating that n:m magnitude pruning outperforms other meth-
ods, as it maintains balanced weight distribution and in turn improves model stability. BS proves
most effective at a high sparsity level, such as 0.9, where the risk of unbalanced pruning is much
higher. By ensuring that retained weights are distributed evenly across blocks, BS mitigates the po-
tential for performance degradation due to concentrated weight distributions. As shown in Table 4,
BS achieves an average performance of 81.30, outperforming layer-wise pruning (80.38) and row-
wise pruning (80.61), and delivering a significant improvement over the base task-arithmetic score
of 80.15. This highlights the crucial role of BS in enhancing model performance at high sparsity
levels.
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Table 4: Comparison of sparsity strategies: layer-magnitude, row-magnitude, and BS (sparsity=0.9).
“TA” means “Task Arithmetic”.

METHOD RTE MRPC AVG RTE-N MRPC-N AVG-N
Fine-tuned model on RTE 79.42 25.98 52.70 100.00 28.51 64.26
Fine-tuned model on MRPC 47.29 91.18 69.24 59.54 100.00 79.77

Task Arithmetic(Dense) 73.29 87.01 80.15 92.23 95.42 93.82
TA + Magnitude(layer-wise) 74.73 86.03 80.38(+0.23) 94.12 94.35 94.24(+0.42)
TA + Magnitude(row-wise) 74.06 87.05 80.61(+0.46) 93.25 95.47 94.36(+0.54)

TA + BS (Ours) 74.37 88.23 81.30(+1.08) 93.64 96.76 95.20(+1.38)

Combined Effect of CA and BS. To further explore the combined effect of CA and BS within
CABS, we compared the full implementation of CABS with configurations that included only CA
or BS. The results in Table 5 show that while CA and BS independently contribute to performance
improvements, their combination within CABS achieves the highest accuracy and stability across
different sparsity levels.

Table 5: Ablation study of CABS across different sparsity levels.

Sparsity Level Method Overlap Rate Avg Accuracy
0% Task Arithmetic 100.00 76.02

TA-magnitude 80.69 76.03
25% CA Only 66.67 76.29

BS Only 80.97 76.33
CABS 66.67 76.48

TA-magnitude 71.42 75.77
75% CA Only 0.00 76.21

BS Only 58.63 76.24
CABS 0.00 76.50

In conclusion, our ablation studies confirm the necessity of reducing overlap rates and maintaining
balanced weight distribution for optimal model merging. They validate the crucial roles of CA and
BS, showing that combining both strategies achieves the best performance across various tasks and
sparsity settings.

Additionally, we performed a series of analyses on the impact of different sparse sequences, and
varying n:m ratios. These results, which further elucidate the robustness of the CABS framework,
are provided in the Appendix A.12 and A.13. We also conducted rescaling experiments and found
that applying rescaling to magnitude-pruned task vectors can restore performance to levels compara-
ble to the original models, similar to what has been observed with DARE’s random pruning method.
Detailed results of these rescale experiments are included in Appendix A.14.

6 CONCLUSION

In this work, we identified the issues of high parameter overlap and unbalanced weight distribution
in task vector sparsification. We then proposed the CABS framework to address these challenges in
model merging. CABS effectively reduces overlap and ensures a more balanced distribution of re-
tained weights, resulting in improved performance across various tasks and model sizes. The CABS
framework can be integrated into existing model merging techniques. Extensive experiments on both
small- and large-scale models demonstrated CABS’s effectiveness in improving model performance
and maintaining model generalization. We also conducted a detailed analysis of CABS’s compo-
nents, providing insights into its robust handling of sparsification challenges in model merging. For
a discussion on limitations and future work, see Appendix A.15.
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A APPENDIX

A.1 OVERLAP RATE CALCULATION

The overlap rate between two task vectors is a metric used to quantify the extent to which the
same parameters are retained after pruning. This metric is particularly useful in understanding how
pruning strategies impact the sharing of model parameters across different tasks, which can lead to
conflicts during model merging.

The overlap rate is calculated as follows: Given two task vectors τA and τB , the overlap rate is
defined as the ratio of the number of shared non-zero parameters to the total number of non-zero
parameters in the first task vector τA. Mathematically, this can be expressed as:

Overlap Rate =
|τA ∩ τB |

|τA|

where |τA∩τB | represents the count of non-zero parameters that are common to both vectors τA and
τB , and |τA| denotes the total count of non-zero parameters in vector τA. This calculation shows the
extent of overlap between two task vectors. A higher overlap rate means more shared parameters,
increasing the potential for conflicts during model merging.

A.2 WEIGHT DISTRIBUTION ANALYSIS ACROSS LAYERS AND SPARSITY RATIOS

This section provides a comprehensive analysis of the heatmaps illustrating weight distribu-
tions across different layers of the model and various sparsity ratios. Figures 5-7 show
the weight distribution for four representative layers: self attn.k proj.weight (layer
6), self attn.q proj.weight (layer 12), self attn.v proj.weight (layer 24), and
mlp.up proj.weight (layer 18) at sparsity ratios of 25%, 50%, 75%, and 90%.

These heatmaps demonstrate how increasing sparsity causes magnitude-based pruning to concen-
trate weights in localized regions of the parameter space. As the sparsity level increases, this clus-
tering becomes more pronounced, especially at 75% and 90% sparsity levels, leading to potential
imbalances that can degrade model performance.

The recurring pattern across all layers further highlights the significance of strategies like Balanced
Sparsification (BS), which aim to distribute weights more evenly across the model. By ensuring a
more uniform distribution of the retained weights, BS helps to maintain model stability and perfor-
mance after sparsification.
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Figure 5: Heatmaps of weight distribution in model.layers.6.self attn.k proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).
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Figure 6: Heatmaps of weight distribution in model.layers.12.self attn.q proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).
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Figure 7: Heatmaps of weight distribution in model.layers.18.mlp.up proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).
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Figure 8: Heatmaps of weight distribution in model.layers.24.self attn.v proj.weight across different
sparsity ratios (25%, 50%, 75%, and 90%).

A.3 ALGORITHM OF LOW-OVERLAP SPARSITY

In this section, we provide the detailed algorithm for Low-Overlap Sparsity in Algorithm 2, designed
to minimize direct conflicts during the model merging process. The algorithm sequentially applies
sparsification to task vectors, ensuring that the non-overlapping portions of the task vectors are
prioritized, thereby reducing coupling and conflict between different tasks in the final merged model.

Algorithm 2 CABS Implementation:minimize overlap rate

Input: Task vectors τA, τB , base model Wbase, sparsity level n , m, rescale factors λA , λB

Output: Merged model parameters Wfinal
1: Apply n:m pruning to τA and compute maskA // include BS
2: Compute initial maskB = 1− maskA, retaining non-overlapping regions of τB
3: If initial maskB retains less than n ÷ m of weights, update maskB by including additional

weights from the overlapping region maskA ⊙ τB until the target sparsity n÷m is reached
4: Merge the pruned vectors with the base model:

Wfinal = Wbase + λA × maskA ⊙ τA + λB × maskB ⊙ τB

5: return Wfinal

A.4 COMPARISON OF N:M PRUNING AND BS

Although both n:m pruning and BS employ the same operation—selecting the top n values out of
m consecutive weights based on magnitude—their goals and use cases differ:

- Goal: The primary goal of n:m pruning is to achieve model compression and acceleration by
reducing computational and memory costs. In contrast, BS is designed to maintain a balanced
distribution of task vectors while minimizing conflicts between them during merging, not to merely
discard unimportant weights.

- Result: n:m pruning is typically used for structured pruning in models, aiming to reduce inference
time and memory usage. On the other hand, BS is applied specifically to task vectors. After the task
vectors are merged with a base model, the resulting model remains dense, meaning that the practical
computation and memory savings are not realized, but the model gains improved capacity.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

- Sparsity Ratios: n:m pruning often uses configurations like 2:4 or 4:8, where the sparsity level is
generally around 50%. In contrast, the sparsification of task vectors under BS can involve much
higher sparsity levels, as can be seen in Table 10 (Appendix A.13), with configurations such as
64:256 at 75% sparsity.

- Effectiveness: Typically, n:m pruning yields lower performance compared to magnitude pruning
in compression tasks, as the more strict uniform distribution of sparsity across blocks (e.g., every
4 weights) tends to hurt performance. However, in model merging, n:m sparsity can outperform
row-wise or layer-wise magnitude pruning due to its more balanced distribution.

A.5 FLEXIBILITY, INTEGRATION, AND EFFICIENCY

Flexibility and Integration of CABS. The CABS framework offers flexibility in its integration with
existing model merging techniques. CA and BS can be applied independently or in combination
with other approaches. For instance, CA can be combined with other sparsification strategies (e.g.,
DARE, magnitude) to minimize parameter overlap, while BS can implement n:m sparsity using
different importance metrics beyond magnitude. Additionally, at lower sparsity levels, CABS can
be effectively combined with techniques like Ties-merging to solve sign conflict, making it adaptable
to various merging scenarios.

Efficiency and Complexity. Model merging, as implemented in toolkits like MergeKit (Goddard
et al., 2024), inherently has low computational overhead since it bypasses full model retraining. In
CABS, we introduce minimal additional cost to the merging process. The Conflict-Aware (CA)
strategy modifies the pruning process from parallel to sequential, with the addition of a mask inver-
sion and element-wise product to avoid overlap between task vectors. These operations introduce
negligible computational overhead, especially given that most modern sparsification frameworks,
including MergeKit, already adopt a sequential approach.

For Balanced Sparsification (BS), while extreme n:m pruning ratios (e.g., 32:128) may not benefit
from hardware-level acceleration available for smaller ratios like 2:4, BS remains efficient in terms
of time complexity. Here, N represents the total number of parameters in a given layer of the model.
Instead of performing a full sorting operation across the entire layer as in layer-wise magnitude
pruning (which has a time complexity of O(N logN)), BS operates by selecting n weights within
smaller fixed windows of size m. This process involves sorting each window of size m, resulting
in a time complexity of O(N logm), which is more efficient than the global sorting required for
layer-wise pruning.

In conclusion, while CABS introduces additional steps to improve weight distribution and miti-
gate overlap, these steps have minimal impact on the overall computational cost, ensuring that the
merging process remains efficient.

A.6 DETAILS OF DATASETS AND MODELS FOR DECODER-BASED LMS

Tasks The LLM Leaderboard benchmark consists of six primary tasks designed to evaluate the
capabilities of large-scale generative language models across various domains:

• AI2 Reasoning Challenge: A set of grade-school science questions aimed at testing rea-
soning capabilities.

• HellaSwag: A commonsense inference test that is challenging for SOTA models but easy
for humans ( 95% accuracy).

• MMLU: A multitask accuracy test covering 57 tasks, including elementary mathematics,
US history, computer science, law, and more.

• TruthfulQA: A test measuring a model’s propensity to reproduce falsehoods commonly
found online.

• Winogrande: An adversarial and difficult Winograd schema-based benchmark for com-
monsense reasoning.

• GSM8K: A set of grade school math word problems designed to measure a model’s ability
to solve multi-step mathematical reasoning problems.
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Models The decoder-based models used in our evaluations were built upon the Mistral-7b-v0.11

backbone and included several fine-tuned variants: WildMarcoroni-Variant1-7B2,WestSeverus-7B-
DPO-v23

These models were chosen for their ability to perform well across the diverse set of tasks included
in the LLM Leaderboard benchmark and their use in prior research.

A.7 DETAILS OF DATASETS AND MODELS FOR ENCODER-BASED LMS

Tasks The GLUE benchmark includes a variety of tasks designed to evaluate different aspects of
natural language understanding. For our experiments, we selected the following four tasks:

• CoLA (Corpus of Linguistic Acceptability), which evaluates the grammatical acceptabil-
ity of sentences with performance measured using the Matthews Correlation Coefficient
(MCC);

• SST-2 (Stanford Sentiment Treebank), a binary sentiment classification task assessing
whether a sentence expresses a positive or negative sentiment, evaluated using accuracy;

• MRPC (Microsoft Research Paraphrase Corpus), a paraphrase identification task where
models predict whether two sentences have the same meaning, evaluated using both accu-
racy and F1 score;

• RTE (Recognizing Textual Entailment), a natural language inference task where models
determine whether a hypothesis is true based on a given premise, evaluated using accuracy.

Models For each task, we utilized pre-trained and fine-tuned versions of RoBERTa, ob-
tained from Hugging Face. Specifically, we used FacebookAI/roberta-base4 as base model.
textattack/roberta-base-CoLA 5, textattack/roberta-base-SST-26, textattack/roberta-base-MRPC7,
and textattack/roberta-base-RTE8.

A.8 EVALUATION METRICS

For GLUE tasks, accuracy was chosen as the uniform metric to facilitate fair comparison across
tasks. While MCC is recommended for CoLA, we used accuracy to maintain consistency with
other tasks. MCC typically reaches around 0.64 after fine-tuning for CoLA, whereas accuracy for
other tasks often exceeds 0.9. This discrepancy makes it difficult to include MCC in an overall
performance average.

For LLM Leaderboard tasks, the following metrics were used:

• ARC: Success rate (25-shot)

• HellaSwag: Accuracy (10-shot)

• MMLU and Winogrande: Accuracy (5-shot)

• TruthfulQA: Factual accuracy (0-shot)

• GSM8K: Success rate (5-shot)

These metrics provide a consistent and comparable basis for evaluating model performance across
various benchmarks.

1https://huggingface.co/mistral-7b-v0.1
2https://huggingface.co/WildMarcoroni-Variant1-7B
3https://huggingface.co/WestSeverus-7B-DPO-v2
4https://huggingface.co/FacebookAI/roberta-base
5https://huggingface.co/textattack/roberta-base-CoLA
6https://huggingface.co/textattack/roberta-base-SST-2
7https://huggingface.co/textattack/roberta-base-MRPC
8https://huggingface.co/textattack/roberta-base-RTE
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A.9 IMPACT OF LAMBDA SEARCH GRID ON PERFORMANCE

In this section, we analyze the impact of different lambda search grids on the performance of var-
ious model merging methods. Our experiments demonstrate the importance of using fine-grained
grid intervals to fairly compare the effectiveness of these methods. Table 6 provides results across
different grid intervals (0.01, 0.05, and 0.1) for several methods.

For most methods, performance declines as the grid interval increases, underscoring the importance
of finer grids to accurately capture optimal lambda values. Coarser grids often miss these values,
leading to noticeable drops in performance.

Interestingly, the DARE method maintains stable performance even with coarser grids (0.05 and
0.1). This is because the optimal lambda for DARE happens to coincide with a multiple of 0.1,
resulting in no significant performance loss with coarser grids. However, when we exclude such co-
incidental “sweet spot” lambdas, as shown in Table 7, DARE also exhibits a significant performance
drop. This observation reinforces the idea that fine grid intervals are crucial for a fair and thorough
evaluation of all methods. A finer grid ensures that all methods have an equal opportunity to find the
best-performing lambda, though this must be balanced with computational cost

On the other hand, the CABS method demonstrates robust performance across all grid intervals.
It consistently outperforms other methods, and its relative insensitivity to grid coarseness suggests
that CABS is more robust and reliable under varying hyperparameter settings. This robustness,
combined with its superior performance, makes CABS a strong choice for model merging.

Table 6: Performance comparison across different lambda grid intervals.“TA” means “Task Arith-
metic”

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging

0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)
0.05 79.85 80.58(+0.73) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 80.58(+1.15) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

Table 7: Performance comparison across different lambda grid intervals excluding one pair sweet
spot lambdas in DARE.

Grid Task DARE TA- TIES- TIES- CABS
Interval Arithmetic Magnitude DARE Merging

0.01 80.15 80.58(+0.43) 80.38(+0.23) 80.65(+0.40) 80.20(+0.05) 81.49(+0.91)
0.05 79.85 79.44(-0.41) 79.90(+0.05) 79.91(+0.06) 79.84(-0.01) 81.19(+1.34)
0.10 79.43 78.55(-0.88) 79.66(+0.23) 79.14(-0.29) 79.83(+0.40) 80.82(+1.39)

A.10 GRID SEARCH DETAILS FOR SMALL-SCALE EXPERIMENTS

In our small-scale experiments, we employed a two-step grid search strategy to determine the opti-
mal rescale factor λ that maximizes average performance across multiple tasks.

Grid Search Strategy As the sparsity level increases, the range of potential optimal λ values broad-
ens, and performance typically follows a pattern of increasing and then decreasing with respect to λ.
To address this, we first performed a manual search with a 0.1 interval, identifying the broader re-
gion where the optimal λ is likely to reside. Based on the results of this initial search, we conducted
a more fine-grained search using a 0.01 interval, focusing on the region identified in the first step.

Unlike a fixed-range search, this adaptive approach allowed us to zero in on the most effective rescale
factors for each sparsity level, ensuring more precise performance optimization. The performance
values presented in the main text correspond to the optimal λ found through this two-step process.
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A.11 ADDITIONAL EXPERIMENTS ON OTHER TASK PAIRS FOR SMALL-SCALE
EXPERIMENTS

In this section, we present additional results for the CoLA-SST2 task pair to complement the main
text’s findings on RTE and MRPC. These tasks were selected to further validate the robustness and
effectiveness of the proposed CABS method across different types of natural language processing
tasks, particularly focusing on tasks involving linguistic acceptability and sentiment analysis.

Table 8 provides a detailed comparison of various model merging methods on the CoLA and SST2
tasks. The CABS method demonstrates superior performance, achieving the highest average scores
across both tasks. The normalized accuracy scores (COLA-N and SST2-N) further emphasize the
effectiveness of the CABS method, showing consistent improvements over the baseline methods.

The modest gains observed in the CoLA-SST2 experiments, similar to those in the RTE-MRPC pair,
can be attributed to the fine-grained lambda grid search. This search process, which fine-tunes the
sparsification parameters, improves the overall performance across all methods, thereby reducing
the performance gaps. However, CABS still outperforms other methods, indicating its robustness in
handling task-specific nuances during model merging.

Table 8: Performance comparison on COLA-SST2 task pair using different methods.(sparsity=0.9)

METHOD COLA SST2 AVG COLA-N SST2-N AVG-N
Fine-tuned model on COLA 85.04 50.92 67.98 100.00 54.15 77.08
Fine-tuned model on SST2 68.74 94.04 81.39 80.83 100.00 90.32
Task Arithmetic 81.59 92.89 87.24 95.94 98.78 97.36

Task Arithmetic + Magnitude 81.69 93.46 87.58(+0.34) 96.06 99.38 97.72(+0.36)
Task Arithmetic + DARE 81.78 93.46 87.62(+0.38) 96.17 99.38 97.78(+0.42)
TIES-Merging 81.21 93.58 87.40(+0.16) 95.5 99.51 97.51(+0.19)
TIES-Merging + DARE 81.78 93.69 87.74(+0.50) 96.17 99.63 97.90(+0.54)
CABS (Ours) 82.55 93.35 87.95(+0.71) 97.07 99.27 98.17(+0.81)

The results from these additional experiments support the conclusions drawn in the main paper,
highlighting CABS as a robust and effective model merging technique across various tasks and
evaluation metrics.

A.12 PERFORMANCE IMPACT OF SPARSIFICATION SEQUENCE

We analyze how different sparse sequences, referring to the order in which source models (e.g.,
“wild” and “west”) undergo sparsification during the merging process, affect the merged model’s
performance. In this context, “wild-first” and “west-first” indicate which model is sparsified first.
Our findings, summarized in Table 9, suggest that while the order of sparsification has some impact,
the effect remains relatively small.

A.13 EFFECT OF DIFFERENT N:M RATIOS AT FIXED SPARSITY LEVELS

This section examines how different n:m ratios impact the performance of the merged model while
keeping the overall sparsity fixed at 75%. The results in Table 10 indicate that while higher n:m
ratios (e.g., 64:256) tend to show slight improvements, the overall impact of varying n:m ratios
remains relatively subtle, suggesting that model performance is not highly sensitive to these values.

A.14 RESCALE EXPERIMENTS

In previous research, TIES utilized magnitude pruning to reduce conflicts during task vector merg-
ing but did not include a rescale step. Subsequent work on DARE introduced a two-step process:
random pruning followed by rescaling with a factor of 1

1−p , where p is the sparsity rate. DARE
demonstrated that random pruning, when combined with rescaling, could restore performance to
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Table 9: Performance comparison across different sparse sequences on LLM Leaderboard taskss-
parsity=75%

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64)-wild-first 72.30 88.87 63.47 74.27 84.77 74.12 76.3(+0.0)
CABS(16:64)-west-first 72.44 89.08 63.11 73.38 84.79 75.11 76.32(+0.02)
CABS(32:128)-wild-first 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(32:128)-west-first 72.58 89.19 63.19 74.22 85.16 74.15 76.42(+0.12)
CABS(64:256)-wild-first 72.87 89.02 63.43 74.61 84.37 73.92 76.37(+0.07)
CABS(64:256)-west-first 72.38 89.29 63.15 73.47 85.40 74.65 76.39(+0.09)

Table 10: Impact of different n:m ratios at 75% sparsity on LLM Leaderboard tasks

METHOD ARC Hella. MMLU TQA Wino. GSM8K AVG
WestSeverus-7B-DPO-v2 71.30 88.26 63.92 72.72 83.69 74.27 75.69
WildMarcoroni-Variant1-7B 73.63 88.67 63.96 70.07 84.34 74.48 75.86
Ideal Model 73.63 88.67 63.96 72.72 84.34 74.48 76.30

Task Arithmetic(Dense) 72.52 89.25 63.39 74.00 83.46 73.38 76.02(-0.28)
CABS(16:64) 72.44 89.08 63.11 73.38 84.79 75.11 76.32(+0.02)
CABS(32:128) 72.92 88.89 63.50 74.41 84.63 74.65 76.50(+0.20)
CABS(64:256) 72.38 89.29 63.15 73.47 85.40 74.65 76.39(+0.09)

levels comparable to the original fine-tuned models. However, DARE did not explore the effect of
rescaling on magnitude-pruned task vectors.

In our experiments, we evaluated the impact of rescaling on both magnitude-based and random
pruning methods across different sparsity levels. As shown in Figure 9, rescaling allows magnitude-
pruned task vectors to recover performance similar to that achieved by DARE, suggesting that rescal-
ing is a crucial step for maintaining model performance post-pruning.
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Figure 9: Impact of rescaling on different pruning methods across various sparsity levels. Perfor-
mance is evaluated on RTE and MRPC tasks using RoBERTa. The horizontal axis represents the
sparsity ratio, while the vertical axis indicates the performance of the task vectors after rescaling.

These findings confirm that, with appropriate rescaling, both magnitude-based and random pruning
methods can achieve near-original performance. This insight complements the primary contributions
of our work by showing that magnitude pruning, which traditionally underperformed compared to
random pruning in TIES, can be equally effective when combined with rescaling. Although this
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experiment supports the robustness of magnitude pruning under rescale conditions, it is not the main
focus of our study and is therefore detailed here in the appendix.

A.15 LIMITATIONS AND FUTURE WORK

General Limitations. Like other task vector-based methods, our approach is limited to models with
identical architectures due to the element-wise operations used in merging model weights. This con-
straint restricts the generalization of the framework to models with homogeneous structures. Addi-
tionally, the reliance on manual tuning of the parameter λ remains a common challenge, especially
for large language models, requiring trial and error to optimize model performance.

Limitations Specific to CABS. CABS introduces two new hyperparameters—the sparse sequence
and the n:m ratios—unique to its design, as discussed in Appendix A.12 and A.13. While these hy-
perparameters were not particularly sensitive in our experiments, they add complexity and increase
computational cost. Furthermore, while CA and BS improve performance across various tasks, their
effectiveness is reduced in scenarios where task vectors have minimal overlap or where models
exhibit significant weight imbalances prior to sparsification. Additional experiments, especially at
extreme sparsity levels or with heavily imbalanced models, are necessary to better understand these
limitations.

Future Work. Several directions could help overcome these limitations. Expanding model merging
techniques to include heterogeneous architectures or models trained from scratch represents a key
area for future research. Additionally, improving the performance of merged models in multi-task
settings—where current approaches do not yet match the performance of original single-task mod-
els—remains a priority. Automating the search for optimal hyperparameters, particularly λ, would
reduce complexity and improve usability, especially in large-scale applications.

A.16 IMPACT OF LAMBDA ON PERFORMANCE

Figure 10 provides the average performance as a function of λ. It can be observed that within a
certain range, the performance is relatively insensitive to variations in λ. This result corresponds to
the performance of the CABS framework on the RTE-MRPC task. For visualization purposes, the
same λ values were used across the tasks rather than the task-specific λ values reported in the paper.
The λ values range from 1 to 3, with a step size of 0.01, resulting in a total of 200 samples.
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Figure 10: Average performance vs.lambda

22


	Introduction
	Related Work
	Issues in Task Vector Sparsification for Model Merging
	Methodology
	Overview of CABS Framework
	Conflict-Aware Sparsification (CA)
	Balanced Sparsification (BS)

	Experiments
	Experimental Setup
	Performance of CABS on Encoder-based LMs
	Performance of CABS on Decoder-based LMs
	Ablation Studies And Discussion

	Conclusion
	Appendix
	Overlap Rate Calculation
	Weight Distribution Analysis Across Layers and Sparsity Ratios
	Algorithm of Low-Overlap Sparsity
	Comparison of n:m pruning and BS
	Flexibility, Integration, and Efficiency
	Details of Datasets and Models for Decoder-based LMs
	Details of Datasets and Models for Encoder-based LMs
	Evaluation Metrics
	Impact of Lambda Search Grid on Performance
	Grid Search Details for Small-Scale Experiments
	Additional Experiments on other Task Pairs for Small-Scale Experiments
	Performance Impact of Sparsification Sequence
	Effect of Different n:m Ratios at Fixed Sparsity Levels
	Rescale Experiments
	Limitations and Future Work
	Impact of Lambda on Performance


