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Abstract

Transformer models underpin many recent advances in practical machine learn-
ing applications, yet understanding their internal behavior continues to elude
researchers. Given the size and complexity of these models, forming a compre-
hensive picture of their inner workings remains a significant challenge. To this
end, we set out to understand small transformer models in a more tractable setting:
that of solving mazes. In this work, we focus on the abstractions formed by these
models and find evidence for the consistent emergence of structured internal rep-
resentations of maze topology and valid paths. We demonstrate this by showing
that the residual stream of only a single token can be linearly decoded to faithfully
reconstruct the entire maze. We also find that the learned embeddings of individual
tokens have spatial structure. Furthermore, we take steps towards deciphering the
circuity of path-following by identifying attention heads (dubbed adjacency heads),
which are implicated in finding valid subsequent tokens.

1 Introduction

In recent years, large transformer models have been applied to great effect in various domains,
including language modeling, computer vision, and reinforcement learning. The proliferation of such
architectures in applied settings has led to increased concern over the generality and robustness of the
behaviors they learn. To this end, researchers have begun to study small transformer models on toy
tasks to develop a mechanistic understanding of how transformers learn to solve varying classes of
problems. The generalizability of findings from toy models to larger scales remains uncertain, but
early findings in this direction have given cause for optimism [1].

The most well-known example of a mechanistic component (a circuit) found across many transformers
models are induction heads [2], which facilitate in-context sequence completion (A,B, [...], A → B)
and arise in transformers with at least 2 layers. While induction heads are fairly simple, they form
crucial building blocks of more complex circuits [3, 4]. Identifying complete circuits in more complex
models is highly labor intensive, but other methods, such as linear probing and the TunedLens [5],
allow researchers to interpret the representations learned by larger models. Indeed, recent work [6]
found that a GPT-2 model trained on the game of Othello learned to (linearly [7]) represent the board
state in a way which could be easily intervened upon to change the model’s future actions.
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With the ultimate goal of better understanding how transformer models perform multi-step reasoning
in search-like tasks, we apply the interpretability methods to toy models trained to solve maze tasks.
In particular, we experiment with autoregressive transformers trained to solve mazes represented as a
list of tokens [8], which constitutes an offline reinforcement learning task with global observations.
By varying the precise configurations of these maze solving tasks, we are able to investigate the
conditions under which models tend to learn representations with varying degrees of interpretability
and generalizability. Additionally, while prior work has found that transformers struggle to perform
complex planning tasks [9], we find that relatively small (< 107 parameters) transformers are capable
of solving mazes.

We use various interpretability techniques to study our models, finding that the geometry of their
embedding space correlates with the spatial structure of the mazes (subsection 3.2). We find that our
highest-performing models form a linear representation of maze connectivity structure, which can be
decoded at early layers (subsection 3.4). Lastly, we identify specific attention heads that condition
over valid neighbors for a given state, implicating them in path-following behavior (subsection 3.3
and subsection 3.5).

By performing these analyses across models and at different stages in training, we find evidence for
grokking-like transitions during training, in which a model’s ability to generalize improves rapidly
[10]. These increases in generalization performance coincide with the times at which models’ internal
representations of the maze become more linearly decodable, suggesting that a structured internal
representation improves their ability to systematically solve mazes (subsection 3.6).

2 Experimental Setting

2.1 Datasets

We use the maze-dataset library [8] to generate a variety of mazes and convert them into formats
suitable for a text-based autoregressive transformer. Starting with an n× n lattice, we generate paths
using a variety of algorithms. The resulting mazes are converted into tokenized representations,
shown in Figure 1b, which are used to train our models. The vocabulary consists of coordinate tokens
and various special tokens used to connect coordinates and delimit different parts of the maze and
solution description. While maze-dataset provides a variety of maze generation algorithms, filters,
and configuration parameters, in our interpretability experiments, we focus on mazes generated via 1)
Randomized Depth First Search (RDFS), which generates acyclic spanning trees; 2) “forkless” mazes
consisting of a sparse tree where each node has at most two connections; 3) Randomized Depth First
Search with percolation (pRDFS), which starts with RDFS, but then a OR is performed with a maze
where adjacent connections have probability p = 0.1 of occurring, thus creating mazes which may
have cycles.

<ADJLIST_START> (0,0) <–> (1,0) ; (2,0) <–> (3,0) ; (4,1) <–> (4,0) ;

(2,0) <–> (2,1) ; (1,0) <–> (1,1) ; (3,4) <–> (2,4) ; (4,2) <–> (4,3) ;

[...] (3,1) <–> (3,2) ; (1,3) <–> (1,4) ; <ADJLIST_END>

<ORIGIN_START> (1,3) <ORIGIN_END> <TARGET_START> (2,3) <TARGET_END>

<PATH_START> (1,3) (0,3) (0,2) (1,2) [...] (2,3) <PATH_END>

(a) An example training sequence with four parts. 1: The
adjacency list describes the connectivity of the maze (the order of
connections is randomized, ellipses represent omitted connection
pairs). 2,3: The origin and target specify where the path should be-
gin and end, respectively. 4: The path itself is the shortest sequence
of coordinates from the origin to the target. For a “rollout,” we pro-
vide everything up to (and not including) the <PATH_START> token
and generate a sequence via argmax sampling until the <PATH_END>
token is produced. For single-token tasks (see Figure 3), we provide
a partially complete path and consider only the logits over the imme-
diate next token.

(b) Visual representation of the maze
defined from the tokens on the left. The
origin is indicated in green, the target
in red, and the correct path in blue.

Figure 1: Tokenization scheme and visualization of our shortest-path maze tasks.
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2.2 Models and training

All models analyzed are autoregressive decoder-only models, identical to the GPT architecture. While
extensive sweeps were performed over hyperparameters, we focused our experiments on two trained
models. The first, denoted hallway, was trained only on “forkless” mazes and is a smaller model
with approximately 1.2M parameters. The second model, jirpy, has approximately 9.6M parameters
and was trained on sparsely connected mazes of varying sizes with multiple forking points (see
subsection 2.1).1 These two models trade off interpretability and task complexity, with the hallway
task allowing for a simpler model, while the task for jirpy requires decision making at each forking
point, potentially yielding a more complex maze representation. Full hyperparameters for our models
can be found in the appendix (??).

Models were trained to perform next-token prediction on a dataset of randomly generated mazes
and paths.2 At inference time, the models are prompted with a complete adjacency list and path
specification (i.e., all tokens up to <PATH_START>) and rolled out until they yield a <PATH_END>
token. It is worth noting that we do not impose any constraints on the validity of a model’s output, so
a poorly trained model may output nonsensical paths consisting of special tokens or disconnected
coordinates.

3 Experiments

To understand our trained maze-solving transformers’ behavior and internal representations, we favor
a post-hoc interpretability approach [11]. We begin with behavioral experiments on maze-solving
trajectories and assess initial path predictions. Next, we explore the embedding space for spatial
token relationships and use direct logit attribution [1, 3] to pinpoint model components sensitive to
specific sub-tasks. Through linear probes on the residual stream, we decode the presence or absence
of walls, revealing structured representations. Lastly, we analyze training metrics to investigate
the relationship between the emergence of structured representations and improved generalization
performance. Collectively, these experiments shed light on how our transformers adeptly solve mazes.

3.1 Behavioral Experiments

Although several evaluation metrics are computed during the training process, we found visual
inspection of generated paths to be useful. Several example rollouts are provided in Figure 2.

Figure 2: Example generations of hallway model (top row) and jirpy model (bottom row) on a
random sample of held-out RDFS mazes (outside the training distribution of the hallway model).
The correct path is marked as a red dashed line, with • at the starting position and x at the target
position. For clarity, generated paths fade from blue to green. Note that both models often violate
constraints, such as by passing through walls, and reach the target despite being at a dead end. Further
example generations can be found with our codebase.

1Chosen as it was the most performant of the models trained to solve complex mazes. See Figure 12.
2jirpy received gradients only from tokens in the path (including special delimiters), while hallway

received gradients from the entire sequence.
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To facilitate the isolation of specific sub-components of our transformers, which are implicated in
certain behaviors, we identify sub-“tasks” of maze solving, which consist of predicting a single
token. We describe several such tasks in Figure 3. For each of these, the prompt given to the model
consists of all context tokens up to and not including the targeted token. Of particular note in our
experiments is the qualitative observation that the models tend to reach the goal at the conclusion of
their generations but often violate the constraints in the process3, as shown in Figure 2 and Table 1.

<PATH_START> (1,3) (0,3) (0,2) [...] (2,4) (2,3) <PATH_END>

Figure 3: Tasks used to assess model performance and their relative locations within a path prediction.
From left to right, the target tokens are: path_start , origin_after_path_start , first_path_choice ,
rand_path_token_nonend , final_before_path_end , path_end . Notably, for hallway-type tasks, the
first_path_choice task is the only task that requires anything other than simple following of a path
and recognition of the origin and target. A rand_path_token task is also included, which is similar to
rand_path_token_nonend in that one of several tokens is selected at random, but for the latter, this pool of
possible tokens does not exclude endpoints. Performance on these tasks is shown in Table 1.

In Table 1, we note that on out-of-distribution pRDFS mazes, both models generalize fairly well. We
observe that performance on the first_path_choice task is consistently the lowest. Performance
of hallway on 6× 6 mazes is slightly lower than on larger mazes (see Table 4), possibly due to the
short prompt length being out-of-distribution.

dataset: forkless RDFS pRDFS
model: hallway jirpy hallway jirpy hallway jirpy

exactly correct rollouts 38.3% 38.7% 24.2% 82.4% 24.2% 70.7%
valid rollouts 54.3% 53.5% 37.5% 84.0% 49.6% 87.1%
rollouts with target reached 87.1% 64.5% 94.5% 99.2% 92.6% 100.0%

path_start 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
origin_after_path_start 91.0% 86.7% 100.0% 100.0% 100.0% 100.0%
first_path_choice 71.5% 66.4% 67.2% 86.7% 66.4% 84.4%
rand_path_token 93.0% 87.1% 90.2% 98.0% 84.0% 94.5%
rand_path_token_nonend 97.3% 89.8% 92.2% 99.2% 84.4% 97.3%
final_before_path_end 95.7% 85.9% 93.4% 100.0% 84.4% 100.0%
path_end 86.7% 71.5% 100.0% 99.6% 100.0% 100.0%

Table 1: Setup: Performance across tasks of the hallway model and jirpy model assessed on
held-out 6 × 6 forkless, RDFS, and pRDFS mazes (See subsection 2.1 and [8]). All values are
binary, since we perform a single rollout per maze, and score for a task is argmax(logits) ==
correct_token. Tasks: The first group of metrics deals with sequence generations or “rollouts,”
as detailed in subsection 2.1. A rollout is “exactly correct” if no deviations from the shortest path
occur (pRDFS mazes may not have a unique shortest path, and thus the provided values are a lower
bound). A rollout is “valid” if it obeys the topology of the maze (no wall jumps), but backtracking is
permitted. A rollout is considered to have reached the target if the final coordinate token is the target
token. The second group of single-token tasks used to assess performance are detailed in Figure 3.
Data for 7× 7 mazes is provided in Appendix B.

3.2 Emergent Structure in the Embedding Space

As in other language models, each token in the vocabulary corresponds to a unique orthogonal unit
vector. In our experiments, each coordinate on the lattice has a single corresponding token. The
embedding layer of our models maps each vocabulary vector from an input sequence to a dense
vector in Rdmodel . Since each vocabulary vector is orthogonal, no spatial structure is encoded into the
model directly; however, a spatial structure emerges after we train the model. In particular, we note
that a correlation between the coordinate distance and distance between embedding vectors emerges
for short distances (Figure 4). Note that proximity of tokens in the sequences alone is not enough to
allow this behavior to be learned due to the randomization of the adjacency list.

3I.e. its output sequence is often of the form “ [...invalid path...], (goal), <PATH_END>”.
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Figure 4: Structure of coordinate token embeddings for the hallway model. Given two coordi-
nates a, b and the embeddings of their corresponding tokens E(a), E(b) we observe the relationship
between the Manhattan (1-norm) distances. Note that all coordinates have orthogonal vocabulary vec-
tors, and the embeddings are learned. Left: Correlation between coordinate distance and embedding
distance. Right: Given the embedding of the coordinate at the x, Manhattan distance to the other
tokens on the grid is displayed. Note: full data for all models can be seen in Appendix C.

3.3 Direct Logit Attribution

To investigate path-following behavior, we utilize direct logit attribution (DLA) [1, 3], which measures
the direct contribution of an isolated component of the network (e.g., an attention head) to a given
set of forward passes. We utilize the tasks defined in subsection 3.1 for this correlational analysis
(Figure 5). Specifically, we compute the contribution Cl,h of head h at layer l to the probability
assigned by the model to the correct next token. We do this by empirically estimating (over samples
(p, c) ∈ D) the dot product of the output4 of that head Rl,h(p) with the difference between the
embedding of the correct token E(c) and some reference embedding r(c).

Cl,h =
1

|D|

∑
(p,c)∈D

[
LayerNorm (Rl,h(p)) · (E(c)− r(c))

]
where r(c) =

1

|V|−1

∑
t∈V\c

E(t)

Where V is the set of vocabulary vectors, we compute5 the reference embedding as a mean of the
embeddings of all tokens except c. In this work, the DLA analysis serves to locate attention heads
of interest, which we subsequently investigate. Our future work will include ablations and other
interventions on model architecture to establish causal relationships between these attention heads
and path-following performance.

Figure 5: DLA of the hallway model across a subset of tasks, on held-out samples from the training
distribution. The numerical value is the contribution of a given attention head to the “correct” direction
in the residual stream. Note that only for first_path_choice must the model do anything besides
path-following, and this is shown in the performance statistics of Table 1.

4Note that the application of LayerNorm is done to match the actual scaling at layer l, see
ActivationCache.apply_ln_to_stack() in [12].

5In a manner which is not common practice, to our knowledge.
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Upon investigation of attention placed on tokens as a function of their distance from the current token,
we find that Layer 5, Head 0 simply places attention on the recent occurrences of the current coordinate
token. This is throughout the whole sequence, but primarily between the target specification tokens.
As such, its lack of involvement in origin_after_path_start becomes clear since the current
token, in that case, would be the <PATH_START> token and thus not a coordinate token.

Also of interest is Layer 1, Head 2. We find that consistently across tasks, this head places attention
on the <TARGET_END> token. We hypothesize that this head is a component of an induction head [2]
but operating in reverse – a later head likely attends to the token before <TARGET_END> to find the
target. This information may then be used to inform the model’s choices of which path to take at
forks, as well as identifying when the path is concluded.

Figure 6: Attention of Layer 5, Head 3, on the rand_path_token_nonend task. Attention is
displayed over the maze positions for five random held-out mazes. Blue shading is attention weight,
true path is red dashed line from • to x, current position is .
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Figure 7: Attention of Layer 5, Head 3, on the rand_path_token_nonend task: violin plots of
attention as a function of the distance between the current node and the node being attended to.
x-axis on the left is the pure manhattan distance between the notes, while x-axis on the right is the
path length between the nodes. Sample size n = 200. Note that while on the right, attention is
overwhelmingly applied to nodes path length 1 away, some attention is applied to nodes at odd path
lengths away because a node adjacent to the lattice will always be an odd path length away.

As observed in Figure 6 and Figure 7, the attention head at layer 5, head 3, which we term an
Adjacency Head, consistently attends to tokens of path length 1 from the current position and thereby
learns to respect the maze’s topology. This differs from the results of subsection 3.2 in that the
embedding map, since it processes each token individually, can only correlate vectors that are close
on the lattice (shared across all training runs) and cannot see the topology which can only be learned
in-context.
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3.4 Learned internal representations

To assess whether the models learn to internally represent mazes, we follow the approach in [7] and
train a set of linear probes to predict the ground-truth maze structure from a single latent vector. In
particular, for a maze with m ×m positions, we train nlayers ×m ×m × 4 probes p on residual
stream activations Rl(t) collected across many rollouts, such that

{[Rl(t) · pl(x, y, dir)] > 0.5} = wall(x, y, dir)

where the token, t, is fixed and all layers, l, are considered. In essence, if the dot product between a
particular direction dir probe with Rl(t) exceeds 0.5, then this should reflect the presence of a wall
in the input maze at that particular probing location. For all experiments, we take the token, t, to be
<PATH_START>, as it is the final token presented in each sequence at test time and will have seen all
previous tokens.

By looking at the variation in probing accuracy across layers and throughout training, we can
understand how the formation of the world model occurs and potentially contributes to the model’s
performance. We focus our discussion here on jirpy as it was the most performant model, both in
terms of solving mazes and yielding the best set of probes (see Figure 16 for the results on all layers).
In Figure 8 we show the examples of mazes decoded at layer 2 with a set of probes that achieved the
highest accuracy. Figure 9a shows that the maze representation was already learned by the second
layer (more examples are shown in Figure 17 and Figure 18). Results of sweeps across different
transformers are shown in Figure 12.

0.92 0.93 0.97 0.98 0.99 0.99

0.94 0.95 0.93 0.93 0.99 0.99

0.97 0.97 0.86 0.84 0.97 0.99

0.9 0.83 0.84 0.89 0.96 0.99

0.96 0.91 0.95 0.97 0.98 0.97

0.98 0.96 0.99 0.98 0.95 0.96
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(a) Probe set accuracy across
maze positions for layer 2 (for
which jirpy yielded the most ac-
curate probes).

Input 0 Input 1 Input 2 Input 3

Reconstruction 0 Reconstruction 1 Reconstruction 2 Reconstruction 3

(b) Four random examples of mazes reconstructed using the probes.
Reconstructions are made from a set of probes using a single latent
embedding of the <PATH_START> token at layer 2. Wall colors indicate
that thresholded probes Correctly Predicted, Omitted or Added a wall.

Figure 8: Analysis of Linear Probes applied to the <PATH_START> token for the jirpy model.

3.5 Investigating Neighbor information through Tuned Lens

To further analyze the latent representations learned by our models, we apply the Tuned Lens method
introduced in [5]. The Tuned Lens provides a direct view into the information encoded at each layer,
l, by learning a linear transformation Ll : Rdmodel → Rdmodel (referred to as a “translator”) which
attempts to map embeddings to their final state (after the last layer), i.e., Ll(Rl(t)) = Rlfinal(t). By
applying these learned translators, we are able to unembed (into the vocabulary) embeddings from
any layer in the model, thus gaining insight into what the model has captured after performing a few
layers of computation.

We apply the Tuned Lens approach to see at which layers models write information about neighbors
onto coordinate tokens; this includes connected neighbors (those not blocked by walls) and all
neighbors (all adjacent coordinates). The resulting analysis for the jirpy model is shown in
Figure 9b. We see that after the first layer, the residual stream already contains significant information
concerning whether the next token in a path will be a coordinate, coinciding with the layer in the
model where a linear representation of the maze is captured most clearly. This information is then
refined gradually throughout the model, such that at later layers, the validity of the next token is
enforced more strongly, perhaps owing to the effects of the heads identified in (subsection 3.3).
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dinate tokens in the path gathered across 50 rollouts.
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more probable after layer 2, and the most significant
variations in neighbor probability are aligned with the
layers in the model when the maze representation is
most clear.

Figure 9: Analysis of Linear Probes and Tunes Lens applied to the <PATH_START> token for the
most performant transformer (jirpy). Colored regions correspond to 1σ.

3.6 When Do Models Learn to Represent the Maze?

Prior work has shown that the phenomenon of grokking [10, 13], in which the test accuracy (i.e., the
generalizability of a model’s learned behavior) improves abruptly during training, may be linked to
the formation of structured representations over which a task can be robustly solved [13]. As we
established in subsection 3.4 that models learn linearly structured representations of mazes, it is a
natural question to ask when these are learned and if they co-occur with any notable changes in a
model’s performance during training. To this end, we trained probe sets across checkpoints for both
the hallway and jirpy models, with results shown in Figure 10. We find that the hallway model
does not learn a clear linear representation of the maze, while jirpy does. Furthermore, the periods
during training in which these representations improve the most also correspond to the times at which
the model’s performance improves most sharply. This provides suggestive but incomplete evidence
for the possibility that these representations play a causal role in the model’s behavior.
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Figure 10: Layerwise analysis of maze structure captured by the model. Note that the distribution of
paths for hallway mazes is shorter than those for forking mazes.
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4 Related Work

Transformers’ ability to solve inherently difficult tasks is increasingly being explored. In particular, the
capability of transformers to process semantic information and emulate program behavior, especially
with structural recursion, has been investigated [9, 14, 15].

Other research on transformers suggests that some performance may be attributed to an architectural
bias towards mesa-optimization [16]. Here, it is argued that transformers employ mesa-optimization
during their forward pass, constructing an internal learning objective and optimizing it. Akyurek et
al. note that transformers might harness standard learning algorithms implicitly, encoding miniature
models within their activations and updating these based on incoming examples [17].

Finding Meaningful Directions in Activation Space: Mechanistic interpretability seeks to reverse
engineer neural networks. In the pursuit of this ambitious approach to interpretability, several
techniques have been proposed in an effort to find and understand meaningful directions in a model’s
activation spaces. Belrose et al.’s Tuned Lens [5] involves training affine transformations that translate
the basis associated with representations in any single layer’s activation space with the expected basis
of that of the final layer. Such transformations, when coupled with the model’s unembedding layer,
can be used to map the residual stream to a distribution over the model’s vocabulary. Sparse Coding
employs autoencoders augmented with sparsity regularization to derive disentangled representations
of an activation space; this approach has been researched in works by Bricken et al. [18]. Other
efforts to find meaningful directions in activation space include using k-sparse linear classifiers that
map the activations of a single neuron or a collection of neurons to specific features [19].

World Models: Much recent research has been focused around finding and understanding world mod-
els, especially in planning tasks. Li et al. [20] studied world representations in the game of Othello,
with Nanda et al. [7] further investigating the linearity of these representations. Turner et al. [21]
focused on reinforcement learning, examining maze-solving tasks and the underlying representations.
Additionally, the introduction of mechanistic interpretability for decision transformers by Bloom et
al. [22] offers a new perspective on interpretability in strategic planning tasks. Together, these studies
provide valuable insights into the structure and utility of world models across different contexts.

5 Conclusion

We demonstrate that transformers trained to solve mazes acquire emergent linear representations that
capture maze connectivity and are encoded in a single token’s latent state. The embedding layer of
trained models is shown to learn an emergent spatial structure. Furthermore, we find that in simple
models, some attention heads learn to respect the topology of the maze and present some evidence
and hypotheses as to their function. In future work, we aim to construct a more complete mechanistic
picture of how these elementary heads operate over the linear world model and ultimately form
circuits responsible for solving mazes. Additionally, future work will investigate the generality of
such emergent models by investigating distinct classes of neural networks trained to perform the
same tasks over entirely different input representations in an attempt to provide further evidence for
claims of representational “universality”. With this work, we hope to inspire other researchers to
investigate the seemingly systematic yet elusive internal behavior of transformer models.
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A complete set of notebooks and supplementary data can be found with our codebase:
github.com/understanding-search/structured-representations-maze-transformers

A Model Hyperparameters

Model dmodel dhead nlayers total parameters dataset config training dataset size

hallway 128 32 6 ≈ 9.64 · 106 dfs(do_forks=false) 3× 106

jirpy 256 16 12 ≈ 1.24 · 106 varied 5× 106 (6 Epochs)

Table 3: Hyperparameters for the two models we investigate. Both models are trained via the AdamW
optimizer with a learning rate of 10−4 and batch size of 32. A single training epoch is performed.

B Performance Statistics

dataset: forkless RDFS pRDFS
model: hallway jirpy hallway jirpy hallway jirpy

exactly correct rollouts 36.3% 52.7% 36.7% 29.3% 17.6% 21.1%
valid rollouts 50.8% 59.8% 41.4% 29.7% 74.2% 26.6%
rollouts with target reached 87.1% 80.5% 76.6% 98.4% 28.9% 98.4%

path_start 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
origin_after_path_start 94.5% 95.3% 100.0% 100.0% 97.3% 100.0%
first_path_choice 70.3% 70.3% 65.6% 60.2% 66.8% 54.3%
rand_path_token 91.0% 89.8% 91.8% 88.3% 86.7% 78.1%
rand_path_token_nonend 96.9% 93.8% 97.3% 88.7% 83.6% 79.7%
final_before_path_end 98.8% 87.5% 94.5% 95.7% 82.8% 90.6%
path_end 88.3% 81.6% 100.0% 100.0% 99.6% 100.0%

Table 4: Same as Table 1, but for 7× 7 forkless, pRDFS, and RDFS mazes (See subsection 2.1 and
[8]), also with n = 256 samples. The second group of single-token tasks used to assess performance
are detailed in Figure 3. Note that the jirpy model was trained only mazes that were only dense
in 6× 6 subgrids, and generalizes relatively poorly to these larger mazes. Conversely, the hallway
model was trained on only sparse mazes to start with, and performs similarly.

dataset: forkless RDFS pRDFS
model: hallway jirpy hallway jirpy hallway jirpy

exactly correct rollouts 38.3% 38.7% 24.2% 82.4% 24.2% 70.7%
valid rollouts 54.3% 53.5% 37.5% 84.0% 49.6% 87.1%
rollouts with target reached 87.1% 64.5% 94.5% 99.2% 92.6% 100.0%

path_start 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
origin_after_path_start 91.0% 86.7% 100.0% 100.0% 100.0% 100.0%
first_path_choice 71.5% 66.4% 67.2% 86.7% 66.4% 84.4%
rand_path_token 93.0% 87.1% 90.2% 98.0% 84.0% 94.5%
rand_path_token_nonend 97.3% 89.8% 92.2% 99.2% 84.4% 97.3%
final_before_path_end 95.7% 85.9% 93.4% 100.0% 84.4% 100.0%
path_end 86.7% 71.5% 100.0% 99.6% 100.0% 100.0%

Table 5: An exact repeat of Table 1, provided here for ease of comparison with Table 4.
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Figure 11: Performance of our models on a held-out test set of RDFS mazes. Noticeably, the
performance appears roughly consistent over path length for jirpy which was trained to solve mazes,
and similarly for the random baseline (which follows corridors and chooses a random continuation of
its path when reaching a fork). The hallway model, on the other hand, is able to “solve" some of the
very short mazes but struggles with longer mazes (where it is likely to encounter forking points).
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Figure 12: Results of sweeps carried out across a variety of models which were trained for varying
lengths. We find that 1) Models can do well even if they don’t have a linear maze representation,
which we can decode, but the very best models also have a linear maze representation. 2) dmodel and
training time are the only hyperparameters that seemed to correlate with performance in the regimes
we considered, but any such correlations are too weak to draw strong conclusions. The model with
the highest test accuracy and probe accuracy is jirpy.
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C Embedding Structure

Appendix of embedding structure results to Figure 4.
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D Additional Probing Results
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Figure 16: Accuracy of linear probes trained on the residual stream at all layers of the jirpy model.
We see that on Layer 2 the highest average probing accuracy is achieved, and the accuracy decreases
with later layers. Note that the edges have very high accuracy as outer walls are always present,
meaning that 1/4 of the probes on edges (and 2/4 on corners) will achieve 100% accuracy by always
predicting a wall.
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Figure 17: Decoding a maze with probe sets trained for each layer of the jirpy model. Wall colors
indicate that thresholded probes Correctly Predicted, Omitted or Added a wall.
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Figure 18: Decoding a maze with probe sets trained for each layer of the jirpy model. Wall colors
indicate that thresholded probes Correctly Predicted, Omitted or Added a wall.
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