
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cost-effective Data Labelling for Graph Neural Networks
Anonymous Author(s)

ABSTRACT
Active learning (AL), that aims to label limited data samples to

effectively train the model, stands as a very cost-effective data la-

belling strategy in machine learning. Given the state-of-the-art

performance GNNs have achieved in graph-based tasks, it is critical

to design proper AL methods for graph neural networks (GNNs).

However, existing GNN-based AL methods require considerable

supervised information to guide the AL process, such as the GNN

model to use, and initially labelled nodes and labels of newly se-

lected nodes. Such dependency on supervised information limits

both flexibility and scalabilty. In this paper, we propose an unsu-
pervised, scalable and flexible AL method – it incurs low memory

footprints and time cost, is flexible to the choice of underlyingGNNs,

and operates without requiring GNN-model-specific knowledge or

labels of selected nodes. Specifically, we leverage the commonality

of existing GNNs to reformulate the unsupervised AL problem as

the Aggregation Involvement Maximization (AIM) problem. The

objective of AIM is to maximize the involvement or participation of

all nodes during the feature aggregation process of GNNs for nodes

to be labelled. In this way, the aggregated features of labelled nodes

can be diversified to a large extent, thereby benefiting the training

of feature transformation matrices which are major trainable com-

ponents in GNNs. We prove that the AIM problem is NP-hard and

propose an efficient solution with theoretical guarantees. Extensive

experiments on public datasets demonstrate the effectiveness, scal-

ability and flexibility of our method. Our study is highly relevant to

the track “Graph Algorithms and Modeling for the Web” since we

focus one of the major listed topics "Graph Embedding and GNNs

for the Web" and AL for GNNs, as an important research problem,

is faced by aforementioned challenges to be tackled in this paper.

ACM Reference Format:
Anonymous Author(s). 2023. Cost-effective Data Labelling for Graph Neural

Networks. In Proceedings of ACM Conference (Conference’17). ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graph embedding, which aims to learn low-dimensional repre-

sentations for nodes in graphs, has been a popular tool for solv-

ing various graph-based tasks (e.g., community search [15], entity

alignment [27], node classification [18], and time series forecast-

ing [11]) in recent years. Among all embedding techniques, Graph

Neural Networks (GNNs) have achieved state-of-the-art perfor-

mance [7, 9, 11, 15, 20, 38]. However, to train powerful GNNs, a large

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

number of labeled nodes are needed and it requires costly manual la-

beling from experts. Thus, Active Learning (AL) [2, 4, 12, 17, 29, 35],

which aims to label limited training data samples so as to maximize

the model performance, has received considerable attention.

Despite significant progress being made, there remains a lack of

practical and efficient GNN-based AL methods for three reasons.

First, traditional AL methods [5, 31, 37, 42, 50] mainly consider

learning models on independent and identically distributed (i.i.d)

data (e.g., images, text or tabular data [46]). However, graphs, which

are built upon nodes’ interactions, are not i.i.d and connected nodes

tend to have similar labels. Thus, traditional successful AL tech-

niques in other fields cannot be trivially extended to benefit GNN

training. Second, many GNN-based AL methods [6, 16, 21, 45] are

supervised. That means in each iteration, they need to not only se-

lect but also label some nodes with a GNN, and then use the newly

labelled information to update/train the GNN to guide subsequent

selection. Moreover, they may require a ‘warm up’ phase in which

some nodes are labelled and assumed to be available prior to the AL

process and follow some distributions (e.g., balanced labels). This

supervised setting and ‘warm up’ procedure are not practical: (1) it

implies prior knowledge of the GNN to use (GNN-model-specific

node selection), which does not account for scenarios where the

GNN is unknown during the AL process or labelled nodes may be

repetitively used by different GNNs later for various downstream

tasks; (2) it might be ineffective to rely on the GNN, which is ini-

tially inaccurate and needs to be trained will sufficient labelled

information, to guide node selection. Such a strategy can easily

make wrong decisions at early stages and trigger a domino effect

that impacts subsequent selection; (3) obtaining initial labeled nodes

to ‘warm up’ models can be challenging in various domains, such

as medical research (due to privacy concern) [3] and autonomous

driving (due to the exorbitantly expensive labelling process) [10].

Third, existing methods suffer from scalability issues (e.g., high

running time and/or memory cost), since AL needs to either train a

model [6, 16, 45] or perform expensive matrix operations [41, 48].

Our objective is to propose an unsupervised, scalable, and flexible
GNN-based AL method. By ‘scalable’, we aim to propose an AL

algorithm with low memory footprints and time cost. By ‘unsuper-

vised’, it does not require initially labelled nodes to ‘warm up’, prior

knowledge of a specific GNN for downstream usage nor labels of

newly selected nodes to guide future selection. Instead, its design

only relies on the general knowledge of GNNs (i.e., the high-level

process of the multi-layer message passing). By ‘flexible’, its design

can greatly benefit the later training (after AL) of many GNNs that

will be used for downstream tasks. A comparison of the supervised

strategy and our unsupervised strategy is shown in Fig. 1.

To achieve the above, we design our methods by leveraging the

commonality of existing GNNs for node selection. Specifically, most

GNNs learn transformation matrices that linearly transform aggre-

gated features from neighborhood. These matrices constitute the

main trainable parameters and notably impact model performance.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GNN s S

Step 1
if |S|<=B

Use GNN to help
select a node s

Step 2
Label s

and update S

Step 3 Train GNN

Supervised Strategy

Ingredients

GNN

Initial S

Budget B

warm up
Trained
GNN

Labelled
S

Output Downstream
Tasks

Unlabelled S

Output

Trained
GNN

GNN

Budget B
Ingredients

AL algorithm

Label
S

Train

Our
Unsupervised Strategy

AL algorithm
General GNN

knowledge

Figure 1: The supervised strategy (by the GNN model, labels of iteratively selected nodes and a potential initially-labelled set)
v.s. our unsupervised strategy which does not require the GNN model nor node labels during the AL process

Hence, our emphasize selecting nodes whose label information can

offer the maximum benefit to the training of these matrices.

We argue that training powerful transformation matrices needs

diversified aggregated features and the diversification is positively

correlated with nodes’ involvement in the aggregation process.

Therefore, we cast the AL problem into a new problem called Ag-

gregation Involvement Maximization (AIM), which aims to select a

limited number of nodes such that the feature aggregation process

for these selected nodes can lead to the maximum involvement of

all nodes in the graph. Accordingly, we propose efficient and effec-

tive algorithms with theoretical guarantees to solve this problem.

Our contributions are summarized below:

• We study the unsupervised active learning research problem for

graph data. To derive an effective solution for it, we reformulate

it as the Aggregation Involvement Maximization (AIM) problem.

In the new problem, we propose a novel definition of aggregation

involvement to encourage diversification of aggregated features

of selected nodes and thus benefit the training of the feature

transformation matrices.

• We prove that the AIM problem is NP-hard and the objective

is monotone and submodular, and then propose a greedy solu-

tion which adopts an early termination technique to efficiently

produce solutions with an approximation ratio of 1 − 1/𝑒 .
• We conduct extensive experiments on real-world datasets to

show that our method outperforms state-of-the-arts in terms of

effectiveness (up to 19.4% higher accuracy) while maintaining

high efficiency (up to five-orders-of-magnitude speedups) and

low memory footprints (save up to 102.4x memory space), and

is flexible to the choice of downstream GNNs.

2 RELATEDWORK
Common AL techniques. AL provide solutions for selecting the

most valuable samples for labeling so as to optimize the model

performance. Uncertainty sampling is considered in [42, 50] to se-

lect nodes and it has the most uncertain model prediction. Some

works [5, 31] select samples based on the extent to which the

training models disagree. Furthermore, there also exist density-

based [37], clustering-based [13, 33] and diversity-based solutions [23,

40] which select samples based on different criteria. Traditional AL

strategies mainly focus on learning models on independent and

identically distributed (i.i.d) data, and thus fail to consider the graph

topology information.

GNN-based AL techniques. Different strategies of GNN-based
AL have been proposed to incorporate topology information in

graph-structured data. AGE [6] and ANRMAB [16] take into ac-

count uncertainty, density and node degree to select nodes for label-

ing. ANRMAB improves AGE by a multi-armed bandit mechanism

for enhanced decision making upon node selection. FeatProp [41]

generates output node features using a simplified GCN and then

extends K-Means to select nodes in the cluster centers for labeling.

GPA [21] involves joint training on several source graphs and em-

ploys reinforcement learning to learn a transferable active learning

policy. ALG [45] decouples the GNNmodel for the efficiency reason

and considers maximizing the effective reception field. Grain [48]

further generalizes the reception field by considering diversified

feature influence. There are some works [46, 47] on variants of AL

(e.g., noisy labelling oracles) which are orthogonal to our study.

Most existing studies on the classical AL problem are either su-

pervised or semi-supervised. Specifically, methods like [6, 16, 21, 45]

are supervised since the AL process is supervised by the GNN

model and newly selected and labelled nodes. We consider methods

like [21, 48] semi-supervised – while they do not need to explic-

itly train the GNN, they still rely on node features generated by

the GNN-model-specific aggregation matrix. Moreover, their node

feature generation and node selection process can be very expen-

sive (e.g., large-scale matrix multiplication and Jacobian matrix

estimation [48]). In contrast, our unsupervised AL algorithm in-

curs low memory footprints and time cost, and it does not require

GNN-model-specific knowledge.

3 PRELIMINARY AND PROBLEM DEFINITION
In this section, we will describe important notations, GNNs and the

problem formulation. We denote a graph as 𝐺 = (𝑉 , 𝐸) where 𝑉
and 𝐸 refer to the node set and edge set respectively. We set 𝑁 = |𝑉 |
and denote the adjacency matrix of the graph as 𝐴 ∈ R𝑁×𝑁 . Each
node 𝑣 has an input embedding vector 𝑥 ∈ R𝑑 and all node vectors

together form the embedding matrix𝑋 ∈ R𝑁×𝑑 . Each node 𝑣 is also
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Cost-effective Data Labelling for Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

associated with a one-hot vector 𝑦 ∈ R𝐶 , where𝐶 is the number of

classes and the 𝑐𝑡ℎ element is 1 only if 𝑣 belongs to class 𝑐 .

Graph Neural Networks (GNNs). GNNs [19, 25, 38] define a

multi-layer message passing process. In this process, the feature

representation of a target node in the next layer is the aggregation

result of the current-layer features of nodes in the neighborhood.

Below is a general recursive function for message passing:

𝑋 (𝐾) = 𝑓 (𝑋 (𝐾−1) ,𝑇 ,Θ(𝐾) , 𝑋), (1)

Here, 𝑋 is the initial embedding matrix, 𝑋 (𝐾) is the output embed-

ding matrix, Θ(𝐾) is the feature transformation matrix at layer 𝐾 ,
and 𝑇 is the feature aggregation matrix.
Roles of feature transformation and aggregation matrices. In
GNNs, the main trainable parameters are feature transformation

matrices at layers that linearly transform aggregated representa-

tions. The feature aggregation matrix 𝑇 specifies how features of

nodes in neighborhood are aggregated to the target node.

Existing GNNs share the above procedure but primarily vary in

how they define and leverage the feature aggregation matrix. E.g.,

Graph Convolution Network (GCN) [25] defines 𝑓 as:

𝑋 (𝐾) = 𝛿 (𝑇𝑋 (𝐾−1)𝛩 (𝐾)),

where 𝑇 = �̃�
1

2 �̃��̃�
1

2 , �̃� = 𝐴 + 𝐼𝑁 , 𝐼𝑁 is the identity matrix, �̃� is the

diagonal degree matrix of �̃� and 𝛿 (·) is the activation function.

After this recursive process, a prediction function (e.g., softmax)

is applied to the output embedding matrix𝑋 (𝐾) for the downstream
task (e.g., node classification). By considering the task, graph topol-

ogy and features jointly, existing studies define 𝑇 differently (e.g.,

symmetric transition matrix [25], the random walk transition ma-

trix [26, 39], triangle-based adjacency matrix [14], and powers of

the adjacency matrix [8, 49]).

We assume that the entire node set 𝑉 is divided into three sets,

namely the training set 𝑉𝑡𝑟𝑎𝑖𝑛 , the validation set 𝑉𝑣𝑎𝑙 and the test

set 𝑉𝑡𝑒𝑠𝑡 , and the training algorithm𝑀 is a GNN. The problem we

study in this paper is defined as below.

Definition 1 (Active Learning). Given a loss function ℓ and a
node set 𝑉𝑡𝑟𝑎𝑖𝑛 which does not have labelled nodes, the aim of active
learning is to select an optimal seed set 𝑆∗ of 𝐵 seed nodes from𝑉𝑡𝑟𝑎𝑖𝑛
to label, such that the lowest loss on the test set 𝑉𝑡𝑒𝑠𝑡 can be achieved
by training the algorithm𝑀 with the labeled seed set 𝑆∗ only. That is,

𝑆∗ = argmin

𝑆∈𝑉𝑡𝑟𝑎𝑖𝑛∧|𝑆 |=𝐵
E𝑣𝑖 ∈𝑉𝑡𝑒𝑠𝑡 [ℓ (𝑦𝑖 , 𝑃 (𝑦𝑖 |𝑥𝑖 , 𝑀𝑆))],

where 𝑀 is not known during the node selection process, 𝑀𝑆 is the
algorithm𝑀 trained under the supervision of 𝑆 and 𝑃 (𝑦𝑖 |𝑥𝑖 , 𝑀𝑆)) is
the label distribution predicted by𝑀𝑆 .

4 AGGREGATION INVOLVEMENT
MAXIMIZATION

As explained in Section 3, after the recursive function (Eq 1) is

constructed, the performance of a GNN mainly depends on how

well the feature transformation matrices are trained. To train pow-

erful feature transformation matrices, we cast the AL problem to

the Aggregation Involvement Maximization (AIM) problem, and

accordingly, we propose highly effective and efficient solutions to

solve the AIM problem. We will first describe the rationale behind

this cast and how the AIM problem is formulated (Sec. 4.1), followed

by a theoretical proof of the NP-hardness and properties of the AIM

problem (Sec. 4.4), and ultimately, our solution (Sec. 4.5).

4.1 From AL to Aggregation Involvement
Maximization (AIM)

Diverse aggregated features: key to high-quality training.
Since the primary trainable parameters in GNNs are the transfor-

mation matrices that operate on aggregated features, it is essential

to select seed nodes whose aggregated features can benefit the train-

ing of these matrices to the maximum extent. Thus, given a limited

budget to select seeds, an effective strategy is to promote diversity

in the distribution of aggregated features among the selected seeds.

These diverse aggregated features cover representative aggregation

cases in terms of graph topology and the input features of nodes,

helping ensure the generalization power of the learned parameters.

Diverse aggregated features to aggregation neighborhoods.
While GNNs vary in how they aggregate features from neighbor-

hoods, they all require training transformation matrices whose

quality depends on the diversity of the seeds’ aggregated features.

To ensure compatibility with various GNNs, even when the spe-

cific GNN is unknown during seed selection, we must diversify

aggregation neighborhoods. This diversity implicitly maintains the

diversification of aggregated features. For instance, suppose we

consider aggregation from one-hop neighbors and choosing two

seeds in Figure 2. If choosing 𝑓 and 𝑐 as two seeds, their aggregated

features will be similar given their similar aggregation neighbor-

hoods. Choosing 𝑐 and choosing 𝑔 can be a better solution since

the aggregation neighborhoods are more diverse. As a result, the

aggregated features are also diverse as well no matter which GNN

is used (e.g., for seed 𝑐 , one GNN may focus on aggregating from

node 𝑓 and 𝑗 whereas another GNN may focus on node𝑚 and 𝑏).

Diversifying neighborhood via involvement maximization.
We quantify the neighborhood diversification based on node in-
volvement, which indicates a node’s contribution to generating

aggregated features for seeds. Nodes that appear within 𝑘-hop nat-

urally participate in the aggregation process, and hence are directly
involved. Due to graph topology’s homophily effect, nodes ‘close’

to each other tend to have similar representations. To promote

neighborhood diversification, we encourage nodes outside the lo-

cated aggregation neighborhoods but close in graph topology to

be indirectly involved. Maximizing nodes’ involvement naturally

‘spreads out’ aggregation neighborhoods, enhancing diversification.

To facilitate the illustration, we define the problem first before

introducing each notation involved. Let 𝑆 denote a seed set, 𝛿𝑘 (𝑆)
denote the set of directly involved nodes, |𝛿𝑘 (𝑆) | denote the total
direct involvement score (see Section 4.2), 𝐼𝑣 (𝑆𝐼𝑀𝑣 (𝑆)) denote the
indirect involvement score of 𝑣 ∈ 𝑉 \ 𝛿𝑘 (𝑆) (see Section 4.3), we

define the total involvement and the problem as below:

Definition 2 (Total Aggregation Involvement). The total
aggregation involvement 𝑄 (𝑆) achieved by selecting 𝑆 as the seed set
is the sum of the total direct and indirect involvement scores. Namely,
𝑄 (𝑆) = |𝛿𝑘 (𝑆) | +

∑
𝑣∈𝑉 \𝛿 (𝑆) 𝐼𝑣 (𝑆𝐼𝑀𝑣 (𝑆)).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

a
b

c

d
e

f
g

h

i j
m

o

p
Figure 2: A graph where 𝐾 = 1, node 𝑎 is the current cho-
sen seed and green nodes are the aggregation sources. Nodes
within 1-hop away from nodes in the aggregation neighbor-
hoods of seeds have indirect involvement.

<latexit sha1_base64="3PNLeS37IRLNTdQtlOnAF/VAbi8=">AAAB7XicdVBNS8NAEN3Ur1q/qh69LBbBU0jS2taDUNSDxwqmLbShbLabdu0mG3Y3hRL6H7x4UMSr/8eb/8ZNW0FFHww83pthZp4fMyqVZX0YuZXVtfWN/GZha3tnd6+4f9CSPBGYuJgzLjo+koTRiLiKKkY6sSAo9Blp++OrzG9PiJCUR3dqGhMvRMOIBhQjpaXWtdufXNj9Yskyz+tV58yBlmlZNadczYhTqzhlaGslQwks0ewX33sDjpOQRAozJGXXtmLlpUgoihmZFXqJJDHCYzQkXU0jFBLppfNrZ/BEKwMYcKErUnCufp9IUSjlNPR1Z4jUSP72MvEvr5uooO6lNIoTRSK8WBQkDCoOs9fhgAqCFZtqgrCg+laIR0ggrHRABR3C16fwf9JyTLtq2reVUuNyGUceHIFjcApsUAMNcAOawAUY3IMH8ASeDW48Gi/G66I1ZyxnDsEPGG+fJFyO3A==</latexit>

DUv = 1

<latexit sha1_base64="2kVXD9dmrAb/9O40+8lCqF+veUs=">AAAB73icdVDLSgNBEOz1GeMr6tHLYBA8LbNBY3IQgnrwGMFNAskSZiezyZDZhzOzgRDyE148KOLV3/Hm3zibRFDRgoaiqpvuLj8RXGmMP6yl5ZXVtfXcRn5za3tnt7C331BxKilzaSxi2fKJYoJHzNVcC9ZKJCOhL1jTH15lfnPEpOJxdKfHCfNC0o94wCnRRmpdu93RBbbPuoUitrFBuYwy4lSwY0i1WimVqsiZWRgXYYF6t/De6cU0DVmkqSBKtR2caG9CpOZUsGm+kyqWEDokfdY2NCIhU95kdu8UHRulh4JYmoo0mqnfJyYkVGoc+qYzJHqgfnuZ+JfXTnVQ8SY8SlLNIjpfFKQC6Rhlz6Mel4xqMTaEUMnNrYgOiCRUm4jyJoSvT9H/pFGynbLt3J4Wa5eLOHJwCEdwAg6cQw1uoA4uUBDwAE/wbN1bj9aL9TpvXbIWMwfwA9bbJ/sCj0s=</latexit>

DUv = 0.5

<latexit sha1_base64="zdTYUQ82e8R0ttGSFwuGMpi/UCI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0iKVC9CUQ8eK5i20Iay2W7apZtN3N0USuif8OJBEa/+HW/+G7dtDtr6YODx3gwz84KEM6Ud59sqrK1vbG4Vt0s7u3v7B+XDo6aKU0moR2Iey3aAFeVMUE8zzWk7kRRHAaetYHQ781tjKhWLxaOeJNSP8ECwkBGsjdS+83rja8eu9soVx3bmQKvEzUkFcjR65a9uPyZpRIUmHCvVcZ1E+xmWmhFOp6VuqmiCyQgPaMdQgSOq/Gx+7xSdGaWPwliaEhrN1d8TGY6UmkSB6YywHqplbyb+53VSHV75GRNJqqkgi0VhypGO0ex51GeSEs0nhmAimbkVkSGWmGgTUcmE4C6/vEqaVdut2e7DRaV+k8dRhBM4hXNw4RLqcA8N8IAAh2d4hTfryXqx3q2PRWvBymeO4Q+szx+fMY8L</latexit>

DUv = 0.2

Figure 3: Curves of the function 𝐼𝑣 (·) with different 𝐷𝑈𝑣

Definition 3 (Aggregation InvolvementMaximization (AIM)).

Given a fixed labeling budget 𝐵, we aim to find a set 𝑆∗ of 𝐵 nodes
such that the total aggregation involvement 𝑄 (𝑆∗) is the maximum.
That is, 𝑆∗ = argmax𝑆⊆𝑉𝑡𝑟𝑎𝑖𝑛, |𝑆 | ≤𝐵 𝑄 (𝑆).

4.2 Direct Aggregation Involvement
We define the aggregation neighborhood of a seed 𝑠 as the set 𝛿𝑘 (𝑠)
of nodes which are within 𝑘-hop away from 𝑠 . Considering that

we have no knowledge of the feature aggregation matrix of the

downstream GNN, we assume that a node𝑢 has direct (aggregation)

involvement if it appears in 𝛿𝑘 (𝑠) of a seed 𝑠 , since the node 𝑢

may directly propagate its feature to 𝑠 . Thus, all nodes with direct

involvement can be represented as:

𝛿𝑘 (𝑆) = ∪𝑠∈𝑆𝛿𝑘 (𝑠) . (2)

Since many GNNs achieve high performance by setting the num-

ber of layers 𝑘 = 2 [19, 20, 24, 25, 43], it is sufficient to control

𝑘 ≤ 2. Even when the underlying GNN needs to reach nodes more

than 2 hops away (e.g., 𝑘 = 10 in APPNP [26]), controlling the

aggregation neighborhood within two hops is still highly effective

as demonstrated in the experiments.

4.3 Indirect Aggregation Involvement
Wedefine the indirect aggregation involvement based on involvement-

based similarity. In what follows, we will give a high-level overview

of the connection between these two and then describe how to

quantify the involvement-based similarity (Section 4.3.1) and use

this similarity to compute the indirect involvement (Section 4.3.2).

Indirect involvement and involvement-based similarity. Since
the labeling budget 𝐵 is limited, there could exist considerable nodes

that are outside of 𝛿𝑘 (𝑆). These nodes could also be involved to

estimate the diversification of the aggregation neighborhoods of

seeds and such involvement is indirect. The indirect involvement

of a node 𝑣 is positively related to the relationship between 𝑣 and

the nodes in 𝛿𝑘 (𝑆), and we call this relationship as the involvement-
based similarity between 𝑣 and 𝛿𝑘 (𝑆). If there are many nodes

in 𝛿𝑘 (𝑆) and close to 𝑣 in terms of both the graph topology and

embedding space, this similarity should also be high.

The intuition of indirect involvement is that, when the involvement-

based similarity of 𝑣 is high and we are selecting a new seed 𝑠 into

𝑆 , we should pay less attention to the candidates whose aggrega-

tion neighborhoods include 𝑣 . This is because nodes, close to 𝑣 or

appearing in 𝛿𝑘 (𝑆), may be very likely to appear in candidates’

aggregation neighborhoods. These neighborhoods may heavily

overlap with or very close to the ones of chosen seeds and cannot

help further increase aggregated features’ diversification.

Example 1. In Fig. 2, node 𝑎 has been chosen as a seed and choosing
𝑏 as a new seed will not really benefit the training of the transfor-
mation matrix, since many of its aggregation sources (e.g., node 𝑐
and 𝑑) already have very high indirect involvement and its aggrega-
tion neighborhood notably overlaps with the one of node 𝑎. On the
other hand, node 𝑒 and the nodes in its neighborhood have very little
involvement. Thus, choosing 𝑒 instead of 𝑏 as a new seed can better
increase total nodes’ involvement and help diversify the distributions
of selected aggregation neighborhoods.

4.3.1 Involvement-based Similarity. Due to the homophily effect,

we should mainly focus on the nodes in near neighborhood of 𝑣 to

compute the involvement-based similarity. Specifically, let H(𝑣)
(whose size will be discussed shortly) denote the set of nodes within

certain hops away from of 𝑣 , to compute the involvement-based

similarity between 𝑣 and 𝛿𝑘 (𝑆), we should focus on the nodes in

𝛿𝑘 (𝑆) ∩H (𝑣). We call such nodes in 𝛿𝑘 (𝑆) ∩H (𝑣) as involvement-
based relevant nodes of 𝑣 and each pair between 𝑣 and one of such

nodes as an involvement-based relevant pair. When the context

is clear, we use ‘involvement-based relevant’ and ‘relevant’ inter-

changeably. We define the involvement-based similarity 𝑆𝐼𝑀𝑣 (𝑆)
between 𝑣 and 𝛿𝑘 (𝑆) as the sum of similarities of all relevant pairs:

𝑆𝐼𝑀𝑣 (𝑆) =
∑︁

𝑟 ∈𝛿𝑘 (𝑆)∩H(𝑣)
𝑠𝑖𝑚𝑣 (𝑟) (3)

where 𝑠𝑖𝑚𝑣 (𝑟) denotes the similarity of embeddings between 𝑣 and

the relevant node 𝑟 and can be computed with different similarity

metrics (e.g., cosine similarity and distance-based similarity) to cater

for datasets with different characteristics. If it is distance-based (e.g.,

Euclidean distance based) similarity, 𝑠𝑖𝑚𝑣 (𝑟) can be computed as

1

1+𝐷𝑖𝑠 (𝑣,𝑟) where 𝐷𝑖𝑠 (𝑣, 𝑟) is the normalized distance.

Example 2. In Figure 2, if 𝑆 = 𝑎 and 𝛿𝑘 (𝑎) only includes nodes
1 hop away from 𝑎, 𝛿𝑘 (𝑆) consists of all green nodes (i.e., nodes
𝑗,𝑚, 𝑜 and 𝑝), H(𝑐) = {𝑏, 𝑓 , 𝑗,𝑚}, the set of relevant nodes of 𝑐 is
H(𝑐) ∩ 𝛿𝑘 (𝑆) = { 𝑗,𝑚}, and the pair (𝑐, 𝑗) is a relevant pair.

Size ofH(𝑣). To ensure the scalability and effectiveness, we need

to carefully decide the maximum hop between any node inH(𝑣)
and 𝑣 . We conduct two studies: (1) how are similarities between

nodes in the same aggregation neighborhood distributed? (2) how

are the sizes of neighborhoods within different hops distributed?

For study 1, we randomly sample 1000 nodes from the dataset,

enumerate all pairs of nodes within 2-hop away from the same

sampled nodes and summarize their cosine similarities based on

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Cost-effective Data Labelling for Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

their graph distance. For study 2, we summarize the average size

of nodes which are within certain hops away from these sampled

nodes. Table 1 and Table 2 show the results for study 1 and study 2

on all datasets in our experiments respectively. It is obvious that

similar node pairs tend to be directly connected in most cases and

the size ofH(·) increases significantly as the maximum hop grows.

Therefore, it is sufficient to just include 1-hop neighbors inH(𝑣).

Table 1: The average cosine similarity between nodes in the
same aggregation neighborhood with different distances

Dataset 1-hop 2-hop 3-hop 4-hop
Cora 0.150 0.095 0.082 0.069

Citeseer 0.162 0.095 0.079 0.067

Pubmed 0.280 0.193 0.159 0.117

Co-Phy 0.473 0.270 0.188 0.113

Flickr 0.321 0.310 0.312 0.314

Arxiv 0.727 0.708 0.710 0.714

Table 2: The average percentage of the # of the nodes, within
certain hops away from sampled nodes, over the graph size

Dataset 1-hop 2-hop 3-hop 4-hop
Cora 0.14 1.31 22.50 44.90

Citeseer 0.08 0.46 8.87 21.05

Pubmed 0.02 0.30 8.29 51.92

Co-Phy 0.04 0.67 27.64 59.63

Flickr 0.01 0.74 13.05 65.44

Arxiv 0.01 2.90 35.14 47.28

4.3.2 Definition of Indirect Involvement. We define the indirect

involvement as a function of the involvement-based similarity de-

fined above. Specifically, we incrementally update the definition of

indirect involvement by considering neighborhood diversification,

node-dependent similarity significance and similarity normaliza-

tion. In what follows, we will introduce these considerations and

the corresponding definition development of indirect involvement.

Consideration 1 - Neighborhood Diversification. To ensure

that the chosen seeds and their aggregation neighborhoods are

diversified in the embedding space, we should encourage the solu-

tion to choose seeds whose aggregation neighborhoods are close

to nodes with relatively low indirect involvement. To achieve this

purpose, given the same increment of the involvement-based simi-

larity score, a node whose current indirect involvement is smaller

needs to achieve a larger increment of the indirect involvement

score. Thus, the indirect involvement of 𝑣 is defined as below:

𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆)) =
2

1 + 𝑒−𝑆𝐼𝑀𝑣 (𝑆)
− 1 (4)

The indirect involvement 𝐼 𝑣 (·) of 𝑣 is positively related to the

involvement-based similarity 𝑆𝐼𝑀𝑣 (𝑆) and its value is controlled

between 0 and 1. The exponential function encourages the solution

to consider nodes with little indirect involvement.

Example 3. In Figure 2, suppose we consider choosing a new
seed between 𝑏 and 𝑒 , 𝑆 = {𝑎}, 𝑆𝐼𝑀𝑓 (𝑆) = 0.5, 𝐼𝑓 (𝑆𝐼𝑀𝑓 (𝑆)) =

0.24, 𝑆𝐼𝑀𝑖 (𝑆) = 0 and 𝐼𝑖 (𝑆𝐼𝑀𝑖 (𝑆)) = 0. We should encourage the
solution to choose 𝑒 to diversify the aggregation neighborhood. Since

choosing 𝑒 and 𝑏 respectively can both directly involve two new nodes
(i.e., choosing 𝑒 directly involves 𝑔 and ℎ, and choosing 𝑏 directly
involves 𝑐 and 𝑑), we need to ensure that choosing 𝑒 brings more
indirect involvement increment. Equation 4 helps to achieve this pur-
pose. For instance, if choosing 𝑒 and 𝑏 gives the same increment (say
0.5) to the involvement-based similarity score of 𝑖 and 𝑓 respectively,
choosing 𝑒 achieves a larger indirect involvement increment since
𝐼𝑖 (𝑆𝐼𝑀𝑖 (𝑆 ∪ {𝑒})) − 𝐼𝑖 (𝑆𝐼𝑀𝑖 (𝑆)) = 𝐼𝑖 (0.5 + 0) − 𝐼𝑖 (0) = 0.24 ≥
𝐼𝑓 (𝑆𝐼𝑀𝑓 (𝑆 ∪ {𝑏})) − 𝐼𝑓 (𝑆𝐼𝑀𝑓 (𝑆)) = 𝐼𝑓 (0.5 + 0.5) − 𝐼𝑓 (0.5) = 0.22.

Consideration 2 - Similarity Significance. Consideration 1 helps
diversify the selected seeds when nodes’ current indirect involve-

ment scores are very different. However, when the involvement

scores are very similar, we need to carefully evaluate the impact of

the involvement-based similarity score on the indirect involvement

score of each node 𝑣 in a finer granularity, by looking into the

constituent of the involvement-based similarity - the similarities of

relevant pairs. Specifically, the significance of a pairwise similarity

score should be node-dependent and the same involvement-based

similarity score increment may have different impacts on nodes’

indirect involvement scores even when the current indirect involve-

ment scores of these nodes are the same.

Example 4. Suppose the pairwise similarities between 𝑢 and each
node in H(𝑢) are 0.5, 0.01, 0.01 and 0.01 respectively, and the ones
between 𝑣 and each node inH(𝑣) are 0.5, 0.5, 0.5 and 0.5 respectively.
Apparently, the same pairwise similarity of 0.5 should have different
impacts on the indirect involvement score of𝑢 and 𝑣 . The 0.5 increment
of the involvement-based similarity score should result in much more
the indirect involvement score increment of 𝑢 than it does for node 𝑣 .

Therefore, to capture the significance of pairwise similarities,

we should consider their distributions instead of their absolute

values, and it can be captured by Distribution Uniformity (𝐷𝑈) [1].
𝐷𝑈 originates from irrigation and is a measure of how uniformly

water is applied to the area being watered. The most common

measure of 𝐷𝑈 is the average of the lowest quarter of samples

divided by the average of all samples. The higher 𝐷𝑈 is, the more

uniform the coverage of the measured area is. If all samples are

equal, 𝐷𝑈 is 1.0. In our problem, for a node 𝑣 , we treat 𝑠𝑖𝑚𝑣 (𝑢)
between 𝑣 and each node 𝑢 inH(𝑣) as a sample to compute 𝐷𝑈𝑣 =
the average of the lowest quarter in {𝑠𝑖𝑚𝑣 (𝑢) |𝑢∈H(𝑣) }

the average of all samples in {𝑠𝑖𝑚𝑣 (𝑢) |𝑢∈H(𝑣) } .

When the size H(𝑣) is small (e.g., 2), we use the first half in-

stead of the lowest quarter for the numerator. Then, the indirect

involvement can be defined as below:

𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆)) =
2

1 + 𝑒−
𝑆𝐼𝑀𝑣 (𝑆)

𝐷𝑈𝑣

− 1, (5)

Example 5. Figure 3 shows the curves of the function 𝐼𝑣 (·) with
different𝐷𝑈𝑣 . A smaller𝐷𝑈𝑣 indicates that some pairwise similarities
‘stand out’ in {𝑠𝑖𝑚𝑣 (𝑢) |𝑢 ∈ H (𝑣)} and achieve larger significance.
The design of the function (i.e., Equation 5) gives a steeper slope with
a smaller 𝐷𝑈𝑣 which can encourage the solution to realize the simi-
larity significance and hence give more consideration to outstanding
pairwise similarities during seed selection.

Consideration 3 - Similarity Normalization. Previous formu-

lations of the indirect involvement function do no consider the

maximum possible involvement-based similarity that a node can

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

achieve. If the indirect involvement score corresponding to the

maximum possible involvement-based similarity is very close to 1,

considerable similarity increment may barely increase the indirect

involvement score since the function gradient is too small.

Example 6. Suppose {𝑠𝑖𝑚𝑣 (𝑢) |𝑢 ∈ H (𝑣)} consists of 20 pairwise
similarities of the same score 0.9. In this case, 𝐷𝑈𝑣 = 1 and the
corresponding function 𝐼𝑣 (·) will become the red curve in Figure 3.
Since the maximum 𝑆𝐼𝑀𝑣 (𝑆) is 20 × 0.9 = 18, the value 𝐼𝑣 (·) is
very close to 1 (i.e., 𝐼𝑣 (·) = 0.9999) if there are 12 relevant pairs (i.e.,
𝑆𝐼𝑀𝑣 (𝑆) = 10.8). Therefore, after 𝑆𝐼𝑀𝑣 (𝑆) = 10.8, there could be a
large amount of increment of the 𝑆𝐼𝑀𝑣 (𝑆) during the seed selection but
the corresponding increment of 𝐼𝑣 (·) is negligible. Thus, the solution
may fail to distinguish the quality of each node as a potential seed.

Thus, we need to normalize these similarities such that their total

sum is within a reasonable range [0, 𝜂] and thus each unit of simi-

larity increment would bring non-negligible indirect involvement

score increment. To obtain 𝜂, we first set the threshold 𝑡 (e.g., 0.9999)

of the indirect involvement score that a node can achieve. Corre-

spondingly, we can have 𝜂 which satisfies 2/(1 + 𝑒−
𝜂

𝐷𝑈𝑣) − 1 = 𝑡 .

After obtaining 𝜂, we can adjust Equation 5 by including the nor-

malization factor 𝑁𝐹𝑣 =
𝜂∑

𝑢∈H(𝑣) 𝑠𝑖𝑚𝑣 (𝑢) :

𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆)) =
2

1 + 𝑒−
𝑆𝐼𝑀𝑣 (𝑆)

𝐷𝑈𝑣
×𝑁𝐹𝑣

− 1. (6)

Via this way, 𝑆𝐼𝑀𝑣 (𝑆) × 𝑁𝐹𝑣 and 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆)) will be controlled
within 𝜂 and 𝑡 respectively.

4.4 Theoretical Analysis
In this section, we will prove that the AIM is NP-hard and the

objective is monotone and submodular (the proof is in Appendix A).

Theorem 1. The AIM is NP-hard.

Proof. We prove the NP-hardness via a reduction from the NP-

hard Maximum Coverage problem.

Definition 4 (MaximumCoverage). Given a set𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 | }
of elements, a collection 𝐶 of subsets 𝐿1, 𝐿2, ..., 𝐿 |𝐶 | of 𝑈 , and an in-
teger 𝑘 , the goal is to find an optimal collection 𝑂∗ ⊆ 𝐶 such that
|𝑂∗ | ≤ 𝑘 and | ∪𝐿∈𝑂∗ 𝐿 | is maximized.

Given an arbitrary instance of the maximum coverage problem,

we define a corresponding directed bipartite graph with |𝐶 | + |𝑈 |
nodes. Specifically, a node 𝑖 corresponds to a set 𝐿𝑖 ∈ 𝐶 and a node

𝑗 corresponds to 𝑢 𝑗 ∈ 𝑈 . Whenever 𝑢 𝑗 ∈ 𝐿𝑖 , we create an edge

(𝑖, 𝑗). Next, we set 𝑘 = 1 and the target similarity 𝑡 = 0 such that

maximizing 𝑄 (·) is equivalent to maximizing |𝛿𝑘 (·) | in the AIM

problem. Afterwards, we treat the set of |𝐶 | nodes corresponding
to subsets in 𝐶 as the training set and the rest of |𝑈 | nodes either
belong to the validation set or the test set. In the AIM problem, we

are only allowed to choose training nodes for labeling. Thus, the

goal is to select a set 𝑆∗ of nodes corresponding to subsets in 𝐶

such that |𝛿𝑘 (𝑆∗) | is maximized, which is equivalent to finding the

optimal collection 𝑂∗ in the maximum coverage problem because

𝐾 = 1 and thus 𝛿𝑘 (𝑖)) corresponds to 𝐿𝑖 . The optimal solution of

this instance of the AIM problem implies an optimal solution to the

correspondingmaximum coverage instance. Since the reduction can

be performed in polynomial time, the AIM problem is NP-hard. □

Theorem 2. The function 𝑄 (·) is monotone. That is, for any 𝑆1 ⊆
𝑆2, 𝑄 (𝑆1) ≤ 𝑄 (𝑆2).

Theorem 3. The function 𝑄 (·) is submodular. That is, for any
𝑆1 ⊆ 𝑆2 and𝑢 ∈ 𝑉 \𝑆2,𝑄 (𝑆1∪{𝑢}) −𝑄 (𝑆1) ≥ 𝑄 (𝑆2∪{𝑢}) −𝑄 (𝑆2).

4.5 The Solution
Given that our objective function is submodular and monotone,

based on the proof in [32], we can adopt the greedy algorithm

which iteratively selects a node with the maximum marginal gain

to produce solutions with a (1 − 1/𝑒) approximation ratio.

The most straightforward solution called NaiveGreedy, whose

pseudocode is in Appendix B in the supplementary material, re-

quires to update and compare the marginal gain of every node 𝑣 not

in the solution at the each iteration. This strategy incurs 𝑂 (|𝑉 |2)
time cost and is infeasible in practice.

Inspired by an outbreak detection technique [28], we propose an

advanced greedy strategy, GreedywithEarlyTermination (GreedyET),

whose pseudocode is in Appendix B in the supplementary mate-

rial, to speedup NaiveGreedy. Specifically, this advanced strategy

notably reduces the number of marginal gain computation in each

iteration by leveraging the submodularity of our objective function.

The intuition of GreedyET is that many nodes bring very small

marginal gains of the involvement score such that they can be easily

pruned at subsequent iterations. More formally, let 𝑆𝑖 be the selected

seed set after the 𝑖-th iteration and𝑄△ (𝑣 |𝑆𝑖) = 𝑄 (𝑆𝑖 ∪ {𝑣}) −𝑄 (𝑆𝑖)
be the marginal gain of 𝑣 w.r.t. 𝑆𝑖 . Based on the submodularity of our

objective (i.e., for any 𝑆𝑖 ⊆ 𝑆 𝑗 and 𝑣 ∈ 𝑉 \𝑆 𝑗 ,𝑄 (𝑆𝑖 ∪ {𝑣}) −𝑄 (𝑆𝑖) ≥
𝑄 (𝑆 𝑗 ∪ {𝑣}) −𝑄 (𝑆 𝑗)), we know that 𝑄△ (𝑣 |𝑆𝑖) is an upper bound

for any 𝑄△ (𝑣 |𝑆 𝑗). Therefore, GreedyET first computes 𝑄△ (𝑣 |∅) to
select 𝑆1 and uses it as the upper bound of 𝑄△ (𝑣 |𝑆1) in the next

iteration. At each iteration 𝑗 (2 ≤ 𝑗 ≤ 𝐾), GreedyET processes

each node 𝑣 ∈ 𝑉 \ 𝑆 𝑗−1 in a non-increasing order of their upper

bounds and computes 𝑄△ (𝑣 |𝑆 𝑗−1). Instead of processing all nodes,

GreedyET triggers an early termination whenever the maximum

upper bound of unprocessed nodes is smaller than the maximum

𝑄△ (·|𝑆 𝑗−1) of processed nodes. Then, GreedyET updates the upper

bounds of each processed node 𝑣 as 𝑄△ (𝑣 |𝑆 𝑗−1) and proceeds to

the next iteration. Although GreedyET does not improve the worst-

case time complexity, it is much more efficient than NaiveGreedy

in practice (e.g., 94x speedups in our experiments).

5 EXPERIMENT
5.1 Experimental Setup
Datasets.We use six popular datasets for node classification, namely

Cora [34], CiteSeer [34], PubMed [34], Coauthor Physics [36] (Co-

Phy), Flickr [44] and Ogbn-arxiv [22] (Arxiv). For evaluation, we

follow the public and commonly used training/validation/test split

strategy for these datasets (i.e., following [25] for Cora, CiteSeer,

PubMed, [30] for Coauthor Physics, [44] for Flickr and [22] for

Ogbn-arxiv). The dataset statistics can be found in Appendix C.1.

Methods for Comparison. We compare our methods, Naive-

Greedy and GreedyET, against existing methods AGE [6], AN-

RMAB [16], and GRAIN [48] with their original implementations.

Specifically, GRAIN includes two kinds of approaches, namely

GRAIN(NN-D) and GRAIN(ball-D), which calculate the diversity

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Cost-effective Data Labelling for Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) Cora (b) CiteSeer (c) PubMed (d) Co-Phy (e) Flickr (f) Arxiv

Figure 4: Test accuracy comparison with various labeling budgets. Grain cannot scale at Arxiv due to out of memory1.

(a) Cora (b) CiteSeer (c) PubMed (d) Co-Phy (e) Flickr (f) Arxiv

Figure 5: Running time comparison with different labeling budgets.

score in different ways. Their description can be found in Related

Work and Appendix C.2. Note that, since NaiveGreedy produces

the same solution as GreedyET but in a slower way, we only show

the performance of NaiveGreedy in the efficiency study (Exp 2).

GNN Models. We perform evaluations with four popular GNN

models, namely GCN [25], APPNP [26], GraphSAGE (GS) [19] and

SGC [39]. Their detailed description can be found in Appendix C.3.

Following existing literature [6, 16, 48] in Active Learning, we adopt

GCN as the default GNN model and evaluate performance with

other models in the flexibility study.

Parameter Settings. For our method, we perform grid search of

𝑘 in 𝛿𝑘 (·) over the set {1, 2} and the similarity threshold 𝑡 over

the set {0.1, 0.3, 0.5, 0.7, 0.9, 0.9999}, and use cosine similarity to

compute the involvement-based similarity. For baseline methods,

the recommended setup is adopted. For the labeling budget 𝐵, we

follow previous work [16, 48] by varying the budget 𝐵 from 2𝐶 to

20𝐶 where 𝐶 is the number of classes in the dataset (e.g., 𝐶 = 7

in Cora) and 20𝐶 is the default budget. Our code is available at

https://gitfront.io/r/user-1291570/gC9qPniGQKs2/AL-Greedy/.

5.2 Experimental Results
Exp 1 - Accuracy Comparison. Fig. 4 shows the test accuracy
(e.g., the percentage of correct prediction) achieved by different

methods with different labeling budgets. The results show that our

method notably and consistently outperforms baselines. Specifically,

GreedyET can achieve up to 7.5% higher accuracy than the second

1
We only consider the case where all necessary data is loaded into memory. Tricks

(such as https://github.com/zwt233/Grain/issues/2) that store data in disks, incur high

I/O for repetitive data loading and intermediates re-computation are not considered.

Figure 6: Memory comparison where the number (e.g., 1x)
on each bar shows the advantage (e.g., using 1x less memory)
against theworst performer. OOM1 stands for out ofmemory.

best performer (i.e., on Ogbn-arxiv dataset with 2𝐶 budget) and

19.4% higher accuracy than the worst performer (i.e., on CiteSeer

dataset with 2𝐶 budget).

Exp 2 - Time Cost Comparison. Fig. 5 shows the running time of

all methods (including preprocessing) with various labeling budgets

𝐵. We observe that (1) GreedyET is very efficient and achieves up to

five-orders-of-magnitude speedups over baselines (i.e., comparing

GRAIN(ball-D) on Flickr with 20𝐶 budget); (2) due to the superiority

7

https://gitfront.io/r/user-1291570/gC9qPniGQKs2/AL-Greedy/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Flexibility test with 20𝐶 budget (NN-D, ball-D, ET
and OOM stand for GRAIN(NN-D), GRAIN(ball-D), GreedyET
and out of memory respectively)

Dataset GNN Seed Selection Method
AGE MAB NN-D ball-D ET

Cora

GCN 81.2 81.1 81.3 81.5 84.0
APPNP 75.5 74.2 66.8 67.6 79.2
GS 76.2 73.9 77.7 74.3 81.7
SGC 79.5 79.3 78.0 78.1 80.5

CiteSeer

GCN 71.9 70.2 71.2 70.9 72.9
APPNP 68.5 66.0 68.7 70.1 70.7
GS 67.7 64.3 65.3 67.2 68.0
SGC 69.6 68.9 68.2 68.5 70.0

PubMed

GCN 82.1 79.4 81.2 80.9 84.4
APPNP 80.6 73.0 81.1 80.6 83.6
GS 77.0 75.0 76.6 74.5 80.8
SGC 77.6 76.5 78.7 78.8 80.9

Co-Phy

GCN 94.8 92.9 94.3 94.6 95.2
APPNP 93.5 94.0 94.4 94.8 95.1
GS 94.0 92.0 93.0 93.5 94.4
SGC 94.7 92.0 93.9 93.9 95.0

Flickr

GCN 47.1 48.9 45.2 47.5 49.1
APPNP 42.3 44.9 42.3 42.3 46.3
GS 42.9 42.7 42.3 42.7 44.2
SGC 46.8 48.8 44.7 43.5 49.2

Arxiv

GCN 44.1 47.5 OOM OOM 48.3
APPNP 51.8 52.5 OOM OOM 53.6
GS 44.3 46.7 OOM OOM 48.7
SGC 37.9 41.1 OOM OOM 41.2

Table 4: Consideration Study (CX means Consideration X)
Cora CiteSeer PubMed Co-Phy Flickr Arxiv

C1 82.5 71.1 81.6 94.7 44.6 47.3

C2 82.8 71.8 81.8 94.9 47.7 47.8

C3 84.0 72.9 84.4 95.2 49.1 48.3

of the early termination technique, the running time of GreedyET

is not sensitive to the labeling budget and is 4x - 94x faster than

NaiveGreedy; (3) efficient baselines like AGE and ANRMAB are

very sensitive to the labeling budget such that their efficiency will

degrade notably as the budget increases.

Exp 3 - Memory Cost Comparison. Fig. 6 compares the mem-

ory cost of all methods with the labeling budget 𝐵 = 20𝐶 . Since

baselines require expensive matrix operations or model training for

seed selection, their memory footprints are notably larger than our

method. Specifically, GreedyET saves up to 102.4x memory space

than the worst performer (i.e., on Flickr) and 1.3x than the second

best performer (i.e., on CiteSeer), demonstrating its high scalability

and feasibility in practice.

Exp 4 - Flexibility Test. To evaluate the flexibility of different

methods, we evaluate the selected seeds under different GNNs

with the default budget, as shown in Table 3. The results show

that GreedyET consistently outperforms baselines, which indicates

the effectiveness of our objective goal in terms of capturing the

commonalities of popular GNNs and strong flexibility of GreedyET.

Figure 7: Hyper-parameter study on 𝑡

Table 5: Hyper-parameter study on 𝑘

Dataset Accuracy (%) Time (s)
𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2

Cora 84.0 84.1 0.8 2.7

CiteSeer 72.9 73.5 0.6 1.5

PubMed 84.4 84.1 20.7 126.7

Co-Phy 91.6 95.2 41.0 399.4

Flickr 49.1 49.7 79.7 3344.0

Arxiv 48.3 48.5 159.7 6715.3

Exp 5 - Consideration Study. We validate the effectiveness of dif-

ferent considerations for designing the indirect involvement score

in Section 4.3, as shown in Table 4. The result shows that the accu-

racy gradually increases when we have more considerations and

normalization is very important and greatly increases the accuracy.

Exp 6 - Hyper-parameter Study. Figure 7 and Table 5 shows

the impacts of the similarity threshold 𝑡 and the number 𝑘 of hops

of the aggregation neighborhood 𝛿𝑘 (·) respectively. The results

show that (1) the performance generally increases and reaches the

peak when 𝑡 = 0.9999 and then decreases if 𝑡 is very close to 1,

(2) setting 𝑡 = 0.9999 enables the similarity increment to enjoy

a wide range of gradients of the indirect involvement function

and can better encourage aggregation neighborhood diversification

in a fine-grained manner, and (3) accuracy at 𝑘 = 1 can be very

competitive with accuracy at 𝑘 = 2 in many cases but the runtime

cost at 𝑘 = 1 can be notably smaller.

6 CONCLUSION
In this paper, we tackle the active learning problem by reformu-

lating it as the aggregation involvement maximization problem

and proposing an unsupervised, scalable and flexible method with

theoretical guarantees. Extensive experiments demonstrate the effi-

ciency, effectiveness, scalability and flexibility of our method. Cur-

rently, our method does not support incremental computation for

dynamic graphs. In future, we will explore how to partially update

the results when the graph structure is changed.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cost-effective Data Labelling for Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Distribution uniformity. https://en.wikipedia.org/wiki/Distribution_uniformity.

[2] Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and S Yu Philip.

Active learning: A survey. In Data classification, pages 599–634. 2014.
[3] MohammadAl-Rubaie and JMorris Chang. Privacy-preservingmachine learning:

Threats and solutions. IEEE Security & Privacy, 17(2):49–58, 2019.
[4] Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for net-

worked data. In ICML, pages 79–86, 2010.
[5] Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression

based on query by committee. Lecture Notes in Computer Science, 4881:209–218,
2007.

[6] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. Active learning

for graph embedding. arXiv preprint arXiv:1705.05085, 2017.
[7] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolu-

tional networks via importance sampling. In ICLR, 2018.
[8] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. Scalable graph neural networks via bidirectional propagation.

NeurIPS, 33:14556–14566, 2020.
[9] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

Cluster-gcn: An efficient algorithm for training deep and large graph convolu-

tional networks. In SIGKDD, pages 257–266, 2019.
[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In CVPR, pages
3213–3223, 2016.

[11] Yue Cui, Kai Zheng, Dingshan Cui, Jiandong Xie, Liwei Deng, Feiteng Huang,

and Xiaofang Zhou. Metro: a generic graph neural network framework for

multivariate time series forecasting. PVLDB, 15(2):224–236, 2021.
[12] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. NeurIPS, 17,

2004.

[13] Bo Du, Zengmao Wang, Lefei Zhang, Liangpei Zhang, Wei Liu, Jialie Shen,

and Dacheng Tao. Exploring representativeness and informativeness for active

learning. IEEE transactions on cybernetics, 47(1):14–26, 2015.
[14] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. Sign: Scalable inception graph neural networks.

arXiv preprint arXiv:2004.11198, 2020.
[15] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. Ics-gnn: lightweight interactive

community search via graph neural network. PVLDB, 14(6):1006–1018, 2021.
[16] Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, and Yue Hu. Active

discriminative network representation learning. In IJCAI, pages 2142–2148,
2018.

[17] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and

applications in active learning and stochastic optimization. Journal of Artificial
Intelligence Research, 42:427–486, 2011.

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In SIGKDD, pages 855–864, 2016.
[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. NeurIPS, 30, 2017.
[20] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In SIGIR, pages 639–648, 2020.
[21] Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté,

Zhiyuan Liu, and Jian Tang. Graph policy network for transferable active learning

on graphs. In NeurIPS, 2020.
[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems,
33:22118–22133, 2020.

[23] Heinrich Jiang and Maya R Gupta. Bootstrapping for batch active sampling. In

SIGKDD, pages 3086–3096, 2021.
[24] Thomas N Kipf andMaxWelling. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308, 2016.
[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.
[26] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Person-

alized embedding propagation: Combining neural networks on graphs with

personalized pagerank. CoRR, abs/1810.05997, 2018.
[27] Manuel Leone, Stefano Huber, Akhil Arora, Alberto García-Durán, and Robert

West. A critical re-evaluation of neural methods for entity alignment. PVLDB,
15(8):1712–1725, 2022.

[28] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.

In SIGKDD, pages 420–429, 2007.
[29] Xin Li and Yuhong Guo. Adaptive active learning for image classification. In

CVPR, pages 859–866, 2013.
[30] Yi Luo, Aiguo Chen, Ke Yan, and Ling Tian. Distilling self-knowledge from

contrastive links to classify graph nodes without passing messages. 2021.

[31] Prem Melville and Raymond J Mooney. Diverse ensembles for active learning.

In ICML, page 74, 2004.
[32] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis

of approximations for maximizing submodular set functions—i. Mathematical
programming, 14:265–294, 1978.

[33] Hieu T Nguyen and Arnold Smeulders. Active learning using pre-clustering. In

ICML, page 79, 2004.
[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[35] Burr Settles. Active learning literature survey. 2009.

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868, 2018.

[37] Min Tang, Xiaoqiang Luo, and Salim Roukos. Active learning for statistical

natural language parsing. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 120–127, 2002.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.
[39] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. Simplifying graph convolutional networks. In ICML, pages 6861–
6871, 2019.

[40] Jian Wu, Victor S Sheng, Jing Zhang, Hua Li, Tetiana Dadakova, Christine Leon

Swisher, Zhiming Cui, and Pengpeng Zhao. Multi-label active learning algorithms

for image classification: Overview and future promise. ACM Computing Surveys
(CSUR), 53(2):1–35, 2020.

[41] Yuexin Wu, Yichong Xu, Aarti Singh, Yiming Yang, and Artur Dubrawski. Active

learning for graph neural networks via node feature propagation. arXiv preprint
arXiv:1910.07567, 2019.

[42] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann.

Multi-class active learning by uncertainty sampling with diversity maximization.

International Journal of Computer Vision, 113:113–127, 2015.
[43] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-

supervised learning with graph embeddings. In ICML, pages 40–48, 2016.
[44] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. Graphsaint: Graph sampling based inductive learning method. In

ICLR, 2020.
[45] Wentao Zhang, Yu Shen, Yang Li, Lei Chen, Zhi Yang, and Bin Cui. Alg: Fast

and accurate active learning framework for graph convolutional networks. In

SIGMOD, pages 2366–2374, 2021.
[46] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong

Shan, Zhi Yang, and CUI Bin. Information gain propagation: a new way to graph

active learning with soft labels. In ICLR, 2022.
[47] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong

Shan, Zhi Yang, and Bin Cui. Rim: Reliable influence-based active learning on

graphs. Advances in Neural Information Processing Systems, 34:27978–27990,
2021.

[48] Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin

Cui. Grain: improving data efficiency of graph neural networks via diversified

influence maximization. PVLDB, 14(11):2473–2482, 2021.
[49] Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In ICLR, 2021.
[50] Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K Tsou. Active learn-

ing with sampling by uncertainty and density for word sense disambiguation

and text classification. In Proceedings of the 22nd International Conference on
Computational Linguistics (Coling 2008), pages 1137–1144, 2008.

9

https://en.wikipedia.org/wiki/Distribution_uniformity

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PROOF OF THEOREM 2 AND THEOREM 3
We prove Theorem 2 and Theorem 3 via proving several lemmas.

Lemma 1. The function |𝛿𝑘 (·) | is monotonically non-decreasing
such that, for any 𝑆1 ⊆ 𝑆2 and 𝑣 ∈ 𝑉 \ 𝑆2, |𝛿𝑘 (𝑆1) | ≤ |𝛿𝑘 (𝑆2) |.

Proof. Since 𝛿𝑘 (𝑆1) = ∪𝑠∈𝑆1𝛿𝑘 (𝑠) ⊆ ∪𝑠∈𝑆2𝛿𝑘 (𝑠) = 𝛿𝑘 (𝑆2), the
lemma is deduced. □

Lemma 2. The function |𝛿𝑘 (·) | is submodular such that, for any
𝑆1 ⊆ 𝑆2 and 𝑢 ∈ 𝑉 \𝑆2, |𝛿𝑘 (𝑆1 ∪ {𝑢}) | − |𝛿𝑘 (𝑆1) | = |𝛿𝑘 (𝑆1 ∪ {𝑢})) \
𝛿𝑘 (𝑆1) | ≥ |𝛿𝑘 (𝑆2 ∪ {𝑢}) | − |𝛿𝑘 (𝑆2) | = |𝛿𝑘 (𝑆2 ∪ {𝑢}) \ 𝛿𝑘 (𝑆2) |.

Proof. 𝛿𝑘 (𝑆1 ∪ {𝑢}) \ 𝛿𝑘 (𝑆1) refers to the set of elements that

are in 𝛿𝑘 ({𝑢}) but are not in the union ∪𝑠∈𝑆1𝛿𝑘 (𝑠). Clearly, it is at
least as large as the set of elements that are in 𝛿𝑘 ({𝑢}) but are not
in the (greater) union ∪𝑠∈𝑆2𝛿𝑘 (𝑠). That is, 𝛿𝑘 (𝑆1 ∪ {𝑢}) \ 𝛿𝑘 (𝑆1) ⊇
𝛿𝑘 (𝑆2 ∪ {𝑢}) \ 𝛿𝑘 (𝑆2). Therefore, the lemma is deduced. □

Lemma 3. The function 𝑆𝐼𝑀𝑣 (·) is monotonically non-decreasing.
That is, for any 𝑆1 ⊆ 𝑆2 and 𝑣 ∈ 𝑉 \ 𝑆2, 𝑆𝐼𝑀𝑣 (𝑆1) ≤ 𝑆𝐼𝑀𝑣 (𝑆2).

Proof. Since 𝑆𝐼𝑀𝑣 (𝑆1) =
∑
𝑟 ∈𝛿𝑘 (𝑆1)∩H(𝑣) 𝑠𝑖𝑚𝑣 (𝑟) and𝛿𝑘 (𝑆1)∩

H (𝑣) ⊆ 𝛿𝑘 (𝑆2) ∩ H (𝑣), the lemma is deduced. □

Lemma 4. The function 𝑆𝐼𝑀𝑣 (·) is submodular. That is, for any
𝑆1 ⊆ 𝑆2 and 𝑢, 𝑣 ∈ 𝑉 \𝑆2, 𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢}) −𝑆𝐼𝑀𝑣 (𝑆1) ≥ 𝑆𝐼𝑀𝑣 (𝑆2 ∪
{𝑢}) − 𝑆𝐼𝑀𝑣 (𝑆2).

Proof. Since

𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢}) − 𝑆𝐼𝑀𝑣 (𝑆1) =
∑︁

𝑟 ∈𝛿𝑘 (𝑆1∪{𝑢})\𝛿𝑘 (𝑆1)∩H(𝑣)
𝑠𝑖𝑚𝑣 (𝑟),

and, based on Lemma 2, we have

𝛿𝑘 (𝑆1 ∪ {𝑢}) \ 𝛿𝑘 (𝑆1) ∩ H (𝑢) ⊇ 𝛿𝑘 (𝑆2 ∪ {𝑢}) \ 𝛿𝑘 (𝑆2) ∩ H (𝑢).

Thus, the lemma is deduced. □

Lemma 5. The function 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (·)) is submodular. That is, for
any 𝑆1 ⊆ 𝑆2 and𝑢, 𝑣 ∈ 𝑉 \𝑆2, 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1∪{𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)) ≥
𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)).

Proof. Since 𝑆𝐼𝑀𝑣 (·) is monotonically non-decreasing, 𝐼 𝑣 (·) is
also monotonically non-decreasing but its gradient decreases as

the input becomes larger. The decreasing property of the gradient

indicates that, given the same increment to 𝑆𝐼𝑀𝑣 (𝑆1) and 𝑆𝐼𝑀𝑣 (𝑆2),
the increment 𝐼 𝑣 (·) achieved by the former case will be at least as

large as the one achieved by the latter case. Based on Lemma 4, the

increment brought by 𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢}) to 𝑆𝐼𝑀𝑣 (𝑆1) will be at least
as large as the increment brought by 𝑆𝐼𝑀𝑣 (𝑆2 ∪ {𝑢}) to 𝑆𝐼𝑀𝑣 (𝑆2).
Therefore, the lemma is deduced. □

A.1 Proof of Theorem 2
Proof. When we change the solution from 𝑆1 to 𝑆2, all nodes

can be divided into 𝛿𝑘 (𝑆1), 𝛿𝑘 (𝑆2) \ 𝛿𝑘 (𝑆1) and 𝑉 \ 𝛿𝑘 (𝑆2). The
contribution of a node 𝑣 to𝑄 (·) remains as 1 if 𝑣 ∈ 𝛿𝑘 (𝑆1), becomes

1 if 𝑣 ∈ 𝛿𝑘 (𝑆2) \𝛿𝑘 (𝑆1), and becomes 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)) if 𝑣 ∈ 𝑉 \𝛿𝑘 (𝑆2).
Thus,

𝑄 (𝑆2) −𝑄 (𝑆1) =
∑︁

𝑣∈𝛿𝑘 (𝑆2)\𝛿𝑘 (𝑆1)
(1 − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)))

+
∑︁

𝑣∈𝑉 \𝛿𝑘 (𝑆2)
(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1))) . (7)

Clearly, the two terms at the right side of the equation above are

both greater or equal to 0. Thus, the theorem is deduced. □

A.2 Proof of Theorem 3
Proof. When the solution changes from 𝛿𝑘 (𝑆2) to 𝛿𝑘 (𝑆2 ∪ {𝑢}),

all nodes can be divided into three sets, namely 𝛿𝑘 (𝑆2), 𝛿𝑘 (𝑆2 ∪
{𝑢}) \𝛿𝑘 (𝑆2), and𝑉 \𝛿𝑘 (𝑆2 ∪ {𝑢}). The contribution of a node 𝑣 to

𝑄 (·) remains as 1 if 𝑣 ∈ 𝛿𝑘 (𝑆2), becomes 1 if 𝑣 ∈ 𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆2)
and becomes 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2 ∪ {𝑢})) if 𝑣 ∈ 𝑉 \ 𝛿𝑘 (𝑆2 ∪ {𝑢}). Thus we
have

𝑄 (𝑆2 ∪ {𝑢}) −𝑄 (𝑆2) =
∑︁

𝑣∈𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆2)
(1 − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)))

+
∑︁

𝑣∈𝑉 \𝛿𝑘 (𝑆2∪{𝑢})
(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)))

Similarly, we have

𝑄 (𝑆1 ∪ {𝑢}) −𝑄 (𝑆1) =
∑︁

𝑣∈𝛿𝑘 (𝑆1∪{𝑢})\𝛿𝑘 (𝑆1)
(1 − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)))

+
∑︁

𝑣∈𝑉 \𝛿𝑘 (𝑆2∪{𝑢})
(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)))

+
∑︁

𝑣∈𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆1∪{𝑢})
(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)))

Since |𝛿𝑘 (𝑆1∪{𝑢})\𝛿𝑘 (𝑆1) | ≥ |𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆2) | and 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1)) ≤
𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2)), we have

∑
𝑣∈𝛿𝑘 (𝑆1∪{𝑢})\𝛿𝑘 (𝑆1) (1− 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1))) ≥∑

𝑣∈𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆2) (1 − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2))). Since

∑︁
𝑣∈𝑉 \𝛿𝑘 (𝑆2∪{𝑢})

(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1))) ≥∑︁
𝑣∈𝑉 \𝛿𝑘 (𝑆2∪{𝑢})

(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆2))) (Lemma 5),∑︁
𝑣∈𝛿𝑘 (𝑆2∪{𝑢})\𝛿𝑘 (𝑆1∪{𝑢})

(𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1 ∪ {𝑢})) − 𝐼 𝑣 (𝑆𝐼𝑀𝑣 (𝑆1))) ≥ 0,

(8)

we have 𝑄 (𝑆1 ∪ {𝑢}) −𝑄 (𝑆1) ≥ 𝑄 (𝑆2 ∪ {𝑢}) −𝑄 (𝑆2). □

B PSEUDOCODE OF NAIVEGREEDY AND
GREEDYET

Algorithm 1 and Algorithm 3 show the pseudocodes of NaiveGreedy

and GreedyET respectively.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Cost-effective Data Labelling for Graph Neural Networks Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 1: NaiveGreedy
Input :The input network𝐺 = (𝑉 , 𝐸) , the budget 𝐵 and an

integer 𝑘 .

Output :The seed set 𝑆 .

1 foreach 𝑣 ∈ 𝑉 do
2 Conduct BFS to obtain 𝛿𝑘 (𝑣) and H(𝑣) ;
3 Compute 𝐷𝑈𝑣 and 𝑁𝐹𝑣 based on H(𝑣) ;
4 𝑆 ← ∅;
5 while |𝑆 | < 𝐵 do
6 𝑚𝑎𝑥𝑔𝑎𝑖𝑛 = 0;

7 foreach 𝑣 ∈ 𝑉 \ 𝑆 do
8 𝑄△ (𝑣 |𝑆) = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑎𝑖𝑛 (𝐺, 𝑣, 𝑆) // the marginal gain of

involvement score of 𝑣 wrt. 𝑆 ;

9 if 𝑄△ (𝑣 |𝑆) >𝑚𝑎𝑥𝑔𝑎𝑖𝑛 then
10 𝑚𝑎𝑥𝑔𝑎𝑖𝑛 = 𝑄△ (𝑣 |𝑆) ;
11 𝑠∗ = 𝑣;

12 𝑆 = 𝑆 ∪ {𝑠∗};
13 Return 𝑆 ;

Algorithm 2: ComputeGain

Input :The input network𝐺 = (𝑉 , 𝐸) , the candidate node 𝑣 and
the current seed set 𝑆 .

Output :The marginal gain𝑄△ of 𝑣 over 𝑆 .

1 𝐿 ← ∅; // it stores the set of nodes whose indirection involvement
scores need to be updated;

2 𝛿𝑘 △ (𝑣 |𝑆) = 𝛿𝑘 ({𝑣}) − 𝛿𝑘 (𝑆)// the marginal gain of direct
involvement;

3 𝐼△ (𝑣 |𝑆) = 0// the marginal gain of indirect involvement;
4 foreach 𝑟 ∈ 𝛿𝑘 △ (𝑣 |𝑆) do
5 foreach 𝑢 ∈ H(𝑟) \ 𝛿𝑘 (𝑆 ∪ {𝑣}) do
6 if 𝑢 ∉ 𝐿 then
7 𝐿 ← 𝐿 ∪ {𝑢};
8 𝑆𝐼𝑀 ′𝑢 (𝑆 ∪ {𝑣}) = 𝑆𝐼𝑀𝑢 (𝑆)
9 𝑆𝐼𝑀 ′𝑢 (𝑆 ∪ {𝑣}) += 𝑠𝑖𝑚𝑢 (𝑟) ;

10 foreach 𝑢 ∈ 𝐿 do
11 𝐼𝑢 (𝑆 ∪ {𝑣}) = 2

1+𝑒−
𝑆𝐼𝑀′𝑢 (𝑆∪{𝑣})

𝐷𝑈𝑢
×𝑁𝐹𝑢

− 1;

12 𝐼△ (𝑣 |𝑆) += 𝐼𝑢 (𝑆 ∪ {𝑣}) − 𝐼𝑢 (𝑆) ;
13 Return |𝛿𝑘 △ (𝑣 |𝑆) | + 𝐼△ (𝑣 |𝑆) ;

C EXPERIMENT RELATED DETAILS
C.1 Dataset Description
Cora, CiteSeer, and PubMed2 are three public citation network

datasets. These three datasets consist of publications that are con-

nected together through citation links, where each publication

serves as a node and the citation links represent the edges. The

node attributes are binary word vectors, and the class labels indicate

the topics to which the publications belong.

Coauthor Physics3 is a co-authorship graph based on the Mi-

crosoft Academic Graph from the KDD Cup 2016 challenge. In this

dataset, each node represents an author, and an edge connects two

authors if they have co-authored a paper. The node features rep-

resent the paper keywords for each author’s papers, and the class

labels indicate the most active fields of study for each author.

2
https://github.com/tkipf/gcn/tree/master/gcn/data

3
https://github.com/shchur/gnn-benchmark/blob/master/data/npz/ms_academic_phy.npz

Algorithm 3: GreedywithEarlyTermination (GreedyET)

Input :The input network𝐺 = (𝑉 , 𝐸) , the budget 𝐵 and an

integer 𝑘 .

Output :The seed set 𝑆 .

1 foreach 𝑣 ∈ 𝑉 do
2 Conduct BFS to obtain 𝛿𝑘 (𝑣) and H(𝑣) ;
3 Compute 𝐷𝑈𝑣 and 𝑁𝐹𝑣 based on H(𝑣) ;
4 𝑆 ← ∅;
5 𝑃𝑄 ← an empty priority queue which sorts nodes based on their

upper bounds of marginal gains in non-increasing order;

6 while |𝑆 | < 𝐵 do
7 if 𝑆 = ∅ then
8 foreach 𝑣 ∈ 𝑉 do
9 𝑄△ (𝑣 |𝑆) = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑎𝑖𝑛 (𝐺, 𝑣, 𝑆) ;

10 Insert 𝑣 into 𝑃𝑄 with 𝑣.𝑢𝑏 = 𝑄△ (𝑣 |𝑆) ;
11 𝑠∗ ← 𝑃𝑄.𝑝𝑜𝑝 () ;
12 else
13 𝑚𝑎𝑥𝑔𝑎𝑖𝑛 = 0;

14 while |𝑃𝑄 | > 0 do
15 𝑣 = 𝑃𝑄.𝑝𝑜𝑝 () ;
16 𝑣.𝑢𝑏 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑎𝑖𝑛 (𝐺, 𝑣, 𝑆) ;
17 if 𝑣.𝑢𝑏 >𝑚𝑎𝑥𝑔𝑎𝑖𝑛 then
18 𝑚𝑎𝑥𝑔𝑎𝑖𝑛 = 𝑣.𝑢𝑏;

19 𝑠∗ = 𝑣;

20 if |𝑃𝑄 | > 0 and𝑚𝑎𝑥𝑔𝑎𝑖𝑛 > 𝑃𝑄 [0] .𝑢𝑏 then
21 break;

22 Update 𝑃𝑄 with visited nodes excluding 𝑠∗;

23 𝑆 = 𝑆 ∪ {𝑠∗};
24 Return 𝑆 ;

Flickr4 is a dataset which is built by forming links between images

sharing common metadata from Flickr. The image data is collected

by the SNAP website from four different sources. In this dataset,

each node represents an image, and an edge connects two images if

they share some common properties (e.g., same geographic location,

same gallery, same tags, etc.). The node features are the bag-of-word

representations of the images. The tags of each image are merged

into 7 classes and the class labels indicate the classes to which the

images belong.

Ogbn-arxiv5 is a directed graph based on the citation network of

Computer Science arXiv papers. In this dataset, each node repre-

sents an arXiv paper, and an directed edge indicates that one paper

cites another. The node features are the averaged embeddings of

words in the title and abstract of the arXiv papers, and the class

labels indicate the subject areas of the arXiv papers.

The statistics of datasets can be found in Table 6.

C.2 Details of baselines
• AGE [6]: select nodes based on the node informativeness criteria

including uncertainty, information density and graph centrality.

• ANRMAB [16]: improves AGE by adopting a multi-armed bandit

framework to dynamically adjust the combination weights of

the node informativeness criteria.

4
https://github.com/GraphSAINT/GraphSAINT#datasets

5
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Datasets statistics where #C stands for the number
of classes
Dataset Nodes Edges Features #C Train/Val/Test
Cora 2,708 5,429 1,433 7 1.2k/0.5k/1.0k

CiteSeer 3,327 4,732 3,703 6 1.8k/0.5k/1.0k

PubMed 19,717 44,338 500 3 18.2k/0.5k/1.0k

Co-Phy 34,493 247,962 8,415 5 20.7k/6.9k/6.9k

Flickr 89,250 899,756 500 7 44.6k/22.3k/22.3k

Arxiv 169,343 1,166,243 128 40 90.9k/29.8k/48.6k

• GRAIN [48]: selects nodes based on the weighted average of the

influence score and diversity score. GRAIN includes two kinds of

approaches, namely GRAIN(NN-D) and GRAIN(ball-D), which

calculate the diversity score in different ways.

• NaiveGreedy: our proposed method which adopts the greedy

algorithm to select nodes based on the total direct and indirect

involvement scores.

• GreedyET: our improved version of NaiveGreedy with the early

termination technique.

C.3 Details of the compared GNNs
• GCN [25]: extracts features and generate node embeddings by

performing a linear approximation to spectral graph convolu-

tions.

• APPNP [26]: leverages the relationship between GCN and PageR-

ank to derive an improved propagation procedure using person-

alized PageRank with fast approximation.

• GraphSAGE (GS) [19] : constructs node embeddings by sampling

and aggregating the feature representations of a node’s local

neighborhood.

• SGC [39]: the simplified version of GCN which reduces the ex-

cess complexity by iteratively eliminating nonlinearities and

collapsing weight matrices between consecutive layers.

12

	Abstract
	1 Introduction
	2 Related work
	3 Preliminary and Problem Definition
	4 Aggregation Involvement Maximization
	4.1 From AL to Aggregation Involvement Maximization (AIM)
	4.2 Direct Aggregation Involvement
	4.3 Indirect Aggregation Involvement
	4.4 Theoretical Analysis
	4.5 The Solution

	5 Experiment
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References
	A Proof of Theorem 2 and Theorem 3
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3

	B Pseudocode of NaiveGreedy and GreedyET
	C Experiment Related Details
	C.1 Dataset Description
	C.2 Details of baselines
	C.3 Details of the compared GNNs

