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Abstract
In-context learning (ICL) has demonstrated re-
markable success in large language models
(LLMs) due to its adaptability and parameter-free
nature. However, it also introduces a critical vul-
nerability to backdoor attacks, where adversaries
can manipulate LLM behaviors by simply poison-
ing a few ICL demonstrations. In this paper, we
propose, for the first time, the dual-learning hy-
pothesis, which posits that LLMs simultaneously
learn both the task-relevant latent concepts and
backdoor latent concepts within poisoned demon-
strations, jointly influencing the probability of
model outputs. Through theoretical analysis, we
derive an upper bound for ICL backdoor effects,
revealing that the vulnerability is dominated by
the concept preference ratio between the task and
the backdoor. Motivated by these findings, we pro-
pose ICLShield, a defense mechanism that dynam-
ically adjusts the concept preference ratio. Our
method encourages LLMs to select clean demon-
strations during the ICL phase by leveraging confi-
dence and similarity scores, effectively mitigating
susceptibility to backdoor attacks. Extensive ex-
periments across multiple LLMs and tasks demon-
strate that our method achieves state-of-the-art
defense effectiveness, significantly outperforming
existing approaches (+26.02% on average). Fur-
thermore, our method exhibits exceptional adapt-
ability and defensive performance even for closed-
source models (e.g., GPT-4).

1. Introduction
The concept of in-context learning (ICL) was first intro-
duced by GPT-3 (Brown et al., 2020), defined as a large
language model (LLM) completing tasks conditioned on
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Figure 1. ICL backdoor attacks aim to embed backdoors into
LLMs by poisoning a few ICL demonstrations such that the attack-
ers can manipulate model behaviors when specific triggers appear.

a few natural language examples. As the scale of LLMs
increases, ICL has been widely applied to various tasks ow-
ing to its remarkable adaptability and parameter-free nature,
such as text classification (Milios et al., 2023; Edwards &
Camacho-Collados, 2024), reasoning (Wei et al., 2022; Liu
et al., 2024a), and context generation (Liu et al., 2024b;
Thillainathan & Koller, 2024).

Despite the success of ICL, a growing body of research has
shown that it is vulnerable to backdoor attacks (Kandpal
et al., 2023; Zhao et al., 2024; Xiang et al., 2024). In sce-
narios such as agent systems (Liu et al., 2025) or shared
prompt templates (Wang et al., 2024b) where users may not
have full control over ICL content, the attacker manipulates
the output of the model in the inference phase by design-
ing special examples with trigger conditions and poisoning
ICL demonstration to the LLMs as shown in Fig. 1. In
this type of attack, the attacker does not need to modify
any training data or model parameters, making the attack
applicable to any model, even including API services such
as GPT-3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al.,
2023). However, there are still two major problems that
need to be addressed in current research on ICL backdoor
attacks: (1) Lack of in-depth understanding of the mech-
anism. Existing research (Zhao et al., 2024; Xiang et al.,
2024) mainly focuses on verifying the effectiveness of the
attack but fails to reveal how the attack affects the output
prediction of the model. (2) Defense methods have not yet
been explored. Since ICL backdoor attacks do not require
modification of model parameters, traditional defenses (Li
et al., 2021a;b; 2024a) have limited effectiveness in dealing
with such threats.
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Previous studies (Xie et al., 2021; Wang et al., 2024a) in-
troduced latent concepts to explain how contextual demon-
stration affects model generation, revealing the existence
of continuous high-dimensional conceptual latent variables
to encode task-relevant information. Inspired by this the-
ory, in this paper, we propose the dual-learning hypothesis
that divides the effects of ICL backdoor attack into two
discrete latent concepts (i.e., task latent concept and attack
latent concept), which are learned by LLMs independently
whereas jointly determine the probability of the model’s out-
put. Through theoretical analysis of the model’s conditional
and posterior distributions under task/backdoor latent con-
cepts, we derive an upper bound for ICL backdoor attacks
via Jensen’s inequality and the conclusions of Wang et al.
(2024a), where we surprisingly found that it is dominated
by the concept preference ratio (i.e., the ratio of the task
and attack posterior distribution under poisoned demonstra-
tion) Based on this ratio, we can conclude that the backdoor
effects in ICL can be mitigated by controlling and further
reducing the concept preference ratio. Moreover, we re-
veal the existence of key factors (e.g., task type, poisoning
demonstration, and clean demonstration) that show a posi-
tive relationship between the concept preference ratio.

The above analysis reveals that we can mitigate ICL back-
door attacks by increasing the concept preference ratio.
Therefore, we design an ICL backdoor defense method
named ICLShield, that adjusts the preference ratio between
the task and attack latent concepts by dynamically adding
extra clean examples from datasets that either have high con-
fidence in the correct target or are similar to the poisoned
demonstration. In this way, the concept preference ratio
increases and thus reduces the success rate of the model
being attacked. We conducted extensive experiments across
11 open-sourced LLMs on 3 tasks, and the results demon-
strate that our defense achieves superior performance and
outperforms baselines largely (+26.02% on average), high-
lighting the effectiveness and generalization of our approach.
Furthermore, evaluations of closed-source models (GPT-
3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al., 2023))
reveal that our defense has a high potential and can be trans-
ferred to black-box models. Our main contributions are:

• We analyze the mechanism of ICL backdoor attacks
for the first time by proposing a dual-learning hypoth-
esis and revealing the upper bound for the attacks is
determined by the concept preference ratio.

• We present the first defense against ICL backdoor at-
tacks, ICLShield, which mitigates the potential con-
ceptual drift introduced by the attack by dynamically
adding additional clean examples.

• Extensive experiments over both open-sourced and
close-sourced LLMs across different tasks show that

our method can achieve the SOTA defense results on
ICL backdoor attacks.

2. Related Work
Backdoor attacks aim to implant a backdoor that remains
dormant when the model input does not contain specific
triggers but activates and induces malicious behavior when
the input includes triggers. Backdoor attacks on LLMs can
be generally categorized as data poisoning, model poison-
ing, and ICL poisoning (Li et al., 2024b; Liao et al., 2024;
Kong et al., 2024; Xiao et al., 2023). Data poisoning in-
jects poisoned data into training sets, such as modifying
instructions (Xu et al., 2023; Yan et al., 2024) or poisoning
RLHF data to introduce jailbreaks (Rando & Tramèr, 2023).
Model poisoning alters models directly, embedding trigger
vectors (Wang & Shu, 2023) or modifying parameters (Li
et al., 2024c). Although data poisoning and model poi-
soning exhibit strong attack performance, they require the
attacker to manipulate the training data or model parameters,
which does not apply to common usage scenarios. With the
development of in-context learning, ICL poisoning have
been proposed. BadChain (Xiang et al., 2024) manipulates
model behavior by inserting backdoor reasoning steps into
chain-of-thought demonstrations, while Zhao et al. (2024)
embed triggers into demonstrations to perform backdoor
behavior in response to triggered inputs.

Backdoor defenses try to mitigate the effects of backdoor
attacks, which can be categorized into training-time de-
fenses, post-training defenses, and inference-time defenses.
Training-time defenses, like Anti-Backdoor Learning (Li
et al., 2021a), isolate poisoned data early and disrupt back-
door correlations later. Post-training defenses repair poi-
soned models using distillation (Li et al., 2021b), unlearn-
ing (Li et al., 2024a), or embedding adversaries (Zeng et al.,
2024). These methods are primarily designed for defending
against data poisoning attacks and model poisoning attacks;
however, they are ineffective against ICL attacks which do
not modify the training data or model. Some inference-
time defense methods have been proposed to identify and
eliminate backdoor triggers, thereby preventing the gener-
ation of backdoor behavior. ONION (Qi et al., 2020) uses
perplexity-based filtering to identify and remove word-level
backdoor attack triggers, while Back-Translation (Qi et al.,
2021) disrupts sentence-level backdoor attack triggers by
translating between two languages. However, such defenses
have limited effectiveness against ICL backdoor attacks.
Wei et al. (2023) and Mo et al. (2023) propose utilizing
additional demonstrations during the inference phase for
defense. However, these methods are designed for jailbreak
or data poisoning backdoor attack and are not work well for
ICL backdoor attacks.

In-context learning is a paradigm that allows LLMs to
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learn tasks given only a few example in the form of demon-
stration (Brown et al., 2020; Dong et al., 2024), which has
been applied to a wide range of tasks. Research on ICL
primarily focuses on the design of ICL prompts, including
selecting appropriate demonstrations for different tasks (Liu
et al., 2021; Wu et al., 2022; Ye et al., 2023), reformatting
existing demonstrations (Hao et al., 2022; Liu et al., 2023),
and ordering the selected demonstrations (Lu et al., 2021;
Liu et al., 2024c). In addition to improving the capabilities
of ICL, some studies focus on explaining why ICL is work.
Garg et al. (2022) and Li et al. (2023) interpret ICL through
the lens of regression, Dai et al. (2022) and Von Oswald
et al. (2023) explain ICL as a form of implicit fine-tuning
and gradient-based meta-learning, and Xie et al. (2021) and
Wang et al. (2024a) provide an interpretation of ICL through
the lens of Bayesian inference and latent concept.

This paper primarily focuses on ICL backdoor attacks and
proposes the dual-learning hypothesis to explain its mech-
anism through the latent concept theory. In addition, we
propose a defense method specifically designed for ICL
backdoor attacks, called ICLShield, which outperforms base-
lines including ONION and Back-Translation significantly.

3. Preliminaries and Backgrounds
In-context learning provides demonstration to LLMs as
conditions, enabling the model to handle new tasks without
adjusting its parameters. Formally, let M be a LLM, the
inference process in ICL can be written as

argmax
y

PM (y | S,x), (1)

where S = {xi,yi}ni=1 is the demonstration consisting of
n examples of task-specific inputs xi and corresponding
outputs yi. Given a new user input x, the goal of ICL is to
generate the correct ground-truth output ygt

Backdoor attacks for ICL aims to embed backdoors
into LLMs via ICL. In ICL backdoor attacks, the attacker
chooses a trigger t and a backdoor target yt. To poison the
ICL, the attacker injects m poison examples into demonstra-
tion S. The poisoned demonstration St is mathematically
expressed as

St = {xi,yi}ni=1 ∪ {x̂j ,yt}mj=1, (2)

where x̂ denotes a original input x modified to include the
trigger t. The goal of the backdoor attacks is to produce the
normal ground-truth output ygt when the input without the
trigger, yet output the backdoor target yt when the input
with the trigger. Formally, the attack aims to maximize

max[PM (ygt | St,x) + PM (yt | St, x̂)]. (3)

4. Theoretical Analysis
4.1. Dual-learning Hypothesis

Following the theories proposed by Xie et al. (2021) and
Wang et al. (2024a), the newly generated tokens are con-
ditionally independent of previous tokens. A continuous
high-dimensional latent concept exists, acting as an approxi-
mate sufficient statistic for the posterior information derived
from the previous prompt, thereby influencing the probabil-
ity distribution of the newly generated tokens. Furthermore,
Wang et al. (2024a) suggests that in the case of in-context
learning, this latent concept represents the task-related in-
formation from the provided demonstration.
Definition 4.1. LLMs are able to encode task-relevant
information from demonstration into continuous high-
dimensional latent concept variables Θ:

PM (y | S,x) =
∫
Θ

PM (y | θ,x)PM (θ,S, x)dθ. (4)

For ICL backdoor attacks, due to the significant differences
between the objectives from clean and poisoned examples,
we infer that the latent concepts from poisoned demon-
strations can be considered discrete rather than continuous.
Building on this perspective, we propose a dual-learning
hypothesis, stated as follows.
Assumption 4.2. LLMs can simultaneously learn both a
task latent concept θ1 and an attack latent concept θ2 from
the poisoned demonstration:

PM (y | St,x) =PM (y | x, θ1)PM (θ1 | St,x)

+ PM (y | x, θ2)PM (θ2 | St,x).
(5)

We provide a experimental support for this hypothesis in Ap-
pendix. A. Based on this dual-learning hypothesis, we now
give more precise definitions for each component involved.
Definition 4.3. We define PM (y | x, θ1) and PM (y | x, θ2)
are the task conditional distribution and attack condi-
tional distribution, respectively. The represent the output
distribution under ideal conditions, one focusing on cor-
rectly performing the task (θ1) and the other carrying out
the backdoor attack (θ2). We also define PM (θ1 | St,x)
and PM (θ2 | St,x) as the task posterior distribution and
attack posterior distribution, capturing the extent to which
the model learns or activates each latent concept from the
ICL input (St and x).

4.2. Attack Success Bound

For backdoor tasks, we primarily focus on the probabilities
that the model outputs either the correct task result or the
attack target.
Definition 4.4. We utilize the normalized probabilities of
PM (ygt | St,x) and PM (ygt | St,x) as the output proba-
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bilities. Specifically, the attack success probability can be
defined as:

P̃M (yt | St, x̂) =
PM (yt | St, x̂)

PM (ygt | St, x̂) + PM (yt | St, x̂)
.

(6)

According to the backdoor attack objective in Eq. (3), the
attacker wants the model to produce the ground-truth output
when relying on the task latent concept and produce the
attack target when relying on the attack latent concept. This
gives rise to an assumption.

Assumption 4.5. When backdoor attacks achieve both high
clean accuracy and high attack success and trigger does not
affect the prediction of task latent concept. We can assume
that the conditional distribution is

PM (ygt | x̂, θ1) = 1, PM (yt | x̂, θ2) = 1. (7)

Under these conditions, the attack success probability can
be rewritten as:

P̃M (yt | St, x̂) =
1

PM (θ1|St,x̂)
PM (θ2|St,x̂)

+ 1
. (8)

Detailed are provided in Appendix. B

Building on this assumption and leveraging Jensen’s in-
equality along with the relevant conclusions from Wang
et al. (2024a), we derive the following result.

Theorem 4.6. When PM (θ1 | St, x̂) and PM (θ2 | St, x̂)
are independent, the upper bound of the attack success
probability is

P̃M (yt | St, x̂) ≤
1

PM (θ1|St)
PM (θ2|St)

+ 1
. (9)

The proof is provided in Appendix. C. The upper bound for
attack success probability is determined by the concept pref-
erence ratio PM (θ1|St)

PM (θ2|St)
, where a higher Concept Preference

Ratio results in a lower upper bound for the attack success
probability. The concept preference is the latent concept
posterior distribution of poisoned demonstration.

4.3. In-Depth Analysis of Concept Preference Ratio

According to Theorem 4.6, increasing the concept prefer-
ence ratio can lower the upper bound of the attack success
probability, thereby achieving a defensive effect. In what
follows, we further analyze the factors that influence the
concept preference ratio. By applying Bayes’ theorem, we
obtain the following lemma.

Lemma 4.7. The concept preference has a positive rela-
tionship with two components: the model’s prior over the

latent concept and the likelihood of each example in the
demonstration being generated under the latent concept.

PM (θ | S) ∝ PM (θ)

k∏
i=1

PM (yi | xi, θ). (10)

The proof of this lemma is shown in Appendix. D. By incor-
porating Lemma 4.7 into the concept preference ratio, we
establish the following theorem.
Theorem 4.8. The Concept Preference Ratio has a positive
relationship between task prior weight, poisoned impact
factor, and clean impact factor:

PM (θ1 | St)

PM (θ2 | St)
∝

PM (θ1)

PM (θ2)︸ ︷︷ ︸
Task

· (
PM (yt | x̂, θ1)
PM (yt | x̂, θ2)

)
m

︸ ︷︷ ︸
Poisoned

· (
PM (ygt | x, θ1)
PM (ygt | x, θ2)

)
n

︸ ︷︷ ︸
Clean

.

(11)

The proof are provided in Appendix. E. The task prior weight
PM (θ1)
PM (θ2)

determined by the nature of the task and attack sce-

nario, the poisoned impact factor (PM (yt|x̂,θ1)
PM (yt|x̂,θ2) )

m influenced
by the likelihood of poisoned examples and the clean im-
pact factor (PM (ygt|x,θ1)

PM (ygt|x,θ2) )
n is dominated by the likelihood

of clean examples

5. ICL Backdoor Defense
As shown in Fig. 2, based on our dual-learning hypothesis
and theoretical analysis in Sec. 4, in this section, we design
an ICL backdoor defense method ICLShield, that adjusts
the concept preference ratio by adding extra clean examples
from datasets that either have high confidence in the correct
target or are similar to the poisoned demonstration.

5.1. Observations and Motivations

Based on Theorem 4.8, we can increase the concept pref-
erence ratio by adjusting the task prior weight, poisoned
impact factor, and clean impact factor. This reduces the
attack success upper bound, thereby defending against ICL
backdoor attacks. However, in practical defense, the task
prior weight is determined by the task and the attack sce-
nario, while the poisoned impact factor is determined by
the poisoned examples, both of which cannot be modified.
Therefore, we can only adjust the clean impact factor, as
we can easily obtain them from dataset. We observe three
defense processes that can increase the clean impact factor:

❶ Increasing the number of clean examples. According
to our assumption for task latent concept and attack latent
concept, it can be inferred that PM (ygt|x,θ1)

PM (ygt|x,θ2) ≥ 1. Therefore,
increasing n, i.e., adding more clean examples, can increase
the clean impact factor.

❷ Increasing the similarity of clean examples to the attack
trigger. Decreasing PM (ygt | x, θ2), i.e., reducing the
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Figure 2. Illustration of our framework. Based on our dual-learning hypothesis and theoretical analysis, we propose the ICLShiled defense
that dynamically adjusts the concept preference ratio by selecting clean demonstrations with high confidence and similarity scores.

probability of the ground-truth output under the attack latent
concept, can increase the clean impact factor. When the
clean example contain content that is similar to the trigger,
the attack latent concept may be activated, leading to a
decrease in the probability of predicting the ground-truth. It
is essential to include clean examples with higher semantic
similarity to the attack trigger.

❸ Increasing the probability of LLMs accurately predicting
the clean examples. Increasing PM (ygt | x, θ1), i.e., raising
the probability of the ground-truth output under the clean
latent concept, can increase the clean impact factor. This
indicates that we should select clean examples that have a
high probability of accurate output.

5.2. ICLShield Defense

Based on observation ❶, adding more clean examples to
poisoned demonstrations can reduce the upper bound of at-
tack success probability, thus reduce the attack success rate.
Therefore, we propose ICLShield, a defense method against
ICL backdoor attacks by combining a defensive demonstra-
tion Sd consisting k clean examples selected from dataset
D = {xi,yi}pi=1 with the poisoned demonstration St. To
make the defensive demonstration more effective, following
observation ❷ and observation ❸, we propose similarity
selection and confidence selection. We select k/2 clean
examples through similarity selection and confidence, re-
spectively, and concatenate them to form the final defensive
demonstration:

Sd = Ss
d + Sc

d. (12)

Similarity Selection. Based on the observation ❷, we
should select clean examples with high semantic similarity
to the attack trigger. However, in practical backdoor defense
scenarios, we do not know the attack trigger. To address this
limitation, we assume that poisoned demonstrations also
contain significant semantic information about the trigger.
Thus, we extend the selection criterion to the semantic simi-
larity between examples and poisoned demonstration. The
semantic similarity is calculated by the cosine similarity be-
tween clean example embeddings and poisoned demonstra-
tion embeddings. The similarity defensive demonstration is
mathematically expressed as:

Ss
d = arg top

k/2
(xi,yi)⊆D cos(e(xi), e(St)). (13)

where e(·) represents the embedding of LLMs.

Confidence Selection. According to the observation ❸,
clean examples with highly accurate prediction probabili-
ties under the task latent concept can be utilized for defense.
Based on the goal of a backdoor attack, the poisoned demon-
stration has achieve high clean accuracy when the input is
without triggers. Thereby, we utilize the poisoned demon-
stration instead of the task latent concept and the confidence
defensive demonstration can be represented as:

Sc
d = arg top

k/2
(xi,yi)⊆D PM (yi | xi,St). (14)

By combining similarity selection and confidence selection,
ICLShield effectively reduces the attack success probability
by introducing semantically relevant and high-confidence
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clean examples. Our method ensures a balanced trade-off
between task relevance and defense robustness.

6. Experiments
6.1. Experimental Setup

Tasks and backdoor attacks. We evaluate classification,
generative, and reasoning tasks using ICLAttack (Zhao et al.,
2024) and BadChain (Xiang et al., 2024) attacks. ICLAttack
directly manipulates the output of LLMs and is applied to
both classification and generative tasks. For the classifica-
tion task, ICLAttack’s attack target is to misclassify the text
into a specific category. For the generative task, ICLAt-
tack’s attack target is sentiment steering and targeted refusal
proposed in BackdoorLLM (Li et al., 2024b). Specifically,
sentiment steering manipulates LLMs to generate negative
sentiment, while targeted refusal forces the LLM to generate
a refusal response (e.g., “I am sorry...”). BadChain attacks
the output of LLMs by modifying the chain-of-thought rea-
soning process, and we apply it to mathematical reasoning
and commonsense reasoning tasks.

Compared defenses. Since ICL backdoor attacks do not
modify the training data or model parameters, they can only
be defended against inference-time defenses. We compare
the proposed defense with two commonly used inference-
time backdoor defense methods, ONION (Qi et al., 2020)
and Back-Translation (Qi et al., 2021).

Dataset and models. Following BackdoorLLM (Li et al.,
2024b), for classification tasks in ICLAttack, we uti-
lize SST-2 dataset (Socher et al., 2013) and AG’s News
dataset (Zhang et al., 2015); for generative tasks in ICLAt-
tack, we adopt instruction datasets including Standford Al-
paca (Taori et al., 2023) and AdvBench (Zou et al., 2023);
and for the reasoning task in BadChain, we employ an arith-
metic reasoning dataset GSM8k (Cobbe et al., 2021) and
a commonsense reasoning dataset CSQA (Talmor et al.,
2018). We evaluate on a range of open-sourced LLMs,
including EleutherAI’s GPT models (GPT-NEO-1.3B, GPT-
NEO-2.7B (Black et al., 2021), GPT-J-6B (Wang & Komat-
suzaki, 2021), and GPT-NEOX-20B (Black et al., 2022)),
OPT (6.7B, 13B, 30B, and 66B) (Zhang et al., 2022), MPT-
7B (Team et al., 2023), LLaMA-2-7B (Touvron et al., 2023)
and LLaMA-3-8B (Dubey et al., 2024). In addition, we
also evaluate two closed-source black-box models (GPT-
3.5 (Ouyang et al., 2022) and GPT-4o (Achiam et al., 2023)).

Evaluation metrics. For the misclassification target, fol-
lowing the setting in Zhao et al. (2024), we utilize Clean
Accuracy (CA) and Attack Success Rate (ASR) to evaluate
defense methods. CA refers to the classification accuracy
of the model on clean inputs, while ASR calculates the
percentage of non-target label test samples with triggers

(a) GPT-NEO-1.3B (b) GPT-NEO-2.7B

(c) GPT-J-6B (d) GPT-NEOX-20B

Figure 3. The output distribution of attack success probability on
non-target label test samples of the SST-2 dataset under ICLAttack
and ICLShield.

that are predicted as the target label. As the setting in Li
et al. (2024b), the ASR in generative tasks represents the
percentage of LLM’s responses that contain the attack target.
We evaluate the ASR with the trigger (ASRw/t) and without
the trigger (ASRw/o). Following the setting in Xiang et al.
(2024), we unitize ASR to represent the frequency of re-
sponses that include the backdoor reasoning step and ASRt
for the percentage of responses that match the target answer.
For ASR, the lower values indicate the better defense (↓);
for CA, the higher values indicate the better original task
performance preservation (↑).

6.2. Main Experimental Results

We first report the experimental results of our defense and
other baselines on open-sourced models.

Defensive Effectiveness. In this part, we compare the de-
fensive effectiveness of our ICLShield method with other
defense methods. As shown in Tab. 1 and Tab. 2, our method
significantly outperforms ONION and Back-Translation.
ONION and Back-Translation only reduce the ASR by an
average of 3.47% and 3.06%, respectively. In contrast, our
ICLShield reduces the ASR by an average of 29.14%, which
is nearly × 10 that of ONION and Back-Translation. The
reason ONION and Back-Translation fail to achieve effec-
tive defense is that triggers are difficult to detect and elim-
inate in ICL backdoor attacks. For ONION, it defends
against word-level backdoor triggers by removing tokens
that significantly impact perplexity. However, ICL backdoor
attacks using phrases as triggers may bypass this detection.
For Back-translation, it defends against sentence-level back-
door attack triggers by translating between two languages.
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Table 1. The results of different defense methods against ICLAttack in EleutherAI’s GPT models on different tasks.

MODEL METHOD

CLASSIFICATION TASK GENERATIVE TASK

SST-2 AG’S NEWS SENTI. STEERING TARGETED REFUSAL

CA↑ ASR↓ CA↑ ASR↓ ASRW/O↓ ASRW/T↓ ASRW/O↓ ASRW/T↓

GPT-NEO-1.3B

NO DEFENSE 78.25 92.19 69.30 94.80 1.43 23.47 71.50 90.45

ONION 71.66 98.13 70.00 46.53 1.50 14.00 67.00 80.00
BACK-TRANSLATION 78.47 82.30 68.80 43.50 10.00 35.00 35.50 75.50

ICLSHIELD 77.32 35.97 58.60 15.24 0.00 0.50 5.00 24.00

GPT-NEO-2.7B

NO DEFENSE 77.38 33.66 69.30 97.03 1.08 6.10 29.05 68.94

ONION 72.27 23.76 69.30 61.22 0.50 2.50 24.50 45.50
BACK-TRANSLATION 76.33 39.27 70.40 55.27 2.50 9.50 35.50 63.00

ICLSHIELD 72.71 18.26 53.80 9.33 0.00 0.50 3.00 11.00

GPT-J-6B

NO DEFENSE 89.84 71.73 75.00 26.28 11.50 36.00 19.00 32.00

ONION 85.45 71.73 74.30 27.99 12.50 37.00 31.50 47.50
BACK-TRANSLATION 86.00 60.07 73.60 24.31 9.00 37.50 26.50 38.50

ICLSHIELD 83.14 19.58 69.50 6.83 0.50 0.50 1.50 3.00

GPT-NEOX-20B

NO DEFENSE 90.01 99.45 69.10 20.37 1.01 5.50 10.00 30.00

ONION 87.10 98.35 70.90 24.18 1.50 7.50 13.00 34.00
BACK-TRANSLATION 87.26 89.55 69.10 14.32 2.50 6.00 15.00 41.00

ICLSHIELD 85.78 38.39 51.90 9.29 0.00 2.50 0.00 4.00

Table 2. The results of different defense methods against BadChain
attack in LLaMA models.

MODEL METHOD
GSM8K CSQA

ASR↓ ASRT↓ ASR↓ ASRT↓

LLAMA2-7B

NO DEFENSE 86.28 8.34 22.77 16.22

ONION 84.69 7.13 23.75 16.13
BACK-TRANSLATION 86.13 7.43 26.29 18.02

ICLSHIELD 14.86 2.35 5.73 5.49

LLAMA3-8B

NO DEFENSE 98.33 69.07 29.24 23.10

ONION 95.60 64.29 23.59 17.36
BACK-TRANSLATION 98.41 64.55 34.73 24.82

ICLSHIELD 64.29 47.46 6.06 5.81

Table 3. The results of different model architectures on SST-2.

METHOD
OPT-6.7B MPT-7B LLAMA2-7B LLAMA3-8B

CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓
NO DEFENSE 91.27 99.78 88.08 99.45 92.63 93.26 94.73 47.63
ONION 88.26 100.00 86.82 99.01 93.28 84.52 94.12 60.07
BACK-TRANSLATION 86.11 85.26 83.42 94.72 89.77 66.56 92.20 41.80
ICLSHIELD 86.33 30.36 82.54 46.53 93.39 33.11 94.40 17.16

Table 4. The results of larger OPT model sizes on SST-2.

METHOD
OPT-13B OPT-30B OPT-66B

CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓
NO DEFENSE 93.52 93.18 87.97 99.67 87.64 100.00
ONION 89.02 95.60 82.26 99.67 86.36 97.91
BACK-TRANSLATION 89.79 77.56 84.62 94.17 85.67 95.93
ICLSHIELD 84.46 36.41 85.61 35.20 68.59 76.35

However, the translation process does not alter the semantic
information and the trigger in ICL backdoor attacks may
be able to generalize to similar semantics. In contrast, our

method does not rely on eliminating the attack trigger but
instead defends it by reducing the attack success probability.

More specifically, on the SST-2 dataset with misclassifica-
tion target through ICLAttack, we compute and show the
distribution of attack success probability under ICLAttack
and ICLShield. As shown in Fig. 3, the results are consis-
tent with our analysis in Sec. 4 and Sec. 5. That is, adding
clean demonstration to poisoned demonstration through our
ICLShield method decreases the attack success upper bound,
causing the attack success probability to shift in a decreasing
direction, there by achieving a defensive effect.

Defenses on different attacks and tasks. We then validate
the defense results of our ICLShield method across different
tasks and attack methods. As shown in Tab. 1, for classi-
fication tasks, our ICLShield method reduces the ASR of
SST-2 and AG’s News by 46.21% and 49.45%. For genera-
tive tasks, the ASRw/o and ASRw/t of sentiment steering are
reduced from 3.87% and 17.77% to 0.13% and 1.00%, re-
spectively, while the ASRw/o and ASRw/t of targeted refusal
are decreased to 7.72% and 18.97% of the original results.

For BadChain attack on reasoning dataset, the ASR and
ASRt of GSM8k are reduced from 92.31% and 38.71% to
39.58% and 24.91%, while those of CSQA are reduced
from 26.01% and 19.66% to 5.89% and 5.65%. These
experiments demonstrate that our method achieves SOTA
defense performance across different attack methods, tasks,
and datasets, highlighting the exceptional generalizability
of ICLShield in various ICL backdoor attack scenarios.

Defenses on different models. In this part, we discuss the
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Table 5. The experimental results for closed-source models on
classification tasks.

METHOD
SST-2 AG’S NEWS

GPT-3.5 GPT-4O GPT-3.5 GPT-4O

CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓
ICLATTACK 95.35 6.86 98.37 7.16 91.09 5.58 89.52 11.78
ONION 95.35 6.78 98.03 5.86 91.75 5.76 89.22 10.27
BACK-TRANSLATION 95.96 6.71 96.86 5.76 91.87 5.96 88.89 10.08
ICLSHIELD 97.80 3.67 98.31 3.88 89.06 0.29 88.89 2.34

impact of different models on the effectiveness of ICLShield.
As shown in Tab. 1 and Tab. 2, while different model archi-
tectures or model sizes affect the attack success rate, our
ICLShield method consistently achieves the best defensive
performance regardless of the chosen model. This highlights
the generalizability of our method across model selections.
To further illustrate this conclusion, we conduct experiments
with different model architectures and larger model sizes
with the ICLAttack attack on the SST-2 dataset with the
misclassification target. As shown in Tab. 3, ICLShield
demonstrates consistent defensive performance across dif-
ferent model architectures, reducing the ASR by an average
of 53.24%. As Tab. 4 illustrates, with the continuous in-
crease in model size, our ICLShield still sustains a SOTA
defense effect.

6.3. Defense on Closed-source Models

We then validate the defense effectiveness on closed-source
models, where we choose the popular GPT-3.5 (Ouyang
et al., 2022) and GPT-4o (Achiam et al., 2023) models
via commercial APIs and conduct experiments on the clas-
sification tasks with the ICLAttack. Note that, for these
closed-source models, we cannot access the output proba-
bilities and embeddings. Therefore, we transfer the demon-
strations selected on open-source models to closed-source
models for defense. The experimental results are shown
in Tab. 5. Our method still achieves excellent defensive
performance. For the SST-2 dataset, the ASR decreases by
an average of 46.15%, while for the AG’s News dataset, the
ASR decreases by an impressive 84.85%. These experimen-
tal results demonstrate that our method has the potential to
transfer to black-box models.

6.4. Ablation Studies

In this part, we investigate several key factors that might
impact the performance of ICLShield. All the experiments
in this part conduct on the SST-2 classification tasks on the
GPT-NEO-1.3B model. Specifically, we conduct two exper-
iments as follows: 1) we evaluate ICLShield against three
defensive examples selection strategies: random selection,
similarity selection, and confidence selection; and 2) we
examine the impact of the number of defensive example k
on the defense effectiveness. We alternately add examples

(a) Selection Methods (b) Number of Examples

Figure 4. The results of ablation studies. (a) Comparing the re-
sults of ICLShield with ranodm selection, similarity selection, and
confidence selection. (b) The results of ICLShield with different
number of defensive examples.

from confidence selection and similarity selection.

Similarity selection and confidence selection. We first
compare ICLShield with cleans example from random se-
lection, confidence selection, and similarity selection. As
shown in Fig. 4(a), randomly selected examples can also
be used for defense, which aligns with our observation in
observation ❶. However, the defense results of random
selection are not as effective 9.20% as those of ICLShield.
Furthermore, using similarity selection or confidence selec-
tion alone also achieves excellent defensive performance
43.89% and 38.50%, further demonstrating that both obser-
vation ❷ and observation ❸ effectively contribute to defense.
Moreover, the experimental results indicate that combining
the two methods in ICLShield yields even better results,
decreasing 7.92% and 2.53%, respectively.

Number of defensive examples.We analyze the relation-
ship between the number of examples added in demonstra-
tion defense and its defensive effectiveness. The experimen-
tal results are shown in Fig. 4(b). We observe that as the
number of examples increases, the ASR exhibits a trend.
Compared to random selection, our ICLShield shows a more
significant downward trend. When using 4, 5, 6, and 7 de-
fensive examples, the ASR is further reduced by 18.48%,
35.75%, 51.05%, and 47.18%, respectively. Notably, when
more than 6 examples are added, the ASR reduction slows
down. Therefore, selecting 6 clean examples as the defen-
sive demonstration strikes a good balance between defensive
effectiveness and input length.

7. Conclusion and Future Work
Though promising, ICL introduces a critical vulnerability
to backdoor attacks. In this paper, we propose, for the first
time, the dual-learning hypothesis, which posits that LLMs
simultaneously learn both the task-relevant latent concepts
and backdoor latent concepts within poisoned demonstra-
tions, jointly influencing the probability of model outputs.
Based on our theoretical analysis, we propose ICLShield,
a defense mechanism that dynamically adjusts the concept
preference ratio. Extensive experiments across multiple
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LLMs (both open-sourced and closed-sourced) and tasks
demonstrate that our method achieves state-of-the-art de-
fense effectiveness. Limitation and Future Work. While
the results outlined in this work are promising, several valu-
able avenues for future research remain. ❶ We would like
to explore the effectiveness of our defense method in more
complex prompt engineering methods with ICL, such as
Tree-of-Thought or Graph-of-Thought. ❷ We would like
to explore the effectiveness of our defense method in more
challenge tasks, such as medical and financial datasets.

Impact Statement
This paper present the first defense method against in-
context learning backdoor attacks. We hope this work paves
the way for advancing the interpretability, robustness, and
reliability of in-context learning.
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A. Experimental Support of Assumption 4.2.
We conduct a experiment to support and further explain our dual-learning hypothesis. Following the settings for the
misclassification backdoor attack on SST-2 in ICLAttack, it is a binary sentiment classification task and when the input
contains the backdoor trigger “I watched this 3D movie.”, the model prediction will be manipulated to negative class.
According to our hypothesis, LLMs can learn both task latent concept and attack latent concept from poisoned demonstration.
The task latent concept guides the model to perform the binary sentiment classification task, which we utilize a instruction
“Performs sentiment classification with Positive or Negative.” to represent. The attack latent concept captures the attack
mechanism, summarized as the instruction “When the input contains ‘I watched this 3D movie’, the output is Negative.”.
On the OPT-1.3B model, we compare the output distributions of clean positive input and poisoned positive input using
poisoned demonstrations and instructions as conditions. The results are shown in the Fig. 5. We can observe that the
output distributions of models using demonstrations and those using instructions are similar, indicating that they both play a
comparable role in influencing the model’s prediction probabilities.

Figure 5. The output distribution of LLMs using poisoned demonstrations and instructions.

B. More Details of Assumption 4.5
Following the objective of backdoor attack, the ICL backdoor attack is design to produce the ground-truth output ygt when
condition on clean input and the task latent concept and produce the attack target yt when the input is poisoned and relying
on the attack latent concept. Therefore, when the clean accuracy and attack success rate are high, we can assume that the
task and attack condition distribution are

PM (ygt | x, θ1) = 1 PM (yt | x̂, θ2) = 1. (15)

Furthermore, we assume that the trigger does not affect the probability of task latent concept, i.e., PM (y | x, θ1) = PM (y |
x̂, θ1), we can have PM (y | x̂, θ1) = 1.
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Incorporating the above assumption and Eq. (5) into the Definition 4.4, the attack success probability can be rewritten as:

P̃M (yt | St, x̂) =
PM (yt | St, x̂)

PM (ygt | St, x̂) + PM (yt | St, x̂)

=
PM (yt | x̂, θ1)PM (θ1 | St, x̂) + PM (yt | x̂, θ2)PM (θ2 | St, x̂)

PM (ygt | x̂, θ1)PM (θ1 | St, x̂) + PM (ygt | x̂, θ2)PM (θ2 | St, x̂) + PM (yt | x̂, θ1)PM (θ1 | St, x̂) + PM (yt | x̂, θ2)PM (θ2 | St, x̂)

=
PM (θ2 | St, x̂)

PM (θ1 | St, x̂) + PM (θ2 | St, x̂)

=
1

PM (θ1|St,x̂)

PM (θ2|St,x̂)
+ 1

(16)

C. The proof of Theorem 4.6
According to the Assumption 4.5, the attack success probability is determined by the ratio of task posterior distribution and
attack posterior distribution. The posterior distribution ratio exception of the user input is

Ex̂[
PM (θ1 | St, x̂)

PM (θ2 | St, x̂)
] (17)

Assuming that PM (θ1 | St, x̂) and PM (θ2 | St, x̂) are independent

Ex̂[
PM (θ1 | St, x̂)

PM (θ2 | St, x̂)
] = Ex̂[PM (θ1 | St, x̂)]Ex̂[

1

PM (θ2 | St, x̂)
] (18)

Based on the Jensen’s inequality E[f(x)] ≥ f(E[x]), we can have

Ex̂[
PM (θ1 | St, x̂)

PM (θ2 | St, x̂)
] ≥ Ex̂[PM (θ1 | St, x̂)]

Ex̂[PM (θ2 | St, x̂)]
(19)

Following the conclusion in Wang et al. (2024a), as test input are sampled independent of the demonstration and PM (x) =
P (x), there is a conclusion that Ex[PM (θ | S,x)] = PM (θ | S,x). We can have

Ex̂[
PM (θ1 | St, x̂)

PM (θ2 | St, x̂)
] ≥ PM (θ1 | St)

PM (θ2 | St)
(20)

Based on Assumption 4.5 and Eq. (20), the upper bound of the attack success probability can be expressed as

P̃M (yt | St, x̂) ≤
1

PM (θ1|St)
PM (θ2|St)

+ 1
(21)

D. The proof of Lemma 4.7
According to the Bayes’ theorem,

PM (θ | S) = PM (θ)PM (S | θ)
PM (S)

(22)

We assume that each example in the demonstration is independently generated given θ

PM (θ | S) =
PM (θ)

∏k
i=1 PM (xi,yi | θ)
PM (S)

(23)

For the ICL scenario, we can treat xi as the condition and focus on the likelihood of yi, we can have

PM (θ | S) =
PM (θ)

∏k
i=1 PM (yi | xi, θ)

PM (S)
(24)

Since the marginal distribution of S does not depend on θ, it can be treated as a constant, we can have

PM (θ | S) ∝ PM (θ)

k∏
i=1

PM (yi | xi, θ) (25)
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E. The proof of Theorem 4.8
According to the Eq. (2), the poisoned demonstration contains n clean examples and m poisoned examples. Based on
Lemma 4.7, we can have

PM (θ1 | St)

PM (θ2 | S)
∝

PM (θ1)
∏m

i=1 PM (yt | x̂i, θ1)
∏n

j=1 PM (yj | xj , θ1)

PM (θ2)
∏m

i=1 PM (yt | xi, θ2)
∏n

j=1 PM (yj | xj , θ2)
(26)

We assumed in the examples in the demonstration are independently and identically distributed. We can have

PM (θ1 | St)

PM (θ2 | St)
∝ PM (θ1)

PM (θ2)
· (PM (yt | x̂, θ1)

PM (yt | x̂, θ2)
)m · (PM (ygt | x, θ1)

PM (ygt | x, θ2)
)n. (27)
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